
Solving Parity Games in Big Steps⋆

Sven Schewe

Universität des Saarlandes, 66123 Saarbrücken, Germany

Abstract. This paper proposes a new algorithm that improves the com-
plexity bound for solving parity games. Our approach combines Mc-
Naughton’s iterated fixed point algorithm with a preprocessing step,
which is called prior to every recursive call. The preprocessing uses rank-
ing functions similar to Jurdziński’s, but with a restricted codomain, to
determine all winning regions smaller than a predefined parameter. The
combination of the preprocessing step with the recursive call guaran-
tees that McNaughton’s algorithm proceeds in big steps, whose size is
bounded from below by the chosen parameter. Higher parameters result
in smaller call trees, but to the cost of an expensive preprocessing step.
An optimal parameter balances the cost of the recursive call and the pre-
processing step, resulting in an improvement of the known upper bound

for solving parity games from approximately O(m n
1
2

c) to O(m n
1
3

c).

1 Introduction

Parity games have many applications in model checking [1–6] and synthesis [5, 1,
7–10]. In particular, modal and alternating-time µ-calculus model checking [5, 4],
synthesis [10, 9] and satisfiability checking [5, 1, 7, 8] for reactive systems, module
checking [6], and ATL* model checking [3, 4] can be reduced to solving parity
games. This relevance of parity games led to a series of different approaches to
solving them [11–25].

The complexity of solving parity games is still an open problem. All current
deterministic algorithms have complexity bounds which are (at least) exponen-
tial in the number of colors [11, 12, 15–17,19, 25] (nO(c)), or in the squareroot
of the number of game positions [13, 24, 25] (nO(

√
n)). Practical considerations

suggest to assume that the number of colors is small compared to the number
of positions. Indeed, all listed applications but µ-calculus model checking are
guaranteed to result in parity games where the number of states is exponential
in the number of colors. In µ-calculus model checking, the size of the game is de-
termined by the product of the transition system under consideration (which is
usually large), and the size of the formula (which is usually small). The number
of colors is determined by the alternation depth of the specification, which, in
turn, is usually small compared to the specification itself. Algorithms that are
exponential only in the number of colors are thus considered the most attractive.

⋆ This work was partly supported by the German Research Foundation (DFG) as
part of the Transregional Collaborative Research Center “Automatic Verification
and Analysis of Complex Systems” (SFB/TR 14 AVACS).

The first representatives of algorithms in the complexity class nO(c) follow
the iterated fixed point structure induced by the parity condition [11, 12, 17].
The iterated fixed point construction leads to a time complexity of O(m nc−1)
for parity games with m edges, c colors, and n game positions. The upper com-
plexity bound for solving parity games was first reduced by Browne et al. [16] to
O

(

mn⌈0.5c⌉+1
)

, and slightly further by Jurdziński [19] to O
(

c m (n
⌊0.5c⌋)

⌊0.5 c⌋).

The weakness of recursive algorithms that follow the iterated fixed point
structure [11, 12, 17] is the potentially incremental update achieved by each re-
cursive call. Recently, a big-step approach [24] has been proposed to reduce the
complexity of McNaughton’s algorithm for games with a high number of colors
(c ∈ ω(

√
n)) to the bound nO(

√
n) known from randomized algorithms [13, 25].

We discuss a different big-step approach that improves the complexity for
the relevant lower end of the spectrum of colors, resulting in the complex-

ity O
(

m
(

κ n
c

)γ(c))
for solving parity games, where κ is a small constant and

γ(c) = c
3 + 1

2 − 1
3c

− 1
⌈ c

2 ⌉⌊ c
2 ⌋

if c is even, and γ(c) = c
3 + 1

2 − 1
⌈ c

2 ⌉⌊ c
2 ⌋

if c is odd.

To guarantee big update steps, we use an algorithm which is inspired by
Jurdziński’s [19] approach for solving parity games. His approach is adapted by
restricting the codomain of the used ranking function. The resulting algorithm
is exploited in a preprocessing step for finding winning regions bounded by the
size of a parameter. Compared to [24], this results in a significant cut in the cost
for finding small winning regions, since the running time for the preprocessing
algorithm is polynomial in the parameter, and exponential only in the number

of colors (O
(

(π+⌈0.5c⌉
π)

)

). Using a parameter of approximately
3
√

c n2 results in

the improved O
(

m
(

κ n
c

)γ(c))
complexity bound for solving parity games.

2 Preliminaries

2.1 Parity Games

A parity game P = (Veven , Vodd , E, α) consists of a finite directed game graph
D = (Veven ⊎Vodd , E) without sinks, whose vertices are partitioned into two sets
Veven and Vodd , called the game positions of player even and odd, respectively,
and an evaluation function α : Veven ⊎ Vodd → N that maps each game position
v to an integer value α(v), called the color of v. For technical reasons we addi-
tionally require that the minimal color is 0, and use games with highest color d

and games with c = d + 1 colors as synonyms. We use V = Veven ⊎ Vodd for the
game positions, and extend the common intersection and subtraction operations
on digraphs to parity games. (P ∩ F and P r F thus denote the parity games
resulting by restricting the game graph D of P to D∩F and DrF , respectively.)

Plays. Intuitively, a game is played by placing a pebble on a vertex v ∈ Veven ⊎
Vodd of D. Whenever the pebble is on a position v ∈ Veven , player even chooses an
edge e = (v, v′) ∈ E originating in v, and moves the pebble to v′. Symmetricly, if
the pebble is on a position v ∈ Vodd , player odd chooses an edge e = (v, v′) ∈ E

originating in v, and moves the pebble to v′. In this way, they successively
construct an infinite play π = v0v1v2v3 . . . ∈ (Veven ⊎ Vodd)ω.

A play is evaluated by the highest color that occurs infinitely often. Player
even (odd) wins a play π = v0v1v2v3 . . . if the highest color occurring infinitely
often in the sequence α(π) = α(v0)α(v1)α(v2)α(v3) . . . is even (odd).

Strategies. Let D = (Veven ⊎ Vodd , E) be a finite game graph with positions
V = Veven ⊎ Vodd . A strategy for player even is a function f : V ∗Veven → V

which maps each finite history of a play that ends in a position v ∈ Veven to a
successor v′ of v. (That is, there is an edge (v, v′) ∈ E from v to v′.) A play is
f -conform if every decision of player even in the play is in accordance with f .
A strategy is called memoryless if it only depends on the current position. A
memoryless strategy for even can be viewed as a function f : Veven → V such
that (v, f(v)) ∈ E for all v ∈ Veven . For a memoryless strategy f of player even,
we denote with Df = (Veven ⊎ Vodd , Ef) the game graph obtained from D by
deleting all transitions from states in Veven that are not in accordance with f .
(That is, Df is a directed graph where all positions owned by player even have
outdegree 1.) The analogous definitions are made for player odd.

A strategy f of player even (odd) is called v-winning if all f -conform plays
that start in v are winning for player even (odd). A position v ∈ V is v-winning
for player even (odd) if even (odd) has a v-winning strategy. We call the sets
of v-winning positions for player even (odd) the winning region of even (odd).
Parity games are memoryless determined:

Theorem 1. [11] For every parity game P, the game positions are partitioned
into a winning region Weven of player even and a winning region Wodd of
player odd. Moreover, player even and odd have memoryless strategies that
are v-winning for all positions in their respective winning region.

Dominions and Attractors. We call a subset D ⊆ Wσ of a winning region
a dominion of player σ ∈ {even,odd}, if player σ has a memoryless strategy f

that is v-winning for all v ∈ D, such that D is not left in any f -conform play
(Ef ∩D×V rD = ∅). The σ-attractor A ⊆ V of a set F ⊆ V of game positions is
the set of those game positions, from which player σ has a memoryless strategy
to force the pebble into a position in F . The σ-attractor A of a set F can be
defined as the least fixed point of sets that contain F , and that contain a game
position v of player σ (σ) if they contain some successor (all successors) of v.
(For convenience, we use odd and even for even and odd, respectively.)

Constructing this least fixed point is obviously linear in the number of edges
of the parity game, and we can fix a memoryless strategy (the attractor strategy)
for player σ to reach F in finitely many steps during this construction.

Lemma 1. For a given parity game P = (Veven , Vodd , E, α), and a set F of game
positions, we can compute the σ-attractor A of F and a memoryless strategy for
σ on A r F to reach F in finitely many steps in time O(m). ⊓⊔

For a given dominion D for player σ in a parity game P , we can reduce
solving P to computing the σ-attractor A of D, and solving P r A.

Lemma 2. [24] Let P be a parity game, D a dominion of player σ ∈ {even, odd}
for P with σ-attractor A. Then the winning region (and strategy) of player σ in P
is her winning region (and strategy) in the subgame P rA. The winning strategy
of player σ can be composed by her winning strategy on P r A, her attractor
strategy (on A r D), and her winning strategy on her dominion (in P ∩ D).

2.2 A Ranking Function Based Approach to Solving Parity Games

So far, Jurdziński’s algorithm [19] for solving parity games has been the technique
with the best complexity bound. His algorithm draws from the comparably small
codomain of the used ranking function (the progress measure).

The method for computing small dominions discussed in Section 3 adopts
his techniques by restricting the codomain of the ranking function, sacrificing
completeness. Some of the theorems stated in this subsection are thus slightly
more general than the theorems in [19], but they are arranged such that the
proofs provided in [19] can be applied without changes.

For a parity game P = (Veven , Vodd , E, α) with maximal color d, a σ-
progress measure is, for σ ∈ {even, odd}, a function ρ : Veven ⊎ Vodd → Mσ

whose codomain Mσ ⊆ {f :{0, . . . , d} → N | f(c)=0 if c is σ, and f(c) ≤
|α−1(c)| otherwise}∪{⊤} contains a maximal element ⊤ and a set of functions
from {0, . . . , d} to the integers. The codomain Mσ satisfies the requirements that
every σ (∈ {even,odd}) integer ≤ d is mapped to 0, while all other integers c are
mapped to a value bounded by the number |α−1(c)| of c-colored game positions.
(Jurdziński uses the maximal codomain Mσ

∞ defined by replacing containment
with equality.) For simplicity, we require downward closedness: if Mσ contains
a function f ∈ Mσ, then every function f ′ which is pointwise smaller than f

(f ′(c) ≤ f(c)∀c ≤ d) is also contained in Mσ.
For each color c ≤ d, we define a relation ⊲c ⊆ Mσ ×Mσ. ⊲c is the smallest

relation that contains {⊤} × Mσ and a pair of functions (f, f ′) ∈ ⊲c if there
is a color c′ ≥ c such that f(c′) > f ′(c′), and f(c′′) = f ′(c′′) holds true for all
colors c′′ > c′, or if c is σ and f(c′) = f ′(c′) holds true for all c′ ≥ c. That is,
⊲c is defined by using the lexicographic order, ignoring all colors smaller than
c. f needs to be greater than f ′ by this order, and strictly greater if c is σ. ⊲0

defines an order � on Mσ (the lexicographic order). From this order, we infer
the preorder ⊒ on progress measures, which requires that � is satisfied pointwise
(ρ ⊒ ρ′ ⇔ ∀v ∈ V. ρ(v) � ρ′(v)). We call a σ progress measure ρ valid iff every
position v ∈ Vσ has some successor v′ ∈ V with ρ(v)⊲α(v) ρ(v′), and if, for every
position v ∈ Vσ and every successors v′ ∈ V of v, ρ(v) ⊲α(v) ρ(v′) holds true.

Let, for a σ progress measure ρ, ‖ρ‖ = V rρ−1(⊤) denote the game positions
that are not mapped to the maximal element ⊤ of Mσ. A valid σ progress
measure ρ serves as a witness for a winning strategy for player σ on ‖ρ‖: If we
fix a memoryless strategy f for player σ that satisfies ρ(v) ⊲α(v) ρ(f(v)) for all
v ∈ Vσ, then every cycle v1v2 . . . vl = v1 with maximal color cmax = α(v1) that is
reachable in an f -conform play satisfies ρ(v1)⊲α(v1)ρ(v2)⊲α(v2) . . .⊲α(vl−1)ρ(vl).
If cmax is not σ, this can be relaxed to ρ(v1) ⊲cmax

ρ(v2) ⊲cmax−1 ρ(v3) ⊲cmax−1

. . . ⊲cmax−1 ρ(vl), which is only satisfied if ρ(vi) = ⊤ holds for all i = 1, . . . , l.

Theorem 2. [19] Let P = (Veven , Vodd , E, α) be a parity game with valid
σ progress measure ρ. Then player σ wins on ‖ρ‖ with any memoryless winning
strategy that maps a position v ∈ ‖ρ‖ ∩ Vσ to a position v′ with ρ(v) ⊲α(v) ρ(v′).

Such a successor must exist, since the progress measure is valid. The ⊒-least
valid σ progress measure is well defined and can be computed efficiently.

Theorem 3. [19] The ⊒-least valid σ progress measure ρµ exists and can, for
a parity game with m edges and c colors, be computed in time O(c m |Mσ|).

When using the maximal codomain Mσ
∞, which contains the function ρ that

assigns each σ value c to ρ(c) = |α−1(c)|, for the progress measures, the ⊒-least
valid σ progress measure ρµ determines the complete winning region of player σ.

Theorem 4. [19] For a parity game P = (Veven , Vodd , E, α), and for the
codomain Mσ

∞ for the progress measures, ‖ρµ‖ coincides with the winning region
Wσ of player σ for the ⊒-least valid σ progress measure ρµ.

For parity games with c colors, the size |Mσ
∞| of the maximal codomain can

be estimated by (n
⌊0.5c⌋)

⌊0.5c⌋ +1 if σ is even, and by (n
⌈0.5c⌉)

⌈0.5c⌉ +1 if σ is odd.

Corollary 1. [19] Parity games with three colors can be solved and a winning
strategy for the player who wins on the highest color constructed in time O(m n).

3 Computing Small Dominions

Computing small dominions efficiently is an essential step in the algorithm in-
troduced in Section 4. In this section, we show that we can efficiently compute
a dominion of either player, which is guaranteed to contain all dominions with
size bounded by a parameter π. To compute such a dominion, we draw from the
efficient computation of the ⊒-least valid σ progress measure (Theorem 3).

Instead of using Jurdziński’s codomain Mσ
∞, we use the smaller codomain

Mσ
π for the progress measures, which contains only those functions f that satisfy

∑d

c=0 f(c) ≤ π for some parameter π ∈ N. (d denotes the highest color of the

parity game). The size of Mσ
π can be estimated by |Mσ

π| ≤ (π + ⌈0.5(d + 1)⌉
π) + 1.

Using Mσ
π instead of Mσ

∞, ‖ρµ‖ contains all dominions of player σ of size
≤ π + 1 (where ρµ denotes the ⊒-least valid σ progress measures).

Theorem 5. Let P = (Veven , Vodd , E, α) be a parity game, and let D ⊆ V be a
dominion of player σ ∈ {even, odd} of size |D| ≤ π + 1. Then there is a valid σ

progress measure ρ : V → Mσ
π with F = ‖ρ‖.

Proof. Let P ′ = P ∩ D be the restriction of P to D. To solve P ′, we can use
the maximal codomain Mσ

∞
′. Since D is a dominion of player σ for P , she has

a winning strategy f on the complete subgame P ′, and the ⊒′-least progress
measure ρ′µ for this codomain satisfies ‖ρ′µ‖ = D by Theorem 4. Since D has size

|D| ≤ π + 1, it contains at most π postions with σ color (at least one position
needs to have σ color), and thus ρ′µ is in Mσ

π
′ (and Mσ

π
′ = Mσ

∞
′ holds true).

Since D is a dominion of player σ for P , all positions in Vσ ∩ D have only
successors in D, and we can extend ρ′µ to a valid σ progress measue ρ for P by
setting ρ(v) = ρ′µ(v) for all v ∈ D, and ρ(v) = ⊤ otherwise. ρ is by construction
a valid σ progress measure in Mσ

π that satisfies ‖ρ‖ = D. ⊓⊔

By Theorem 3, we can compute the ⊒-least valid σ progress measure ρµ in
time O(c m |Mσ

π|), and by Theorem 2, we can construct a winning strategy for
player σ on ‖ρµ‖ within the same complexity bound.

Corollary 2. For a given parity game P with c colors and m edges, we can
construct a forced winning region F for player σ that contains all forced winning

regions F ′ of size |F ′| ≤ π + 1 in time O
(

c m (π + ⌈0.5c⌉
π)

)

. A winning strategy

for player σ on F can be constructed within the same complexity bound. ⊓⊔

4 Solving Parity Games in Big Steps

The algorithm proposed in this paper accelerates McNaughton’s iterated fixed
point approach for solving parity games [11, 12, 17] by using the approximation
technique discussed in the previous section to restrict the size of the call tree.

McNaughton’s Algorithm. McNaughton’s algorithm, as depicted below in
Procedure McNaughton, takes a parity game P = (Veven , Vodd , E, α) as input
and returns the ordered pair (Weven , Wodd) of winning regions for both players.

Procedure McNaughton(P):

1. set d to the highest color occurring in P
2. if d = 0 then return (V, ∅)
3. set (σ, σ) to (even,odd) if d is even, and to (odd,even) otherwise
4. set Wσ to ∅
5. repeat

(a) set P ′ to Pr σ-Attractor(α−1(d),P)
(b) set (W ′

even , W ′

odd) to McNaughton(P ′)
(c) if W ′

σ
= ∅ then

i. set Wσ to V r Wσ

ii. return (Weven , Wodd)
(d) set Wσ to Wσ∪ σ-Attractor(W ′

σ
,P)

(e) set P to Pr σ-Attractor(W ′

σ
,P)

Evaluating one-color games is trivial, and Procedure McNaughton returns
the winning regions for this case without further computations (line 2, this case
servers as induction basis for the correctness prove).

Procedure McNaughton computes in every recursive call (line 5b) a dominion
of player σ for P : Player σ has (by induction hypothesis) a winning strategy f

for Wσ in P ′ and no f -conform strategy starting in the statespace V ′ of P ′ can
leave V ′ in P , since V ′ is the complement of a σ-attractor (line 5a). Solving P

Procedure Winning-Regions(P):

1. set d to the highest color occurring in P
2. if d = 0 then return (V, ∅) – one color ⇒ use McNaughton’s [11, 12, 17] algorithm

3. set (σ, σ) to (even,odd) if d is even, and to (odd,even) otherwise
4. set n to the size |V | of P
5. if d = 2 then – three colors ⇒ use Jurdziński’s [19] algorithm

(a) set Weven to Approximate(P , n, even) – c.f. Corollary 1

(b) return (Weven , V r Weven)
6. set Wσ to ∅
7. repeat

(a) if d > 2 then – two colors ⇒ use McNaughton’s [11, 12, 17] algorithm

i. set W ′

σ
to σ-Attractor(Approximate(P , π(n, d + 1), σ),P) – c.f. Corollary 2

ii. set Wσ to Wσ ∪ W ′

σ

iii. set P to P r W ′

σ

(b) set P ′ to Pr σ-Attractor(α−1(d),P)
(c) set (W ′

even , W ′

odd) to Winning-Regions(P ′)
(d) if W ′

σ
= ∅ then

i. set Wσ to V r Wσ

ii. return (Weven , Wodd)
(e) set Wσ to Wσ∪ σ-Attractor(W ′

σ
,P)

(f) set P to Pr σ-Attractor(W ′

σ
,P)

Fig. 1. Procedure Winning-Regions(P) returns the ordered pair (Weven , Wodd) of win-
ning regions for player even and odd, respectively. V and α denote the game positions
and the coloring function of the parity game P . Approximate(P , π, σ) computes a do-
minion for player σ, which contains all dominions of player σ of size less than or equal
to π + 1 (c.f. Corollary 2). σ-Attractor(F, P) computes the respective σ-attractor of a
set F of game positions in a game parity P (c.f. Lemma 1).

can thus be reduced to constructing the σ-attractor Aσ of Wσ (line 5d), and
solving P r Aσ (line 5e).

If the recursive call (line 5b) provides the result that player σ wins from every
position in P ′, she wins from every position in P (following her winning strategy
for P ′ in V ′ and an attractor strategy to d-colored positions (line 5a) otherwise),
and Procedure McNaughton terminates (lines 5c − 5cii).

Proceeding in Big Steps. As observed by Jurdziński, Paterson and Zwick [24],
McNaughton’s algorithm can be adopted by computing any dominion of player
σ (instead of the particular dominion returned by the recursive call). In [24],
this observation is exploited by performing a brute-force search for dominions of
size

√
n (where n = |P| denotes the number of game positions), and performing

a recursive call only if no such dominion exists. The cost for each brute-force
search is n

√
n, which coincides with the upper bound on the size of the call tree,

improving the complexity bound for the theoretical case of parity games with a
high number of colors – c ∈ ω(

√
n) – to O(n

√
n).

Brute-force search, however, is too expensive, and does not improve the com-
plexity bound for the common case that the number of colors is small. We there-
fore propose to use the efficient approximation technique introduced in Section 3
instead. As a further difference, we propose to perform a recursive call after each
approximation step, resulting in the guarantee that the progress (that is, the set
of evaluated positions) in each iteration step exceeds the size defined by the
chosen parameter. The resulting algorithm is depicted in Figure 1.

The set W ′
σ computed in line 7ai is the σ-attractor of the dominion of player

σ in P computed by the approximation procedure (c.f. Corollary 2) introduced
in Section 3, and thus itself a dominion of player σ. The set W ′′

σ computed
in the recursive call (line 7c) is a dominion of player σ in P r W ′

σ, and thus
D = W ′

σ ∪ W ′′
σ is a dominion in P . If the size of D does not exceed the chosen

parameter by at least two, D must be contained in the dominion computed in
Approximate(P , π(n, d + 1), σ), and W ′′

σ is empty. In this case, the procedure
terminates (line 7d), otherwise, we obtain a progress of at least π(n, d + 1) + 2.

While bigger parameters slow down the approximation procedure (c.f. Corol-
lary 2), they thus restrict the size of the call tree. The best results are obtained
if the parameter is chosen such that the cost of calling the approximation pro-
cedure (line 7ai) and the cost of the recursive call (line 7c) are approximately
equivalent. If c is of reasonable size (that is, in O(

√
n)), this is the case if we set

the parameter approximately to
3
√

c n2. (The function β defined below for the
proof of the complexity quickly converges to 2

3 .)
Starting point for the complexity estimation is the case of three colors, where

we use Jurdziński’s algorithm [19] (Corollary 1). (Skipping lines 5 − 5b moves
the induction basis further down, resulting in the complexity of O(m n1.5) for
the case of three colors. The optimization obtained by using [19] for three-color
games accounts for the − 1

⌈0.5c⌉⌊0.5c⌋ part of the function γ introduced below.)

For fixed numbers of colors, the resulting complexities evolve as follows:

number of colors 3 4 5 6 7 8 · · ·
approximation complexity - O(m n) O(m n

1 1
2) O(m n2) O(m n

2 1
3) O(m n

2 3
4) · · ·

chosen parameter πc(n) -
√

n
√

n
3√

n2 12√
n7 16√

n11 · · ·
number of iterations n

πc(n)
-

√
n

√
n 3

√
n

12√
n5 16√

n5 · · ·
solving complexity O(m n) O(m n

1 1
2) O(m n2) O(m n

2 1
3) O(m n

2 3
4) O(m n

3 1
16) · · ·

The approximation complexity for c + 1 colors is chosen to coincide with
the complexity of solving a game with c colors. (Its complexity thus coincides
with the complexity of each iteration of the repeat loop). The parameter πc(n) is
chosen to result in this complexity, and the number of iterations is ic(n) = n

πc(n) ,

results from this choice. Finally, the resulting complexity for solving games with
c + 1 colors is ic(n) times the complexity for solving parity games with c colors.

Correctness. In this paragraph, we demonstrate that Procedure Winning-
Regions computes the winning regions correctly.

Theorem 6. For a given parity game P, Procedure Winning-Regions computes
the complete winning regions of both players.

Proof. We prove the claim by induction. Let d denote the highest color of P .
Induction Basis (d = 0, d = 2): For d = 0, the highest color on every path
is obviously 0, and every strategy for player even is winning. For d = 2, the
algorithm follows Jurdziński’s [19] algorithm (c.f. Theorem 4 and Corollary 1).
Induction Step (d 7→ d + 1): Let P be a parity game with highest color d + 1.

The call of the Procedure Approximate in line 7ai provides a (possibly empty)
dominion D for player σ (Theorem 5). The σ-attractor of this set is then added
to the winning region of σ (line 7aii), and subtracted from P , which is safe by
Lemma 2.

In line 7b, the σ-attractor A of the set of states with color d+1 is subtracted
from P , and the resulting parity game P ′ = P r A is solved by recursively
calling the Procedure Winning-Regions (line 7c). Since the highest color of P ′

is ≤ d, the resulting winning regions are correct by induction hypothesis. W ′′
σ is

a dominion of player σ in P ′, and, due to the σ-attractor construction, also in
P . If W ′′

σ is non-empty, then the σ-attractor of this set is added to the winning
region of σ (line 7e), and subtracted from P (line 7f), which is safe by Lemma 2.

Since the size of P is strictly reduced in every iteration of the loop, the
set W ′′

σ returned after the recursive call in line 7c is eventually empty, and the
procedure terminates. When W ′′

σ is empty, player σ wins from all positions in
(the remaining) parity game P by following a memoryless strategy that agrees
on every position in P ′ with a memoryless winning strategy f on P ′, makes an
arbitrary (but fixed) choice for positions with color d+1, and follows an attractor
strategy (from the σ-attractor construction of line 7b) on the remaining positions.
An f -conform play either eventually stays in P ′, in which case it is winning for
player σ by induction hypothesis, or always eventually visits a position with
color d + 1, in which case d + 1 is the highest color that occurs infinitely many
times. Since d + 1 is σ, player σ wins in this case, too. ⊓⊔

Complexity. While the correctness of the algorithm is independent of the cho-
sen parameter, its complexity crucially depends on this choice. We will choose
the parameter such that the complexity for the recursive call (line 7c) coincides
with the complexity of computing the approximation (line 7ai).

First, we show that the Procedure Winning-Regions proceeds in big steps.

Lemma 3. For every parameter π(n, c), the main loop of the algorithm is iter-
ated at most

⌊

n
π(n,c)+2

⌋

+ 1 times.

Proof. The σ-attractor W ′
σ of the computed approximation D (line 7ai) and the

winning region W ′′
σ of σ are dominions for σ on P and P r W ′

σ, respectively.
Thus, their union U = W ′

σ ∪ W ′′
σ is a dominion on P . If the size of U does not

exceed π+1, than U is contained in D by Corollary 2. In this case, W ′′
σ is empty,

and the loop terminates. Otherwise, a superset of U is subtracted from P during
the iteration (line 7aiii and 7f), which can happen at most

⌊

n
π(n,c)+2

⌋

times. ⊓⊔

Building on this lemma, it is simple to define the parameter π such that the
requirement of equal complexities is satisfied: We fix the function γ such that

γ(c)= c
3+1

2− 1
⌈0.5c⌉⌊0.5c⌋ if c is odd, and γ(c)= c

3+1
2− 1

3c
− 1

⌈0.5c⌉⌊0.5c⌋ if c is even, .

and β(c) = γ(c−1)
⌈0.5c⌉ . Finally, we choose π(n, c) to be the smallest natural number

that satisfies n
π(n,c)+2 < n1−β(c)

2 3
√

c
− 1 (π(n, c) ≈ 2 3

√
cnβ(c)).

Theorem 7. Solving a parity game P with c > 2 colors, m edges, and n game

positions can be performed in time O
(

m
(

κ n
c

)γ(c))
. (κ is a small constant.)

Proof. First we estimate the running time of the procedure without the recursive
calls. To estimate the running time of the approximation algorithm (π(n, c) +
⌈0.5c⌉)⌈0.5c⌉ can be estimated by κ1(κ2π(n, c))⌈0.5c⌉, and the running time of
each iteration step (plus the part before the loop (lines 1 − 6) and minus the
recursive call) can be estimated by κ3 m

3
√

(c−1)!
(κ4 n)γ(c−1). (κ1, κ2, κ3 and κ4 are

suitable constants.) We show by induction that the overall running time of the
procedure can be estimated by κ3 m

3√
c!

(κ4 n)γ(c).

Induction Basis (c ≤ 3): For parity games with one or two and with three colors,
we use the algorithms of McNaughton and Jurdziński, respectively, resulting in
the complexities O(n), O(m n) and O(m n) = O(m nγ(3)), respectively.
Induction Step (c 7→ c + 1): By induction hypothesis, the cost of every recursive
call can (as well as the remaining cost of each iteration step) be estimated by

κ3 m
3
√

(c−1)!
(κ4 n)γ(c−1). Since Lemma 3 implies that the loop is iterated at most

⌊

n1−β(c)

2 3
√

c

⌋

times, the claim follows immediately (γ(c) = γ(c − 1) + 1 − β(c)). ⊓⊔

If we impose the restriction that c is not linear in
√

n, that is, if we assume
that c ∈ o(

√
n), this coarse estimation already suffices to show that we can

choose any value higher than 1, 2
√

2e, and (2e)1.5 for κ2, κ4, and κ, respectively.

Strategies. If we want to construct the winning strategies of one or both play-
ers, the complexity is left unchanged in most cases. The only exception is the
construction of winning strategies for player odd in three-color games.

Theorem 8. The algorithm can be extended to compute the winning strategies
for both players. The winning strategy for player odd on her complete winning
region in s parity game with three colors can be constructed in time O(m n1.5).
In all other cases, constructing the winning strategies does not increase the com-
plexity of the algorithm.

Proof. Extending the procedure to return winning strategies for both players on
their respective winning regions only comprises fixing an arbitrary strategy for
player odd in the trivial case of single-color games (line 2), computing winning
strategies for both players for three-color games (line 5a), computing winning
strategies for player σ in the approximation procedure in line 7ai, computing
the attractor strategies in lines 7ai, 7b, and 7e, and fixing arbitrary strategies
for d-colored positions prior to returning the winning regions in line 7aiii. By
the Corollaries 1 and 2, and by Lemma 1, all these extension with the exception

of constructing the winning strategy of player odd for games with three colors
(line 5a) can be made without changing the complexity.

Computing the winning strategy of player odd immediately would increase
the complexity of the algorithm. For these three-color games, we therefore post-
pone computing the strategies of player odd till after solving the complete game
by pushing the respective three-color game (or rather its intersection with the
winning region of player odd) on a solve-me-later stack. While postponing the
construction of the strategies for player odd in these subgames, we compute a
partial strategy for player odd that can be completed to a winning strategy on
her complete winning region by filling in winning strategies for these subgames.

Completing the strategies after solving the complete game is cheaper, because
solving most of the three-color games becomes obsolete: If the recursive call (line
7c) returns a non-empty set W ′′

σ , then the set W ′′
σ is discarded, and it is safe to

delete all those games from the top of the solve-me-later stack that refer to W ′′
σ .

As a result, we only need to solve the subgames remaining on the stack after
the parity game P has been solved to complete the winning strategies. Since the
sum of the sizes of these games is bounded by the size of the complete game
P , this step can be performed in time O(m n1.5) (using the just established
complexity bound for solving games with four colors) if P has n game positions
and m edges, independent of the number of colors of P . ⊓⊔

5 Conclusions

We proposed a novel approach to solving parity games, which reduces the
complexity bound for solving parity games from O

(

c m (n
⌊0.5c⌋)

⌊0.5 c⌋) [19] to

O
(

m
(

κ n
c

)γ(c))
for γ(c) = c

3+ 1
2− 1

3c
− 1

⌈ c
2 ⌉⌊ c

2 ⌋
if c is even, and γ(c) = c

3+ 1
2− 1

⌈ c
2 ⌉⌊ c

2 ⌋
if c is odd. (κ is a small constant that can be fixed to approximately (2e)1.5).

This reduces the exponential factor from ⌊ c
2⌋ to less than c

3 + 1
2 . It is, after

the reduction from c− 1 [11, 12, 17] to ⌈ c
2⌉+ 1 by Browne et al. [16], the second

improvement that reduces the exponential growth with the number of colors.
Besides solving parity games, we are often interested in winning strategies

for the players, since they serve as witnesses and counter examples in model
checking, and as models in synthesis. When constructing these strategies, the
improvement in the complexity of the discussed approach is even higher. Con-
structing winning strategies for both players increase the complexity of the pro-
posed algorithm only for parity games with three colors, where the complexity
increases slightly from O(m n) to O(m n1.5). The best previously known bound
for constructing winning strategies [19] has been O

(

c m (n
⌈0.5c⌉)

⌈0.5 c⌉).

The suggested approach thus provides a significantly improved complexity
bound for solving parity games with more than 2, and up to o(

√
n) colors.

References

1. Kozen, D.: Results on the propositional µ-calculus. Theor. Comput. Sci. 27 (1983)
333–354

2. Emerson, E.A., Jutla, C.S., Sistla, A.P.: On model-checking for fragments of µ-
calculus. In: CAV. (1993) 385–396

3. de Alfaro, L., Henzinger, T.A., Majumdar, R.: From verification to control: Dy-
namic programs for omega-regular objectives. In: Proc. LICS, IEEE Computer
Society Press (2001) 279–290

4. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. Jour-
nal of the ACM 49(5) (2002) 672–713

5. Wilke, T.: Alternating tree automata, parity games, and modal µ-calculus. Bull.
Soc. Math. Belg. 8(2) (2001)

6. Kupferman, O., Vardi, M.: Module checking revisited. In: Proc. CAV. Volume
1254 of Lecture Notes in Computer Science., Springer-Verlag (1997) 36–47

7. Vardi, M.Y.: Reasoning about the past with two-way automata. In: Proc. ICALP,
Springer-Verlag (1998) 628–641

8. Schewe, S., Finkbeiner, B.: The alternating-time µ-calculus and automata over
concurrent game structures. In: Proc. CSL, Springer-Verlag (2006) 591–605

9. Piterman, N.: From nondeterministic Büchi and Streett automata to deterministic
parity automata. In: Proc. LICS, IEEE Computer Society (2006) 255–264

10. Schewe, S., Finkbeiner, B.: Synthesis of asynchronous systems. In: Proc. LOPSTR,
Springer-Verlag (2006) 127–142

11. McNaughton, R.: Infinite games played on finite graphs. Ann. Pure Appl. Logic
65(2) (1993) 149–184

12. Emerson, E.A., Lei, C.: Efcient model checking in fragments of the propositional
µ-calculus. In: Proc. LICS, IEEE Computer Society Press (1986) 267–278

13. Ludwig, W.: A subexponential randomized algorithm for the simple stochastic
game problem. Inf. Comput. 117(1) (1995) 151–155

14. Puri, A.: Theory of hybrid systems and discrete event systems. PhD thesis, Com-
puter Science Department, University of California, Berkeley (1995)

15. Zwick, U., Paterson, M.S.: The complexity of mean payoff games on graphs. The-
oretical Computer Science 158(1–2) (1996) 343–359

16. Browne, A., Clarke, E.M., Jha, S., Long, D.E., Marrero, W.: An improved algo-
rithm for the evaluation of fixpoint expressions. Theoretical Computer Science
178(1–2) (1997) 237–255

17. Zielonka, W.: Infinite games on finitely coloured graphs with applications to au-
tomata on infinite trees. Theor. Comput. Sci. 200(1-2) (1998) 135–183

18. Jurdziński, M.: Deciding the winner in parity games is in UP ∩ co-UP. Information
Processing Letters 68(3) (1998) 119–124

19. Jurdziński, M.: Small progress measures for solving parity games. In: Proc. STACS,
Springer-Verlag (2000) 290–301

20. Vöge, J., Jurdziński, M.: A discrete strategy improvement algorithm for solving
parity games. In: Proc. CAV, Springer-Verlag (2000) 202–215

21. Obdržálek, J.: Fast mu-calculus model checking when tree-width is bounded. In:
Proc. CAV. (2003) 80–92

22. Lange, M.: Solving parity games by a reduction to SAT. In Majumdar, R., Jur-
dziński, M., eds.: Proc. Int. Workshop on Games in Design and Verification. (2005)

23. Berwanger, D., Dawar, A., Hunter, P., Kreutzer, S.: Dag-width and parity games.
In: Proc. STACS, Springer-Verlag (2006) 524–436

24. Jurdziński, M., Paterson, M., Zwick, U.: A deterministic subexponential algorithm
for solving parity games. In: Proc. SODA, ACM/SIAM (2006) 117–123

25. Björklund, H., Vorobyov, S.: A combinatorial strongly subexponential strategy
improvement algorithm for mean payoff games. Discrete Appl. Math. 155(2) (2007)
210–229

