

Corso di Laurea: Informatica

Codice:

Email Docente: murano@ na.infn.it

A.A. 2008-2009

SKT

Perché vedere altri problemi Np-complete?

- Per ragioni che non sono ben conosciute, la maggior parte dei problemi NP presenti in natura sono noti per essere o in P o NP-complete.
- Se si cerca un algoritmo in tempo polinomiale per un nuovo problema NP, spendere una buona parte degli sforzi nel cercare di dimostrare la NPcompletezza del problema è una cosa sensata perché, se così fosse, l'esperienza insegna che molto probabilmente un algoritm polinomiale per P non sarà mai trovato.
- Questo spiega perché sono importanti le prove di NP-completezza.
- Tali prove consistono nel provare oltre l'appartenenza a P di un problema, una riduzione polinomiale ad esso di un altro problema NP-Completo.
- Per i problemi che vedremo in questa lezione, un buon candidato alla riduzione è 3SAT (l'insieme delle formule booleane 3CNF soddisfacibili).
 - In tali riduzioni, cerchiamo di strutturare il linguaggio sotto esame in modo che possa simulare le variabili e le clausole delle formule Booleane.
 - Ad esempio, quando riduciamo 3SAT a CLIQUE, le variabili sono simulate da vertici, e le clausole da triple.
 - Tali strutture sono spesso chiamati **gadget**.

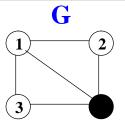
Np-completezza per Clique

- Corollario: CLIQUE è NP-completo.
- Dimostrazione:
 - Come è già stato (facilmente) dimostrato, CLIQUE è in NP.
 - Con un precedente teorema abbiamo dimostrato che 3SAT è riducibile in tempo polinomiale a CLIQUE, ed inoltre abbiamo anche dimostrato che 3SAT è NP-completo.
 - Per il teorema della NP-completezza abbiamo che se un linguaggio B NP-completo è riducibile in tempo polinomiale ad un linguaggio C in NP, allora C è anchesso NP-completo.
 - Per questo motivo CLIQUE è NP-completo.
- Si Ricordi che un linguaggio A NP-completo se solo se:
 - Aèin NP.
 - Ogni altro linguaggio NP è riducibile ad A (se prendiamo un linguaggio A NP-completo, allora basta solo questo per provare questa proprietà).

SKT

Problema di definire un Vertex Cover

 Se G è un grafo, una copertura dei vertici di G (Vertex Cover) è un sottoinsieme di nodi in cui ogni arco di G tocchi (almeno) uno di questi nodi.



VERTEX-COVER =

{<G,k> | G è un grafo non direzionato che ha un sottoinsime G' di cardinalità k che è un vertex cover}

$$\langle G,4\rangle \in VERTEX-COVER?$$

$$\langle G,3\rangle \in VERTEX-COVER?$$

$$\langle G,2\rangle \in VERTEX-COVER?$$

$$\langle G,1\rangle \in VERTEX-COVER?$$

• Nota: Si può facilmente dimostrare che se <G,k> è un vertex cover allora lo è anche <G,m> per ogni m>k.

Np-completezza di Vertex Cover

- Teorema: VERTEX-COVER è NP-completo.
- Dimostrazione:
 - È facile dimostrare che Vertex-cover è in NP [esercizio per gli studenti].
 - Per provare l'hardness, costruiamo una riduzione in tempo polinomiale da 3SAT a VERTEX-COVER.

 - Per ogni variabile x in ϕ , costruiamo un arco orizzontale che connette due nodi che marchiamo con i "gadget" x e \underline{x} .
 - Chiamiamo ognuno di questi sottografi "variabile-gadget".
 - Intuitivamente, settare x a true corrisponde a selezionare il nodo di sinistra per il Vertex Cover, mentre falso corrisponde a selezionare il nodo di destra.
 - Per esempio, se

$$\phi = (\mathbf{X} \vee \mathbf{X} \vee \mathbf{Z}) \wedge (\underline{\mathbf{X}} \vee \underline{\mathbf{Z}} \vee \underline{\mathbf{Z}}) \wedge (\underline{\mathbf{X}} \vee \mathbf{Z} \vee \mathbf{Z}),$$

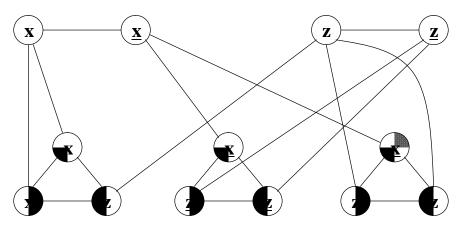
la riduzione produce i seguenti due archi:

SMT

Np-completezza di Vertex Cover 2

$$\phi = (\mathbf{X} \vee \mathbf{X} \vee \mathbf{Z}) \wedge (\underline{\mathbf{X}} \vee \underline{\mathbf{Z}} \vee \underline{\mathbf{Z}}) \wedge (\underline{\mathbf{X}} \vee \mathbf{Z} \vee \mathbf{Z})$$

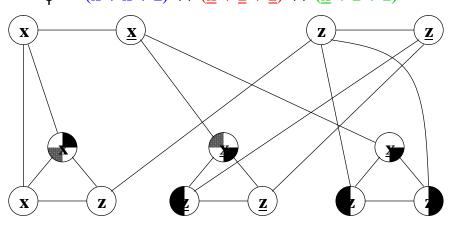
- Per ciascuna clausola, si produce un "triangolo" di interconnessione tra i nodi.
- Ciascun nodo del triangolo è marcato con un letterale della clausola.
- Ogni triangolo rappresenta una "clausola gadget".
 Infine, connettiamo ciascun nodo "variabile-gadget" con ciascun nodo "clausola-gadget" che hanno identica marcatura.



SKT SKT

Np-completezza di Vertex Cover 3

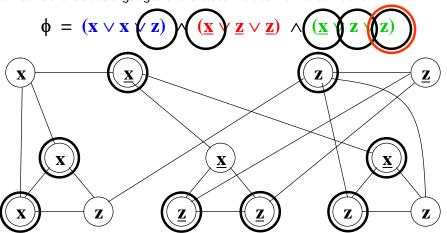
- Si noti che il grafo G così costruito avrà 2m+3i nodi, dove m è il numero di variabili in \(\phi \) e i è il numero di clausole.
- k sarà invece m+2i. Nell'esempio visto avremo che k=2+(2*3)=8.
- Claim: ϕ è soddisfacibile sse G ha un Vertex Cover di taglia k. $\phi = (\mathbf{x} \vee \mathbf{x} \vee \mathbf{z}) \wedge (\mathbf{x} \vee \mathbf{z} \vee \mathbf{z}) \wedge (\mathbf{x} \vee \mathbf{z} \vee \mathbf{z})$



SKT

Np-completezza di Vertex Cover 4

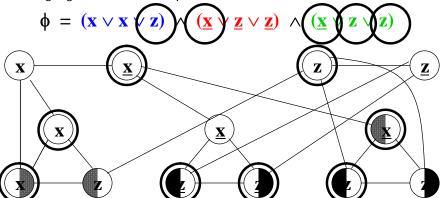
- Si considerino i nodi di variabili-gadget nel Vertex Cover che corrispondono a letterali "veri" nella formula.
- Per ciascuna "clausola-gadget", si selezioni un nodo letterale "marcato vero", e si includino gli altri due nodi nel Vertex Cover. Otteniamo così un numero totale di k nodi.
- Tutti gli archi di queste variabili e clausole gadget sono ovviamente "cover" (coperti). Inoltre, ciascun arco tra i gadget è coperto da un nodo (vero) di variabile gadget, o da uno dei due nodi della clausola gadget che è stata inclusa nel Vertex Cover.



SNT

Np-completezza di Vertex Cover 5

- Supponiamo ora che G ha un VC di taglia k. Chiaramente, deve includere almeno un nodo da ciascuna variabile gadget (per coprire l'arco corrispondente), e almeno due nodi per ciascuna clausola gadget (altrimenti un arco rimane non coperto).
- Siccome la somma di questi numeri è pari a k, questi nodi sono **esattamente** i nodi del vertex-cover (non servono altri nodi e non possiamo prendere nodi differenti).
- Prendiamo i nodi delle variabili gadget che sono nel VC e assegniamo a true i
 corrispondenti letterali nella formula. Questo è un assegnamento soddisfacibile per
 perchè, se si prende una qualsiasi clausola gadget, il nodo che non è in VC è sicuramente
 connesso tramite un arco a un nodo letterale vero di una variabile gadget, altrimenti
 quell'arco tra gadget non sarebbe coperto.



SK SK

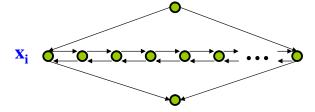
Np-completezza di Hampath 1

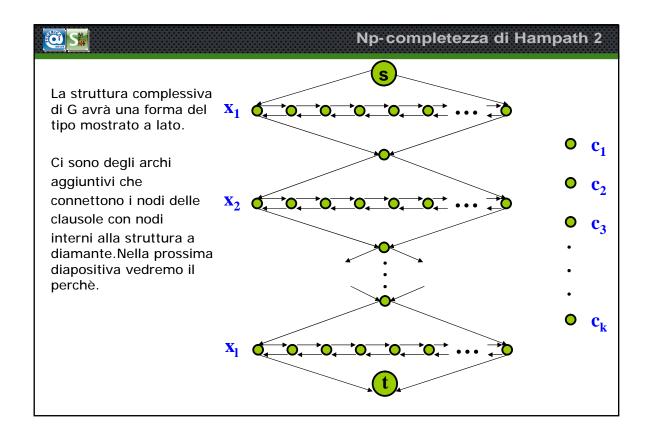
- Teorema: HAMPATH è NP-completo.

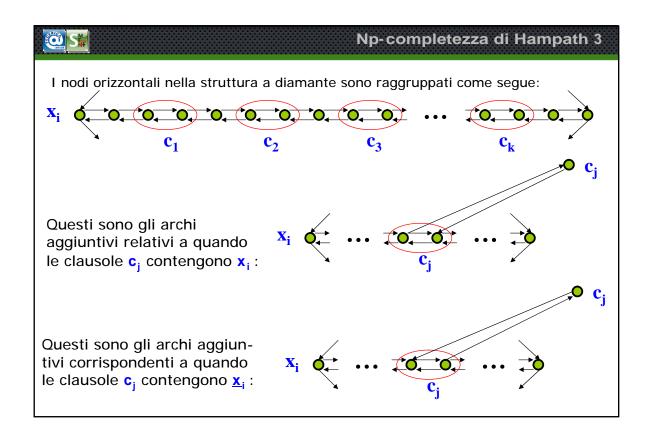
$$\phi = \underbrace{(\mathbf{p}_1 \vee \mathbf{q}_1 \vee \mathbf{r}_1)}_{\mathbf{c}_1} \wedge \underbrace{(\mathbf{p}_2 \vee \mathbf{q}_2 \vee \mathbf{r}_2)}_{\mathbf{c}_2} \wedge \dots \wedge \underbrace{(\mathbf{p}_k \vee \mathbf{q}_k \vee \mathbf{r}_k)}_{\mathbf{c}_k}$$

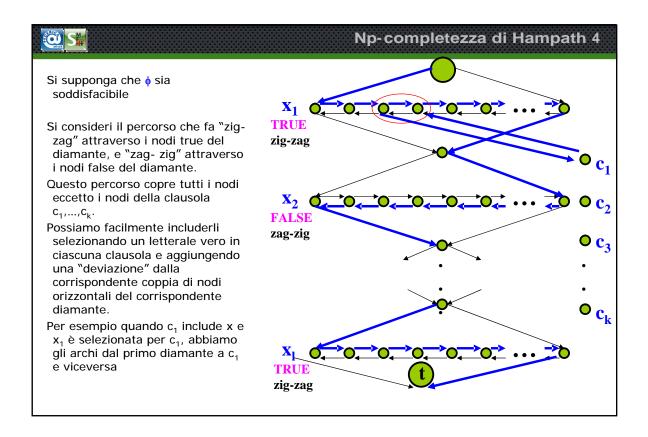
Assumiamo che ϕ contiene I variabili $\mathbf{x}_1,...,\mathbf{x}_l$. Ciascuna variabile sarà rappresentata con una struttura a forma di diamante con 3k+5 nodi (più avanti vi sarà chiaro perchè questo numero):

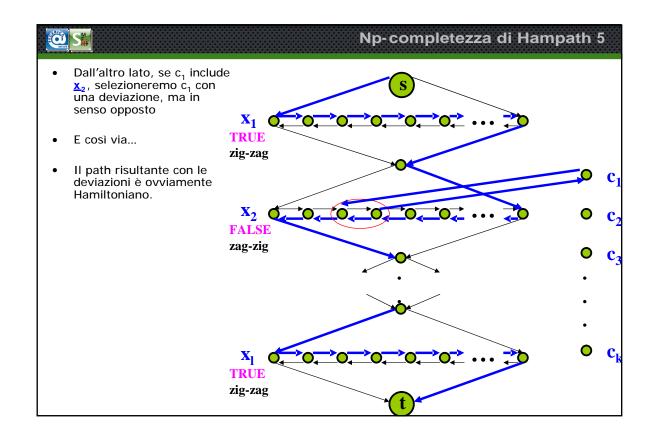
Ciascuna clausola sarà rappresentata con un singolo nodo:

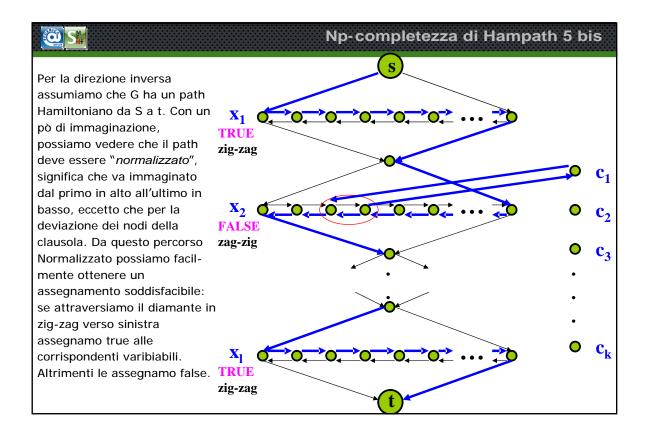












SK SK

Np-completezza di Uhampath

- UHAMPATH è la versione non direzionata di HAMPATH
- Teorema: UHAMPATH è NP-completo.
 - **Dimostrazione:** Riduciamo Hampath ad Uhampath. Da un grafo direzionato G, costruiamo il suo equivalente G' non direzionato sostituendo ciascun nodo u di G con tre nodi u_{in} u_{mid} e u_{out}; eccetto il nodo s che viene sostituito con s_{out}, e il nodo t che viene sostituito dal nodo t_{in}. G' ha due tipi di archi. Un tipo connette ciascun nodo u_{mid}, e u_{out}. Il secondo connette ciasciun nodo u_{in} con u_{ou}, finchè c'è un arco da u a v in G. Supponiamo che G ha un path Hamiltoniano

Allora ovviamente segue che G' ha un path Hamiltoniano $\mathbf{s}_{\text{out}},\,\mathbf{u}_{\text{1in}},\,\mathbf{u}_{\text{1mid}},\,\mathbf{u}_{\text{1out}},\,\mathbf{u}_{\text{2in}},\,\mathbf{u}_{\text{2mid}},\,\mathbf{u}_{\text{2out}},\,...,\,\mathbf{u}_{\text{kin}},\,\mathbf{u}_{\text{kmid}},\,\mathbf{u}_{\text{kout}},\,\mathbf{t}_{\text{in}}$

Ugualmente vale per l'altra direzione.

Np-completezza di Subset-Sum 1

- Teorema: Subset-Sum è Np-completo.
- **Dimostrazione:**
 - Che Subset-sum appartine a NP è già stato dimostrato.
 - Riduciamo adesso in tempo polinomiale 3SAT a Subset-Sum.
 - Sia ϕ una formula 3-cnf booleana con $x_1,...,x_l$ variabili e $c_1,...,c_k$ clausole.
 - Costruiamo un tabella di decimali con (I+k) colonne e (2I+2k+1) righe .
 - Le colonne sono marcate con $x_1,...,x_l,c_1,...,c_l$, e le righe sono marcate con $y_1, z_1, ..., y_l, z_l, g_1, h_1, ..., g_k, h_k, t.$
 - Il contenuto delle righe sono numeri decimali. Le prime 2I+2k righe, con numeri di S, e l'ultima riga è il numero target t.
 - Mostreremo in seguito che S ha un sottoinsieme che sommato da t sse ♦ è soddisfacibile.
 - In particolare, la riga/numero t consiste di l uno seguiti da k tre.
 - Ciascuna riga y_i ha un 1 nella colonna x_i, e così in ciascuna colonna c_i tale che la clausola c_i contiene xi.
 - Ciascuna riga z_i ha un 1 nelle colonne x_i , e così in ciascuna colonna c_j tale che la clausola c_i contiene $\underline{x}i$.
 - Infine, ciascuna riga g_i e h_i ha un 1 nelle colonne c_i.
 - Le cifre non specificate sono da sottintendersi a 0.

SMT SMT		Np	-completezza di Subset-Sum 2
	$\mathbf{x}_1 \ \mathbf{x}_2 \ \mathbf{x}_3 \ \mathbf{x}_4 \ \dots \ \mathbf{x}_1$	$c_1 c_2 \dots c_k$	$(\mathbf{x}_1 \vee \mathbf{\underline{x}}_2 \vee \mathbf{x}_3) \wedge$
$egin{array}{c} \mathbf{y}_1 \ \mathbf{z}_1 \ \mathbf{y}_2 \ \mathbf{z}_2 \end{array}$	1 1 1 1	1 1 1	$(\mathbf{x}_{2} \vee \mathbf{x}_{3} \vee \dots) \wedge \dots \wedge \\ (\underline{\mathbf{x}}_{3} \vee \dots \vee \dots)$
$\begin{array}{c} \mathbf{y_3} \\ \mathbf{z_3} \\ \cdots \\ \mathbf{y_1} \\ \mathbf{z_1} \end{array}$	1 1 1 1	1 1	 Ciascuna riga y_i ha un 1 nella colonna x_i se c_j contiene x_i. Ciascuna riga y_i ha un 1 nella colonna c_j se c_j contiene x_i vera. Ciascuna riga z_i ha un 1 nelle
$\begin{array}{c} {\bf g_1} \\ {\bf h_1} \\ {\bf g_2} \\ {\bf h_2} \\ {\cdots} \\ {\bf g_k} \\ {\bf h_k} \end{array}$		1 1 1 1 1	 colonne x_i, e così in ciascuna colonna c_j tale che la clausola c_j contiene xi. Infine, ciascuna riga g_i e h_i ha un 1 nelle colonne c_i. Le cifre non specificate sono da sottintendersi a 0.
t	1 1 1 1 1	3 3 3	

$(\mathbf{x}_1 \vee \underline{\mathbf{x}}_2 \vee \mathbf{x}_3) \wedge$
$(\mathbf{x}_2 \lor \mathbf{x}_3 \lor \dots) \land \dots \land$
$(\mathbf{X}_2 \vee \ldots \vee \ldots)$

- iga y_i ha un 1 nella se c_i contiene x_i .
- iga y_i ha un 1 nella se c_i contiene x_i
- iga z_i ha un 1 nelle , e così in ciascuna tale che la clausola <u>x</u>i.
- scuna riga g_i e h_i ha colonne c_i.
- on specificate sono ndersi a 0.

<mark>∰ S</mark> ∰ Np	-completezza di Subset-Sum 3
Supponi	$egin{array}{c ccccccccccccccccccccccccccccccccccc$
Seleziona yi se xi è true, e selziona zi se xi è false. Se sommiamo quello che abbiamo selezionato fin ora otteniamo un 1 in ciascuna delle prime I cifre perché abbiamo selezionato le yi o zi per ciascun i.	$egin{array}{c ccccccccccccccccccccccccccccccccccc$
Inoltre, ciascuna delle ultime k cifre è un numero compreso tra 1 e 3 perché ciascuna clausola è soddisfacibile e così contengono litterali veri tra 1 e 3.	$egin{array}{c ccccccccccccccccccccccccccccccccccc$
In dipendenza di questo numero, selezioniamo ulteriormente i numeri di g e h per portare ciascuno delle ultime k cifre a 3.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	t 1 1 1 1 1 3 3 3

		X ₁ X ₂	X ₃ X ₄	X ₁	c ₁	c ₂ .	c _k
 Supponiamo che la somma di S dia t. Osserviamo che ciascuna colonna nella tabella che descrive S ha al più cinque 1. Per ottenere un 1 in ciascuna delle prime I colonne di t, abbiamo bisogno o delle yi o delle zi per ciascuna i. Se abbiamo yi, assegnamo xi a true, altrimenti a false. Questo assenamento deve soddisfare \$\phi\$ perchè in ciascuna delle colonne finali k la somma è sempre 3. Nella colonna cj, al massimo 2 possono venire da gj e hj, così almeno 1 in questa colonna dovrebbero provenire da qualche yi o da qualche zi nel sottoinsieme. Se abbiamo yi, allora xi appare a cj e allora cj è assegnata a true, così cj è soddisfacibile. Se abbiamo zi, allora xi appare in cj e xi è assegnato a false, così cj è soddisfacibile. Pertanto \$\phi\$ è soddisfacibile. 	$\begin{array}{c} y_1 \\ z_1 \\ y_2 \\ z_2 \\ y_3 \\ z_3 \\ \cdots \\ y_1 \\ z_1 \\ \hline g_1 \\ h_1 \\ g_2 \\ h_2 \\ \cdots \\ g_k \\ h_k \\ \end{array}$	1 1 1 1	1 1	1 1	1 1 1 1	1 1 1 1	1 1 1
	t	1 1	1 1	<u>1 1</u>	3	3.	3

This document was created with Win2PDF available at http://www.win2pdf.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only. This page will not be added after purchasing Win2PDF.