

Overview

- Nelle lezioni precedenti, abbiamo mostrato alcuni problemi decidibili ed altri indecidibili per le macchine di Turing.
- Tra quelli indecidibili, abbiamo mostrato A_{TM} che rappresenta il problema della membership per le macchine di Turing
- In questa lezione mostreremo un metodo fondamentale per provare che l'indecidibilità dei problemi: La riducibilità.
- Con questo metodo, proveremo l'indecidibilità dei seguenti problemi per le macchine di Turing:
- II vuoto
- L'equivalenza
- La regolarità

- La riduzione è un modo per convertire un problema A in un altro problema B (A si riduce a B) in modo tale che una soluzione per B può essere usata per risolvere A
- Quando A (problema noto) è riducibile a B ($nuovo\ problema$), risolvere A non può essere più difficile della risoluzione di B perché una soluzione di B da una soluzione anche ad A. ($A \le B$)
- In termini della teoria della calcolabilità, se A è riducibile a B e B è decidibile, anche A è decidibile.
- In modo equivalente, se A è indecidibile ed è riducibile a B, B è indecidibile.
- Quest'ultima versione è la chiave per dimostrare che molti problemi sono indecidibili.
- In breve, il metodo che useremo per dimostrare che un problema A è indecidibile sarà quello di mostrare che altri problemi già noti essere indecidibili sono riducibili ad A.
- Notare che la riducibilità dice che non conosciamo una soluzione di A o B considerandoli singolarmente, ma sappiamo solo che una soluzione per A si ottiene da una soluzione di B.
- La riducibilità gioca un ruolo fondamentale nella classificazione dei problemi attraverso la decidibilità e consequentemente nella teoria della complessità.

SK SK

Riduzione di A_{TM} a HALT_{TM}

- Abbiamo già stabilito l'indecidibilità di A_{TM}, il problema di determinare se dato un input una Macchina di Turing accetta.
- Consideriamo allora un problema simile, $HALT_{TM}$, il problema di determinare se su un certo input la Macchina di Turing si ferma (con accept o reject). Per dimostrare l'indecidibilità di $HALT_{TM}$ possiamo sfruttare l'indecidibilità di A_{TM} riducendo A_{TM} a $HALT_{TM}$.
- La definizione di HALT_{TM} è la seguente:

 $HALT_{TM} = \{(M, w) \mid M \text{ è una TM e M si ferma su input w}\}.$

SM SM

Dimostrazione di indecidibilità per HALT_{TM}

- Dimostriamo quindi che HALT_{TM} è indecidibile.
- Assumiamo che $HALT_{TM}$ è decidibile e usiamo questa assunzione per dimostrare che A_{TM} è decidibile, contraddicendo quello che abbiamo detto nella lezione precedente.
- L'idea chiave è mostrare che A_{TM} è riducibile ad HALT_{TM}.
- Supponiamo di avere una TM R che decide HALT_{TM}.
- Usiamo R per costruire S, una TM che decide A_{TM} nel seguente modo:
- S prende in input una codifica di una TM M e una stringa w:
 - 1. Facciamo girare la TM R su input (M, w).
 - Se R rifiuta (cioè M va in reject o su w non si ferma), allora S rifiuta (perché (M,w) non è presente nel linguaggio di A_™).
 - 3. Se R accetta (cioè M su w o accetta o rifiuta), allora si simula M su w finchè non si ferma.
 - 4. Se M accetta, allora R accetta; se M rifiuta, allora R rifiuta.
- Chiaramente, se R decide $HALT_{TM}$, allora S decide A_{TM} . Poichè A_{TM} è indecidibile, allora anche $HALT_{TM}$ deve essere indecidibile.

Decidere il vuoto per TM è indecidibile

- Nel resto di questa lezione mostriamo altre riduzione per provare l'indecidibilità di vari linguaggi.
- Consideriamo $E_{TM} = \{ (M) \mid M \text{ è una TM e } L(M) = \Phi \}$.
- Mostriamo con la riduzione che E_{TM} è indecidibile.
- Assumiamo per ottenere una contraddizione che E_{TM} è decidibile e in seguito mostriamo che A_{TM} è decidibile. Otteniamo così una contraddizione.

Decidere il vuoto per TM è indecidibile(2)

- Consideriamo una TM R che decide E_{TM}. Usiamo R per costruire una TM S che decide A_{TM}.
- Come si comporterà S quando riceve in input (M, w)?
- Un'idea per S è quella di far girare R con input (M) e vedere se accetta.
- Se accetta, significa che sappiamo che L(M) è vuoto e di conseguenza M non accetta w. Ma se R rifiuta (M), allora sappiamo che L(M) non è vuoto e che M accetta qualche stringa, ma ancora non sappiamo se M accetta una particolare stringa w.
- Abbiamo dunque bisogno di un'idea differente.
- Invece di far girare R su <M>, facciamo girare R su una modifica di <M>. Modifichiamo M in modo che garantisca che M rifiuta tutte le stringhe tranne w, tenendo presente che anche su input w la macchina lavora sempre allo stesso modo.
- A questo punto usiamo R per determinare se la macchina modificata riconosce il linguaggio vuoto.
- Ora l'unica stringa che la macchina accetta è w, in questo modo il suo linguaggio sarà non vuoto se e solo se accetta w.
- Se R accetta quando riceve in input una descrizione della macchina modificata, allora sappiamo che la macchina modificata non accetta nulla e che M non accetta w.

DIMOSTRAZIONE

• Dimostriamo la correttezza della costruzione fatta nella slide precedente. Chiamiamo M1 la macchina appena costruita, che opera nel modo seguente:

M1 = "Su input x:

- 1. Se $x \neq w$, rifiuta.
- 2. Se x = w, si considera M su input w e accetta se M accetta;
- M1 verifica se x = w in modo ovvio: scandisce l'input e lo confronta carattere per carattere con la stringa w per determinare se sono uguali.
- Assumiamo che la TM R decide E_{TM} . Si costruisce allora la TM S che decide A_{TM} come descritto di seguito:
 - S= "Su input (M,w), dove M è una codifica di una TM M e w una stringa:
 - 1. Utilizza la descrizione di M e w per costruire la TM M1 appena descritta.
 - 2. Fa girare R su input (M1).
 - 3. Se R accetta, allora rifiuta; Se R rifiuta, allora accetta; "
- S deve essere in grado di computare una descrizione di M1 da una descrizione di M e w. Per fare questo basta aggiungere degli stati in più ad M per verificare che x=w.
- Se R è un decisore per E_{TM} , allora S è un decisore per A_{TM} . Un decisore per A_{TM} non può esistere, così sappiamo che E_{TM} è indecidibile.

SNT SNT

L'Equivalenza di due TM è indecidibile

- Usando ragionamenti simili a quelli fatti nelle diapositive precedenti, è possibile dimostrare l'indecidibilità di vari linguaggi.
- Per esempio, si consideri il seguente:
- EQ_{TM} = $\{ (M_1, M_2) \mid M_1 \in M_2 \text{ sono } TM \in L(M_1) = L(M_2) \}.$
- Usando il concetto di riduzione dal problema per E_{TM} , si dimostra facilmente che EQ_{TM} è indecidibile.
- R decisore per EQ_{TM}
- S decisore per E_{TM}
- S = "su ingresso < M >:
 - costruisce M_1 come la MdT t.c. $L(M1) = \emptyset$
 - esegui R su ingresso $\langle M, M_1 \rangle$
 - se R accetta \rightarrow S accetta (cioè $L(M) = L(M1) = \emptyset$) altrimenti \rightarrow rifiuta ($L(M) \neq L(M1)$ quindi il linguaggio riconosciuto da M non è vuoto)."
- Dato che S non può esistere (E_{TM} non decidibile) non può esistere neanche R, quindi EQ_{TM} non è decidibile (dimostrazione per contraddizione).

SMF

Regular è indecidibile

Si consideri il seguente linguaggio

REGULAR_{TM} = $\{(M) | M \text{ è una TM and } L(M) \text{ è un linguaggio regolare}\}$

- Anche in questo caso, usando il concetto di riduzione, si può mostrare che REGULAR $_{TM}$ è indecidibile.
- Assumiamo per ottenere una contraddizione che REGULAR $_{TM}$ è decidibile e in seguito mostriamo che A_{TM} è decidibile. Otteniamo così una contraddizione.
- Per ogni coppia (M,w) costruiamo una MdT M' che si comporta nel modo seguente su ogni x:
 - 1. Se $x \in della$ forma (0^n1^n) , allora M' accetta.
 - 2. altrimenti, simula M su w.
 - 3. Se *M* accetta *w*, allora M' accetta *x*.
 - 4. Se M rifiuta, allora M' rifiuta x.
- $L(M') = \Sigma^*$ se M accetta w.
- $L(M') = (0^n 1^n)$ se M non accetta w.
- Quindi, L(M') è regolare se e solo se M accetta w.

Esercizi

- Provare che i seguenti linguaggi sono indecidibili:
 - L= $\{(M) \mid M \text{ è una TM che accetta "000"}\}$
 - $CONTEXT-FREE_{TM} = \{(M) \mid M \text{ è una TM e L(M) è context-free}\}$
 - $NOTREGULAR_{TM} = \{ (M) \mid M \text{ è una TM e L(M) non è regolare} \}$

This document was created with Win2PDF available at http://www.win2pdf.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only. This page will not be added after purchasing Win2PDF.