Application of computer models for advancement of Xray breast imaging techniques *Grand Hotel Santa Lucia Napoli*

Phase contrast mammography with synchrotron radiation

Alberto Bravin

European Synchrotron Radiation Facility (Grenoble, France)

HORIZON 2020 European Union funding for Research & Innovation

To MAXIMA organizers for their kind invitation

To all collaborators

A special thanks to:

- Prof. Paola COAN, LMU, Munich
- Dr. Alberto MITTONE, ESRF
- Prof. T. Peters, London, Canada

"A very large microscope to see deep inside matter"

- **A source of X-rays produced by relativistic electrons of special characteristics:**

- **Extremely intense: the most intense on earth**
- **Highly collimated**
- **Brilliant**
- **- Tunable in energy**

Why is SR interesting for imaging and therapy?

- $-$ ~10^{6/}10⁸ more intense than medical X-ray generators or LINACS
- tunable monochromatic energy
- parallel beam
- (sub)micrometric spatial resolution

HOW IS A SYNCHROTRON MADE?

SR is a very intense source of radiation from Infra Red to hard X-rays

SR is produced by electrons with relativistic energies circulating in a ring

Synchrotron machine scheme

1 injector 2 transfer line 3 booster 4 storage ring 5 beamline 6 exp. station

ESRF

SYNCHROTRONS IN THE WORLD

3 larger facilities

5 with dedicated medical beamlines

LIMITS OF CONVENTIONAL X-RAY RADIOGRAPHY IN BREAST IMAGING

Breast cancer: First mortality cause for women in western countries

Diagnosis is simple in a fatty breast (radiotransparent)

90%/10% Fat - Glandular tissues 10%/90%

Page 7 Tumors in dense breasts are masked by tissues

Challenges in mammography

" ~10% of palpable malignant tumours are not visible in mammography (dense breast, infiltrating tumors etc)"

- High radiosensitive organ
	- --> Possible radio-induced tumors -- > Risk benefit evaluation
- Small difference in contrast between tumor and normal tissues -- > need more images, higher doses
- Need of resolutions better/= 40 microns (microcalcifications)
	- $-$ > doses increase with the 1/pixel²
- Need of better identification of the lesion (2.5D 3D imaging) --> higher doses

- **Improve contrast formation**: from absorption to phase contrast imaging -- >use improved source or setup (Olivo, Longo, Bravin, Paterno…)
- **Move from 2D to 2.5 and 3D:** vision in depth -- > tomosynthesis or CT (K. Bliznakova)
- **Improve detectors** -- > higher efficiency of used dose -- > single photon counting (Kalender, Boone, Esposito..)
- **Improve image reconstruction** technique to use fewer X-rays and reduce dose
	- -- > use improved reconstruction algorithms (This talk)

Contents lists available at ScienceDirect

Computers in Biology and Medicine

journal homepage: www.elsevier.com/locate/cbm

A software platform for phase contrast x-ray breast imaging research

K. Bliznakova^{a,*}, P. Russo^b, G. Mettivier^b, H. Requardt^c, P. Popov^d, A. Bravin^c, I. Buliev^a

^a Department of Electronics, Technical University of Varna, 1 Studentska Str, Varna 9010, Bulgaria

^b Dipartimento di Fisica, Università di Napoli Federico II, and INFN Sezione di Napoli, Via Cintia, I-80126 Naples, Italy

^c European Synchrotron Radiation Facility (ESRF), Grenoble F-38043, France

^a Department of Physics, Technical University of Varna, 1 Studentska Str, Varna 9010, Bulgaria

In-line phase-contrast breast tomosynthesis: a phantom feasibility study at a synchrotron radiation facility

K Bliznakova¹, P Russo², Z Kamarianakis⁴, G Mettivier², H Requardt³, A Bravin³ and I Buliev¹

Phys. Med. Biol. 61 (2016) 6243-6263

PHC IN THE 90IES: FROM NYLON WIRES TO FIRST MAMMOGRAPHIES

Conventional radiography

Phase contrast

Elettra synchrotron 1997-1998

F. Arfelli, A. Bravin et al, Physics in Medicine and Biology 43, 1998

"Yes, but it can work only in simple objects"

First demonstration of phase contast imaging in a full human organ

F. Arfelli, A. Bravin et al, Radiology 215, 2000

TECHNIQUES AVAILABLE FOR PHASE CONTRAST IMAGING

Optimal radiation is monochromatic collimated, and coherent Xrays, presently available only at synchrotron radiation sources

Analyzer-Based Imaging (ABI)

13

Diffraction Enhanced Imaging: an algorithm for ABI

Carcinoma Medullare

- **1 Siemens Mammomat 3000 -23 kVp 5.6 mAs MGD=0.4 mGy**

- 2 ABI 25 keV minus 0.7 µrad Si(333) MGD= 0.6 mGy

- **3 Histology**

Keyriläinen et al. European Journal of Radiology 53, 226-237 (2005)

Breast cancer

- **1 1 Hospital scanner 2**
- **- 2 SR technique**
- **- 3 Histology (reality)**

3 collagen strands fat skin-muscle

Ca in collagen

Bravin et al. Phys.Med. Biol. 2007 52 (8) 2197

FIRST LOW DOSE CT DEMONSTRATION ON FULL MASTECTOMY

Conventional

Phase contrast (ABI)

MGD=6.9 mGy

MGD=1.9 mGy

Full breast : 8 cm 33 keV

Keyriläinen et al. Radiology, 2008

Breast-CT: PCI-CT vs conventional CT vs histology

PCI CT outperfoms conv. CT and it is in strong correlation with histology

Conventional Absorption

Histology

A. Sztrokay et al *Physics in Medicine and Biology*, 57(10) 2931 - 2942, 2012

LOW DOSE AND HIGH RESOLUTION HUMAN BREAST CT

High-resolution, low-dose phase contrast X-ray tomography for 3D diagnosis of human breast cancers

Yunzhe Zhao^{a,1}, Emmanuel Brun^{b,c,1}, Paola Coan^{cd}, Zhifeng Huang^a, Aniko Sztrókay^d, Paul Claude Diemoz^c,
Susanne Liebhardt^d, Alberto Mittone^c, Sergei Gasilov^c, Jianwei Miao^{a,2}, and Alberto Bravin^{b,2}

November 6, 2012 | vol. 109 | no. 45 | PNAS

Phase contrast CT + iterative reconstruction method $\log P = 2.0 \pm 0.1 \text{ mGy}$

Keyriläinen et al. Radiology, 2008 25 times dose saving vs clinical breast CT at same resolution

CT BASIC PRINCIPLES

3D image

Computing (reconstruction algorithms)

Optics Express You 22, <u>Issue 6</u>, pp. 5216-5221 (2014)

LOW DOSE CT

- **Breast imaging needs high resolution**
	- High number of projections for CT (Shannon Nyquist criterion):

$$
\text{Proj} = \frac{D\pi}{p\ 2}
$$

D: sample thickness P: pixel size

- **Can we reduce the number of projections?**

2 possible strategies :

- To reduce the number of projections for a CT data set:
	- Shannon-Nyquist criterion not valid anymore
- To reduce the number of photons onto the detector per each angular projection

REDUCING THE NUMBER OF PROJECTIONS OF A CT DATA SET

Using FBP: prone to the appearance of artefacts

- **Filtered Back Projection (FBP)**
- Simultaneous Iterative Reconstruction Technique (SIRT)
- Simultaneous Algebraic Reconstruction Technique (SART)
- Conjugate Gradient Least Squares (CGLS)
- Total Variation (TV) minimization
- Iterative FBP algorithm based on the image histogram updates
- **Equally Sloped Tomography (EST)**

S. Pacile et al, [Biomed Opt Express.](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4541534/) 2015 Aug 1; 6(8): 3099–3112

Table 4. Oualitative assessment of the considered images performed by expert supervisors.

0: worst case; 4: best image

All algorithms available in X-TRACT software: http://www.ts-imaging.net/Services/SignUp.aspx

S. Pacile et al, [Biomed Opt Express.](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4541534/) 2015 Aug 1; 6(8): 3099–3112

Observation:

- Real space image is in Cartesian grid while the Fourier space data is in Polar Grid
- There is no exact and direct FFT between polar and Cartesian Grid [1]

[1] Briggs, W.L., Henson V.E. The DFT: An owners' Manual for the Discrete Fourier Transform. SIAM, Philadelphia. 1995

Slides provided by Prof. P. Coan

EQUALLY SLOPED TOMOGRAPHY ALGORITHM

Frequency Domain (Pseudo-polar Grid)

=> **PSEUDO POLAR GRID**

- Grid points in the Fourier domain are lying on the **equally-sloped lines instead of equally-angled lines**
- N^{*}N Cartesian grid -> 2N^{*}2N Pseudo polar grid (PPG) points
- There exist a PPFFT between PPG and Cartesian Grid
	- algebraically exact
	- geometrically faithful
	- Invertible

Miao et al. Phys Rev B ,72 (2005)

27 *PNAS, Zhao, Brun, Coan et al., 109 (45) 6 Nov 2012*

Slides provided by Prof. P. Coan

Idea : "a polar like" grid that enables direct and exact Fourier transform => **PSEUDO POLAR GRID**

28 Miao et al. *Equally sloped tomography with oversampling reconstruction.* Phys Rev^{er},72 (2005)

EQUALLY SLOPED TOMOGRAPHY ALGORITHM: ITERATIVE ALGORITHM

EST iterative algorithm

Starts with the conversion of the projections to Fourier slices in the pseudo polar grid fractional FFT

Iterative process is initiated:

- •Inverse PPFFT is applied to the frequency data
- •A new object is obtained through constraints. Forward PPFFT onto modified image
- •Frequency data is updated with the measured Fourier slices

Real domain constraints:

- •Minimization of the coefficients
- •Real values as result
- $\frac{1}{2}$, $\frac{1}{2}$, $\frac{1}{2}$ (2005) as Rev B , $\frac{1}{2}$, $\frac{1}{2}$, $\frac{1}{2}$ Iterations are monitored by an error function

- \rightarrow On both synthetic and experimental data
- → Different Phase Contrast Imaging techniques Propagation-based
	- Propagation based imaging
	- Analyzer based imaging

Snigirev 1995, Wilkins 1995, Cloetens 1996

- \rightarrow Different clinical cases (FULL JOINTS or ORGANS):
	- **Breast imaging**
	- Musculoskeletal imaging

Slides provided by Prof. P. Coan

The European Synchrotron

The sinogram

Prof. P. Coan

Visual Comparison

Zoomed view in a 92 µm thick slice **an excised full human tumor bearing breast**

• FBP - 512 exhibits high noise degraded features and blurred boundary of the tumour

FBP

PNAS, Zhao, Brun, Coan et al., 109 (45) 6 Nov 2012

Result of reconstruction by EST 512projections

TITI

SIEMENS

Quantitative Comparison ESI

Blind Test made by 5 radiologists (Radiology department of Ludwig Maximilians University)

Radiologist were asked to mark form 1 (worst) to 5 (best) on the following criteria

Prof. P. Coan

3D CT breast tumor detection at high resolution and at a dose even lower then conventional 2D mammography (~3.5 mGy)!

Fourier based iterative Equally Slopped Tomography (EST) algorithm

25 times dose saving vs clinical breast CT at same resolution

PNAS, Zhao, et al., 109 (45) 6 Nov 2012

P. Coan

Summary

- 3D information of soft tissues at **higher resolution** and **better contrast**, but also deliver **less radiation** doses to the sample
- A step towards the clinical application of PCT for 3D screening and diagnosis of human breast cancer
- Very low dose **(<1mGy)** 3D imaging is possible if one is ready to loose a bit of spatial resolution and noise

PNAS, Zhao, Brun, Coan et al., 109 (45) 6 Nov 2012

Sparsity

image is intrinsically sparse when it can be approximated as a linear combination of a small number n of basis functions, with n=N, where N is the image dimensionality

Good case: when image has large constant parts: the basis can be small pieces varying only on the borders

How many patches?

mxm<< NxN (pixel size)

- Fast calculation
- Image not well reproduced
- Very low noise (noise has little sparsity)

mxm>> NxN (pixel size)

- **Heavy computation**
- Image well reproduced
- Very smooth transition at the patches borders if the patches are overlapping
- Also noise is reproduced, to be treated with a denoisy method

Submethods:

- **Dictionary learning**
- **Total Variation penalization (TV):** introduces a regularization parameter

All mathematics can be found in

A. Mirone, E. Brun, P. Coan. PlosOne, 9(12) e114325

Dictionary Learning reconstruction

- Idea of the method :
	- To create a database of patchworks starting from images close to the images to be reconstructed
	- To decompose the slice to be reconstructed in a patchwork of subimages
	- To express a given sub-image at position "*r"* as a linear combination of the basis patches
	- To find the solution which gives the maximum Likelihood by minimizing the number of entries in the dictionary
	- Minimization is done toggling between slice and sinogram
	- A regularization included to assure fidelity

Dictionary "learnt" from Lena image and used for reconstructing the image of interest

Noisy image

Denoised image

A. Mirone, E. Brun, P. Coan. PlosOne, 9(12) e114325

Prof. P. Coan

Prof. P. Coan *A. Mirone, E. Brun, P. Coan. PlosOne, 9(12) e114325*

• **Experiment :**

– 512*512 pixel Lena image

Reconstructing Lena

– 80 projections

• **Remark :**

– To avoid aliasing 800 projections should be used (Nyquist-Shanon sampling criterion)

Lena image to reconstruct

NO noise

80 projections

Results

Zoom views in two different image regions

Prof. P. Coan *A. Mirone, E. Brun, P. Coan. PlosOne, 9(12) e114325*

MU

Results

Noisy data

Additive White Gaussian Noise = 0.3% max of sinogram

80 projections

Zoom views in two different image regions

Additive White Gaussian Noise = 0.3% max of sinogram

Prof. P. Coan *A. Mirone, E. Brun, P. Coan. PlosOne, 9(12) e114325*

Direct comparison

Prof. P. Coan *A. Mirone, E. Brun, P. Coan. PlosOne, 9(12) e114325*

APPLICATION ON EXPERIMENTAL DATA

Prof. P. Coan **Prof. P.**

Reconstructing phase gradient images

Shannon criterion: 2335 projections (pixel: 47 microns)

Diameter: 7 cm

Prof. P. Coan

Vectorial Set of Patches

Set of 2* 7*7 pixels patches learnt from another breast sample

Prof. P. Coan

Phase Contrast Reconstruction using DL

Analyzer Based Imaging of a full (7cm) human tumor bearing breast tumor

Prof. P. Coan *A. Mirone, E. Brun, P. Coan. PlosOne, 9(12) e114325*

Closer Look

Small Structures are preserved in the Dictionary Learning reconstructions **Global Image quality is higher** in DL

Prof. P. Coan *A. Mirone, E. Brun, P. Coan. PlosOne, 9(12) e114325*

Tomographic reconstruction of the refractive index with hard X-rays: an efficient method based on the gradient vector-field approach

Sergei Gasilov, ^{1,*} Alberto Mittone, ^{1,2} Emmanuel Brun, ^{1,3} Alberto Bravin.³, Susanne Grandl.² Alessandro Mirone.³, and Paola Coan^{1,2}

Optics Express Vol. 22, [Issue 5,](https://www.osapublishing.org/oe/issue.cfm?volume=22&issue=5) pp. 5216-5227 (2014)

Phase retrieval converting the problem to Poisson equation, robust to noisy data

Boundary value problem for phase retrieval from unidirectional X-ray differential phase images

Sergei Gasilov, ^{1,*} Alberto Mittone, ^{2,3,4} Annie Horng, ⁴ Alberto Bravin, ³ Tilo Baumbach,¹ Tobias Geith,⁴ Maximilian Reiser,⁴ and Paola Coan^{2,4}

18 May 2015 | Vol. 23, No. 10 | DOI:10.1364/OE.23.013294 | OPTICS EXPRESS 13294

Application of a finite element technique to solve The boundary value problem in phase retrieval

On the possibility of quantitative refractive-index tomography of large biomedical samples with hard X-rays

Sergei Gasilov, ^{1,*} Alberto Mittone, ^{1,3} Emmanuel Brun, ^{1,2}
Alberto Bravin, ² Susanne Grandl, ³ and Paola Coan^{1,3}

1 September 2013 | Vol. 4, No. 9 | DOI:10.1364/BOE.4.001512 | BIOMEDICAL OPTICS EXPRESS 1512

PhC vs conventional CT: accuracy in refraction Index calculation in noisy data

A single-image method for x-ray refractive index CT

A Mittone^{1,2,4}, S Gasilov^{1,3}, E Brun^{1,4}, A Bravin⁴ and P Coan^{1,2}

Phys. Med. Biol. 60 (2015) 3433-3440

Fast and low dose phase retrieval using a single Image dataset

The problem of the radiation delivered

How to perform fast dose simulations?

Conventional Monte Carlo Long computational time

- **The track-length estimator (TLE)**
- **Electrons production cut**

How to perform fast dose simulations?

- **It requires fewer particles to converge**
- **Works when electron range is < spatial resolution (<100 keV)**
	- **No significative energy escape (radiative, atomic deexcitation): Z<20; E<1 MeV**

The TLE code (C++) has been integrated in GATE (Geant4)

COMPARISON WITH STANDARD MONTE CARLO METHOD

TLE Method8,9 **Standard Monte Carlo 10⁷ events on segmented CT data of experimental breast sample**

⁸**A. Mittone** et al, *J. Synchrotron Radiat.* 2013. ⁹F. Baldacci, **A. Mittone** et al, *Z. Med. Phys.*, 2015.

DOSE DATABASE FOR BREAST IMAGING¹⁰

Estimation of the average dose in a breast (monochromatic radiation):

- -Range of energy: 15-100 keV
- -Different geometries (thickness)
- -Different compositions (fraction of glandular tissue)

A. Mittone et al, Phys. Med. Biol. **59** (2014) 2199–2217.

SELECTED BIBLIOGRAPHY OF MAMMOGRAPHY AT ID17-ESRF

Page ⁵⁸. Diemoz, M. Endrizzi, *Physical Review Letters 110, 138105 (2013)* S Fiedler, A Bravin, *Physics in Medicine and Biology 49 175-188 (2004)* M. Fernández, J. Keyriläinen, *Spectroscopy 18 (2004) 167–176* J. Keyriläinen, M. Fernández, *European Journal of Radiology, 53, 226-237 (2005)* M. Fernandez, J. Keyrilainen, *Phys. Med. Biol. 50 (2005) 2991–3006* A. Bravin, J. Keyriläinen, *Phys. Med. Biol. 52 (8) 2197–2211 (2007)* J Keyriläinen, M Fernández, *Radiology, 2008: 249 (1) 321-327* Fernández [M, Suhonen](http://www.ncbi.nlm.nih.gov/pubmed/18614314?ordinalpos=4&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum) H, *Eur J Radiol. 68S (2008) S89-S94* Keyriläinen J., Fernández M., *Journal of Synchrotron Radiation 18, 689-696 (2011)* Sztrókay A, Diemoz PC, *Phys Med Biol. 2012 May 21;57(10):2931-42. Epub 2012 Apr 20.* Y. Zhao, E. Brun, *PNAS 2012, November 6, vol. 109, no. 45, 18290–18294* P Coan, A Bravin *J. Phys. D: Appl. Phys. 46 (2013) 494007* A Mittone, A Bravin *Phys. Med. Biol. 59 (2014) 2199–2217* E. Brun, S. Grandl, *Medical Physics 41, 111902 (2014)* K. Bliznakova, P. Russo, *Computers in Biology and Medicine, 61 (2015) 62-74* S Grandl, A Sztrókay-Gaul, *PLOSONE 2016 Jun 30;11(6):e0158306.* [Bliznakova K., Kamarianakis Z.,](https://epn-library.esrf.fr/flora/jsp/search/search_reference.jsp?sourceRecord=doc:PUB_ESRF:44587&targetRecord=doc:AUTEUR:115497&esrf_search_type=esrf_search_type_esrf) *[IFMBE Proceedings,](https://epn-library.esrf.fr/flora/jsp/search/search_reference.jsp?sourceRecord=doc:PUB_ESRF:44587&targetRecord=doc:NOTICES:50712&esrf_search_type=esrf_search_type_esrf) 57, 367-371 (2016)* Bliznakova K., Mettivier G., *Lecture Notes in Computer Science 9699, 611-617(2016)* Bliznakova K., Russo P., *Physics in Medicine and Biology 61, 6243-6263(2016)* J. Keyrilainen, A. Bravin, *Acta Radiologica 2010 51 (8) 866-884* Gasilov S, Mittone A, *Opt Express. 2014 Mar 10;22(5):5216-27. doi: 10.1364/OE.22.005216.* A. Mirone, E. Brun *PLOS ONE 2014 vol.9, art 0114325. DOI:10.1371/journal.pone.0114325* [Baldacci F,](http://www.ncbi.nlm.nih.gov/pubmed?term=Baldacci F[Author]&cauthor=true&cauthor_uid=24973309) [Mittone](http://www.ncbi.nlm.nih.gov/pubmed?term=Mittone A[Author]&cauthor=true&cauthor_uid=24973309) A, *[Z Med Phys.](http://www.ncbi.nlm.nih.gov/pubmed/24973309) 2015 Mar;25(1):36-47* A. Mittone, S. Gasilov, *Physics in Medicine and Biology60 (2015) 3433–3440* Gasilov S, Mittone A, *Opt Express. 2015 May 18;23(10):13294-308.* S. Gasilov, A. Mittone, *Biomedical Optics Express 2013 Vol. 4, No. 9 1512-1518* A. Mittone, F. Baldacci, *J. Synchrotron Rad. (2013) 20, 785–792* A. Olivo, P. C. Diemoz, and A. Bravin *Optic Letters (2012) Vol. 37, No. 5*

