



## Phantoms for X-ray breast imaging



#### Alessandra Tomal

Institute of Physics "Gleb Wataghin" University of Campinas Campinas, Brazil



Three dimensional breast cancer models for X-ray Imaging research



HORIZON 2020 European Union funding for Research & Innovation



### WHERE ARE WE?









Credits: Lucas Rodolfo de Castro Moura http://www.lrdronecampinas.com.br/

#### Funded in 1966





#### University of Campinas (UNICAMP): 1st in Latin America





#### WHERE ARE WE?





#### Outline





## **MOTIVATION: Screening x Breast imaging**



Adam ®

- Mammography is the most used technique for early detection
- Sensitivity
  - Fatty breasts: 81% to 93%
  - Dense breast: 57% to 71%
- Supplementary methods for breast screening
  - MRI
  - Ultrassond
- New x-ray breast imaging aiming to improve the detection sensivity and specifity

# Historical advances of breast x-ray imaging



1950



Courtesy of K.H.Ng

-60 years

Contrast enhanced Digital Mammography (CEDM)

2010 Lorad, Hologic/MicroDose,Sectra







Courtesy of Hologic

## Historical advances of breast x-ray imaging





2011 Digital Breast Tomosynthesis Koning Corporation 2014 Breast CT



## Why is necessary optimize and develop breast imaging techniques?



Optimization : Achieve images with the highest image quality with the lower dose deposited in the breast.

#### COUNTERTHINK







How evaluate the image quality and dose in the breast? How new imaging techniques can be tested?



#### Book chapter: The Phantoms of Medical and Health Physics

#### **Editors**

Larry A. DeWerd and Michael Kissick



Book Chapter Mammography Phantoms Alessandra Tomal » Look Inside » Get Access 8.1 143 8.2 Phantoms for Imaging..... 144 Phantom for Quality Control and Accreditation 8.2.1 8.2.2 Phantoms for Dosimetry ..... 150 8.3 8.4 Anthropomorphic Phantoms for Mammographic Imaging .... 151 8.5 

#### Editor

Paolo Russo



SERIES IN MEDICAL PHYSICS AND BIOMEDICAL ENGINEERING



CRC Press

Paolo Russo

#### 56

Springer

Phantoms for Image Quality and Dose Assessment

#### Alessandra Tomal and Paulo Roberto Costa

#### CONTENTS

- 56.1 Introduction
  - 56.1.1 Phantom Definitions
- 56.2 Phantoms for Projection Radiography
  - 56.2.1 Phantoms for Image Quality in Projection Radiography
  - 56.2.2 Phantoms for Dose Assessment in Projection Radiography
- 56.3 Phantoms for Mammography
  - 56.3.1 Phantoms for Image Quality in Mammography
  - 56.3.2 Phantoms for Digital Breast Tomosynthesis
  - 56.3.3 Phantoms for Contrast Enhanced Digital Mammography
  - 56.3.4 Phantoms for Dose Assessment in Mammography

#### Motivation

#### Why is breast phantoms are important for breast imaging?

Simulate the complex structure of the breast

Quality Control and quality assurance

Optmization of dose and image quality

Detectability of masses and diferent structures

Development and comparison of different imaging modalities





Why is breast phantoms are important for breast imaging?

How breast phantoms can be classified?



Homogeneous

Antropomorphic

For image quality



#### Outline





#### **Characteristics of breast phantoms : Tissue-equivalente materials**

#### Mammography, DBT, CEDM, CT



#### **Characteristics of breast phantoms : Tissue-equivalente materials**

Mass Density and Electron Density

**Effective Atomic Number** 

Linear Attenuation Coefficient

Refractive Index Decrement

Other x-ray properties

Moldable



### Breast tissue-equivalent materials

SEVERAL WORKS AIMED TO CHARACTERIZE THE PROPERTIES OF BREAST PHANTONS

ew plastics and Printing materials



## **Composition and Mass Density**

| Material           | H (%)    | C (%)    | N (%)     | 0 (%)    | ρ <b>(g/cm</b> <sup>3</sup> ) |
|--------------------|----------|----------|-----------|----------|-------------------------------|
| Adipose Tissue *   | 12.4±0.1 | 76.5±1.1 | 0.40±0.05 | 10.7±1.3 | 0.92±0.02                     |
| Glandular Tissue * | 9.3±0.5  | 18.4±0.9 | 4.4±0.6   | 67.9±2.0 | 1.04±0.02                     |
| Adipose Tissue H   | 11.2     | 61.9     | 1.7       | 25.1     | 0.93                          |
| Glandular Tissue H | 10.2     | 18.4     | 3.2       | 67.0     | 1.04                          |



\*Poletti et al. PMB 2002, 47: 47.

## **Composition and Mass Density**

| Material                         | H (%)      | C (%)      | N (%)      | 0 (%)      | ρ <b>(g/cm</b> ³) |
|----------------------------------|------------|------------|------------|------------|-------------------|
| Adipose Tissue                   | 12.4±0.1   | 76.5±1.1   | 0.40±0.05  | 10.7±1.3   | 0.92±0.02         |
| Glandular Tissue                 | 9.3±0.5    | 18.4±0.9   | 4.4±0.6    | 67.9±2.0   | 1.04±0.02         |
| PMMA                             | 8.27±0.01  | 60.45±0.06 | 0.0        | 31.28±0.07 | 1.18±0.01         |
| Nylon                            | 10.08±0.03 | 62.70±0.07 | 11.39±0.03 | 15.83±0.13 | 1.13±0.02         |
| Polyethylene                     | 14.51±0.04 | 85.49±0.08 | 0.0        | 0.0        | 0.89±0.02         |
| Polyacetate                      | 7.03±0.01  | 57.0±0.06  | 0.0        | 35.97±0.07 | 1.19±0.02         |
| CIRS: 30:70                      | 11.78±0.06 | 75.12±0.07 | 0.66±0.03  | 12.14±0.24 | 0.97±0.01         |
| 50:50                            | 11.10±0.05 | 72.74±0.09 | 1.04±0.04  | 14.82±0.26 | 0.98±0.01         |
| 70:30                            | 11.72±0.06 | 73.78±0.07 | 1.30±0.04  | 12.44±0.25 | 1.01±0.01         |
| Poletti et al. PMB 2002, 47: 47. |            |            |            |            |                   |

#### Chalenge tissue equivalent materials: Breast composition

- Similarity (chemical composition and mass density) between the diferent tissues that compose the breast
- Few data available for breast tissues
  - Restrict to normal adipose and glandular breast tissues
  - Based on a limited number of samples
- Variability between women



## **Mass Density**

 100 breast tissue samples classifed as: Normal Adipose, Normal Fibroglandular, Neoplasic Benign and Malignant



Unpublished



# Linear attenuation coefficient



• A Tomal. PhD Thesis. University of São Paulo



### Linear attenuation coefficient





• A Tomal. PhD Thesis. University of São Paulo



# Linear attenuation coefficient



IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 60, NO. 2, APRIL 2013

Characterization of Tissue-Equivalent Materials Through Measurements of the Linear Attenuation Coefficient and Scattering Profiles Obtained With Polyenergetic Beams

Wender Geraldelli, Alessandra Tomal, and Martin E. Poletti



566



## Linear attenuation coefficient

#### X-ray characterization of breast phantom materials

J W Byng, J G Mainprize and M J Yaffet

Department of Medical Biophysics and Radiology, University of Toronto and Imaging Research, Sunnybrook Health Science Centre, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada

Received 14 October 1997

Abstract. A pulse-height spectroscopic technique is used to measure the linear attenuation coefficients of commercially available composite phantom materials designed to simulate the attenuation characteristics of breast fat and breast glandular tissue. The manufacturers have specified the composition of these materials with the goal of matching the linear attenuation coefficients of breast tissues, calculated using the mixture rule. Over the energy range 18 to 100 keV, measurements from these materials are in close agreement with manufacturers' predictions and with previously measured linear attenuation coefficients of breast tissue samples.





### **Electron Density and Effective Atomic Number**



| Material | ρ <sub>e</sub> (x10 <sup>23</sup> cm <sup>3</sup> ) |
|----------|-----------------------------------------------------|
| BR12     | 3.168                                               |
| PMMA     | 3.865                                               |
| Nylon    | 3.329                                               |

#### **Effective Atomic Number**



Courtesy of M. Antoniassi

27

## **Other: Scattering properties**



Courtesy of M. E. Poletti M. E. Poletti, *et al*. Nucl. Instrum. Methods B. 213: 595-598, 2004. M. E. Poletti, *et al*. Radiat. Phys. Chem. 71: 973-974, 2004.

## **Other: Scattering properties**



566

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 60, NO. 2, APRIL 2013

Characterization of Tissue-Equivalent Materials Through Measurements of the Linear Attenuation Coefficient and Scattering Profiles Obtained With Polyenergetic Beams



Wender Geraldelli, Alessandra Tomal, and Martin E. Poletti

### Refractive Index Decrement



Danail Ivanov et al 2018 Phys. Med. Biol. 63 175020



## New materials

- Epoxy Resin
- Plastic
- Plastic for 3D printers



#### Tissue-equivalent materials



IFUSP - Instituto de Física da USP



Mariano, L. Costa, P.R. Development of a methodology for formulating radiologically equivalent materials to human tissues, MCMA2017

#### Samples evaluation



IFUSP - Instituto de Física da USP



#### Outline





### **Breast phantoms classification**





## **Breast phantoms: Physical**

- Traditional and Commercial Phantoms for mammography
  - Dosimety
  - Imaging
  - Antropomorphic
- New comercial phantoms for breast imaging
- New developments for Phyisical Breast Phantoms


# Breast phantoms for dosimetry





AEC checks detector homogeneity SNR CNR

Gammex 456



CIRS 012A



# Breast phantoms for imaging





### Breast phantoms for imaging: Quality Assesment and Quality Control

Simulating breast structures or Artificial Details

Low contrast objects

- Masses
- Fibers
- Microcalcification

High contrast patterns and Edges

Evaluation:

- Contrast and spatial resolution
- Noise
- Detectability thresholds (low and high contrast)



### Breast phantoms for imaging: Quality Assesment and Quality Control

Simulating breast structures or Artificial Details

Low contrast objects

- Masses
- Fibers
- Microcalcification

High contrast patterns and Edges

Accreditation of mammographic equipments



# Breast phantoms for imaging

Mammographic accreditation phantom

Quality assurance phantom

**High Contrast Resolution Phantom** 

**Contrast-detail phantom** 

Anthropomorphic phantom



### **Breast phantoms for Quality Control**

Simulating breast structures or Artificial Details

Low contrast objects

- Masses
- Fibers
- Microcalcification

High contrast patterns and Edges

#### Specif breast phantom

### Detectablity thresholds

and the second second



## **ACR Phantom**

- Simulates a 50:50 breast of 4.5 cm
- Composed by PMMA wax box insert contains 16 sets of test objects (nylon fibers, microcalcifications - Al2O3 and lens-shaped masses )
- Detectability threshold → score of image quality → visible or invisible → accreditation





## ACR Phantom: Digital mammography

- ACR Phantom Prototype for digital mammography is based on the existing ACR Accreditation Phantom
- Different numbers and dimensions of inserts.
- The pass/fail criteria for subjective image quality assessment correspond to the same (effective) size as the screen-film mammography phantom



# Antropomophic Phantoms for quality control: CIRS®

- Composed by epoxy-resin simulating
  - Different proportions of glandular:adipose tissues (20:80, 30:70, 50:50)
  - Adipose shielding
  - Low and high contrast structures mimicking pathological and artificial details







CIRS®: Models 010A, 010B, 010C

### Antropomophic Phantoms for quality control: TOR[MAX] e TOR[MAM]

- TOR[MAX] and TOR[MAM]
  - PMMA Plates and a plate including different structures of high and low contrast
  - Evaluation of contrast, spatial resolution and detectability of small and large areas.
- TOR[MAM], image similar to the clinical practice





Test Objects Ltd.





### TOR[MAX] e TOR[MAM]: Aplications

1992, The British Journal of Radiology, 65, 528-535

#### A preliminary investigation of the imaging performance of

photostimulable phoseness new design of mamn



By A. R. Cowen, BSc, D. S. Brett BSc, DMRD, FRCR

FAXIL, The University of Leeds, Depa Disconnetic Particlopy, The General In

Evaluation of digital breast tomosynthesis reconstruction algorithms using synchrotron radiation in standard geometry

#### K. Bliznakova and Z. Kolitsi

Department of Medical Physics, School of Medicine, University of Patras, Rio, Patras GR-26500, Greece

#### R. D. Speller

Department of Medical Physics and Bioengineering, University College London, London WC1E 6BT, United Kingdom

#### J. A. Horrocks

Clinical Physics Group, St. Bartholomew's Hospital, Barts and the London NHS Trust, London EC1A 7BE, United Kingdom

#### G. Tromba

ELETTRA, Basovizza, Trieste I-34012, Italy

#### N. Pallikarakis<sup>a)</sup>

Department of Medical Physics, School of Medicine, University of Patras, Rio, Patras GR-26500, Greece

(Received 20 November 2009; revised 2 March 2010; accepted for publication 4 March 2010; published 30 March 2010)

of an a-Si: H-based X-ray imaging

1998 The British Institute of Radiology

## >hantom image quality in ty study

STELLANO SMITH, MA, MSc and

Joint Department of Physics, The Royal Marsden NHS Trust, Fulham Road, London SW3 6JJ, UK

Nuclear Instruments and Methods in Physics Research A 477 (2002) 521 526



www.elsevier.com/locate/nima

# Subjetive x quantitative image quality



Mariana Yuamoto, Alessandra Tomal. Private Communication, 2017

## Phantoms for quality control: Contrast-detail

- Effectiveness for visibility threshold of very small size objects under lowcontrast conditions
- Discs of various thicknesses and diameters attached to a PMMA cover block.
- Test included in the European Protocol of QC in mammography







Figure 3. Contrast-detail phantom image scoring pattern.

ystems)

## Contrast-detail phantom: applications

1995, The British Journal of Radiology, 68, 277-282

#### The use of a contrast-detail test object in the optimization of optical density in mammography

K J ROBSON, BSc, C J KOTRE, MSc, PhD and K FAULKNER, MSc, PhD

Regional Medical Physic NE4 6BE, UK

Optimization of technique factors for a silicon diode array full-field digital mammography system and comparison to screen-film mammography with matched average glandular dose

Eric A. Berns<sup>a)</sup> and R. Edward Hendrick The Lynn Sage Comprehensive Breast Center, Northwestern University Medical School, Chicago, Illinois 60611

Gary R. Cutter Center for Research Design and Statistical Methods, University of Nevada, Reno, Nevada

Suryana (Received 14 May 2002; accepted for publication 16 December 2002; published 5 February 2003)

Sechopoulos, I., & D'Orsi, C. J. (2007). Detection of simulated microcalcifications in a phantom with digital mammography: Effect of pixel size. Radiology, 244, 130-137.



### Contrast-detail phantom: low cost

INSTITUTE OF PHYSICS PUBLISHING

PHYSICS IN MEDICINE AND BIOLOGY

Phys. Med. Biol. 49 (2004) 1423-1438

PII: S0031-9155(04)66795-9

#### A novel method for producing x-ray test objects and phantoms

C Theodorakou<sup>1</sup>, J A Horrocks<sup>2</sup>, N W Marshall<sup>2</sup> and R D Speller<sup>3</sup>

 <sup>1</sup> Clinical Physics Group, St Bartholomew's Hospital, Queen Mary University, EC1A 7BE, London, UK
 <sup>2</sup> Clinical Physics Group, St Bartholomew's Hospital, Barts and the London NHS Trust, EC1A 7BE, London, UK
 <sup>3</sup> Department of Medical Physics and Bicengineering, University College London, WC1E 6JA, London, UK

The British Journal of Radiology, 78 (2005), 746-748 © 2005 The British Institute of Radiology DOI: 10.1259/bjr/11930472

#### Short communication

#### A printed image quality test phantom for mammography

<sup>1</sup>C J KOTRE, PhD and <sup>2</sup>D J T PORTER, MSc

<sup>1</sup>Regional Medical Physics Department, Newcastle General Hospital, Newcastle upon Tyne NE4 6BE and <sup>2</sup>Department of Medical Physics & Bioengineering, Raigmore Hospital, Inverness IV2 3UJ, UK



# New physical phantoms for breast imaging



# New physical phantoms for breast imaging

Commercial phantoms

New breast imaging techniques In development



# Phantom for large area contrast

- PMMA phantom
  - Details:
    - Nylc
    - Poly
    - Tefl
    - Alur
    - Poly



#### Radiation Physics and Chemistry

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/radphyschem

**y** Experimental evaluation of the image quality and dose in digital mammography: Influence of x-ray spectrum



Radiation Physics and Chemistry

A. Tomal<sup>a,\*</sup>, A.M.M.M Perez<sup>c</sup>, M.C. Silva<sup>b</sup>, M.E. Poletti<sup>c</sup>

<sup>a</sup> Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, 13083-859 Campinas, SP, Brazil

- <sup>b</sup> Hospital Albert Einstein, 05652-900 São Paulo, SP, Brazil
- <sup>c</sup> Departamento de Física, FFCLRP, Universidade de São Paulo, 14040-901 Ribeirão Preto, SP, Brazil







## **Breast Tomosynthesis Phantom: CIRS**

- Consist of eight homogeneous slabs made from breast-equivalent material in 50/50 ratio of gland and adipose tissue
- Include details for evaluate the image quality (Pixel Value Uniformity, Noise, Resolution in X, Y and Z directions, Geometric accuracy 3D, Artifact assessment and Visual detectability)



Courtesy of CIRS, model 021.



#### Breast Tomosynthesis Phantom: Leeds - VOX[MAM]

- Can be used for compare image quality between breast tomosynthesis systems
- Breast tissue equivalent material encased in PMMA
- Include groups of microcalcification



Courtesy of Leeds Test Objects Ltd.





#### Contrast Enhanced Digital mammography phantom: Leeds - CEDM

Phantom with voids into which contrast agent can be injected

Allows studdy the image quality , based on dual-energy technique



Courtesy of Leeds Test Objects Ltd.





### New Development: Physical Phantom Prototype

- Selection of the digital phantom equivalent
- 3D printing of dense tissue skeleton
  - 50% glandular
- Adipose compartments filled manually
  - A thin primer applied first
  - ~100% fat epoxy-based resin



Courtesy of P.R. Bakic



#### **Phantom Validation**

## Power spectrum analysis: Phantom vs. patient comparison (Cockmartin, IWDM 2014)



Siemens





Siemens



Courtesy of P. R. Bakic

#### **Phantom Validation**

## Power spectrum analysis: Phantom vs. patient comparison (Cockmartin, IWDM 2014)



Siemens





Siemens



Courtesy of P. R. Bakic

### Outline





## **Computational Phantoms**



## 3D Anthropomorphic Breast Phantom

#### Development and characterization of an anthropomorphic breast software phantom based upon region-growing algorithm

Predrag R. Bakic,<sup>a)</sup> Cuiping Zhang,<sup>b)</sup> and Andrew D. A. Maidment Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104

 Simulates the skin, regions of adipose and fibroglandular tissue, and the matrix of Cooper's ligaments and adipose compartments





Courtesy of P.R. Bakik



### Penn Software Breast Phantom

- Developd since 1996
- Software phantoms provide support for Virtual Clinical Trials
  - The known ground truth about simulated tissues
  - The flexibility to cover anatomic variations





#### **Computational Phantom for xray imaging: BreastSimulator**

www.sciedu.ca/jbgc

Journal of Biomedical Graphics and Computing, June 2012, Vol. 2, No. 1

**ORIGINAL RESEARCH** 

#### BreastSimulator: A software platform for breast x-ray imaging research

Kristina Bliznakova<sup>1</sup>, Ioannis Sechopoulos<sup>2</sup>, Ivan Buliev<sup>3</sup>, Nicolas Pallikarakis<sup>1</sup>

1. Department of Medical Physics, School of Medicine, University of Patras, Greece. 2. Department of Radiology and Imaging Sciences and Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia. 3. Department of Electronic Engineering and Microelectronics, Technical University of Varna, Varna, Bulgaria.

Breast Modeling Module: consists of several sub-modules that are utilized to model the different breast components: external shape, glandular and adipose tissue, breast lesion, skin, pectoralis and lymphatics.

#### **Computational Phantom for xray imaging: BreastSimulator**

www.sciedu.ca/jbgc

Journal of Biomedical Graphics and Computing, June 2012, Vol. 2, No. 1

#### **ORIGINAL RESEARCH**

#### BreastSimulator: A software platform for breast x-ray imaging research

Kristina Bliznakova<sup>1</sup>, Ioannis Sechopoulos<sup>2</sup>, Ivan Buliev<sup>3</sup>, Nicolas Pallikarakis<sup>1</sup>



### **Computational Phantom for xray imaging: BreastSimulator**

#### Evaluation of an improved algorithm for producing realistic 3D breast software phantoms: Application for mammography

K. Bliznakova<sup>a)</sup>

Department of Medical Physics, School of Medicine, University of Patras, 26500 Rio-Patras, Greece

S. Suryanarayanan<sup>b)</sup> and A. Karellas<sup>c)</sup> Department of Radiology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322

N. Pallikarakis Department of Medical Physics, School of Medicine, University of Patras, 26500 Rio-Patras, Greece

Contents lists available at ScienceDirect

Physica Medica

journal homepage: www.elsevier.com/locate/ejmp

IOP Publishing | Institute of Physics and Engineering in Medicine

Phys. Med. Biol. 62 (2017) 6446-6466

Physics in Medicine & Biology

https://doi.org/10.1088/1361-6560/aa6ca3

Original paper

Homogeneous vs. patient specific breast models for Monte Carlo evaluation of mean glandular dose in mammography

A. Sarno<sup>a</sup>, G. Mettivier<sup>a,\*</sup>, F. Di Lillo<sup>a</sup>, K. Bliznakova<sup>b</sup>, I. Sechopoulos<sup>c</sup>, P. Russo<sup>a</sup>

#### Evaluation of the *BreastSimulator* software platform for breast tomography

G Mettivier<sup>1,6</sup>, K Bliznakova<sup>2</sup>, I Sechopoulos<sup>3,4</sup>, J M Boone<sup>5</sup>, F Di Lillo<sup>1</sup>, A Sarno<sup>1</sup>, R Castriconi<sup>1</sup> and P Russo<sup>1</sup>



# Sumary: Computational breast models



Segmentation and classification of breast tissues

Machine learning +Neural network

Realistic breast glandularity distribution

#### Anatomy







2D images: Neural networworks based on softwares for measurement of Volumetric Breast Density (VBD)





Cohort

- 14,618 women who undertaken mammographic examination at Instituto de Radiologia (Inrad) da HCFM-USP and Instituto do Câncer de São Paulo between january/2012 and july/2016.
- 16,147 sudies: 64,048 images (left and right breast, CC and MLO view)
- Ethics comitee: CAAE 47878315.2.0000.5404


2D images: Based on softwares for measurement of Volumetric Breast Density (VBD)



Thickness of dense

#### Based on softwares for measurement of Volumetric Breast Density (VBD)



76

Based on softwares for measurement of Volumetric Breast Density (VBD)



#### Parameters to consider... Next steps

• Investigate de 3D structure based on breast tomosynthesis images

- Validate the model based on Neural Network
  - Compare with breast CT images
  - Compare with other computational breast models
- Construct computational breast phantom for breast dosimetry
- Aplly to patient-specific dosimetry





Physical breast phantoms used for QA and QC in mammography

- Development of new x-ray imaging techniques
  More realistic physical phantom
  Complex 3D distribution of structures
  Clinical trial
- Computational phantom:
  New imaging techniques
  Multimodality imaging
  Anthropomorphic, structured design







#### UNICAMP



- Process 2016/15366-9
- Process 2015/21873-8



Conselho Nacional de Desenvolvimento Científico e Tecnológico

Process 483170/2015-3



Fundo de Apoio ao Ensino, à Pesquisa e à Extensão











Thank You!

atomal@ifi.unicamp.br



### Thank You!

#### atomal@ifi.unicamp.br