Enriched Modal Logics

Aniello Murano

Università degli Studi di Napoli “Federico II”

Wien - November 7, 2013
Motivations

Is the system correct?
Motivations

Formal Verification:

- **System** \rightarrow A mathematical model M
- **Desired Behavior** \rightarrow A formal specification ψ
- **Correctness** \rightarrow A formal technique
Motivations

Formal Verification:

- **System** → A mathematical model M
- **Desired Behavior** → A formal specification ψ
- **Correctness** → A formal technique

- Model Checking: Does M satisfies ψ?

The system has the required behavior
Motivations

Formal Verification:

- System
- Desired Behavior
- Correctness

→ A mathematical model M
→ A formal specification ψ
→ A formal technique

◆ Model Checking: Does M satisfies ψ?
◆ Satisfiability: Is there M for ψ?

The system has the required behavior
A Basic Model: Kripke Structure

A system can be represented as a **Kripke Structure**: a labeled-state transition graph

\[M = (AP, S, S_0, R, Lab) \]

- **AP** is a set of atomic propositions.
- **S** is a finite set of states.
- **S_0 \subseteq S** is the set of initial states.
- **R \subseteq S \times S** is a transition relation, total: \(\forall s \in S, \exists s' . R(s, s') \).
- **Lab : S \rightarrow 2^{AP}** labels states with propositions true in that states.

A path is a system run!
System Specification

- Modal and Temporal logic allow description of the temporal ordering of events
System Specification

- Modal and Temporal logic allow description of the temporal ordering of events

- Two main families of logics:
 - Linear-Time Logics (LTL)
 - Each moment in time has a unique possible future.
 - LTL expresses path properties based on the paths state labels.
 - Useful for hardware specification.
 - Branching-Time Logics (CTL, CTL*, and μ-CALCULUS)
 - Each moment in time may split into various possible future.
 - CTL* expresses state properties from which LTL-like properties are satisfied in an existential or universal way.
 - Useful for software specification.

Aniello Murano - Enriched Modal Logics
μ-calculus is a very expressive logic

- Can express several practical properties.
- Corresponds to alternating parity tree automata
- Important connections with MSO
- Strictly subsumes classical logics such as CTL, LTL, CTL*, ...
- Identifies powerful classes of Description Logics

Decision problems:
 - Model checking: UP ∩ co-UP
 - Satisfiability: ExpTime-complete
μ-calculus limitations

- Several important constructs cannot be easily translated to the μ-calculus:
 - Inverse Programs to travel relations in backward
 - Graded modalities to enable statements on a number of successors
 - Nominals as propositional variables true exactly in one state
\(\mu\)-calculus limitations

- Several important constructs cannot be easily translated to the \(\mu\)-calculus:
 - Inverse Programs to travel relations in backward
 - Graded modalities to enable statements on a number of successors
 - Nominals as propositional variables true exactly in one state

- Extensions of the \(\mu\)-calculus with these abilities induces families of enriched \(\mu\)-calculi.

- Similarly, we can define families of enriched temporal logics.
Outline of the talk
I part

✓ Motivations

☑ Fully enriched μ-calculus
Outline of the talk

I part

- Motivations
- Fully enriched \(\mu \)-calculus
- Families of enriched \(\mu \)-calculi
 - full graded \(\mu \)-calculus (with inverse programs and graded mod.)
 - hybrid graded \(\mu \)-calculus (with graded modalities and nominals)
 - full hybrid \(\mu \)-calculus (with inverse programs and nominals)
Outline of the talk

I part

✓ Motivations

☐ Fully enriched \(\mu \)-calculus

☐ Families of enriched \(\mu \)-calculi
 ◆ full graded \(\mu \)-calculus (with inverse programs and graded mod.)
 ◆ hybrid graded \(\mu \)-calculus (with graded modalities and nominals)
 ◆ full hybrid \(\mu \)-calculus (with inverse programs and nominals)

☐ Satisfiability of fully enriched \(\mu \)-calculus: Undecidable
Outline of the talk

I part

✓ Motivations

 Fully enriched μ-calculus

 Families of enriched μ-calculi
  full graded μ-calculus (with inverse programs and graded mod.)
  hybrid graded μ-calculus (with graded modalities and nominals)
  full hybrid μ-calculus (with inverse programs and nominals)

 Satisfiability of fully enriched μ-calculus: Undecidable

 Satisfiability of the other families we consider: ExpTime-complete
  Upper bound via Fully Enriched Automata (FEA).
  The upper bound holds also in case numbers are coded in binary
Outline of the talk
II part

- Graded Computation Tree Logic (GCTL)

- ExpTime solution of the satisfiability problem for graded numbers coded in unary/binary
Outline of the talk
II part

- Graded Computation Tree Logic (GCTL)

- ExpTime solution of the satisfiability problem for graded numbers coded in unary/binary

- Open questions on GCTL and its extensions:
 - $GCTL^*$, PGCTL/PGCTL*, etc..
Outline of the talk
II part

- Graded Computation Tree Logic (GCTL)

- ExpTime solution of the satisfiability problem for graded numbers
coded in unary/binary

- Open questions on GCTL and its extensions:
 - GCTL*, PGCTL/PGCTL*, etc..

- Some achievements in open system verification.
I part: Enriched μ-calculi
Some known results

- Satisfiability for Fully enriched μ-calculus is undecidable [Bonatti, Peron 2004]
Some known results

- Satisfiability for Fully enriched μ-calculus is undecidable [Bonatti, Peron 2004]

- ExpTime-completeness of satisfiability for enriched μ-calculi:
 - μ-calculus with inverse programs [Vardi’98]
 - μ-calculus with graded modalities [Kupferman, Sattler, Vardi’02]
 - full hybrid logic [Sattler, Vardi’01]
 - full graded logic in unary coding [Calvanese, De Giacomo, Lenzerini’01]
The fully enriched μ-calculus

- The μ-calculus is a propositional modal logic with least(μ) and greatest (ν) fixpoint operators [Kozen 1983].

- The fully enriched μ-calculus extends the μ-calculus with

 - graded modalities: $\langle n, \alpha \rangle$ (atleast formulas) and $[n, \alpha]$ (alldbut formulas)

 - nominals propositions: Nominal set Nom

 - inverse programs: Use of both program sets Prog and Prog^{-}
The fully enriched μ-calculus (Syntax)

- Let AP, Var, $Prog$, and Nom be sets of atomic proposition, propositional variables, atomic, programs and nominals.

- Syntax:
 \[
 \varphi ::= \text{true} \mid \text{false} \mid p \mid \neg p \mid y \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \langle n, \alpha \rangle \varphi \mid [n, \alpha] \varphi \mid \mu y. \varphi(y) \mid \nu y. \varphi(y)
 \]
 where $p \in AP \cup Nom$, $y \in Var$, $n \in N$, and α is a program or its converse.
The fully enriched μ-calculus (Syntax)

- Let AP, Var, $Prog$, and Nom be sets of atomic proposition, propositional variables, atomic, programs and nominals

- Syntax:

 \[
 \varphi ::= \text{true} \mid \text{false} \mid \neg p \mid y \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \langle n, \alpha \rangle \varphi \mid [n, \alpha] \varphi \mid \mu y. \varphi(y) \mid \nu y. \varphi(y)
 \]

 where $p \in AP \cup Nom$, $y \in Var$, $n \in N$, and α is a program or its converse

- Fragments of the fully enriched μ-calculus:
 - full graded μ-calculus (without nominals)
 - hybrid graded μ-calculus (without inverse programs)
 - full hybrid μ-calculus (without graded modalities)
Semantics: The enriched model

- The semantics of the fully enriched \(\mu \)-calculus is given with respect to enriched Kripke structures

\[K = (AP \cup \text{Nom}, W, W_0, R, \text{Lab}) \]
Semantics: The enriched model

- The semantics of the fully enriched μ-calculus is given with respect to enriched Kripke structures

\[K = (\text{AP} \cup \text{Nom}, W, W_0, R, \text{Lab}) \]

- In particular, R and Lab are enriched as follows:
 - \(R : \text{Prog} \rightarrow 2^W \times W \) assigns to programs transitions relation over \(S \)
 - \(\text{Lab} : \text{AP} \cup \text{Nom} \rightarrow 2^W \) assigns to propositions and nominal sets of states, where those assigned to each nominal are singletons.
Semantics: The enriched model

- The semantics of the fully enriched μ-calculus is given with respect to enriched Kripke structures

\[K = (\text{AP} \cup \text{Nom}, W, W_0, R, \text{Lab}) \]

- In particular, R and Lab are enriched as follows:
 - \(R : \text{Prog} \rightarrow 2^W \times W \) assigns to programs transitions relation over \(S \)
 - \(\text{Lab}: \text{AP} \cup \text{Nom} \rightarrow 2^W \) assigns to propositions and nominal sets of states, where those assigned to each nominal are singletons.

- Given a Kripke structure, atomic propositions and boolean connectivities are interpreted as usual:
 - \(K \) satisfies the nominal \(n \) at the starting state \(r \), since \(\text{Lab}(n) = \{s\} \)
 - \(K \) does not satisfy \(q \) at \(r \), but at \(s \).
Semantics

- For a Kripke structure, the new modalities are interpreted as follows.
- $\langle n, \alpha \rangle \varphi$ holds in w if φ holds at least in $n+1$ α-successors of w.
- $[n, \alpha] \varphi$ holds in w if φ holds in all but at most n α-successors of w.
Semantics

- For a Kripke structure, the new modalities are interpreted as follows.
 - $\langle n, \alpha \rangle \phi$ holds in w if ϕ holds at least in $n+1$ α-successors of w.
 - $[n, \alpha] \phi$ holds in w if ϕ holds in all but at most n α-successors of w.

- In r, $\langle 1, b \rangle p$ holds

Diagram:

```
q --b--> h --b--> q
|        |        |
|        |        |
|        |        |
r  \----/  s

p --b--> h --b--> p
```

Aniello Murano - Enriched Modal Logics
Semantics

- For a Kripke structure, the new modalities are interpreted as follows.
- $\langle n, \alpha \rangle \varphi$ holds in w if φ holds at least in $n+1$ α-successors of w.
- $[n, \alpha] \varphi$ holds in w if φ holds in all but at most n α-successors of w.

In r,

- $\langle 1, b \rangle p$ holds
- $[1, b] p$ does not hold.
For a Kripke structure, the new modalities are interpreted as follows.

- $\langle n, \alpha \rangle \varphi$ holds in w if φ holds at least in $n+1$ α-successors of w.
- $[n, \alpha] \varphi$ holds in w if φ holds in all but at most n α-successors of w.

In r, $\langle 1, b \rangle p$ holds.
In r, $[1, b] p$ does not hold.
In r, $[2, b] p$ holds.
Semantics

- For a Kripke structure, the new modalities are interpreted as follows.
- \(\langle n, \alpha \rangle \phi \) holds in \(w \) if \(\phi \) holds at least in \(n+1 \) \(\alpha \)-successors of \(w \).
- \([n, \alpha] \phi \) holds in \(w \) if \(\phi \) holds in all but at most \(n \) \(\alpha \)-successors of \(w \).

\begin{itemize}

 \item In \(r \), \(\langle 1, b \rangle p \) holds
 \item In \(r \), \([1, b] p \) does not hold.
 \item In \(r \), \([2, b] p \) holds.
 \item In \(s \), \(\langle 0, b^- \rangle h \) holds
\end{itemize}
Semantics

- For a Kripke structure, the new modalities are interpreted as follows.
 - $\langle n, \alpha \rangle \phi$ holds in w if ϕ holds at least in $n+1$ α-successors of w.
 - $[n, \alpha] \phi$ holds in w if ϕ holds in all but at most n α-successors of w.

![Diagram showing the interpretation of modalities with nodes q, h, p, and r, s, and edges labeled b and r.]

- In r, $\langle 1, b \rangle p$ holds
- In r, $[1, b] p$ does not hold.
- In r, $[2, b] p$ holds.
- In s, $\langle 0, b^- \rangle h$ holds.

- ν and μ are useful to express liveness and safety:
 - AGp: p always true along all α-paths is $\nu X. p \land [0, \alpha] X$
 - EFp: there exists an α-path where p eventually holds is $\mu X. p \lor \langle 0, \alpha \rangle X$

- Note that $\langle 0, \alpha \rangle \phi$ is $\langle \alpha \rangle \phi$ and $[0, \alpha] \phi$ is $[\alpha] \phi$
Structure properties

- In branching-time temporal logic, important model features to simplify decisions reasonings are:
 - **Finite-model property:**
 - Is there a finite model satisfying the formula
 - It is possible to use exhaustive (brute-force) methods!
 - **Tree-model property:**
 - Is there a tree-model shape satisfying the formula
 - It is possible to use tree automata!

- In enriched μ-calculus we need **forest structures** as models
Forest structures

- A forest $F \subseteq N^+$ is a collection of trees:

- The elements of F are nodes, the degree of F is the maximum number of node's successors, and 0, 1, and 2 are roots of F.

- The set $T = \{r \cdot x \mid x \in N^* \text{ and } r \cdot x \in F\}$ is the tree of F rooted in r.
A forest $F \subseteq N^+$ is a collection of trees:

The elements of F are nodes, the degree of F is the maximum number of node’s successors, and 0, 1, and 2 are roots of F.

The set $T = \{ r \cdot x \mid x \in N^* \text{ and } r \cdot x \in F \}$ is the tree of F rooted in r.

A Kripke structure K is a forest structure if it induces a forest:

- Nodes W represent a forest and the relation R is defined over nodes, where each pair of successive nodes is labeled with one atomic program or its converse.

Aniello Murano - Enriched Modal Logics
A forest $F \subseteq N^*$ is a collection of trees:

- The elements of F are nodes, the degree of F is the maximum number of node's successors, and 0, 1, and 2 are roots of F.
- The set $T = \{r \cdot x \mid x \in N^* \text{ and } r \cdot x \in F\}$ is the tree of F rooted in r.
- A Kripke structure K is a forest structure if it induces a forest:
 - Nodes W represent a forest and the relation R is defined over nodes, where each pair of successive nodes is labeled with one atomic program or its converse.
- A Kripke structure K is a quasi forest structure if it becomes a forest structure after deleting all the edges entering a root of W.
A forest $F \subseteq N^+$ is a collection of trees:

- The elements of F are nodes, the degree of F is the maximum number of node's successors, and 0, 1, and 2 are roots of F.
- The set $T = \{r \cdot x \mid x \in N^* \text{ and } r \cdot x \in F\}$ is the tree of F rooted in r.

A Kripke structure K is a forest structure if it induces a forest:

- Nodes W represent a forest and the relation R is defined over nodes, where each pair of successive nodes is labeled with one atomic program or its converse.

A Kripke structure K is a quasi forest structure if it becomes a forest structure after deleting all the edges entering a root of W.

Aniello Murano - Enriched Modal Logics
A forest $F \subseteq N^+$ is a collection of trees:

- The elements of F are nodes, the degree of F is the maximum number of node’s successors, and 0, 1, and 2 are roots of F.
- The set $T = \{ r \cdot x \mid x \in N^* \text{ and } r \cdot x \in F \}$ is the tree of F rooted in r.
- A Kripke structure K is a forest structure if it induces a forest:
 - Nodes W represent a forest and the relation R is defined over nodes, where each pair of successive nodes is labeled with one atomic program or its converse.
- A Kripke structure K is a quasi forest structure if it becomes a forest structure after deleting all the edges entering a root of W.
- K is a tree structure if W consists of a single tree.
Forest and tree model property

- Given a sentence φ of the full graded μ-calculus with m at least subsentences and counting up to b
Given a sentence φ of the full graded μ-calculus with m at least subsentences and counting up to b, φ is satisfiable if φ has a tree model whose degree is at most $m \cdot (b+1)$.
Forest and tree model property

- Given a sentence ϕ of the full graded μ-calculus with m at least subsentences and counting up to b.

 ϕ is satisfiable

 ϕ has a tree model whose degree is at most $m \cdot (b+1)$.

- The hybrid graded μ-calculus does not enjoy the tree model property.
Forest and tree model property

- Given a sentence ϕ of the full graded μ-calculus with m at least subsentences and counting up to b

 ϕ is satisfiable

 ϕ has a tree model whose degree is at most $m \cdot (b+1)$.

- The hybrid graded μ-calculus does not enjoy the tree model property.

- Given a sentence ϕ of the hybrid graded μ-calculus with k nominals, m at least subsentences and counting up to b

 ϕ is satisfiable

 ϕ has a quasi forest model whose degree is at most $\max\{k+1, m \cdot (b+1)\}$

Aniello Murano - Enriched Modal Logics
Solving enriched mu-calculi

- We use an automata-theoretic approach.
- In modal μ-calculus, we translate a formula to an alternating parity tree automaton and check for its emptiness.
 - The translation is polynomial
 - Checking for emptiness can be done in ExpTime
 - Satisfiability of μ-calculus is solvable in ExpTime.
- For the enriched μ-calculi, we need an enriched version of parity tree automata.
- Let us first recall alternating automata on infinite tree...
Nondeterministic (binary) tree automata: NTA

- A infinite (binary) tree is $t : \{0, 1\}^* \to \Sigma$

- A **path** is an infinite sequence of nodes starting at the root

- An **NTA** is a tuple $A = \langle Q, \Sigma, \delta, Q_0, F \rangle$
 - $\delta : Q \times \Sigma \to 2^{Q \times Q}$ is a tree transition relation
 - Runs are binary trees labeled with states accordingly to δ
 - F is an acceptance condition satisfied on each path of a run

- A $(\Sigma$-labeled) tree t
A run \(r : \{0,1\}^* \rightarrow Q \) is built in accordance with \(\delta \) and \(r(\varepsilon) \in Q_0 \).
Thus, runs are \(Q \)-labeled trees.

Let \((q,q) \in \delta(p,a)\) and \(q_0\) initial state

![Diagram](image-url)
A run \(r : \{0,1\}^* \rightarrow Q \) is built in accordance with \(\delta \) and \(r(\varepsilon) \in Q_0 \).

Thus, runs are \(Q \)-labeled trees.

Let \((q,q) \in \delta(p,a)\) and \(q_0\) initial state.
A run \(r : \{0,1\}^* \rightarrow Q \) is built in accordance with \(\delta \) and \(r(\varepsilon) \in Q_0 \). Thus, runs are \(Q \)-labeled trees.

Let \((q,q) \in \delta(p,a) \) and \(q_0 \) initial state.

A run is accepting if the acceptance condition is satisfied on every path.
Alternating automata on infinite trees

- An alternating (finite-state) automaton on infinite Σ-labeled D-trees is a tuple

$$A = \langle Q, \Sigma, \delta, q_0, F \rangle$$

- $\delta : (Q \times \Sigma) \rightarrow B^+(D \times Q)$
- positive Boolean formulas of pairs of directions and states

For example

$$\delta(p,a) = (1,p) \land (1,q)$$

Σ-labeled binary tree
A run on a Σ-labeled D-trees is a $(D^* \times Q)$-labeled tree. The root is labeled with (ϵ, q_0) and labels of each node and its successors must satisfy the δ.
A run on a Σ-labeled D-trees is a $(D^* \times Q)$-labeled tree. The root is labeled with (ε, q_0) and labels of each node and its successors must satisfy the δ

$\delta(q_0,a)=((0,q_1) \lor (0,q_2)) \land (0,q_3) \land (1,q_3)$

Let $S= \{(0,q_1), (0,q_3), (1,q_3)\}$.

A binary tree T

The corresponding run r
A run on a Σ-labeled D-trees is a $(D^* \times Q)$-labeled tree. The root is labeled with (ε, q_0) and labels of each node and its successors must satisfy the δ

$\delta(q_0,a)=((0,q_1)\lor (0,q_2)) \land (0,q_3) \land (1,q_3)$

Let $S=\{(0,q_1), (0,q_3), (1,q_3)\}$.

There is no one-to-one correspondence between nodes of T and r.
A run on a \(\Sigma \)-labeled D-trees is a \((D^* \times Q)\)-labeled tree. The root is labeled with \((\varepsilon, q_0)\) and labels of each node and its successors must satisfy the \(\delta\):

\[
\delta(q_0, a) = \left((0, q_1) \lor (0, q_2) \right) \land (0, q_3) \land (1, q_3)
\]

Let \(S = \{(0, q_1), (0, q_3), (1, q_3)\}\). There is no one-to-one correspondence between nodes of \(T\) and \(r\).

As in nondeterministic automata, a run is accepting if the acceptance condition is satisfied on every path.
Fully Enriched Automata

- Fully enriched automata (FEA) run on infinite labeled forests $\langle T,V \rangle$.
- FEA generalize alternating automata on infinite trees as the fully enriched μ-calculus extends the standard μ-calculus:
Fully Enriched Automata

- Fully enriched automata (FEA) run on infinite labeled forests \(\langle T, V \rangle \).
- FEA generalize alternating automata on infinite trees as the fully enriched \(\mu \)-calculus extends the standard \(\mu \)-calculus:
 - **Move up to a predecessor of a node**
 (by analogy with inverse programs)
 - **Move down to at least n or all but n successors**
 (by analogy with graded modalities)
 - **Jump directly to the roots of the input forest**
 (which are the analogues of nominals).
Fully Enriched Automata

- Fully enriched automata (FEA) run on infinite labeled forests $\langle T,V \rangle$.
- FEA generalize alternating automata on infinite trees as the fully enriched μ-calculus extends the standard μ-calculus:
 - Move up to a predecessor of a node (by analogy with inverse programs)
 - Move down to at least n or all but n successors (by analogy with graded modalities)
 - Jump directly to the roots of the input forest (which are the analogues of nominals).

- $\delta(q,\sigma)$ is a positive boolean combination of pairs of directions and states.

- Formally,
 - $\delta: Q \times \Sigma \to B^+(D_b \times Q)$, where D_b can be -1, ε, $\langle \text{root} \rangle$, $[\text{root}]$, $\langle n \rangle$, or $[n]$, with $0 \leq n \leq b$.
 - $(-1, q)$ and (ε, q) send a copy to the predecessor and to the current node.
 - $(\langle \text{root} \rangle, q)$ and $([\text{root}], q)$ send a copy to some or all roots of the forest.
 - $(\langle n \rangle, q)$ and $([n], q)$ send a copy in state q to $n+1$ and all but n successors of the current node, respectively.
Runs for FEA

- For a FEA A with a transition $\delta: Q \times \Sigma \to B^+(D_b \times Q)$
- A run over a forest $\langle F,V \rangle$ is a $(F \times Q)$-labeled tree, built in accordance with δ and $r(\epsilon) = (c, q_0)$, for a root c of F.

Aniello Murano - Enriched Modal Logics
Runs for FEA

- For a FEA A with a transition $\delta: Q \times \Sigma \rightarrow B^+ (D_b \times Q)$
- A run over a forest $\langle F, V \rangle$ is a $(F \times Q)$-labeled tree, built in accordance with δ and $r(\varepsilon) = (c, q_0)$, for a root c of F.

\[\langle F, V \rangle: \]

\[0 \quad \quad \quad \quad 1 \]

\[00 \quad 01 \quad 02 \quad 10 \quad 11 \quad 12 \]

\[r: \]

\[c_1, q_0 \]

\[0 \quad 1 \]

\[00 \quad 01 \]

\[m \]
Runs for FEA

- For a FEA A with a transition $\delta: Q \times \Sigma \rightarrow B^+(D_b \times Q)$
- A run over a forest $\langle F, V \rangle$ is a $(F \times Q)$-labeled tree, built in accordance with δ and $r(\varepsilon) = (c, q_0)$, for a root c of F.
- Let $r(0) = (11, q)$, $V(11) = a$, and
 \[\delta(q, a) = (-1, q_1) \land ((\langle \text{root} \rangle, q_2) \lor ([\text{root}], q_3))\]
Runs for FEA

- For a FEA A with a transition $\delta: Q \times \Sigma \rightarrow B^+(D_b \times Q)$
- A run over a forest $\langle F,V \rangle$ is a $(F \times Q)$-labeled tree, built in accordance with δ and $r(\epsilon) = (c, q_0)$, for a root c of F.
- Let $r(0) = (11, q)$, $V(11) = a$, and

 $\delta(q, a) = (-1, q_1) \land ((\langle \text{root} \rangle, q_2) \lor ([\text{root}], q_3))$

- Let $S = \{(-1, q_1), (\langle \text{root} \rangle, q_2)\}$.

Diagram

- $\langle F,V \rangle$: Diagram of a forest $\langle F,V \rangle$ with states 0, 1, and labels 00, 01, 02, 10, a, 12.
- r: Diagram of a run r starting at c_1, q_0 and moving through states 11, q, 1, c_2, q_2, and $1, q_1$.
Runs for FEA

- For a FEA A with a transition $\delta: Q \times \Sigma \rightarrow B^{+}(D_{b} \times Q)$
- A run over a forest $\langle F,V \rangle$ is a $(F \times Q)$-labeled tree, built in accordance with δ and $r(\varepsilon) = (c, q_{0})$, for a root c of F.
- Let $r(0) = (11, q)$, $V(11) = a$, and
 \[\delta(q,a) = (-1, q_{1}) \land ((<\text{root}>, q_{2}) \lor ([\text{root}], q_{3})) \]
- Let $S = \{(-1, q_{1}), (\langle \text{root} \rangle, q_{2})\}$.

- We use a parity condition.
Acceptance conditions

- **Büchi condition:** $F \subseteq Q$. A run r is accepting iff for every path, there exists a final state appearing infinitely often.
- Formally, a run is accepting if for each path π, $\text{Inf}(r|\pi) \cap F \neq \emptyset$.
Acceptance conditions

- **Büchi condition**: \(F \subseteq Q \). A run \(r \) is accepting iff for every path, there exists a final state appearing infinitely often.

- Formally, a run is accepting if for each path \(\pi \), \(\text{Inf}(r|\pi) \cap F \neq \emptyset \)

- **Parity condition**: \(F = \{F_1, \ldots, F_m\} \). A run \(r \) is accepting if for each path \(\pi \) in \(r \) the minimal \(i \) for which \(\text{Inf}(r|\pi) \cap F \neq \emptyset \) is even.
Acceptance conditions

- **Büchi condition**: \(F \subseteq Q \). A run \(r \) is accepting iff for every path, there exists a final state appearing infinitely often.
- Formally, a run is accepting if for each path \(\pi \), \(\text{Inf}(r|\pi) \cap F \neq \emptyset \).

- **Parity condition**: \(F = \{F_1, \ldots, F_m\} \). A run \(r \) is accepting if for each path \(\pi \) in \(r \) the minimal \(i \) for which \(\text{Inf}(r|\pi) \cap F \neq \emptyset \) is even.

- **Emptiness**:
 - Nondeterministic Buchi Tree Automata (NBT) : PTime-Complete
 - Alternating Buchi Tree Automata (ABT) : ExpTime-Complete
 - Nondeterministic Parity Tree Automata (NPT) : UP \(\cap \) Co-UP
 - Alternating Parity Tree Automata (APT) : ExpTime-Complete
Solving the satisfiability problem

- We show that the satisfiability problem for enriched μ-calculus formulas (except for fully enriched ones) is EXPTime-Complete
Solving the satisfiability problem

- We show that the satisfiability problem for enriched μ-calculus formulas (except for fully enriched ones) is EXPTime-Complete
- Lower Bound: Satisfiability for the μ-calculus is EXPTime-hard [Fisher Ladner 1979]
Solving the satisfiability problem

- We show that the satisfiability problem for enriched μ-calculus formulas (except for fully enriched ones) is EXPTime-Complete
- Lower Bound: Satisfiability for the μ-calculus is EXPTime-hard [Fisher Ladner 1979]
- Upper Bound: We use an automata-theoretic approach:
 - Given a sentence φ of the full graded μ-calculus that has m at least sub-sentences and counts up to b, we can construct a FEA A_φ that
 - accepts the set of tree models of φ with degree at most $m(b+1)$, and
 - has $|\varphi|$ states, index $|\varphi|$.
Solving the satisfiability problem

- We show that the satisfiability problem for enriched μ-calculus formulas (except for fully enriched ones) is EXPTime-Complete.

- Lower Bound: Satisfiability for the μ-calculus is EXPTime-hard [Fisher Ladner 1979].

- Upper Bound: We use an automata-theoretic approach:
 - Given a sentence ϕ of the full graded μ-calculus that has m at least sub-sentences and counts up to b, we can construct a FEA A_ϕ that
 - accepts the set of tree models of ϕ with degree at most $m(b+1)$, and
 - has $|\phi|$ states, index $|\phi|$.
 - Given a sentence ϕ of the hybrid graded/full μ-calculus with m at least subsentences, k nominals, and counts up to b, we can build a FEA A_ϕ that
 - accepts all quasi forest models of ϕ with degree max{$k+1$, $m(b+1)$}, and
 - has $O(|\phi|^2)$ states, index $|\phi|$.
Solving the satisfiability problem

- We show that the satisfiability problem for enriched \(\mu \)-calculus formulas (except for fully enriched ones) is \(\text{EXPTime-Complete} \)

- Lower Bound: Satisfiability for the \(\mu \)-calculus is \(\text{EXPTime-hard} \) [Fisher Ladner 1979]

- Upper Bound: We use an automata-theoretic approach:
 - Given a sentence \(\phi \) of the full graded \(\mu \)-calculus that has \(m \) at least sub-sentences and counts up to \(b \), we can construct a FEA \(A_\phi \) that
 - accepts the set of tree models of \(\phi \) with degree at most \(m(b+1) \), and
 - has \(|\phi| \) states, index \(|\phi| \).
 - Given a sentence \(\phi \) of the hybrid graded/full \(\mu \)-calculus with \(m \) at least subsentences, \(k \) nominals, and counts up to \(b \), we can built a FEA \(A_\phi \) that
 - accepts all quasi forest models of \(\phi \) with degree \(\max\{k+1, m(b+1)\} \), and
 - has \(O(|\phi|^2) \) states, index \(|\phi| \).

- In both cases, \(\phi \) is satisfiable if \(L(A_\phi) \neq \emptyset \)
Solving the emptiness problem

- We first reduce the emptiness problem for FEA to the emptiness problem for 2GAPTs.
 - A 2GAPT is a FEA that accepts trees and cannot jump to the root of the input tree.
Solving the emptiness problem

- We first reduce the emptiness problem for FEA to the emptiness problem for 2GAPTs.
 - A 2GAPT is a FEA that accepts trees and cannot jump to the root of the input tree.

- To decide the emptiness of 2GAPTs, we use a reduction to the emptiness problem of GNPT, via “strategy trees”
 - To remove alternation, we build special trees that allow encoding the original run in one having the same tree structure as the input tree.
 - To restrict to unidirectional paths, we use the notion of annotation that allow to decompose each path into downward paths and detours.
Solving the emptiness problem

- We first reduce the emptiness problem for FEA to the emptiness problem for 2GAPTs.
 - A 2GAPT is a FEA that accepts trees and cannot jump to the root of the input tree.

- To decide the emptiness of 2GAPTs, we use a reduction to the emptiness problem of GNPT, via “strategy trees”
 - To remove alternation, we build special trees that allow encoding the original run in one having the same tree structure as the input tree.
 - To restrict to unidirectional paths, we use the notion of annotation that allow to decompose each path into downward paths and detours.

- The result follows from the blow-up involved in building the GNPT and from the complexity for checking its emptiness.
A strategy tree with detour

Figure 2: A fragment of an input tree, a corresponding run, and its strategy tree.
A strategy tree with detour

Figure 2: A fragment of an input tree, a corresponding run, and its strategy tree.
A strategy tree with detour

Figure 2: A fragment of an input tree, a corresponding run, and its strategy tree.
A strategy tree with detour

Figure 2: A fragment of an input tree, a corresponding run, and its strategy tree.
A strategy tree with detour

Figure 2: A fragment of an input tree, a corresponding run, and its strategy tree.
A strategy tree with detour

Figure 2: A fragment of an input tree, a corresponding run, and its strategy tree.
A Summary for Enriched μ-calculi

<table>
<thead>
<tr>
<th>Results on the satisfiability problem for Enriched μ-calculi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inverse programs</td>
</tr>
<tr>
<td>fully enriched</td>
</tr>
<tr>
<td>full hybrid</td>
</tr>
<tr>
<td>full graded</td>
</tr>
<tr>
<td>hybrid graded</td>
</tr>
<tr>
<td>graded</td>
</tr>
<tr>
<td>full</td>
</tr>
</tbody>
</table>

1. [Bonatti, Peron 2004]
2. [Sattler, Vardi 2001]
3. [Vardi 1998]
4. [Calvanese, De Giacomo, Lenzerini, 2001]
5. [Kupferman, Sattler, Vardi, 2002]
A Summary for Enriched μ-calculi

<table>
<thead>
<tr>
<th>Results on the satisfiability problem for Enriched μ-calculi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inverse programs</td>
</tr>
<tr>
<td>-------------------</td>
</tr>
<tr>
<td>fully enriched</td>
</tr>
<tr>
<td>full hybrid</td>
</tr>
<tr>
<td>full graded</td>
</tr>
<tr>
<td>hybrid graded</td>
</tr>
<tr>
<td>graded</td>
</tr>
<tr>
<td>full</td>
</tr>
</tbody>
</table>

1. [Bonatti, Peron 2004]
2. [Sattler, Vardi 2001]
3. [Vardi 1998]
4. [Calvanese, De Giacomo, Lenzerini, 2001]
5. [Kupferman, Sattler, Vardi, 2002]
A Summary for Enriched μ-calculi

<table>
<thead>
<tr>
<th>Results on the satisfiability problem for Enriched μ-calculi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inverse programs</td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>fully enriched</td>
</tr>
<tr>
<td>full hybrid</td>
</tr>
<tr>
<td>full graded</td>
</tr>
<tr>
<td>hybrid graded</td>
</tr>
<tr>
<td>graded</td>
</tr>
<tr>
<td>full</td>
</tr>
</tbody>
</table>

1. [Bonatti, Peron 2004]
2. [Sattler, Vardi 2001]
3. [Vardi 1998]
4. [Calvanese, De Giacomo, Lenzerini, 2001]
5. [Kupferman, Sattler, Vardi, 2002]
Enriching Temporal Logics

- μ-calculus is a very expressive but too low-level logic.
- Branching time temporal logics such as CTL, and CTL* are less expressive but much more human-friendly.
Enriching Temporal Logics

- μ-calculus is a very expressive but too low-level logic.
- Branching time temporal logics such as CTL, and CTL* are less expressive but much more human-friendly.
- What about enriching CTL and CTL* with graded modalities.
 - So far, only CTL has been fully solved, both in unary and binary coding.
 - Graded CTL is exponentially more succinct than graded μ-calculus.
 - The satisfiability problem remains ExpTime-Complete
Enriching Temporal Logics

- μ-calculus is a very expressive but too low-level logic.
- Branching time temporal logics such as CTL, and CTL* are less expressive but much more human-friendly.
- What about enriching CTL and CTL* with graded modalities.
 - So far, only CTL has been fully solved, both in unary and binary coding.
 - Graded CTL is exponentially more succinct than graded μ-calculus.
 - The satisfiability problem remains ExpTime-Complete
- Moving from μ-calculus to CTL with graded modalities, we need to move from graded world modalities to graded path modalities!
Syntax of GCTL* and GCTL

- GCTL* extends CTL* with new graded path quantifiers:
 - "there exists at least n paths satisfying a given property";
 - "all but at most n paths satisfy a given property".
Syntax of GCTL* and GCTL

- **GCTL*** extends CTL* with new graded path quantifiers:
 - "there exists at least n paths satisfying a given property";
 - "all but at most n paths satisfy a given property".

- **CTL*** uses state and path formulas built inductively as follows:

 - **State-formulas:**
 - $\varphi ::= p | \neg \varphi | \varphi \land \varphi | \varphi \lor \varphi | E^{\geq n} \psi | A^{< n} \psi$
 - where $p \in AP$ and ψ is a path-formula

 - **path-formulas (LTL):**
 - $\psi ::= \varphi | \psi \land \psi | \neg \psi | X\psi | \psi U \psi$
 - where φ is a state-formula, and ψ a path-formula

- **GCTL** formulas are obtained by forcing each temporal operator to be coupled with a path quantifier.
What does counting paths mean?

- A property ensured by a common prefix may be satisfied on an infinite number of paths.
What does counting paths mean?
- A property ensured by a common prefix may be satisfied on an infinite number of paths.
- It may happen that the prefix satisfies a formula but a whole path may not.
Counting paths

- What does counting paths mean?
 - A property ensured by a common prefix may be satisfied on an infinite number of paths.
 - It may happen that the prefix satisfies a formula but a whole path may not.

- We restrict to minimal and conservative paths
- Two paths are equivalent if
 - their common prefix satisfy the formula.
 - no matter how these prefixes are extended in the structure, the paths satisfy the formula.
Semantics of GCTL*

- For a Kripke structure K, a world w, and a GCTL* path formula ψ,
- Let $P(K, w, \psi)$ be the set of minimal and conservative paths of K starting in w and satisfying ψ
Semantics of GCTL*

- For a Kripke structure K, a world w, and a GCTL* path formula ψ,
- Let P(K, w, ψ) be the set of minimal and conservative paths of K starting in w and satisfying ψ
 - \(K, w \models E^n \psi \) iff \(|P(K, w, \psi)| \geq n\)
 - \(K, w \models A^\leq n \psi \) iff \(|P(K, w, \neg \psi)| < n\)
- For n=1, we write Eψ and Aψ instead of E^1 ψ e A^1 ψ
Solving GCTL in unary coding

- Let ψ be a GCTL formula with grades coded in unary.
- From ψ we build in linear time a "Partitioning Alternating Büchi Tree Automata" (PABT) P_ψ.
Solving GCTL in unary coding

- Let ψ be a GCTL formula with grades coded in unary.
- From ψ, we build in linear time a “Partitioning Alternating Büchi Tree Automata” (PABT) P_ψ.
- A PABT accepts all tree models of a formula, by “guessing” how to partition a required graded modality among successors.
Solving GCTL in unary coding

- Let ψ be a GCTL formula with grades coded in unary.
- From ψ we build in linear time a “Partitioning Alternating Büchi Tree Automata” (PABT) P_ψ.
- A PABT accepts all tree models of a formula, by «gessing» how to partition a required graded modality among successors.

\[E_3^3 F_\psi \]

\[\begin{array}{c}
2 \\
F_\psi \\
1 \quad F_\psi
\end{array} \]

- By means of an opportune extension of the Myhano-Hayashi technique, we translate in Exponential Time P_ψ in an NBT B_ψ.
- Since the emptiness of $L(B_\psi)$ can be checked in polynomial time, we get that the satisfiability problem for GCTL is in ExpTime.
- ExpTime hardness comes from the satisfiability problem for CTL.
Solving GCTL in binary coding

- If we use the unary case approach, we lose an exponent:
 - The tree model property requires trees with a branching degree exponential in the highest graded b_{max} of the formula.
Solving GCTL in binary coding

- If we use the unary case approach, we lose an exponent:
 - The tree model property requires trees with a branching degree exponential in the highest graded b_{max} of the formula.

- We use a binary encoding of each tree model and split the automata construction into a linear PABT plus a satellite NBT automaton.
 - The tree encoding turns each level of the tree in a binary tree, i.e., brothers of a node become its successors.
 - The satellite is an (exponential) NBT and ensures that each tree model satisfies some structural properties along its paths.
Solving GCTL in binary coding

- If we use the unary case approach, we lose an exponent:
 - The tree model property requires trees with a branching degree exponential in the highest graded b_{max} of the formula.

- We use a binary encoding of each tree model and split the automata construction into a linear PABT plus a satellite NBT automaton.
 - The tree encoding turns each level of the tree in a binary tree, i.e., brothers of a node become its successors.
 - The satellite is an (exponential) NBT and ensures that each tree model satisfies some structural properties along its paths.

- As the satellite automaton is already an NBT, this avoids to inject an extra exponent when moving both automata to a unique NBT.

- Thus, also in the binary coding, the satisfiability question for GCTL is ExpTime-complete.
What about GCTL*

- Solving graded CTL* is even more appealing.
- There are several questions to investigate.
- Is GCTL* more succinct than Graded μ-calculus?
- What about the satisfiability?
 - Using a slight variation of the previous reasoning used for GCTL, we get a 3ExpTime upper bound.
 - As CTL* satisfiability is 2ExpTime-complete, it is an open question to decide the exact complexity of the problem for GCTL*
Further directions about GCTL and GCTL*

- What about GCTL/ GCTL* plus backwards modalities?
- CTL and CTL* have been investigated with respect to (linear and branching) Past modalities.
- PCTL (PCTL*) is (2)ExpTime-complete.
- What about GCTL/GCTL over more enriched structures: Hierachical, pushown, weighted etc...
Enriched modalities vs. open systems

- Enriched mu-calculi has been investigated in the setting of module checking.

- Same results as in the satisfiability case:
 - Undecidable if we consider the fully enriched mu-calculus.
 - ExpTime-complete for every fragment.
Conclusion

Results on the satisfiability problem for Enriched \(\mu \)-calculi

<table>
<thead>
<tr>
<th></th>
<th>Inverse programs</th>
<th>Graded modalities</th>
<th>Nominals</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>fully enriched</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>Undecidable[1]</td>
</tr>
<tr>
<td>full hybrid</td>
<td>(\times)</td>
<td></td>
<td>(\times)</td>
<td>ExpTime[2]</td>
</tr>
<tr>
<td>full graded</td>
<td>(\times)</td>
<td>(\times)</td>
<td></td>
<td>ExpTime 2ary (1ary[4])</td>
</tr>
<tr>
<td>hybrid graded</td>
<td>(\times)</td>
<td></td>
<td>(\times)</td>
<td>ExpTime 1ary/2ary</td>
</tr>
<tr>
<td>graded</td>
<td>(\times)</td>
<td></td>
<td></td>
<td>ExpTime 1ary/2ary[3]</td>
</tr>
<tr>
<td>full</td>
<td>(\times)</td>
<td></td>
<td></td>
<td>ExpTime[5]</td>
</tr>
</tbody>
</table>

Results on the satisfiability problem for GCTL

<table>
<thead>
<tr>
<th>GCTL</th>
<th>Graded modalities</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\times)</td>
<td>ExpTime 1ary/2ary</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GCTL</th>
<th>Graded modalities</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Past CTL</td>
<td>(\times)</td>
<td>ExpTime[6]</td>
</tr>
</tbody>
</table>

1. [Bonatti, Peron 2004]
2. [Sattler, Vardi 2001]
3. [Vardi 1998]
4. [Calvanese, De Giacomo, Lenzerini, 2001]
5. [Kupferman, Sattler, Vardi, 2002]
6. [Kupferman, Pnueli 1995]
References

 - Invited extended version of ICALP’06
 - Extended version of LICS’09 and CSL’10
 - Invited extended version of FOSSACS ’07 and LPAR’07

Thank you for your attention!