
9 Alternating Tree Automata and Parity Games

Daniel Kirsten

Institut für Algebra
Technische Universität Dresden

9.1 Introduction

Since Büchi’s work in 1960 [17], automata play an important role in logic. Nu-
merous different notions of automata provide decision and complexity results in
various kinds of logic. Often, one develops a method to translate some given for-
mula ϕ into an appropriate finite automaton A such that L(ϕ) = L(A). Such a
translation reduces the model checking problem and the satisfiability problem in
some logic to the word problem and the emptiness problem for finite automata.
Moreover, such a translation provides algorithms to solve the model checking
and the satisfiability problems on a computer. Consequently, one is interested
in the decidability and the complexity of the word and emptiness problems of
automata.

In this chapter, we introduce the notion of alternating tree automata. They
have been introduced in [202] to get a better understanding of the modal µ-
calculus. Thus, alternating tree automata work on transition systems (Kripke
structures). We state complexity results for the word problem, the emptiness
problem and complementation.

The notion of parity games and related results play a crucial role within the
whole chapter. Parity games provide three advantages:

(1) We use parity games to define the semantics of alternating tree automata,
i.e., we define whether an automaton accepts or rejects some transition sys-
tem by the existence of a winning strategy for Player 0 in an appropriate
parity game.

(2) Parity games provide a straightforward, convenient construction to comple-
ment a given alternating tree automaton; moreover, the fact that parity
games are determined is used to prove the correctness of this construction.

(3) We use parity games to show the decidability of the word problem and the
emptiness problem. By applying Jurdziński’s result[93], we achieve strong
complexity bounds.

The reader should be familiar with parity games as introduced in Chapter 2 and
5. To prove the decidability of the emptiness problem we use various notions
of automata on infinite words such as Büchi automata, Rabin- and Streett-
automata, parity automata, and transformations between them as introduced in
Chapter 1 of this book. We also apply Safra’s construction from Chapter 3.

The results from the present chapter will be used to examine the modal
µ-calculus in Chapters 10 and 11. In particular, the complexity results of the

E. Grädel et al. (Eds.): Automata, Logics, and Infinite Games, LNCS 2500, pp. 153-167, 2002.
 Springer-Verlag Berlin Heidelberg 2002

154 Daniel Kirsten

word problem and emptiness problem will be used to show complexity results
for model checking and satisfiability in the modal µ-calculus.

This chapter is organized as follows: In Section 9.2, we introduce some basic
notions. In Section 9.3, we introduce alternating tree automata and their seman-
tics formally. Sections 9.4, 9.5, and 9.6 are devoted to the three main results:
The decidability and complexity of the word problem, the complementation of
alternating tree automata, and the decidability and complexity of the emptiness
problem. Some remarks and exercises close this chapter.

The main ideas presented here are due to [202]. Our complementation of
alternating tree automata is based on an idea from [137] with some extensions
to our concept of alternating tree automata.

9.2 Preliminaries

We fix a set of propositional variables P during this chapter. A transition
system is a triple S = (S,R, λ) where

• S is a set called states,
• R ⊆ S × S is a relation, and
• λ : P → P(S) is a mapping which assigns a set of states to every proposi-
tional variable.

Transition systems are also known as Kripke structures. If we consider the inverse
mapping γ−1 : S → P(P), then we can regard transition systems as labeled,
directed graphs. For every variable p ∈ P and every state s ∈ λ(p), we say that
p is true in s, and for s ∈ S \ λ(p), we say that p is false in s.

For every s ∈ S, we denote

sR = {s′ ∈ S | (s, s′) ∈ R} and Rs = {s′ ∈ S | (s′, s) ∈ R}.

A pointed transition system (S, sI) is a transition system S = (S,R, λ)
with an initial state sI ∈ S. We call a transition system S = (S,R, λ) (resp.
(S, sI)) finite iff S is finite and λ(p) �= ∅ for just finitely many p ∈ P .

9.3 Alternating Tree Automata

Our notion of an alternating tree automaton originates from [202]. An alternating
tree automaton is a device which accepts or rejects pointed transition systems
by parsing the paths.

In Subsection 9.3.1, we define alternating tree automata formally. In Subsec-
tion 9.3.2, we consider their semantics. At first, we discuss an ad hoc approach to
define the behaviour of alternating tree automata on pointed transition systems.
Then, we present two methods to define formally whether an alternating tree
automaton accepts or rejects a pointed transition system. Both of these methods
are based on parity games. The first method uses an infinite arena for almost

9 Alternating Tree Automata and Parity Games 155

every transition system and is convenient in some proofs, for instance, to show
the closure under complement. The second method uses a more compact arena,
in particular, a finite one if the transition system in question is finite, and is
used to examine the complexity of the word problem. In Proposition 9.2, we
show that these two ways to define the semantics are equivalent.

In Section 9.3.3, we show a small lemma which is used to show the complexity
of the emptiness problem.

In Section 9.3.4, we discuss a syntactic extension to our concept of alternating
tree automata.

9.3.1 Formal Definition of Alternating Tree Automata

To define alternating tree automata formally, we need the notion of transition
conditions. For now, let Q be some set of symbols. The transition conditions
TCQ over Q are defined as follows:

• The symbols 0 and 1 are transition conditions.
• For every p ∈ P , p and ¬p are transition conditions.
• For every q ∈ Q, q, 2q, and 3q are transition conditions.
• For every q1, q2 ∈ Q, q1 ∧ q2 and q1 ∨ q2 are transition conditions.

Note that this definition does not allow transition conditions like q1 ∧ 2q2 or
p∧ q for p ∈ P and q ∈ Q. Below, we will explain a method to allow these more
complex transition conditions without violating our definition. An alternating
tree automaton is a tuple A = (Q, qI, δ, Ω) where

• Q is a finite set of states of the automaton,
• qI ∈ Q is a state called the initial state,
• δ : Q→ TCQ is called transition function, and
• Ω : Q→ ω is called priority function.

For convenience, we denote

Q2 :=
{
q ∈ Q

∣∣∃q′ ∈ Q : δ(q) = 2q′
}

and

Q3 :=
{
q ∈ Q

∣∣∃q′ ∈ Q : δ(q) = 3q′
}
.

For states q ∈ Q we define −→q := q′ if δ(q) = 2q′ or δ(q) = 3q′. Otherwise, −→q
is not defined. For subsets V ⊆ Q, we define −→V := {−→q | q ∈ V }.

9.3.2 The Behavior of Alternating Tree Automata

Informal Explanation. We examine the behavior of an alternating tree au-
tomaton A = (Q, qI, δ, Ω) on a pointed transition system (S, sI). At first, we
follow a straightforward approach without using parity games:

In every step, the automaton is in some state q ∈ Q, and it inspects some
state s ∈ S of the transition system. We can describe the situation by a pair
(q, s) ∈ Q× S. We call the pairs in Q× S instances.

156 Daniel Kirsten

In the beginning, the automaton is in the initial state qI and inspects the
state sI of the alternating tree automaton.

Now, assume that the automaton is in the state q and it inspects the state s,
i.e., the current instance is (q, s). The automaton tries to execute the transition
condition δ(q). If δ(q) ∈ {0, 1}, δ(q) = p, or δ(q) = ¬p for some p ∈ P , then the
automaton needs not to take any action.

If δ(q) = q′ ∈ Q then the automaton changes into the state q′, but it does not
move to another state of the transition system, i.e., the new situation is (q′, s). If
δ(q) = q1∧q2 or δ(q) = q1∨q2, then the automaton splits itself into two instances
(q1, s) and (q2, s). If δ(q) = 2q′ or δ(q) = 3q′, then the automaton parses the
relation R of S. The automaton splits into several instances. These instances are
in state q′ and inspect the successors of s in S, i.e., for every (s, s′) ∈ R we get
an instance (q′, s′). Thus, the set of new instances is {q′} × sR.

The result of this process is a possibly infinite parse tree with instances as
nodes. The main question is how does this tree determine whether A accepts or
rejects the pointed transition system (S, sI). To answer this question, we try to
develop a notion of a “successful instance”. If δ(q) is a propositional variable p
and p is true in the state s, then the instance (q, s) is successful. Similarly, if
δ(q) = ¬p and s �∈ λ(p), then the instance is successful. Conversely, if δ(q) = p
but s �∈ λ(p) (or δ(q) = ¬p but s ∈ λ(p)), then the instance is not successful. If
δ(q) = 1, then the instance succeeds, but if δ(q) = 0, then it does not succeed.

If δ(q) = q′, then we have seen above that the automaton changes its state
to q′, i.e., the new situation is (q′, s). Straightforwardly, we simply say that the
instance (q, s) is successful iff (q′, s) is successful.

If δ(q) = q1∧q2, then the instance (q, s) succeeds iff both the instances (q1, s)
and (q2, s) succeed. If δ(q) = q1 ∨ q2, then the instance succeeds iff at least one
of the instances (q1, s) and (q2, s) succeeds.

The case δ(q) = 2q′ is very similar to the case δ(q) = q1 ∧ q2, above. If
δ(q) = 2q′, then the instance (q, s) succeeds iff for every s′ ∈ sR the instance
(q′, s′) succeeds. Finally, if δ(q) = 3q′, then the instance (q, s) succeeds iff there
is at least one s′ ∈ sR such that (q′, s′) succeeds.

The automaton accepts the transition system (S, sI) iff the initial instance
(qI, sI) succeeds.

If we try to formalize this idea of the notion of a “successful instance” then
we will encounter problems:

• If the parse tree is infinite, then successful instances cannot be determined
in a bottom-up-fashion.
• If δ(q) = q′, the we simply said that the instance (q, s) is successful iff (q′, s)
is successful. However, if δ(q) = q, then we end up in an infinite loop.

We resolve these problems by viewing the “evaluation problem” as solving a
certain game where infinite plays—that is where we run into problems—are
decided according to some acceptance (winning) condition that we have seen in
earlier chapters.

9 Alternating Tree Automata and Parity Games 157

Formal Definition. Now, we solve these problems by defining the acceptance
of alternating tree automata using parity games.

Let (S, sI) be a pointed transition system, and let A = (Q, qI, δ, Ω) be an
alternating tree automaton. To define the behavior of a A on (S, sI), we consider
sequences of pairs from Q× S, i.e., we consider words over the alphabet Q× S.

For a word v ∈ (Q × S)∗ and a letter (q, s) ∈ Q × S, the notation v(q, s)
denotes the concatenation of v and (q, s).

The behavior of A on (S, sI) is the least language V ⊆ (Q × S)∗ with
(qI, sI) ∈ V such that for every word v(q, s) ∈ V we have:

• If δ(q) = q′ for some q′ ∈ Q, then v(q, s)(q′, s) ∈ V .
• If δ(q) = q1 ∧ q2 or δ(q) = q1 ∨ q2 for some q1, q2 ∈ Q, then v(q, s)(q1, s) ∈ V
and v(q, s)(q2, s) ∈ V .
• If δ(q) = 2q′ or δ(q) = 3q′ for some q′ ∈ Q, then v(q, s)(q′, s′) ∈ V for every
s′ ∈ sR.

We use parity games to define acceptance. At first, we define an arena (V0, V1, E).
We split the behavior V into V0 and V1 to define the locations of Player 0 and
Player 1. Some word v(q, s) ∈ V belongs to V0 iff one of the following conditions
holds:

• δ(q) = 0,
• δ(q) = p and s �∈ λ(p),
• δ(q) = ¬p and s ∈ λ(p),
• δ(q) = q′,
• δ(q) = q1 ∨ q2 for some q1, q2 ∈ Q, or
• δ(q) = 3q′.

Conversely, some word v(q, s) ∈ V belongs to V1 iff one of the following conditions
holds:

• δ(q) = 1,
• δ(q) = p and s ∈ λ(p),
• δ(q) = ¬p and s �∈ λ(p),
• δ(q) = q1 ∧ q2 for some q1, q2 ∈ Q, or
• δ(q) = 2q′.

Clearly, V0 and V1 are a partition of V . We complete the definition of the parity
game by defining the moves and the priority mapping:

• E :=
{ (
v, v(q, s)

) ∣∣ v(q, s) ∈ V, v �= ε}
• Ω

(
v(q, s)

)
:= Ω(q) for every v(q, s) ∈ V

As explained above, (qI, sI) is the initial location.
The automaton A accepts the pointed transition system (S, sI) iff there is

a winning strategy for Player 0 in the parity game G =
(
(V0, V1, E), Ω, (qI, sI)

)
.

The language of A consists of the pointed transition systems which A accepts
and is denoted by L(A).

158 Daniel Kirsten

Example 9.1. At first, we consider several very simple alternating tree automata
with Q = {qI}.

(1) Let δ(qI) = 2qI and Ω(qI) = 0. Let (S, sI) be any pointed transition system.
Player 0 has not any location in G′. However, Player 1 cannot win. He looses
every finite play. He also looses every infinite play, because the only priority
is 0. Hence, the automaton accepts every pointed transition system.

(2) Let δ(qI) = 2qI and Ω(qI) = 1. Again, Player 0 has no location. Let (S, sI) be
any pointed transition system with some infinite path starting at sI. Player
1 can win the game by playing along the infinite path.
Conversely, let (S, sI) be any pointed transition system in which every path
starting from sI is finite. There are just finite plays in G′. Thus, Player 1
looses every play in G′.
Consequently, the automaton accepts every pointed transition system (S, sI)
which has no infinite path starting at sI.

(3) Let δ(qI) = 3qI and Ω(qI) = 1. This automaton accepts not any pointed
transition system.

Exercise 9.1. Construct alternating tree automata for the following languages.

(1) The language of all pointed transition systems where p is true in the desig-
nated state.

(2) The language of all pointed transition systems that have an infinite path
starting in the designated state.

(3) The language of all pointed transition systems where on each infinite path
starting in the designated state p is true only finitely often.

Exercise 9.2. Let (S, ∫I) and (S′, ∫ ′I) be two pointed transition systems and as-
sume ρ is a bisimulation between the two systems, that is, ρ ⊆ S × S′ such that
the following holds true.

(1) (sI, s′I) ∈ ρ.
(2) For all (s, s′) ∈ ρ and p ∈ P , p holds in s iff p′ holds in s′.
(3) For all (s, s′) ∈ ρ and ŝ ∈ sR there exists ŝ′ ∈ s′R′ such that (ŝ, ŝ′) ∈ ρ.
(4) For all (s, s′) ∈ ρ and ŝ′ ∈ s′R′ there exists ŝ ∈ sR such that (ŝ, ŝ′) ∈ ρ.

Show that for every alternating tree automatonA the following is true.A accepts
(S, sI) iff A accepts (S′, s′I).

An Alternative Formal Definition. A disadvantage of the parity game G
defined is that its arena is possibly infinite, even if (S, sI) is finite. Moreover,
even if there is no infinite path in (S, sI) the game G can be infinite. We need
some more convenient way to define the behavior, in particular, to show the
decidability of the word problem, below.

We still assume (S, sI) and A = (Q, qI, δ, Ω) from above. Let [V] ⊆ Q × S
and [E] ⊆ [V]× [V] be the smallest graph with (qI, sI) ∈ [V] such that for every
(q, s) ∈ [V] we have:

9 Alternating Tree Automata and Parity Games 159

• If δ(q) = q′ for some q′ ∈ Q, then (q′, s) ∈ V and
(
(q, s), (q′, s)

)
∈ [E] .

• If δ(q) = q1∧q2 or δ(q) = q1∨q2 for some q1, q2 ∈ Q, then (q1, s), (q2, s) ∈ [V]
and

(
(q, s), (q1, s)

)
,
(
(q, s), (q2, s)

)
∈ [E].

• If δ(q) = 2q′ or δ(q) = 3q′ for some q′ ∈ Q, then (q′, s′) ∈ [V] and(
(q, s), (q′, s′)

)
∈ [E] for every s′ ∈ sR.

To define an arena from [V] and [E], we split [V] into [V0] and [V1] as above.
We simply use the priority mapping Ω and the initial location (qI, sI). We define
a parity game by

G′ :=
(
([V0], [V1], [E]), Ω, (qI, sI)

)
.

Let [] : (Q×S)+ → (Q×S) be the mapping which assigns every word in (Q×S)+
the last letter. Thus, [] maps locations from V to [V]. Moreover, [] preserves
edges and priorities, and Player 0’s and Player 1’s locations are mapped to Player
0’s and Player 1’s locations, respectively. Consequently, G′ can be obtained by
applying [] to G.
Proposition 9.2. Player 0 has a winning strategy in G iff Player 0 has a win-
ning strategy in G′.
Proof. At first, we observe that the mapping [] can be extended to plays by
applying [] to every location in the play. Thus, [] transforms plays in G to plays
in G′. If π′ is some play in G′, then there is a unique play π in G such that
[π] = π′. Note that π is simply the sequence of all prefixes of π′. A play π in G is
won by Player 0 iff [π] in G′ is won by Player 0. Hence, [] is a “winner-preserving”
bijection between plays in G and plays in G′.

To prove Proposition 9.2, we have to show that Player 0 (resp. 1) has a
winning strategy in G if Player 0 (resp. 1) has a winning strategy in G′.

Let f ′0 : [V0] → [V] be a winning strategy for Player 0 in G′. We define
a mapping f0 : V0 → V by f0(v) := vf ′0([v]). Let π be a play in G which is
consistent with f0. Then, [π] is consistent with f ′0, and thus, [π] and π are won
by Player 0. Consequently, f0 is a winning strategy for Player 0 in G.

Clearly, we can apply a symmetric argument if f ′1 : [V1] → [V] is a winning
strategy for Player 1 in G′. ��

9.3.3 Inflated Transition Conditions

We call transition conditions of the form q ∧ q and q∨ q for q ∈ Q inflated. The
following lemma allows to simplify some technical details, later.

Lemma 9.3. For every alternating tree automaton A = (Q, qI, δ, Ω) there is an
automaton A′ = (Q, qI, δ′, Ω) with L(A) = L(A′) such that for every q ∈ Q δ′(q)
is not inflated.

Proof. We define δ′ : Q→ TCQ for q ∈ Q by

δ′(q) :=

q′ , if δ(q) = q′ ∧ q′ for some q′ ∈ Q
q′ , if δ(q) = q′ ∨ q′ for some q′ ∈ Q
δ(q) , otherwise

Clearly, δ′(q) is not inflated for q ∈ Q.

160 Daniel Kirsten

Let (S, sI) be some pointed transition system. We want to show that A
accepts (S, sI) iff A′ accepts (S, sI). At first, we observe that A has the same
behavior V on (S, sI) as A′. Let G =

(
(V0, V1, E), Ω, (qI, sI)

)
be the parity game

to determine whether A accepts (S, SI).
Let V̂ =

{
v(q, s) ∈ V1

∣∣ δ(q) = q′ ∧ q′ for some q′ ∈ Q
}
. The locations in V̂

have exactly one successor. The parity game

G′ =
(
(V0 ∪ V̂ , V1 \ V̂ , E), Ω, (qI, sI)

)
determines whether A′ accepts (S, sI).

The plays in G are exactly the plays in G′. The locations in V̂ cannot be the
last location in a play and the priority mappings in G and G′ are the same. Thus,
some play π in G is won by Player 0 iff π is won by Player 0 in G′.

Let f0 : V0 → V be a winning strategy for Player 0 in G. There is a unique
extension f ′0 : V0 ∪ V̂ → V . Now, assume some play π in G′ which is consistent
with f ′0. Then, π in G′ is consistent with f0, and thus π is won by Player 0.

Conversely, let f1 : V1 → V be a winning strategy for Player 1 in G. Clearly,
the restriction of f1 to V1 \ V̂ is a winning strategy for Player 1 in G′.

Consequently, Player 0 has a winning strategy in G iff he has a winning
strategy in G′, i.e., A accepts (S, sI) iff A′ accepts (S, sI). ��

9.3.4 Complex Transition Conditions

Our definition of transition conditions TCQ is restrictive. One could imagine
more complex transition conditions. For instance, there are situations in which
a condition ϕ like “Change the inner state to q1 if p is true, otherwise change
the inner state to q2.” or formally ϕ = (q1∧p)∨(q2∧¬p) is convenient although
such a condition does not belong to TCQ.

To model such a condition, we introduce new states qϕ, q(q1∧p), q(q2∧¬p), qp,
q¬p, and we define:

δ(qϕ) := q(q1∧p) ∨ q(q2∧¬p)
δ(q(q1∧p)) := q1 ∧ qp
δ(q(q2∧¬p)) := q2 ∧ q¬p

δ(qp) := p

δ(q¬p) := ¬p

This can be easily generalized:

Remark 9.4. Alternating tree automata where transition conditions are built up
from 0, 1, p, and ¬p using ∨, ∧, 3, and 2 in any way are no more powerful than
ordinary alternating tree automata.

Example 9.5. We consider the states qϕ, q(q1∧p), q(q2∧¬p), qp, q¬p from above,
and we complete the definition of δ by δ(q1) = δ(q2) = 2qϕ. We set Ω(q1) = 2
and we set the priorities of the other states to 1. Let qϕ be the initial state.

The automaton accepts some pointed transition system (S, sI) iff every infi-
nite path starting from sI contains infinitely many states in which p is true.

9 Alternating Tree Automata and Parity Games 161

Exercise 9.3. Describe an alternating tree automaton which accepts a pointed
transition system (S, sI) iff for any two states s1, s2 ∈ S with s1Rs2 the variable
p is true in s1 iff p is not true in s2.

9.4 The Word Problem

In this section, we deal with the word problem, which means to decide whether
a given alternating tree automaton A accepts a given finite pointed transition
system (S, sI). In Section 10, this result will be used to determine the complexity
of the model checking problem for the modal µ-calculus.

We cannot solve the word problem by computing the whole behavior, because
the behavior is possibly infinite, even if (S, sI) is finite. However, we can reduce
the parity game from the previous section to a finite parity game.

Theorem 9.6. Let A = (Q, qI, δ, Ω) be an alternating tree automaton with d
different non-zero priorities and let (S, sI) be a finite pointed transition system.

(1) There is an algorithm which computes in time

O
(
d |Q|

(
|R|+1

)(|Q||S|+ 1
�d/2�

)�d/2�)
and in space O

(
d |Q| |S| log

(
|Q| |S|

))
whether A accepts (S, sI).

(2) The problem whether A accepts (S, sI) is in UP ∩ co-UP.

Before we turn to the proof, let us understand the upper bound on the time
complexity stated in the first part of the theorem. Let us consider the transition
system complexity, i.e., we fix an automaton A and consider the complexity in
dependence on the pointed transition system (S, sI). Then, d|Q| is a constant
factor. Clearly, |R| cannot exceed |S|2. Hence, we roughly estimate |R| + 1 by
|S|2 and simplify the above formula to O

(
|S|2 (|Q||S|)�d/2	

)
. Roughly spoken,

the run-time of the algorithm is proportional to |S|2+�d/2	. If for example d = 2,
then the run-time is proportional to |S|3, i.e., one can determine whether A
accepts (S, sI) in reasonable time. However, if d = 20 then the run-time of the
algorithm is proportional to |S|12. Then, the word problem will be practically
unsolvable for reasonably big pointed transition systems.

Proof. The complexity of the word problem is in UP∩ co-UP, because the prob-
lem to decide whether Player 0 has a winning strategy is in UP ∩ co-UP as
explained in Chapter 6.

To prove the first part, we apply Jurdziński’s result to the parity game G′.
To prove the complexity bound of the word problem, we have to examine

carefully the number of locations and moves, i.e., we have to estimate |[V]| and
|[E]| (cf. [202]). The set of locations [V] is a subset of Q × S, i.e., there are
at most |Q||S| locations. Let S′ ⊆ S be the set of states in (S, sI) which are
reachable from qI. Every state in S′ except sI has at least one predecessor.
Hence, |R| ≥ |S′| − 1.

162 Daniel Kirsten

To determine |[E]|, we count the number of successors of every location in
|[V]|. The successors of a location (q, s) ∈ [V] are (q, s)[E]. We have

|[E]| =
∑

(q,s)∈[V]

|(q, s)[E]| =
∑
q∈Q

∑
(q,s)∈[V]

|(q, s)[E]|.

Let q ∈ Q be some state. We estimate the sum∑
(q,s)∈[V]

|(q, s)[E]|.

If δ(q) ∈ {0, 1} or δ(q) ∈ {p,¬p}, then (q, s) has no successor, and we have∑
(q,s)∈[V]

|(q, s)[E]| = 0.

If δ(q) ∈ Q, then every location (q, s) ∈ [V] has exactly one successor, i.e.,∑
(q,s)∈[V]

|(q, s)[E]| ≤ |S′| ≤ |R|+ 1.

If δ(q) = q1 ∧ q2 or δ(q) = q1 ∨ q2 for some q1, q2 ∈ Q, then we have∑
(q,s)∈[V]

|(q, s)[E]| ≤ 2|S′| ≤ 2(|R|+ 1).

Now, assume δ(q) = 2q′ or δ(q) = 3q′ for some q′ ∈ Q. For every (q, s) ∈ [V],
we have (q, s)[E] = {q′} × sR, i.e, |(q, s)[E]| = |sR|. We have∑

(q,s)∈[V]

|(q, s)[E]| =
∑

(q,s)∈[V]

|sR| ≤
∑
s∈S
|sR| = |R|.

To sum up, we have
∑

(q,s)∈[V] |(q, s)[E]| ≤ 2(|R|+1) and |[E]| ≤ 2|Q|(|R|+1).
Now, we can apply Jurdziński’s algorithm (Theorem 7.25, Section 7.5). ��

9.5 Complementation

An advantage of alternating tree automata is the straightforward solution of the
complementation problem: Given an alternating tree automaton A, we can effec-
tively construct an alternating tree automaton Ā which accepts the complement
of the language of A. To prove the correctness of the construction we use the fact
that parity games are determined in a crucial way. We follow ideas from [137].

Theorem 9.7. Let A = (Q, qI, δ, Ω) be an alternating tree automaton. There is
an alternating tree automaton Ā = (Q, qI, δ̄, Ω̄) such that Ā accepts the comple-
ment of the language of A.

9 Alternating Tree Automata and Parity Games 163

The definition of Ω̄ : Q → ω and δ̄ : Q → TCQ is easy: We simply set for
every q ∈ Q the priority Ω̄(q) = Ω(q) + 1 and

δ̄(q) :=

0 , if δ(q) = 1
1 , if δ(q) = 0
¬p , if δ(q) = p for some p ∈ P
p , if δ(q) = ¬p for some p ∈ P
q′ , if δ(q) = q′ for some q′ ∈ Q
q1 ∧ q2 , if δ(q) = q1 ∨ q2 for some q1, q2 ∈ Q
q1 ∨ q2 , if δ(q) = q1 ∧ q2 for some q1, q2 ∈ Q
3q′ , if δ(q) = 2q′ for some q′ ∈ Q
2q′ , if δ(q) = 3q′ for some q′ ∈ Q

Proof. Let (S, sI) be a pointed transition system and G =
(
(V0, V1, E), Ω, (qI, sI)

)
be the parity game from Section 9.3.2 which determines whether A accepts
(S, sI). We show that A accepts (S, sI) iff Ā does not accept (S, sI).

We examine the parity game Ḡ which determines whether Ā accepts (S, sI).
Intuitively, we simply change the ownership of every location, and we increase
every priority by 1. Let V = V0 ∪ V1 be the locations of G and G′. Let V ′ ⊆ V
be the locations v(q, s) ∈ V with δ(q) = q′ for some q′ ∈ Q. We do not change
the ownership of locations in V ′. The automaton Ā accepts (S, sI) iff there is
winning strategy for Player 0 in the parity game

Ḡ =
(
(V1 ∪ V ′, V0 \ V ′, E), Ω̄, (qI, sI)

)
.

Because parity games are determined (cf. Section 6.3), we have to show that
there is a winning strategy for Player 0 in G iff there is no winning strategy
for Player 1 in Ḡ. The argument is very similar to in the proof of Lemma 9.3.
Therefore, it is left as Exercise 9.4. ��

Exercise 9.4. Complete the proof of Theorem 9.7:

(1) Assume a winning strategy for Player 0 in G and construct a winning strategy
for Player 1 in Ḡ.

(2) Assume a winning strategy for Player 1 in Ḡ and construct a winning strategy
for Player 0 in G.

Exercise 9.5. Theorem 9.7 tells us that the languages recognizing by alternating
tree automata are closed under complementation. Show that they are closed
under intersection and union as well.

9.6 The Emptiness Problem

In this section, we show the decidability of the emptiness problem for alternating
tree automata. As a byproduct, we show that an alternating tree automaton A
accepts a finite pointed transition system if A accepts at least one transition

164 Daniel Kirsten

system. This result is used in Chapter 10 to show that the modal µ-calculus
has the finite model property which means that every satisfyable formula in the
modal µ-calculus has a finite model.

We fix some alternating tree automaton A = (Q, qI, δ, Ω). By Lemma 9.3, we
can assume that for every q ∈ Q the transition condition δ(q) is not inflated.

At first, we give the notion of a tile, which is a graph consisting of states
from A with various properties. We construct a parity game T from these tiles.
In the parity game T , Player 0 can use some arbitrary pointed transition system
in L(A) to construct a winning strategy. Conversely, if we assume some winning
strategy for Player 0 in T , we can construct some pointed transition system
which A accepts.

9.6.1 Tiles

A tile over Q is a graph ϑ = (Vϑ, Eϑ) where Vϑ ⊆ Q, E ⊆ Vϑ × Vϑ and

(1) ∀q ∈ Vϑ : δ(q) �= 0
(2) ¬ ∃q1, q2 ∈ Vϑ ∃p ∈ P :

(
δ(q1) = p ∧ δ(q2) = ¬p

)
(3) ∀q ∈ Vϑ : δ(q) = q1 −→ (q, q1) ∈ Eϑ
(4) ∀q ∈ Vϑ : δ(q) = q1 ∧ q2 −→

(
(q, q1) ∈ Eϑ ∧ (q, q2) ∈ Eϑ

)
(5) ∀q ∈ Vϑ : δ(q) = q1 ∨ q2 −→

(
(q, q1) ∈ Eϑ ↔ (q, q2) �∈ Eϑ

)
(6) For every cycle in (Vϑ, Eϑ) the maximal priority of its states is even.

Note that (q, q1) ∈ Eϑ in (3) (and similarly in (4) and (5)) implies q1 ∈ Vϑ.
Further, note that in condition (5) it is possible that both q1 and q2 belong
to Vϑ as long as exactly one of the pairs (q, q1) or (q, q2) belongs to Eϑ. For
condition (5), it is useful that there are no inflated transition conditions in A.

A tile with port is a tuple (ϑ, q) where ϑ = (Vϑ, Eϑ) is some tile and
q ∈ Vϑ ∩Q3. We denote the set of all tiles and all tiles with port by Θ and Θp,
respectively.

We call a tile with port ϑ0 = (Vϑ0, Eϑ0, q0) and a tile ϑ1 = (Vϑ1, Eϑ1)
(similarly tile with port ϑ1 = (Vϑ1, Eϑ1, qϑ1)) concatenable iff −→q0 ∈ Vϑ1 and
−−−−−−→
Vϑ0 ∩Q2 ⊆ Vϑ1.

Let g = (ϑ1, q1), (ϑ2, q2), · · · ∈ Θω be an infinite sequence of tiles with port
where (ϑi, qi) and (ϑi+1, qi+1) are concatenable for every i ∈ ω. We define the
graph of g in a usual way:

• V :=
⋃
i∈ω{i} × Vi

• E :=
⋃
i∈ω
{(

(i, q′), (i, q′′)
) ∣∣ (q′, q′′) ∈ Ei} ∪ ⋃ i∈ω

{(
(i, qi), (i+ 1,−→qi)

)}
∪
⋃
i∈ω
{(

(i, q), (i+ 1,−→q)
) ∣∣ q ∈ Vi ∩Q2}

We call an infinite path π in (V , E) even iff the maximal priority which occurs
in π infinitely often is even. We call the sequence g even iff every infinite path
π in (V , E) is even.

There can be infinite paths π in (V , E) which get stuck in one tile, i.e., there
is some integer i such that vertices (i′, q) for any i′ > i and any q ∈ Q do not
occur in π. These paths π are even, because of (6) in the definition of a tile.

9 Alternating Tree Automata and Parity Games 165

Proposition 9.8. There is a deterministic parity ω-automaton C with
2O(|Q|4 log |Q|) states and priorities bounded by O(|Q|4) which accepts a sequence
of concatenable tiles g ∈ Θω iff g is even.

Proof. At first, we construct a non-deterministic parity ω-automaton B. Then,
we construct C by a determinization and a complementation of B.

The set of states of B are Q × {0, . . . , |Q|}. Thus, B has m := |Q|(|Q| + 1)
states. The initial state of B is (qI, 0).

We specify the transition function δ by a set of triples. Let (q1, i1), (q2, i2)
be two states of B, and let (V,E, q) be a tile with port. There is a transition(
(q1, i1), (V,E, q), (q2, i2)

)
in B iff

• there is some state q′ ∈ V with q′ ∈ Q2 or q′ = q and −→q = q2,
• there is some path in (V,E) which starts in q1 and ends in q′, and
• the maximal priority of the states in this path is i2.

The priority of a state (q, i) is i+1. Clearly, B accepts some infinite sequence of
concatenable tiles iff this sequence is not even. Finally, we construct C in several
steps:

(1) We convert B into a non-deterministic Büchi automaton B1 with L(B) =
L(B1). This transformation is straightforward. The automaton B1 hasO(m2)
states.

(2) We apply Safra’s construction (see Chapter 4) and transform B1 into a de-
terministic Rabin-automaton B2. The automaton B2 has 2O(m2 logm2

) states
and O(m2) accepting pairs.

(3) We realize that B2 is a deterministic Streett automaton for the complement
of the language of the Rabin-automaton B2 (see Chapter 1).

(4) We transform the Streett automaton B2 into a deterministic parity automa-
ton C (see Chapter 1). The automaton C still has 2O(m2 logm2

) states and
O(m2) priorities. ��

9.6.2 Parity Games over Tiles

We denote the set of states of the automaton C by QC an its initial state by qCI .
We construct a parity game T over tiles.
The locations are V0 := QC ×Θp and V1 := QC ×Θ.
We define the set of moves E . For every state qC ∈ QC and every tile with

port (ϑ, q) ∈ Θp, there is a move from (qC , ϑ) ∈ V1 to (qC , ϑ, q) ∈ V0.
Let (qC , ϑ, q) ∈ V0, and let (qC1 , ϑ1) ∈ V1. There is a move from (qC , ϑ, q) to

(qC1 , ϑ1) iff (ϑ, q) and ϑ1 are concatenable and C admits a transition from qC to
qC1 via (ϑ, q). Consequently, a move of Player 0 means to construct a tile, the
state qC1 is determined by the automaton C. We can imagine Player 0 and 1 as
“tile constructor” and “port selector”, respectively.

We define the priority ΩT of a location (qC , ϑ) (resp. (qC , ϑ, q)) as the priority
of the state qC in the parity automaton C.

166 Daniel Kirsten

For convenience, we define a set of initial locations: Every location (qCI , ϑ)
of Player 0 is an initial location iff qI ∈ Vϑ. As the very first action in a play
Player 0 chooses one of these initial locations. A winning strategy for Player 0
has additionally to specify some initial location which Player 0 has to choose to
start the game. To know whether Player 0 has a winning strategy in some parity
game with multiple initial locations, we calculate Player 0’s winning region by
Jurdziński’s algorithm and check whether an initial place belongs to Player 0’s
winning region.

Theorem 9.9. The following three assertions are equivalent:

(1) The automaton A accepts at least one pointed transition system.
(2) There is a winning strategy for Player 0 in T .
(3) The automaton A accepts some pointed transition system with at most

2O(|Q|4 log |Q|) states.

Proof. (1)⇒ (2) Let (S, sI) be some pointed transition system which A accepts.
We consider the parity game G′ from the proof of Theorem 9.6. Let f : [V0]→ [V]
be a memoryless winning strategy for Player 0 in G′. We construct a winning
strategy for Player 0 in T . The winning strategy which we construct is not
necessarily memoryless.

At first, we show a mechanism how Player 0 can construct tiles. He construct
tiles outgoing from some set V ⊆ Q w.r.t. some state s ∈ S. Player 0 starts his
construction with (V, ∅). He chooses some state q ∈ V , and adds new states and
edges in order to satisfy the closure properties (3), (4), (5) in the definition of a
tile. If for example δ(q) = q1 ∧ q2, he adds two states q1 and q2 and two edges
(qI , q1) and (qI , q2) to the tile. Then, he has to take care about both q1 and q2.
For example, let δ(q1) = q3 ∨ q4. To satisfy property (5), Player 0 has to choose
between q3 and q4. He simply calculates f(s, q1). If f(s, q1) = (s, q3), he adds
state q3 and the edge (q1, q3) to his tile. Conversely, if f(s, q1) = (s, q4), he adds
q4 and (q1, q4) to his tile.

Now, we explain a winning strategy for Player 0. At the beginning, Player
0 constructs a tile outgoing from {qI} w.r.t. sI. Let us call this tile ϑ1. Player
0 chooses (qCI , ϑ1) as initial location. Next, Player 1 chooses some port, i.e., he
chooses a state from q ∈ Vϑ1 ∩Q� and moves to (qCI , ϑ1, q).

Then, Player 0 has to move to a state/tile pair (qC2 , ϑ2). It suffices to construct
ϑ2, because qC2 is determined by C. Let f(sI, q) = (s′, q′). Player 0 constructs ϑ2

outgoing from −−−−−−→Vϑ1 ∩Q2 ∪ {−→q } w.r.t. s′.
It is easy but technically involved to verify that this technique yields a win-

ning strategy for Player 0.
(2) ⇒ (3) Let f : V0 → V1 be a memoryless winning strategy for Player 0 in

the parity game T .
We construct a pointed transition system which A accepts. Its states are

Player 1’s locations V1 = QC × Θ. We can estimate |V1| by |QC | |Θ|, which is
2O(|Q|4 log |Q|) · 2|Q|+|Q|2 , i.e., 2O(|Q|4 log |Q|).

9 Alternating Tree Automata and Parity Games 167

To define λ : P → ℘(V0), condition (2) in the definition of a tile is crucial.
For some p ∈ P and some location (qC , ϑ) ∈ V0, we let (qC , ϑ) ∈ λ(p) iff there is
some state q ∈ Vϑ with δ(q) = p.

Let (qCI , ϑI) ∈ V1 be the location which Player 0 chooses as initial location.
This location is the initial state of our pointed transition system. We define the
accessibility relation: There is some edge from (qC1 , ϑ1) to (qC2 , ϑ2) iff there is
some state q ∈ Vϑ1 ∩ Q3 such that f(qC1 , ϑ1, q) = (qC2 , ϑ2), i.e., iff the winning
strategy of Player 0 in T leads to (qC2 , ϑ2).

It remains to show that A really accepts this pointed transition system. We
consider the “small” parity game G′ from the the proof of Theorem 9.6. Let
(qC , ϑ, q) be some location of Player 0. If δ(q) = q1 ∨ q2 for some q1, q2 ∈ Q,
then the winning strategy for Player 0 is determined within the tile ϑ itself. If
δ(q) = 3q1 for some q1 ∈ Q, then Player 0 simply uses the winning strategy f
from T .

(3) ⇒ (1) This is obvious. ��

Corollary 9.10. The problem whether some alternating tree automaton accepts
at least one pointed transition system is decidable in Exptime.

Exercise 9.6. Let T be a class of pointed transition systems and P ′ ⊆ P . The
cylindrification of T with respect to P ′ consists of all pointed transition systems
that coincide with some transition system from T on all propositions except the
ones from P ′. Show that if T is recognized by an alternating tree automaton,
then so are its cylindrifications.

9.7 Acknowledgements

The author thanks Thomas Wilke for reading and improving a preliminary ver-
sion of this chapter.

