
On Promptness in Parity Games∗

Fabio Mogavero, Aniello Murano, and Loredana Sorrentino

Università degli Studi di Napoli Federico II

Abstract. Parity games are a powerful formalism for the automatic
synthesis and verification of reactive systems. They are closely related to
alternating ω-automata and emerge as a natural method for the solution
of the µ-calculus model checking problem. Due to these strict connections,
parity games are a well-established environment to describe liveness
properties such as “every request that occurs infinitely often is eventually
responded”. Unfortunately, the classical form of such a condition suffers
from the strong drawback that there is no bound on the effective time
that separates a request from its response, i.e., responses are not promptly
provided. Recently, to overcome this limitation, several parity game
variants have been proposed, in which quantitative requirements are
added to the classic qualitative ones.
In this paper, we make a general study of the concept of promptness in
parity games that allows to put under a unique theoretical framework
several of the cited variants along with new ones. Also, we describe simple
polynomial reductions from all these conditions to either Büchi or parity
games, which simplify all previous known procedures. In particular, they
improve the complexity results of cost and bounded-cost parity games.
Indeed, we provide solution algorithms showing that determining the
winner of these games lies in UPTime ∩ CoUPTime.

1 Introduction

Parity games [13, 24] are abstract infinite-duration two-player turn-based games,
which represent a powerful mathematical framework to analyze several problems
in computer science and mathematics. Their importance is deeply related to
the strict connection with other games of infinite duration, in particular, mean,
discounted payoff, stochastic and multi-agent games [6,7,9,10]. In the basic setting,
parity games are played on directed graphs whose nodes are labeled with priorities
(namely, colors) and players have perfect information about the adversary moves.
The two players, player ∃ and player ∀, move in turns a token along the edges of
the graph starting from a designated initial node. Thus, a play induces an infinite
path and player ∃ wins the play if the greatest priority that is visited infinitely

∗ Partially supported by FP7 European Union project 600958-SHERPA, IndAM 2013
project “Logiche di Gioco Estese”, Embedded System Cup Project, B25B09090100007
(POR Campania FSE 2007/2013, asse IV e asse V), Italian Ministry of University
and Research, and EU under the PON OR.C.HE.S.T.R.A. project.

often is even, otherwise, player ∀ wins the play. The problem of finding a winning
strategy in parity games is in UPTime ∩ CoUPTime [16] and the question
whether or not a polynomial time solution exists is a long-standing open one.

In formal system design and verification [11,12,21,23], parity games arise as
a natural evaluation machinery for the automatic synthesis and verification of
distributed and reactive systems [3–5,20]. Specifically, in model-checking, one can
check the correctness of a system with respect to a desired behavior, by checking
whether a model of the system, that is, a Kripke structure, is correct with respect
to a formal specification of its behavior, usually described in terms of a modal
logic formula. In case the specification is given as a µ-calculus formula [17], the
model checking question can be polynomially rephrased as a parity game [13].

Parity games can express several important system requirements such as
safety and liveness properties. Along an infinite play, safety requirements are
used to ensure that nothing “bad” will ever happen, while liveness properties
ensure that something “good” eventually happens [2]. Often, safety and liveness
properties alone are simple to satisfy, while it becomes a very challenging task
when properties of this kind need to be satisfied simultaneously. As an example,
assume we want to check the correctness of a printer scheduler that serves two
users in which it is required that, whenever a user sends a job to the printer, it
is eventually printed out (liveness property) and that two jobs are never printed
simultaneously (safety property). The above liveness property can be written
as the Ltl [22] formula G(req → Fgrant), where G and F stand for the classic
temporal operators “always” and “eventually”, respectively. This kind of question
is also known in literature as a request-response condition [15]. As explained
above, in a parity game, this requirement is interpreted over an infinite path
generated by the interplay of the two players. From a theoretical viewpoint,
on checking whether a request is eventually granted, there is no bound on the
“waiting time”, namely the time elapsed until the job is printed out. In other
words, it is enough to check that the system “can” grant the request, while we
do not care when it happens. In a real industry scenario, instead, the request is
more concrete, that is, the job must be printed in a reasonable time bound.

Lately, several works have focused on the above timing aspect in system
specification. In [19], it has been addressed by forcing Ltl to express “prompt”
requirements, by means of a prompt operator Fp added to the logic. In [1]
the automata-theoretic counterpart of the Fp operator has been studied. In
particular, prompt-Büchi automata are introduced and it has been showed that
their intersection with ω-regular languages is equivalent to co-Büchi. Successively,
the prompt semantics has been lifted to ω-regular games, under the parity
winning condition [8], by introducing finitary parity games. There, the concept
of “distance” between positions in a play has been introduced and referred as
the number of edges traversed to reach a node from a given one. Then, winning
positions of the game are restricted to those occurring bounded. To give few
more details, first consider that, as in classic parity games, arenas have vertexes
equipped with natural number priorities and in a play every odd number met is
seen as a pending “request” that, to be satisfied, requires to meet a bigger even

number afterwards along the play, which is therefore seen as a “response”. Then,
player ∃ wins the game if almost all requests are responded within a bounded
distance. It has been shown in [8] that the problem of determining the winner in
a finitary parity game is in PTime.

Recently, the work [8] has been generalized in [14] to deal with more involved
prompt parity conditions. For this reason, arenas are further equipped with two
kinds of edges, i-edges and ε-edges, which indicate whether there is or not a time-
unit consumption while traversing an edge, respectively. Then, the cost of a path
is determined by the number of its i-edges. In some way, the cost of traversing
a path can be seen as the consumption of resources. Therefore, in such a game,
player ∃ aims to achieve its goal with a bounded resource, while player ∀ tries to
avoid it. In particular, player ∃ wins a play if there is a bound b such that all
requests, except at most a finite number, have a cost bounded by b and all requests,
except at most a finite number, are responded. Since we now have an explicit cost
associated to every path, the corresponding condition has been named cost parity
(CP). Note that in cost parity games a finite number of unanswered requests
with unbounded cost is also allowed. By disallowing this, in [14], a strengthening
of the cost parity condition has been introduced and named bounded-cost parity
(BCP) condition. There, it has been shown that the winner of both cost parity
and bounded-cost parity can be decided in NPTime ∩ CoNPTime.

In this article we keep working on two-player parity games, under the prompt
semantics, over colored (vertexes) arenas with or without weights over edges.
In the sequel, we refer to the latter as colored arenas and to the former as
weighted arenas. Our aim is twofold. On one side, we give a clear picture of all
different extended parity conditions introduced in the literature working under
the prompt assumption. In particular, we analyze their main intrinsic peculiarities
and possibly improve the complexity results related to the game solutions. On
the other side, we introduce new parity conditions to work on both colored and
weighted arenas and study their relation with the known ones. For a complete
list of all the conditions we address in the sequel of this article, see Table 1.

In order to make our reasoning more clear, we first introduce the concept
of non-full, semi-full and full acceptance parity condition. To understand their
meaning, first consider again the cost parity condition. By definition, it is a
conjunction of two properties and in both of them a finite number of requests
(possibly different) can be ignored. For this reason, we call this condition “non-
full”. Consider now the bounded-cost parity condition. By definition, it is still
a conjunction of two properties, but now only in one of them a finite number
of requests can be ignored. For this reason, we call this condition “semi-full”.
Finally, a parity condition is named “full” if none of the requests can be ignored.
Note that the full concept has been already addressed in [8] on classic arenas.
We also refer to [8] for further motivations and examples.

As a main contribution in this work, we introduce and study three new parity
conditions named full parity (FP), prompt parity (PP) and full-prompt parity
(FPP), respectively. The full parity condition is defined over colored arenas
and, in accordance to the full semantics, it simply requires that all requests

must be responded. Clearly, it has no meaning to talk about a semi-full parity
condition, since there is just one property to verify. Also, the non-full parity
condition corresponds to the classic parity one. See Table 2 for a schematic view
of this argument. We prove that the complexity of checking whether player ∃
wins under the full parity condition is in PTime. This result is obtained by
a quadratic translation to classic Büchi games. The prompt parity condition,
which we consider on both colored and weighted arenas, requires that almost
all requests are responded within a bounded cost, which we name here delay.
The full-prompt parity condition is defined accordingly. Observe that the main
difference between the cost parity and the prompt parity conditions is that the
former is a conjunction of two properties, in each of which a possibly different
set of finite requests can be ignored, while in the latter we indicate only one set
of finite requests to be used in two different properties. Nevertheless, since the
quantifications of the winning conditions range on co-finite sets, we are able to
prove that prompt and cost parity conditions are semantically equivalent. We
also prove that the complexity of checking whether player ∃ wins the game under
the prompt parity condition is UPTime ∩ CoUPTime, in the case of weighted
arenas. So, the same result holds for cost parity games and this improves the
previously known results. The statement is obtained by a quartic translation to
classic parity games. Our algorithm always reduces the original problem to a
unique parity game, which is the core of how we gain a better result w.r.t. the time
complexity point of view. Obviously, this is different from what is done in [14] as
the algorithm there performs several calls to a parity game solver. Observe that,
on colored arenas prompt and full-prompt parity conditions correspond to the
finitary and bounded-finitary parity conditions [8], respectively. Hence, both the
corresponding games can be decided in PTime. We prove that for full-prompt
parity games the PTime complexity holds even in the case the arenas are weighted.
Finally, by means of a cubic translation to classic parity games, we prove that
bounded-cost parity over weighted arenas is in UPTime ∩ CoUPTime, which
also improves the previously known result about this condition.

Due to the lack of space, proofs are omitted and reported in the full version.

2 Preliminaries

In this section, we give the concepts of two-player turn-based arena, payoff-arena,
and game. As they are common definitions, an expert reader can skip this part.

Arenas. An arena is a tuple A , 〈Ps∃,Ps∀,Mv 〉, where Ps∃ and Ps∀ are the
disjoint sets of existential and universal positions and Mv ⊆ Ps× Ps is the left-
total move relation on Ps , Ps∃ ∪ Ps∀. The order of A is the number |A| , |Ps|
of its positions. An arena is finite iff it has finite order. A path (resp., history)
in A is an infinite (resp., finite non-empty) sequence of vertexes π ∈ Pth ⊆ Psω

(resp., ρ ∈ Hst ⊆ Ps+) compatible with the move relation, i.e., (πi, πi+1) ∈ Mv
(resp., (ρi, ρi+1) ∈ Mv), for all i ∈ N (resp., i ∈ [0, |ρ| − 1[), where Pth (resp.,
Hst) denotes the set of all paths (resp., histories). Intuitively, histories and paths
are legal sequences of reachable positions that can be seen, respectively, as partial

and complete descriptions of possible outcomes obtainable by following the rules
of the game modeled by the arena. An existential (resp., universal) history
in A is just a history ρ ∈ Hst∃ ⊆ Hst (resp., ρ ∈ Hst∀ ⊆ Hst) ending in an
existential (resp., universal) position, i.e., lst(ρ) ∈ Ps∃ (resp., lst(ρ) ∈ Ps∀). An
existential (resp., universal) strategy on A is a function σ∃ ∈ Str∃ ⊆ Hst∃ → Ps
(resp., σ∀ ∈ Str∀ ⊆ Hst∀ → Ps) mapping each existential (resp., universal)
history ρ ∈ Hst∃ (resp., ρ ∈ Hst∀) to a position compatible with the move
relation, i.e., (lst(ρ), σ∃(ρ)) ∈ Mv (resp., (lst(ρ), σ∀(ρ)) ∈ Mv), where Str∃ (resp.,
Str∀) denotes the set of all existential (resp., universal) strategies. Intuitively, a
strategy is a high-level plan for a player to achieve his own goal, which contains
the choice of moves as a function of the histories of the current outcome. A path
π ∈ Pth(v) starting at a position v ∈ Ps is the play in A w.r.t. a pair of strategies
(σ∃, σ∀) ∈ Str∃ × Str∀ (((σ∃, σ∀), v)-play, for short) iff, for all i ∈ N, it holds that
if πi ∈ Ps∃ then πi+1 = σ∃(π≤i) else πi+1 = σ∀(π≤i). Intuitively, a play is the
unique outcome of the game given by the player strategies. The play function
play : Ps × (Str∃ × Str∀) → Pth returns, for each position v ∈ Ps and pair of
strategies (σ∃, σ∀) ∈ Str∃ × Str∀, the ((σ∃, σ∀), v)-play play(v, (σ∃, σ∀)).

Payoff Arenas. A payoff arena is a tuple Â , 〈A,Pf , pf 〉, where A is the
underlying arena, Pf is the non-empty set of payoff values, and pf : Pth → Pf
is the payoff function mapping each path to a value. The order of Â is the
order of its underlying arena A. A payoff arena is finite iff it has finite order.
The overloading of the payoff function pf from the set of paths to the sets of
positions and pairs of existential and universal strategies induces the function
pf : Ps× (Str∃ × Str∀)→ Pf mapping each position v ∈ Ps and pair of strategies
(σ∃, σ∀) ∈ Str∃ × Str∀ to the payoff value pf(v, (σ∃, σ∀)) , pf(play(v, (σ∃, σ∀))) of
the corresponding ((σ∃, σ∀), v)-play.

Games. A (extensive-form) game is a tuple a , 〈Â,Wn, v〉, where Â = 〈A,Pf ,
pf 〉 is the underlying payoff arena, Wn ⊆ Pf is the winning payoff set, and v ∈ Ps
is the designated initial position. The order of G is the order of its underlying
payoff arena Â. A game is finite iff it has finite order. The existential (resp.,
universal) player ∃ (resp., ∀) wins the game a iff there exists an existential (resp.,
universal) strategy σ∃ ∈ Str∃ (resp., σ∀ ∈ Str∀) such that, for all universal (resp.,
existential) strategies σ∀ ∈ Str∀ (resp., σ∃ ∈ Str∀), it holds that pf(σ∃, σ∀) ∈Wn
(resp., pf(σ∃, σ∀) 6∈Wn).

3 Parity Conditions

In this section, we give an overview about all different parity conditions we consider
in this article, which are variants of classical parity games that will be investigated
over both classic colored arenas (i.e., with unweighted edges) and weighted arenas.
Specifically, along with the known Parity (P), Cost Parity (CP), and Bounded-
Cost Parity (BCP) conditions, we introduce three new winning conditions, namely
Full Parity (FP), Prompt Parity (PP), and Full-Prompt Parity (FPP).

Before continuing, we introduce some notation to formally define all addressed
winning conditions. A colored arena is a tuple Ã , 〈A,Cl, cl〉, where A is the

underlying arena, Cl ⊆ N is the non-empty sets of colors, and cl : Ps→ Cl is the
coloring function mapping each position to a color. Similarly, a (colored) weighted
arena is a tuple A , 〈A,Cl, cl,Wg,wg〉, where 〈A,Cl, cl〉 is the underlying col-
ored arena, Wg ⊆ N is the non-empty sets of weights, and wg : Mv →Wg is the
weighting functions mapping each move to a weight. The overloading of the color-
ing (resp., weighting) function from the set of positions (resp., moves) to the set
of paths induces the function cl : Pth→ Clω (resp., wg : Pth→Wgω) mapping
each path π ∈ Pth to the infinite sequence of colors cl(π) ∈ Clω (resp. weights
wg(π) ∈Wgω) such that (cl(π))i = cl(πi) (resp., (wg(π))i = wg((πi, πi+1))), for

all i ∈ N. Every colored (resp., weighted) arena Ã , 〈A,Cl, cl〉 (resp., A , 〈A,
Cl, cl,Wg,wg〉) induces a canonical payoff arena Â , 〈A,Pf , pf 〉, where Pf , Clω

(resp., Pf , Clω ×Wgω) and pf(π) , cl(π) (resp., pf(π) , (cl(π),wg(π))).

Along a play, we interpret the occurrence of an odd priority as a “request”
and the occurrence of the first bigger even priority at a later position as a
“response”. Then, we distinguish between prompt and not-prompt requests. In
the not-prompt case, a request is responded independently from the elapsed
time between its occurrence and response. Conversely, in the prompt case, the
time within a request is responded has an important role. It is for this reason
that we consider weighted arenas. So, a delay over a play is the sum of the
weights over of all the edges crossed from a request to its response. We now
formalize these concepts. Let c ∈ Clω be an infinite sequence of colors. Then,
Rq(c) , {i ∈ N : ci ≡ 1 (mod 2)} denotes the set of all requests in c and
rs(c, i) , min{j ∈ N : i ≤ j ∧ ci ≤ cj ∧ cj ≡ 0 (mod 2)} represents the response

to the requests i ∈ Rs, where by convention we set min ∅ , ω. Moreover,
Rs(c) , {i ∈ Rq(c) : rs(c, i) < ω} denotes the subset of all requests for which
a response is provided. Now, let w ∈ Wgω be an infinite sequence of weights.

Then, dl((c, w), i) ,
∑rs(c,i)−1
k=i wk denotes the delay w.r.t. w with which a request

i ∈ Rq(c) is responded. Also, dl((c, w),R) , supi∈R dl((c, w), i) is the supremum
of all delays of the requests contained in R ⊆ Rq(c).

Non-Prompt Prompt

Non-Full Parity (P) Prompt Parity (PP) ≡ Cost Parity (CP)

Semi-Full − Bounded Cost Parity (BCP)

Full Full Parity (FP) Full Prompt Parity (FPP)

Table 1. Prompt/non-prompt conditions under the full/semi-
full/non-full constraints.

As usual, all con-
ditions we consider
are given on infinite
plays. Then, the win-
ning of the game can
be defined with re-
spect to how often
the characterizing properties of the winning condition are satisfied along each
play. For example, we may require that all requests have to be responded along
a play, which we denote as a full behavior of the acceptance condition. Also, we
may require that the condition (given as a unique or a conjunction of properties)
holds almost everywhere along the play (i.e., a finite number of places along the
play can be ignored), which we denote as a not-full behavior of the acceptance
condition. More in general, we may have conditions, given as a conjunction of
several properties, to be satisfied in a mixed way, that is, some of them have
to be satisfied almost everywhere and the remaining ones, over all the play. We

denote the latter as a semi-full behavior of the acceptance condition. Table 1
reports the combination of the full, not-full, and semi-full behaviors with the
known conditions of parity, cost-parity and bounded cost-parity and the new
condition of prompt-parity we introduce. As it will be clear in the following,
bounded cost-parity has intrinsically a semi-full behavior on weighted arenas, but
it has no meaning on (unweighted) colored arenas. Also, over colored arenas, the
parity condition has an intrinsic not-full behavior. Note that, as far as we known,
some of these combinations have never been studied previously on colored arenas
(full parity) and weighted arenas (prompt parity and full-prompt parity).

3.1 Non-Prompt Conditions

The non-prompt conditions relate only to the satisfaction of a request (i.e., its
response), without taking into account the elapsing of time before the response is
provided (i.e., its delay). As reported in Table 1, here we consider as non-prompt

conditions, those ones of parity and full parity. To do this, let a , 〈Â,Wn, v〉 be

a game, where the payoff arena Â is induced by a colored arena Ã = 〈A,Cl, cl〉.

v
1

v
0

v
2

Fig. 1. Colored Arena Ã.

Parity condition (P) a is a parity game iff it is
played under a parity condition, which requires
that all requests, except at most a finite number,
are responded. Formally, for all c = Clω, we have
that c ∈ Wn iff there exists a finite set R ⊆
Rq(c) such that Rq(c) \ R ⊆ Rs(c), i.e., c is a
winning payoff iff almost all requests in Rq(c) are

responded. Consider for example the colored arena Ã depicted in Figure 1, where
all positions are universal, and let α+ β be the regular expression describing all
possible plays starting at v, where α = (v · v∗ · v) · v · vω and β = (v · v∗ · v)ω.
Now, keep a path π ∈ α and let cα , pf(π) ∈ (1 · 0∗ · 2) · 1 · 0ω be its payoff.
Then, cπ ∈Wn, since the parity condition is satisfied by putting in R the last
index in which the color 1 occurs in cπ. Again, keep a path π ∈ β and let
cπ , pf(π) ∈ (1 · 0∗ · 2)ω be its payoff. Then, cπ ∈Wn, since the parity condition
is satisfied by simply choosing R , ∅. In the following, as a special case, we also
consider parity games played over arenas colored only with the two priorities 1
and 2, to which we refer as Büchi games (B).

v
1

v
2

Fig. 2. Colored Arena Ã.

Full Parity condition (FP) a is a full parity game
iff it is played under a full parity condition, which
requires that all requests are responded. Formally,
for all c ∈ Clω, we have that c ∈ Wn iff Rq(c) =
Rs(c) i.e., c is a winning payoff iff all requests in

Rq(c) are responded. Consider for example the colored arena Ã in Figure 2,
where all positions are existential. There is a unique path π = (v · v)ω starting
at v having payoff cπ , pf(π) = (1 · 2)ω and set of requests Rq(cπ) = {2n :
n ∈ N}. Then, cπ ∈Wn, since the full parity condition is satisfied as all requests
are responded by the color 2 at the odd indexes.

3.2 Prompt Conditions

The prompt conditions take into account, in addition to the satisfaction of a
request, also the delay before it occurs. As reported in Table 1, here we consider
as prompt conditions, those ones of prompt parity, full-prompt parity, cost parity,
and bounded-cost parity. To do this, let a , 〈Â,Wn, v〉 be a game, where the

payoff arena Â is induced by a (colored) weighted arena A = 〈A,Cl, cl,Wg,wg〉.

v
3

v
1

v
22

1

0

Fig. 3. Weighted Arena A.

Prompt Parity condition (PP) a is a prompt
parity game iff it is played under a prompt parity
condition, which requires that all requests, except
at most a finite number of them, are responded
with a bounded delay. Formally, for all (c, w) ∈
Clω ×Wgω, we have that (c, w) ∈ Wn iff there
exists a finite set R ⊆ Rq(c) such that Rq(c) \ R ⊆ Rs(c) and there exists a
bound b ∈ N for which dl((c, w),Rq(c) \ R) ≤ b holds, i.e., (c, w) is a winning
payoff iff almost all requests in Rq(c) are responded with a delay bounded by
an a priori number b. Consider for example the weighted arena A depicted
in Figure 3. There is a unique path π = v · (v · v)ω starting at v having
payoff cπ , pf(π) = (c, w), where c = 3 · (1 · 2)ω and w = 2 · (1 · 0)ω, and set
of requests Rq(c) = {0} ∪ {2n + 1 : n ∈ N}. Then, cπ ∈Wn, since the prompt
parity condition is satisfied by choosing R = {0} and b = 1.

v
3

v
4

v
1

2 0

0 1

Fig. 4. Weighted Arena A.

Full-Prompt Parity condition (FPP) a is a full-
prompt parity game iff it is played under a full-
prompt parity condition, which requires that all
requests are responded with a bounded delay.
Formally, for all (c, w) ∈ Clω ×Wgω, we have
that (c, w) ∈ Wn iff Rq(c) = Rs(c) and there
exists a bound b ∈ N for which dl((c, w),Rq(c)) ≤ b holds, i.e., (c, w) is a
winning payoff iff all requests in Rq(c) are responded with a delay bounded by
an a priori number b. Consider for example the weighted arena A depicted in
Figure 4. Now, take a path π ∈ v · v · ((v · v)∗ · (v · v)∗)ω starting at v
and let cπ , pf(π) = (c, w) be its payoff, with c ∈ 3 · 4 · ((3 · 4)∗ · (1 · 4)∗)ω and
w ∈ 2 · ((0 · 2)∗ · (0 · 1)∗)ω. Then, cπ ∈Wn, since the full-prompt parity condition
is satisfied as all requests are responded by color 4 with a delay bound b = 2.

Remark 1. As a special case, the prompt and the full-prompt parity conditions
can be analyzed on simply colored arenas, by considering each edge as having
weight 1. Then, the above two cases just analyzed correspond to the finitary
parity and bounded parity conditions studied in [8].

v
1

v
00

1

Fig. 5. Weighted Arena A.

Cost Parity condition (CP) [14] a is a cost parity
game iff it is played under a cost parity condition,
which requires that all requests, except at most
a finite number of them, are responded and all

requests, except at most a finite number of them (possibly different from the
previous ones) have a bounded delay. Formally, for all (c, w) ∈ Clω ×Wgω, we
have that (c, w) ∈Wn iff there is a finite set R ⊆ Rq(c) such that Rq(c) \ R ⊆
Rs(c) and there exist a finite set R′ ⊆ Rq(c) and a bound b ∈ N for which
dl((c, w),Rq(c) \ R′) ≤ b holds, i.e., (c, w) is a winning payoff iff almost all
requests in Rq(c) are responded and almost all have a delay bounded by an a
priori number b. Consider for example the weighted arena A in Figure 5. There

is a unique path π = v · vω starting at v having payoff cπ , pf(π) = (c, w),
where c = 1 · 0ω and w = 0 · 1ω, and set of requests Rq(c) = {0}. Then, cπ ∈Wn,
since the prompt parity condition is satisfied with R = R′ = {0} and b = 0.

v
1

v
01

0

Fig. 6. Weighted Arena A.

Bounded-Cost Parity condition (BCP) [14] a is a
bounded-cost parity game iff it is played under a
bounded-cost parity condition, which requires that
all requests, except at most a finite number, are
responded and all have a bounded delay. Formally,
for all (c, w) ∈ Clω ×Wgω, we have that (c, w) ∈
Wn iff there exists a finite set R ⊆ Rq(c) such that Rq(c) \ R ⊆ Rs(c) and there
exists a bound b ∈ N for which dl((c, w),Rq(c)) ≤ b holds, i.e., (c, w) is a winning
payoff iff almost all requests in Rq(c) are responded and all have a delay bounded
by an a priori number b. Consider for example the weighted arena A depicted
in Figure 6. There is a unique path π = v · vω starting at v having payoff
cπ , pf(π) = (c, w), where c = 1 · 0ω, and set of requests Rq(c) = {0}. Then,
cπ ∈Wn, since the prompt parity condition is satisfied with R = {0} and b = 1.

Wn Formal definitions

P ∀c∈Clω. c∈Wn iff
∃R ⊆ Rq(c), |R| < ω. Rq(c) \ R ⊆ Rs(c)

FP Rq(c) = Rs(c)

PP

∀(c, w)∈Clω ×Wgω.
(c, w)∈Wn iff

∃R ⊆ Rq(c), |R| < ω.
Rq(c) \ R ⊆ Rs(c) ∧
∃b ∈ N . dl((c, w),Rq(c) \ R) ≤ b

FPP
Rq(c) = Rs(c) ∧
∃b ∈ N . dl((c, w),Rq(c)) ≤ b

CP
∃R ⊆ Rq(c), |R| < ω.
∃R′ ⊆ Rq(c), |R′| < ω.

Rq(c) \ R ⊆ Rs(c) ∧
∃b ∈ N . dl((c, w),Rq(c) \ R′) ≤ b

BCP
∃R ⊆ Rq(c), |R| < ω. Rq(c) \ R ⊆ Rs(c) ∧

∃b ∈ N . dl((c, w),Rq(c)) ≤ b

Table 2. Summary of all winning condition (Wn) definitions.

In Table 2, we list all winning conditions (Wn) introduced above, along with
their respective formal definitions. For the sake of readability, given a game
a = 〈Â,Wn, v〉, we sometimes use the winning condition acronym name in place
of Wn, as well as we refer to a as a Wn game. For example, if a is a parity game,
we also say that it is a P game, as well as write a = 〈Â,P, v〉.

4 Equivalences and Implications

We now study the relationships among all parity conditions given above.

4.1 Positive Relationships

P

FP

PP

FPP

CP

BCP

[1]

[3]

[2a]
[4a]

[2b]

[4b]

[4c]

[4d]

[5]

[4e]

Fig. 7. Implication Schema.

We now prove all positive relationships among
the given conditions and report them in Fig-
ure 7, where an arrow from a condition Wn
to another one Wn means that the former
implies the latter. Namely, if player ∃ wins a
game under Wn condition, then it also wins
the game under the one Wn, over the same
arena. The label on the edges indicates next theorem’s item in which the result is
proved. In particular, we show that prompt parity and cost parity are semantically
equivalent. The same holds for full parity and full-prompt parity over finite arenas
and for full-prompt parity and bounded-cost parity on positive weighted arenas.
Also, as one may expect, fullness implies not-fullness under every condition and
all conditions imply the parity one. Observe that, in the following, we refer to Â,
Ã, A indicating, respectively the payoff, colored and weighted arenas.

Theorem 1. Let a = 〈Â,Wn, v〉 and a = 〈Â,Wn, v〉 be two games

defined on arenas Â and Â having the same underlying arena A. Then, player ∃
wins a if it wins a under the following constraints:

1. Â = Â are induced by an arena Ã = 〈A,Cl, cl〉 and (Wn,Wn) = (FP,P);

2. Â and Â are induced, respectively, by an arena A = 〈A,Cl, cl,Wg,wg〉
and its underlying arena Ã = 〈A,Cl, cl〉 and one among (a) (Wn,Wn) =
(PP,P) and (b) (Wn,Wn) = (FPP,FP) hold.

3. Â and Â are finite and induced, respectively, by an arena A=〈A,Cl, cl,Wg,

wg〉 and its underlying arena Ã=〈A,Cl, cl〉 and (Wn,Wn)=(FP,FPP);

4. Â = Â are induced by an arena A= 〈A,Cl, cl,Wg,wg〉 and one among
(a) (Wn,Wn)=(PP,CP), (b) (Wn,Wn)=(FPP,PP), (c) (Wn,Wn)=
(FPP,BCP), (d) (Wn,Wn)=(CP,PP), (e) (Wn,Wn)=(BCP,CP) hold.

5. Â = Â are induced by an arena A = 〈A,Cl, cl,Wg,wg〉, with wg(v) > 0
for all v ∈ Ps, and (Wn,Wn) = (BCP,FPP).

The following three corollaries follow as immediate consequences of, respectively,
Items 2b and 3, 4a and 4d, and 4c and 5 of the previous theorem.

Corollary 1. Let aFPP = 〈ÂFPP,FPP, v〉 be an FPP game and aFP = 〈ÂFP,

FP, v〉 an FP one defined on the two finite arenas ÂFPP and ÂFP induced,

respectively, by an arena A = 〈A,Cl, cl,Wg,wg〉 and its underlying arena Ã =
〈A,Cl, cl〉. Then, player ∃ wins aFPP if it wins aFP.

Corollary 2. Let aCP=〈Â,CP, v〉 be a CP game and aPP=〈Â,PP, v〉 a PP

one defined on the arena Â induced by an arena A=〈A,Cl, cl,Wg,wg〉. Then,
player ∃ wins aCP if it wins aPP.

Corollary 3. Let aBCP = 〈Â,BCP, v〉 be a BCP game and aFPP = 〈Â,FPP,
v〉 an FPP one defined on the arena Â induced by an arena A = 〈A,Cl, cl,Wg,
wg〉, where wg(v) > 0, for all v ∈ Ps. Then, player ∃ wins aBCP if it wins aFPP.

4.2 Negative Relationships

P

FP

PP

BCP

[1]

[2]

[3]

[4]
[5]

[6]

Fig. 8. Counterexample Schema.

We, now, show a list of counterexamples to
point out that some winning conditions are not
equivalent to other ones and report the corre-
sponding results in Figure 8, where an arrow
from a condition Wn to another condition Wn
means that there is an arena on which player ∃
wins a Wn game while it loses a Wn one. The
label on the edges indicates the item of the next theorem in which the result is
proved. Moreover, the following list of counter-implications, non reported in the
figure, can be simply obtained by the listed ones together with the implication
results of Theorem 1: (P, FPP), (P, CP), (P, BCP), (FP, FPP), (FP, CP),
(FP, BCP), (PP, FPP), (CP, FP), (CP, FPP), (CP, BCP), and (BCP, FPP).

Theorem 2. There exist two games a = 〈Â,Wn, v〉 and a = 〈Â,Wn,

v〉, defined on the two arenas Â and Â having the same underlying arena A,
such that player ∃ wins a while it loses a under the following constraints:

1. Â = Â are induced by an arena Ã = 〈A,Cl, cl〉 and (Wn,Wn) = (P,FP);

2. Â and Â are induced, respectively, by an arena A = 〈A,Cl, cl,Wg,wg〉
and its underlying arena Ã = 〈A,Cl, cl〉 and (Wn,Wn) = (P,PP);

3. Â and Â are infinite and induced, respectively, by A = 〈A,Cl, cl,Wg,wg〉
and its underlying arena Ã = 〈A,Cl, cl〉 and (Wn,Wn) = (FP,PP);

4. Â and Â are induced, respectively, by an arena A=〈A,Cl, cl,Wg,wg〉 and

its underlying arena Ã=〈A,Cl, cl〉 and (Wn,Wn)=(PP,FP);

5. Â=Â are induced by A=〈A,Cl, cl,Wg,wg〉 and (Wn,Wn)=(PP,BCP);

6. Â and Â are induced, resp., by A=〈A,Cl, cl,Wg,wg〉, with wg(v)=0, for

v ∈ Ps,and its underlying arena Ã=〈A,Cl, cl〉 and (Wn,Wn)=(BCP,FP).

5 Polynomial Reductions

In this section, we face the computational complexity of solving FP, PP, and
BCP games. Then, due to the relationships among the winning conditions
described above, we extend the achieved results to the other conditions as well.
The technique we adopt is to solve a given game through the construction of
a new game over an enriched arena, on which we play with a simpler winning
condition. Intuitively, the built game encapsulates in the states of its arena some
information regarding the satisfaction of the original condition. To this aim,
we introduce the concepts of transition table and its product with an arena. A
transition table is an automaton without acceptance condition. It is used to
represent the information of the winning condition mentioned above. Then, the
product operation allows to pass this information to the new arena. In general,
our constructions are pseudo-polynomial, but if we restrict to the case of having
only 0 and 1 as weights over the edges, then they become polynomial, due to the

fact that the threshold is bounded by the number of edges in the arena. Moreover,
since a game with arbitrary weights can be easily transformed into one with
weights 0 and 1, we overall get a polynomial reduction for all the cases. Note
that to check whether a value is positive or zero can be done in linear time in
the number of its bits and, therefore, it is linear in the description of its weights.

In the following, for a given set of colors Cl ⊆ N, we assume ⊥ < i, for all
i ∈ Cl. Intuitively, ⊥ is a special symbol that can be seen as lower bound over
color priorities. Moreover, we define R , {c ∈ Cl : c ≡ 1(mod 2)} to be the set
of all possible request values in Cl with R⊥ , {⊥} ∪ R.

5.1 Transition Tables

A transition table is a tuple T , 〈Sm,StD,St∃, tr〉, where Sm is the set of symbols,
StD and St∃ with St , StD ∪St∃ are disjoint sets of deterministic and existential
states, and tr : (StD×Sm→ St)∪ (St∃ → 2St) is the transition function mapping
either pairs of deterministic states and symbols to states or existential states to
sets of states. The order (resp., size) of T is |T | , |St| (resp., ‖T ‖ , |tr|). A
transition table is finite iff it has finite order.

Let Ã = 〈A,Cl, cl〉 be a colored arena with A = 〈Ps∃,Ps∀,Mv 〉 and T , 〈Cl,

StD,St∃, tr〉 a transition table. Then, Ãr ⊗ T , 〈Ps?∃,Ps?∀,Mv?〉 is the product
arena defined as follows:

– Ps?∃ , Ps∃ × StD ∪ Ps× St∃ and Ps?∀ , Ps∀ × StD;
– for (v, v) ∈ Mv and s ∈ StD, it holds that ((v, s), (v, tr(s, cl(v)))) ∈ Mv?;
– for v∈Ps, s∈St∃, and s∈St, then, ((v, s), (v, s))∈Mv? iff s∈ tr(s).

Similarly, let A = 〈A,Cl, cl,Wg,wg〉 be a weighted arena with A = 〈Ps∃,Ps∀,
Mv 〉 and T , 〈Cl×Wg,StD,St∃, tr〉 a transition table. Then, Ar⊗T , 〈Ps?∃,Ps?∀,
Mv?〉 is the product arena as before, except for all moves (v, v) ∈ Mv and states
s ∈ StD, where we have that ((v, s), (v, tr(s, (cl(v),wg((v, v)))))) ∈ Mv?.

5.2 From Full Parity to Büchi

In this section, we show a reduction from full parity games to Büchi ones.
This is done by constructing an ad-hoc transition table T that maintains basic
informations of the parity condition. Then, the Büchi game uses as an arena an
enriched version of the original one, which is obtained as its product with T .
Intuitively, T keeps track, along every play, the value of the biggest unanswered
request. When such a request is satisfied, this value is set to the special symbol ⊥.
To this aim, T uses as states ⊥ and all possible request values, and its transition
function is defined as follows: if a request is satisfied, then T moves to state ⊥,
otherwise, it moves to the state representing the maximum between the new
request it reads and the previous memorized one (kept into the current state).

Consider now the arena A? built as the product of the original arena with T
and use as colors the values 1 and 2, assigned as follows: if a position contains
⊥, color it with 2, otherwise, color it with 1. By definition of full parity and

Büchi games, we have that a Büchi game is won over A? if and only if the full
parity game is won over the original arena. Indeed, over a play of A?, meeting
⊥ infinitely often means that all requests found over the corresponding play of
the old arena are satisfied. The formal construction of T and the A? follow. For
a given FP game a , 〈Â,FP, v〉 induced by a colored arena Ã = 〈A,Cl, cl〉,
we construct a deterministic transition table T , 〈Cl,St, tr〉, with set of states
St , R⊥ and transition function defined as follows:

– tr(r, c) ,

{
⊥, if r < c and c ≡ 0(mod 2);

max{r, c}, otherwise.

Now, let A? = Ã ⊗ T be the product arena of Ã and T and consider the colored
arena Ã? , 〈A?, {1, 2}, cl?〉 such that, for all positions (v, r) ∈ Ps?, if r = ⊥
then cl?((v, r)) = 2 else cl?((v, r)) = 1. Then, the B game a? = 〈Â?,B, (v,⊥)〉
induced by Ã? is such that player ∃ wins a iff it wins a?.

Theorem 3. For every FP game a with k ∈ N priorities, there is a B game a?,
with order |a?| = O(|a| · k), such that player ∃ wins a iff it wins a?.

5.3 From Bounded-Cost Parity to Parity

We now show a construction that allows to reduce a bounded-cost parity game to
a parity game. The approach we propose extends the one given in the previous
section by further equipping the transition table T with a counter that keeps
track of the delay accumulated since an unanswered request has been issued. Such
a counter is bounded in the sense that if the delay exceeds the sum of weights of
all moves in the original arena, then it is set to the special symbol >. The idea is
that if in a game such a bound has been exceeded then the adversarial player has
taken at least twice a move with a positive weight. So, he can do this an arbitrary
number of times and delay longer and longer the satisfaction of a request that
therefore becomes not prompt. Thus, we use as states in T , together with >, a
finite set of pairs of numbers, where the first component, as above, represents
a finite request, while the second one is its delay. As first state component we
also allow ⊥ and (⊥, 0) indicates that there are not unanswered requests up to
the current position. Then, the transition function of T is defined as follows. If a
request is not satisfied within a bounded delay, then it goes and remains forever
in state >. Otherwise, if the request is satisfied, then it goes to (⊥, 0), else it
moves to a state that contains, as first component, the maximum between the
last request not responded and the read color and, as second component, the one
present in the current state plus the weight of the traversed edge.

Now, consider the product arena A? of T with the original arena and color
its positions as follows: unanswered request positions, with delay exceeding the
bound, are colored with 1, while the remaining ones are colored as in the original
arena. Clearly, in A?, a parity game is won if and only if the bounded-cost parity
game is won on the original arena. The formal construction of T and A? follow.

For a given BCP game a , 〈Â,BCP, v〉 induced by a weighted arena
A = 〈A,Cl, cl,Wg,wg〉, we construct a deterministic transition table T ,
〈Cl ×Wg,St, tr〉, with set of states St , {>} ∪ R⊥ × [0, s], where we assume
s ,

∑
m∈Mv wg(m) to be the sum of all weights of moves in A, and transition

function defined as follows: tr(>, (c, w)) , > and, additionally,

– tr((r, k), (c, w)) ,

(⊥, 0), if r < c and c ≡ 0(mod 2);

>, if k + w > s;

(max{r, c}, k + w), otherwise.

Let A? = Ã ⊗ T be the product arena of Ã and T and Ã? , 〈A?,Cl, cl?〉 be
the colored arena such that > is colored with 1, and all other states are colored
as in the original arena (w.r.t. the first component). Then, the P game a? = 〈Â?,
P, (v, (⊥, 0))〉 induced by Ã? is such that player ∃ wins a iff it wins a?.

Theorem 4. For every BCP game a with k ∈ N priorities and sum of weights
s ∈ N, there is a P game a?, with order |a?| = O(|a| · k · s), such that player ∃
wins a iff it wins a?.

5.4 From Prompt Parity to Parity and Büchi

Finally, we show a construction that reduces a prompt parity game to a parity
game. In particular, when the underlying weighted arena of the original game
has only positive weights, then the construction returns a Büchi game. Our
approach extends the one proposed for the above BCP case, by further allowing
the transition table T to guess a request value that is not meet anymore along a
play. This is done to accomplish the second part of the prompt parity condition,
in which a finite number of requests can be excluded from the delay computation.
To do this, first we allow T to be nondeterministic and label its states with
a flag α ∈ {D,∃} to identify, respectively, deterministic and existential states.
Then, we enrich the states by means of a new component d ∈ [0, h], where
h , |{v ∈ Ps : cl(v) ≡ 1(mod 2)}| is the maximum number of positions having
odd priorities. So, d represents the counter of the forgotten priority and it is used
to later check the guess states. As first state we have the tuple ((⊥, 0, D), 0))
indicating that there are not unanswered and forgotten requests up to the current
deterministic position. The transition function over a deterministic state is defined
as follows. If a request is not satisfied in a bounded delay, then it goes and remains
forever in state >; if the request is satisfied then it goes to ((⊥, d,D), 0); otherwise
it moves to an existential state that contains, as first component, the triple having
the maximum between the last request not responded and the read color, the
counter of forgotten priority, and a flag indicating that the state is existential.
Moreover, as a second component, there is a number that is the one present in the
current state plus the weight of the traversed edge. The transition function over
an existential state is defined as follows. If d is equal to the maximum allowable
number of positions having an odd priority (h), then the computation remains in

the same (deterministic) state; otherwise, the computation moves to a state in
which the second component is incremented by 1. Note that the guess part is
similar to that one performed to translate a nonderministic co-Büchi automaton
into a Büchi one [18]. Finally, we color the obtained arena as we did for the above
BCP case. In case the weighted arena of the original game has only positive
weights, then one can exclude a priory the fact that there are unanswered requests
with bounded delays. So, all these kind of requests can be forgotten in order
to win the game. Thus, in this case, it is enough to satisfy only the remaining
ones, which corresponds to visit infinitely often a position containing as second
component the symbol ⊥. So it is enough to color these positions with 2, all the
remaining ones with 1, and play on this arena a Büchi condition. The formal
construction of the transition table and the enriched arena follow.

For a PP game a , 〈Â,PP, v〉 induced by an arena A = 〈A,Cl, cl,Wg,wg〉,
we build a transition table T , 〈Cl×Wg,StD,St∃, tr〉, with sets of states StD ,
{>}∪ZD× [0, s] and St∃ , Z∃× [0, s] (where we assume s ,

∑
m∈Mv wg(m) to

be the sum of all weights of moves in the original arena and Zα , R⊥× [0, h]×α)
and its transition function defined as follows: tr(>, (c, w)) , > and, additionally:

– tr(((r, d,D), k), (c, w)) ,

((⊥, d,D), 0), if r<c ∧ c≡0(mod 2);

>, if k + w > s;

((max{r, c}, d,∃), k + w), otherwise.

– tr(((r, d,∃), k)) ,

{
{((r, d,D), k)}, if d = h;

{((r, d,D), k), ((⊥, d+ 1, D), 0)}, otherwise.

Observe that, the set Zα is the Cartesian product of the biggest unanswered
request, the counter of the forgotten priority and, a flag indicating whether the
state is deterministic or existential.

Let A? = A⊗ T be the product arena of A and T and consider the colored
arena Ã? , 〈A?,Cl, cl?〉 such that, for all positions (v, t) ∈ Ps?, if t = >
then cl?((v, t)) = 1 else cl?((v, t)) = cl(v). Then, the P game a? = 〈Â?,P,
(v, ((⊥, 0, D), 0))〉 induced by Ã? is such that player ∃ wins a iff it wins a?.

Theorem 5. For every PP game a with k ∈ N priorities and sum of weights
s ∈ N, there is a P game a?, with order |a?| = O(|a| · k · s), such that player ∃
wins a iff it wins a?.

Observe that the estimation on the size of a? is quite coarse since several type of
states can not be reached by the initial position.

In case the weighted arena A is positive, i.e., wg(v) > 0 for all v ∈ Ps, we can

improve the above construction as follows. Consider the colored arena Ã? , 〈A?,
{1, 2}, cl?〉 such that, for all positions (v, t) ∈ Ps?, if t = ((⊥, d,D), 0) for some

d ∈ [0, h] then cl?((v, t)) = 2 else cl?((v, t)) = 1. Then, the B game a? = 〈Â?,B,
(v, ((⊥, 0, D), 0))〉 induced by Ã? is such that player ∃ wins a iff it wins a?.

Theorem 6. For every PP game a with k ∈ N priorities and sum of weights
s ∈ N defined on a positive weighted arena, there is a B game a?, with order
|a?| = O(|a| · k · s), such that player ∃ wins a iff it wins a?.

6 Conclusion

Recently, promptness reasonings have received large attention in system design
and verification. This is due to the fact that, while from a theoretical point of view
questions like “a specific state is eventually reached in a computation” have a
clear meaning and application in formal verification, in a practical scenario, such a
question results useless if there is no bound over the time the required state occurs.
This is the case, for example, when we deal with liveness and safety properties.
The question becomes even more involved in the case of reactive systems, well
modeled as two-player games, in which the response can be procrastinated later
and later due to an adversarial behavior.

In this work, we studied several variants of two-player parity games working
under a prompt semantics. In particular, we gave a general and clean setting to
formally describe and unify most of such games introduced in the literature, as well
as to address new ones. Our framework helped us to investigate peculiarities and
relationships among the addressed games. In particular, it helped us to come up
with solution algorithms that have as core engine and main complexity the solution
of a parity or a Büchi game. This makes the proposed algorithms very efficient.

As games already addressed in literature, we studied cost parity and bounded-
cost parity and, for both of them, we provided algorithms that improve their
known complexity. As new parity games, we investigated full parity, full-prompt
parity, and prompt parity. We showed that full parity is in PTime, prompt
parity and cost parity are equivalent and both in UPTime ∩ CoUPTime. The
latter improves the known complexity result to solve cost parity games because
our algorithm reduce the original problem to a unique parity game while their
one performs “several calls” to a parity games solver. Tables 1 and 2 report
the formal definition of all conditions addressed in the paper along with the
full/not-full/semi-full behavior. Tables 3 summarizes the achieved results. In
particular, we use the special arrow ←↩ to indicate that the result is trivial or an
easy consequence of another one.

Conditions Colored Arena (Colored) Weighted arena

Parity (P) UPTime ∩ CoUPTime [16] ←↩
Full Parity (FP) PTime [Thm 3] ←↩
Prompt Parity (PP) PTime [Thm 6] UPTime ∩ CoUPTime [Thm 5]

Full Prompt Parity (FPP) ←↩ PTime [FP + Cor 1]

Cost Parity (CP) PTime [PP + Cor 2] UPTime ∩ CoUPTime [PP + Cor 2]

Bounded Cost Parity (BCP) PTime [FPP + Cor 3] UPTime ∩ CoUPTime [Thm 4]

Table 3. Summary of all winning condition complexities.

References

1. S. Almagor, Y. Hirshfeld, and O. Kupferman. Promptness in omega-Regular
Automata. In ATVA’10, LNCS 7388, pages 22–36, 2010.

2. R. Alur and T. A. Henzinger. Finitary fairness. ACM Trans. Program. Lang. Syst.,
20(6), 1998.

3. B. Aminof, F. Mogavero, and A. Murano. Synthesis of Hierarchical Systems. In
FACS’11, LNCS, pages 42–60. Springer.

4. B. Aminof, F. Mogavero, and A. Murano. Synthesis of hierarchical systems. Science
of Comp. Program., 2013. DOI: http://dx.doi.org/10.1016/j.scico.2013.07.001.

5. B. Aminof and O. Kupferman and A. Murano. Improved model checking of
hierarchical systems. Inf. Comput., 210:68–86, 2012.

6. D. Berwanger. Admissibility in infinite games. In STACS’07, pages 188–199, 2007.
7. K. Chatterjee, L. Doyen, T. A. Henzinger, and J.-F. Raskin. Generalized mean-

payoff and energy games. In FSTTCS’10, LIPIcs 8, pages 505–516, 2010.
8. K. Chatterjee, T. A. Henzinger, and F. Horn. Finitary winning in ω-regular games.

ACM Trans. Comput. Logic, 11(1).
9. K. Chatterjee, T. A. Henzinger, and M. Jurdzinski. Mean-payoff parity games. In

LICS’05, pages 178–187, 2005.
10. K. Chatterjee, M. Jurdzinski, and T. A. Henzinger. Quantitative stochastic parity

games. In SODA’04, pages 121–130, 2004.
11. E.M. Clarke and E.A. Emerson. Design and Synthesis of Synchronization Skeletons

Using Branching-Time Temporal Logic. In LP’81, LNCS 131, pages 52–71, 1981.
12. E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. MIT Press, 2002.
13. E.A. Emerson and C. Jutla. Tree automata, µ-calculus and determinacy. In

FOCS’91, pages 368–377, 1991.
14. N. Fijalkow and M. Zimmermann. Cost-parity and cost-streett games. In

FSTTCS’12, pages 124–135, 2012.
15. F. Horn, W. Thomas, and N. Wallmeier. Optimal strategy synthesis in request-

response games. In ATVA’08, LNCS 5311, pages 361–373, 2008.
16. M. Jurdzinski. Deciding the winner in parity games is in up ∩ co-up. Inf. Process.

Lett., 68(3):119–124, 1998.
17. D. Kozen. Results on the Propositional mu-Calculus. TCS, 27(3):333–354, 1983.
18. O. Kupferman, G. Morgenstern, and A. Murano. Typeness for omega-regular

automata. Int. J. Found. Comput. Sci., 17(4):869–884, 2006.
19. O. Kupferman, N. Piterman, and M. Y. Vardi. From liveness to promptness. Formal

Methods in System Design, 34(2):83–103, 2009.
20. O. Kupferman, M. Vardi, and P. Wolper. Module Checking. IC,164(2):322–344, 2001.
21. O. Kupferman, M.Y. Vardi, and P. Wolper. An Automata Theoretic Approach to

Branching-Time Model Checking. JACM, 47(2):312–360, 2000.
22. A. Pnueli. The Temporal Logic of Programs. In FOCS’77, pages 46–57, 1977.
23. J.P. Queille and J. Sifakis. Specification and Verification of Concurrent Programs

in Cesar. In SP’81, LNCS 137, pages 337–351, 1981.
24. W. Zielonka. Infinite games on finitely coloured graphs with applications to

automata on infinite trees. Theor. Comput. Sci., 200(1-2):135–183, 1998.

