

The Breast Tomography Project University of California, Davis

John M. Boone, Ph.D., FAAPM, FSBI, FACR, FAIMBE, FSPIE Professor of Radiology Chief of Medical Physics Professor of Biomedical Engineering University of California, Davis Sacramento, California

CONSULTANT

Jones Day (expert witness) Arnold & Porter (expert witness)

RESEARCH FUNDING

National Cancer Institute (R01) Stanford Research Institute (via NIH R01 subcontract) UC Santa Barbara (via NIH R01 subcontract)

ROYALTIES

Lippincott Williams and Wilkins (book)

TRAVEL FUNDING

American Association of Physicists in Medicine (AAPM) King Faisal Hospital ● Saudi Arabia

OTHER CONFLICTS

Patents Pending on various breast CT concepts Izotropic Imaging, board member

Long Term Funding Acknowledgements:

R01 CA•89260 (Feasibility) R01 EB•002138-10 (BRP) R01 CA•129561 (RDB) R01 CA•181081 (Current NIH) P30 CA•093373 (Cancer Center) California BCRP 7EB-0075 California BCRP 11I-0114 California BCRP 20IB-0125 (Merced) Susan G. Komen Foundation University of Pittsburgh Varian Imaging Systems UC Davis Bridge Funding

Introduction

Technology Development Radiation Dose Assessment Image Quality Metrics Clinical Observations Observer Performance Other Cool Spinoffs Summary

John Boone

Karen Lindfors

Tony Seibert

Shadi Shakeri

Craig

Abbey

Norbert

Ramsey Pelc Badawi

Simon Cherry

Martin Yaffe

Jeff

Siewerdsen

Loren

Niklason

Lin

Chen

Maryellen Giger

Kai Orlando Velazquez Yang

Clare Huang

Nathan Packard

Katie Metheany

Whit Miller

Dandan

Zheng

Shonket Ray

Anita Nosratieh

Sarah McKenny Nicolas Prionas

Peymon

Gazi

Laurie

Boling

Desiree

Lazo

Amy Becker

Holly

Murphy

Nilram

Halat

Jessie Xia

Fareedah Simon

Linda Phelps

Elizabeth Lincoln

Hayduk

Floyd

Bruce Hasegawa

George

Alex

Zhou

Burkett

Heather

Nelson

Krupinski

John Brock

Cancer Mortality and Screening

Mammography: Standard of Care

CC

MLO

Dedicated Breast CT

Dedicated Breast CT

Mammography

Introduction

Technology Development Radiation Dose Assessment Image Quality Metrics Clinical Observations Observer Performance Other Cool Spinoffs Summary

Introduction

- Technology Development
 - **Radiation Dose Assessment**
 - **Image Quality Metrics**
 - **Clinical Observations**
 - **Observer Performance**
 - **Other Cool Spinoffs**
 - Summary

Hardware

Components

Doheny: Design

Gantry Views

George Burkett, M.S.

Computer aided design / computer aided manufacture (CAD/CAM)

Doheny: Mechanical Fabrication

Doheny: Wiring

before

Introduction

- Technology Development
 - **Radiation Dose Assessment**
 - **Image Quality Metrics**
 - **Clinical Observations**
 - **Observer Performance**
 - **Other Cool Spinoffs**
 - Summary

Software Integration

Software: Hardware Integration

Peymon Gazi, Ph.D.

DOHENY

Filter and Collimator stepper motors

console computer recon computer

Introduction

- Technology Development
 - **Radiation Dose Assessment**
 - **Image Quality Metrics**
 - **Clinical Observations**
 - **Observer Performance**
 - **Other Cool Spinoffs**
 - Summary

Calibration Software

Calibration(s)

Automatic acquisition (QC software) of 11 different exposure levels to detector (each with 100 averaged images)

mΑ

23

$$I(x, y)_{corr} = \overline{g} \quad \frac{\left[I(x, y)_{raw} - A_{raw}(x, y)\right]}{\left[B(x, y) - A(x, y)\right]}$$

calibration data files

Corrected (flat fielded)

Calibration(s)

Geometric calibration: System → software

detector plane

Х

$$u_{wr} = y_{obj} \cdot \frac{D + u_{wr} \cdot \sin \phi}{C + x_{obj}} \cdot \frac{1}{\cos \phi}, \ v_{wr} = z_{obj} \cdot \frac{D + u_{wr} \cdot \sin \phi}{C + x_{obj}}.$$

Geometric calibration: System → software

 $X_{center ray}$ $Y_{center ray}$ Δx Δy SIC

Physical scanner geometry **—** Reconstruction algorithm

Multi-Source X-ray to reduce Cone Beam Artifacts

Multi-source x-rays

detector

Multi-Source X-ray to reduce Cone Beam Artifacts

Defrise Phantom: One X-Ray Source

One X-Ray Source, Line Plot Defrise Phanton

Individual source acquisitions

Corgi Phantom

Cadaver Breast

One Source

Difference Image

Introduction

- Technology Development
 - **Radiation Dose Assessment**
 - **Image Quality Metrics**
 - **Clinical Observations**
 - **Observer Performance**
 - **Other Cool Spinoffs**

Summary

Reconstruction & Post-processing

FDK Reconstruction Code

High Scatter environment

Cupping Artifact

Mathematical Flat Fielding of Breast CT images

$$\mathbf{g}_{\mathrm{A}} = \mathbf{Q}_{\mathrm{A}} \boldsymbol{\beta} + \boldsymbol{\varepsilon}$$

original image

segmented image $\mathbf{Q}_{\mathrm{A}} = \begin{bmatrix} \mathbf{1} & \mathbf{x}_{\mathrm{A}} & \mathbf{y}_{\mathrm{A}} & \mathbf{z}_{\mathrm{A}} & \mathbf{x}_{\mathrm{A}}\mathbf{y}_{\mathrm{A}} & \mathbf{x}_{\mathrm{A}}\mathbf{z}_{\mathrm{A}} & \mathbf{y}_{\mathrm{A}}\mathbf{z}_{\mathrm{A}} & \mathbf{x}_{\mathrm{A}}^{2} & \mathbf{y}_{\mathrm{A}}^{2} & \mathbf{z}_{\mathrm{A}}^{2} \end{bmatrix}$

capping

cupping

corrected

Introduction

- Technology Development
 - **Radiation Dose Assessment**
- **Image Quality Metrics**
- **Clinical Observations**
- **Observer Performance**
- **Other Cool Spinoffs**

Spectral Optimization

Summary

Spectral Optimization:

- Physical measurements
- Tube potential and filtration studies
- Soft tissue (adipose/glandular)
- Iodine contrast (iodine/adipose)

Spectral Optimization:

- Modeled spectra using TASMICS
- Dose calculated from Monte Carlo studies

Contrast to Noise evaluation

$$CNR = [M_{signal} - M_{bg}] / \sigma_{bg}$$

Soft Tissue CNR

Iodine CNR

Introduction **Technology Development Radiation Dose Assessment Image Quality Metrics Clinical Observations Observer Performance Other Cool Spinoffs Summary**

Introduction

Technology Development

Radiation Dose Assessment

Image Quality Metrics

Clinical Observations

Observer Performance

Other Cool Spinoffs

Summary

Phase 1: Cylinders

Radiation dose is size dependent!

2001 tape measure results (N = 200)

X = 13.4 cm σ = 2.0 cm Median = 13.6 cm

2008 assessment on bCT images (N = 137)

Monte Carlo Assessment of Dose Deposition

monoenergetic functions

Breast CT Dose (UCD) equivalent to 2-view mammography

polyenergetic functions

Radiation Dose (2003)

A comprehensive analysis of DgN_{CT} coefficients for pendant-geometry cone-beam breast computed tomography

J. M. Boone^{a)}

Department of Radiology, U.C. Davis Medical Center, 4701 X Street, X-ray Imaging Laboratory and Department of Biomedical Engineering, Sacramento, California 95817

N. Shah

Department of Radiology, U.C. Davis Medical Center, 4701 X Street, X-ray Imaging Laboratory, Sacramento, California 95817

T. R. Nelson

Department of Radiology, University of California, San Diego, California 92037

Introduction

Technology Development

Radiation Dose Assessment

Image Quality Metrics

Clinical Observations

Observer Performance

Other Cool Spinoffs

Summary

Phase 2: Breast Shapes

219 Breast CT data sets

categorized by breast volume placed into 5 groups (43 per)

Each group used to compute median shape

V1 - V2 - V3 - V4 - V5

Six phantoms (V1-V6)

Mean volume and shape in each quintile

Monte Carlo Assessment of Dose Deposition

monoenergetic functions

realistic breast shaped modeled

Average glandular dose coefficients for pendant-geometry breast CT using realistic breast phantoms

Andrew M. Hernandez

Department of Radiology, Biomedical Engineering Graduate Group, University of California Davis, Sacramento, CA 95817, USA

John M. Boone^{a)}

Departments of Radiology and Biomedical Engineering, University of California Davis, Sacramento, CA 95817, USA

(Received 17 March 2017; revised 6 June 2017; accepted for publication 26 June 2017; published 20 August 2017)

spectral model(s)

MC-derived monoenergetic DgN_{CT} values

Introduction

Technology Development

Radiation Dose Assessment

Image Quality Metrics

Clinical Observations

Observer Performance

Other Cool Spinoffs

Summary

Phase 3: Skin & density distributions

The effect of skin thickness determined using breast CT on mammographic dosimetry

Shih-Ying Huang, John M. Boone,^{a)} and Kai Yang

Department of Biomedical Engineering, University of California, One Shields Avenue, Davis, California 95616 and Department of Radiology, X-Ray Imaging Laboratory, U.C. Davis Medical Center, 4701 X Street, Sacramento, California 95817

Alexander L. C. Kwan

Department of Radiology and Diagnostic Imaging, Division of Imaging Sciences, Research Transition Facility, University of Alberta, 8308-114 Street, Room 4105, Edmonton, Alberta T6G 2E1, Canada

Nathan J. Packard

Department of Biomedical Engineering, University of California, One Shields Avenue, Davis, California 95616 and Department of Radiology, X-Ray Imaging Laboratory, U.C. Davis Medical Center, 4701 X Street, Sacramento, California 95817

(Received 24 October 2007; revised 15 January 2008; accepted for publication 17 January 2008; published 6 March 2008)

Computed skin thickness for 100 women

Skin thickness ~ 1.5 mm

The characterization of breast anatomical metrics using dedicated breast CT

Shih-Ying Huang^{a)} and John M. Boone^{b)}

Department of Biomedical Engineering, University of California–Davis, One Shields Avenue, Davis, California 95616 and Department of Radiology, University of California–Davis Medical Center, 4860 Y Street, Ambulatory Care Center Suite 3100, Sacramento, California 95817

Kai Yang

Department of Radiology, University of California–Davis Medical Center, 4860 Y Street, Ambulatory Care Center Suite 3100, Sacramento, California 95817

Nathan J. Packard

Carestream Health, Inc., 1049 West Ridge Road, Rochester, New York 14615

Sarah E. McKenney and Nicolas D. Prionas

Department of Biomedical Engineering, University of California–Davis, One Shields Avenue, Davis, California 95616 and Department of Radiology, University of California–Davis Medical Center, 4860 Y Street, Ambulatory Care Center Suite 3100, Sacramento, California 95817

Karen K. Lindfors

Department of Radiology, University of California–Davis Medical Center, 4860 Y Street, Ambulatory Care Center Suite 3100, Sacramento, California 95817

Martin J. Yaffe

Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, S-Wing, Room S6-57, Toronto, Ontario M4N 3M5, Canada

(Received 17 September 2010; revised 23 February 2011; accepted for publication 24 February 2011; published 28 March 2011)

Glandular tissue distributions (coronal plane)

Glandular tissue distributions (sagittal plane)

bra cup size: A,B,C,D Modeled Radial Glandular Fractions in compressed phantoms → Mammography Dosimetry

Validating Methodology

DgN(E): homogeneous vs. heterogeneous

Breast dose in mammography is about 30% lower when realistic heterogeneous glandular distributions are considered

Andrew M. Hernandez^{a)} Biomedical Engineering Graduate Group, University of California Davis, Sacramento, California 95817

J. Anthony Seibert and John M. Boone Departments of Radiology and Biomedical Engineering, Biomedical Engineering Graduate Group, University of California Davis, Sacramento, California 95817

(Received 22 April 2015; revised 11 August 2015; accepted for publication 15 September 2015; published 9 October 2015)

realistic breast shaped modeled

Back to Breast CT Dosimetry

Updated breast CT dose coefficients (DgNCT) using patientderived breast shapes and fibroglandular distributions

Submitted to Medical Physics Sept 2018

Introduction **Technology Development Radiation Dose Assessment Image Quality Metrics Clinical Observations Observer Performance Other Cool Spinoffs Summary**

Introduction

Technology Development

Radiation Dose Assessment

Image Quality Metrics

Clinical Observations

Observer Performance

Other Cool Spinoffs

Summary

Spatial Resolution

Performance Metrics

Spatial Resolution

Image a 70 μ m wire

$$LSF(x) = \int PSF(x, y) dy$$
$$MTF(f) = \int dx \, LSF(x) \, e^{-2\pi i f x}$$

spatial resolution modeling

Engineering impacts resolution

Engineering impacts resolution pulsed acquisition (4 ms)

1.0 Center of FOV 0.9 0.8 0.7 0.6 Ц 0.5 0.4 Cambria 0.3 0.2 1.0 0.1 0.9 0.0 0.8 3.0 0.0 1.0 2.0 4.0 Spatial Frequency (lp/mm) 0.7 0.6 Ц 0.5 0.4 Cambria Edge of FOV 0.3 0.2 0.1 0.0 0.0 1.0 2.0 3.0 4.0 Spatial Frequency (lp/mm)

Introduction

Technology Development

Radiation Dose Assessment

Image Quality Metrics

Clinical Observations

Observer Performance

Other Cool Spinoffs

Summary

Noise Power Spectra

Performance Metrics

Contrast Resolution

Contrast Resolution: NPS measurements

$$NPS(u,v) = \frac{\left|F(u,v)\right|^2}{N_X N_Y} \Delta_X \Delta_Y$$

cone angle

Noise Power Spectrum (NPS) measurements (Bodega)

Yang et al., Noise power properties of a cone beam CT system for breast cancer detection, Med Phys. 2008

Noise Power Spectrum (NPS) Analysis

• Detrending using image subtraction with identical parameters

 $K(x,y) = I_{\rm A}(x,y) - I_{\rm B}(x,y)$

$$NPS(f_{\rm x}, f_{\rm y}) = \frac{1}{N} \frac{\sum_{i=1}^{N} \left| \text{DFT}_{2\rm D}[K_{\rm i}(x, y) - \overline{K}_{\rm i}] \right|^2}{2} \frac{\Delta_{\rm x} \Delta_{\rm y}}{N_{\rm x} N_{\rm y}}$$

32 ROIS [128 x 128]

$$\sigma^2 = \iiint NPS(f_x, f_y) df_x df_y$$

Noise Power Spectrum (NPS) Analysis

Introduction

Technology Development Radiation Dose Assessment

Image Quality Metrics

Clinical Observations

Observer Performance

Other Cool Spinoffs

Summary

Introduction

Technology Development

Radiation Dose Assessment

Image Quality Metrics

Clinical Observations

Observer Performance

Other Cool Spinoffs

Summary

Preliminaries

Before Patient Imaging

Introduction

Technology Development

Radiation Dose Assessment

Image Quality Metrics

Clinical Observations

Observer Performance

Other Cool Spinoffs

Breast CT images

Summary

Clinical Studies

- BIRADS 4 and 5 women (headed to biopsy)
- >600 patients imaged over several clinical trials
- ~275 patients with iodine contrast
- Past: (1024 x 768) 500 views over 360° 512 x 512 x N reconstruction
- Now: (2048 x 1536) 500 views over 360° 1024 x 1024 x N reconstruction
 - 150 um isotropic voxels

first breast cancer imaged: January 2005

Contrasted Enhanced breast CT

Malignant

benign

SNM

Invasive Mammary Carcinoma

92

Introduction

Technology Development

Radiation Dose Assessment

Image Quality Metrics

Clinical Observations

Observer Performance

Other Cool Spinoffs

Summary

clinical comparisons

Clinical Example 1: Masses

Clinical Example 2: Masses

Clinical Example 3: calcs

mammogram

bCT

С.

d.

f.

g.

Clinical Example 4: more calcs

Temporal subtraction contrast-enhanced dedicated breast CT

Peymon M Gazi^{1,2}, Shadi Aminololama-Shakeri², Kai Yang³ and John M Boone^{1,2}

¹ Department of Biomedical Engineering, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA

² Department of Radiology, University of California, Davis Medical Center,

4860 Y street, Suite 3100 Ellison Building, Sacramento, CA 95817, USA

³ Department of Radiology, Massachusetts General Hospital, 55 Fruit Street Boston, MA 2114, USA

E-mail: john.boone@ucdmc.ucdavis.edu

Received 1 February 2016, revised 12 June 2016 Accepted for publication 27 June 2016 Published 5 August 2016

Pre-contrast bCT (time 0) Post-contrast bCT (time 90 secs)

Case 1 Case 3 Case 4 Case 5 Case 2 335 1100 500 335 pre-con ΠH H HU HU HU Ipost-con -190 -300 -200 -500 190 4 4 4 I seg-post 2 200 0 120 140 140 95 sub-a £ I I I Isub-IDAD -50 30 -35

Subtraction Examples

better quantitation

Introduction

Technology Development Radiation Dose Assessment Image Quality Metrics Clinical Observations Observer Performance Other Cool Spinoffs

Summary

Introduction

Technology Development

Radiation Dose Assessment

Image Quality Metrics

Clinical Observations

Observer Performance

Other Cool Spinoffs

Summary

Anatomical Noise

A. E. Burgess, F. L. Jacobson, and P. F. Judy, "Human observer detection experiments with mammograms and power-law noise," Med. Phys. 28, 419–437 (2001).

 $NPS(f) = NPS_a(f) + NPS_q(f)$

 $NPS_{a}(f) = \alpha f^{-\beta}$

Breast CT, Tomosynthesis, and Mammography Texture Comparisons

Use breast CT images to generate images of different thickness

Anatomical complexity in breast parenchyma and its implications for optimal breast imaging strategies

Lin Chen

Biomedical Engineering Graduate Group, University of California Davis, Sacramento, California 95817

Craig K. Abbey Department of Psychology, University of California Santa Barbara, Santa Barbara, California 93106

Anita Nosratieh Biomedical Engineering Graduate Group, University of California Davis, Sacramento, California 95817

Karen K. Lindfors Department of Radiology, University of California Davis, Sacramento, California 95817

John M. Boone^{a)}

Department of Radiology, University of California Davis and Department of Biomedical Engineering, University of California Davis, Sacramento, California 95817

Use breast CT images to generate images of different thickness

Anatomical complexity in breast parenchyma and its implications for optimal breast imaging strategies

Lin Chen

Biomedical Engineering Graduate Group, University of California Davis, Sacramento, California 95817

Craig K. Abbey Department of Psychology, University of California Santa Barbara, Santa Barbara, California 93106

Anita Nosratieh

Biomedical Engineering Graduate Group, University of California Davis, Sacramento, California 95817

Karen K. Lindfors

Department of Radiology, University of California Davis, Sacramento, California 95817

John M. Boone^{a)}

Department of Radiology, University of California Davis and Department of Biomedical Engineering, University of California Davis, Sacramento, California 95817

Comprehensive assessment of the slice sensitivity profiles in breast tomosynthesis and breast CT

Anita Nosratieh

Biomedical Engineering Graduate Group, Department of Radiology, University of California, Davis, California 95817

Kai Yang and Shadi Aminololama-Shakeri

Department of Radiology, University of California, Davis, California 95817

John M. Boone^{a)} Department of Radiology and Department of Biomedical Engineering, University of California, Davis, California 95817

(Received 2 February 2012; revised 12 October 2012; accepted for publication 15 October 2012; published 26 November 2012)

Anita Nosratieh

Tomographic slice thickness as a function of angle and object size

Tomographic slice thickness as a function of angle and object size

Breast CT, Tomosynthesis, and Mammography Texture Comparisons

Mammography

55 mm

Breast CT Images

55 mm

Tomosynthesis

55 mm

Breast CT: Technology development and clinical potential

Introduction

Technology Development

Radiation Dose Assessment

Image Quality Metrics

Clinical Observations

Observer Performance

Other Cool Spinoffs

Summary

Computer Observer

Computer (PWMF) Observer Performance

Effect of slice thickness on detectability in breast CT using a prewhitened matched filter and simulated mass lesions

Nathan J. Packard Carestream Health Inc., Rochester, New York 14615

Craig K. Abbey Department of Psychology, University of California, Santa Barbara, California 93106

Kai Yang

Department of Radiology, University of California Davis Medical Center, Sacramento, California 95817

John M. Boone^{a)}

Department of Radiology, University of California Davis Medical Center, Sacramento, California 95817 and Department of Biomedical Engineering, University of California, Davis, California 95616

(Received 11 April 2011; revised 22 December 2011; accepted for publication 25 January 2012; published 14 March 2012)

Signal Known Exactly (SKE)

Evaluated versus slice thickness (from 0.4 mm to 44 mm)

bCT "mammo"

Real breast CT data sets (N=151)

Simulated Spherical Lesions from 1 mm to 15 in diameter

2

Distance From Edge (mm)

40%

20%

Simulated lesion insertion into real breast **CT data sets with different slice thickness**

 $f_{sim}[i, j, k] = f[i, j, k] + \Delta I M_{TR}(d[i, j, k]) M([D/2] - d_{IC}[i, j, k])$

adaptive lesion insertion model

no lesion

other lesion insertion models

Modulation

Lesion

Intensity

(blurring)

U

Pre-whitened Matched Filter (PWMF) Performance

Breast CT: Technology development and clinical potential

Introduction

Technology Development

Radiation Dose Assessment

Image Quality Metrics

Clinical Observations

Observer Performance

Other Cool Spinoffs

Summary

Human Observers

2-Alternative Forced Choice Design

~6000 lesions: average of 3 breast imaging radiologists

Shadi Shakeri

Karen Lindfors

E...

AUC = 0.87

0 10 20 30 40 50 60 70

Enhancement (HU)

Benign Malignant

EVIE

European Journal of Radiology

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/ejrad

Differentiation of ductal carcinoma in-situ from benign micro-calcifications by dedicated breast computed tomography

Shadi Aminololama-Shakeri^{a,*}, Craig K. Abbey^{c,3}, Peymon Gazi^{a,1}, Nicolas D. Prionas^{a,1}, Anita Nosratieh^{d,1}, Chin-Shang Li^{b,2}, John M. Boone^{a,1}, Karen K. Lindfors^{a,1}

80 90 100 110 120

^a Department of Radiology, University of California Davis Medical Center, 4860 Y Street, Suite 3100, Sacramento, CA 95817, United States
^b Department of Public Health Sciences, Division of Biostatistics, MS1C Room 145, University of California, Davis, CA 95616, United States
^c Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA 93106, United States
^d Center for Devices and Radiological Heath, Food and Drug Administration, Wash DC, United States

ROC performance plots for CE-bCT

Reader 1: $AUC = 0.98 \pm 0.022$; Reader 2: $AUC = 0.92 \pm 0.042$ Comparison of the AUC from measured lesion enhancement to the average AUC of the two readers

Performance was significantly higher for the radiologists compared to the enhancement values alone (AUC of 0.94 compared to 0.85, p < 0.026).

Breast CT: Technology development and clinical potential

Introduction

Technology Development Radiation Dose Assessment Image Quality Metrics Clinical Observations Observer Performance Other Cool Spinoffs

Summary

Image Segmentation

3D segmented data set

analysis

Classification of breast computed tomography data

Thomas R. Nelson^{a)} and Laura I. Cerviño Department of Radiology, University of California, San Diego, La Jolla, California 92037-0610

John M. Boone and Karen K. Lindfors

University of California Davis Medical Center, 4860 Y Street, Ambulatory Care Center Suite 3100, Sacramento, California 95817

(Received 25 September 2006; revised 10 January 2008; accepted for publication 11 January 2008; published 26 February 2008)

Original bCT Slice

Segmented bCT Slice

Composite bCT Slice

An unsupervised automatic segmentation algorithm for breast tissue classification of dedicated breast computed tomography images

Marco Caballo

Department of Radiology and Nuclear Medicine, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands

John M. Boone

Department of Radiology and Biomedical Engineering, University of California Davis Health, 4860 "Y" street, suite 3100 Ellison building, Sacramento, CA 95817, USA

Ritse Mann

Department of Radiology and Nuclear Medicine, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands

Ioannis Sechopoulos^{a)}

Department of Radiology and Nuclear Medicine, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands Dutch Expert Center for Screening (LRCB), PO Box 6873, 6503 GJ Nijmegen, The Netherlands

(Received 18 December 2017; revised 27 February 2018; accepted for publication 4 April 2018; published xx xxxx xxxx)

Breast Density Analysis

risk assessment & dosimetry validation of 2D approaches (M. Yaffe)

Breast Density (amplitude)

The myth of the 50-50 breast

M. J. Yaffe^{a)} Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario M4N 3M5, Canada

J. M. Boone and N. Packard UC Davis Medical Center, University of California-Davis, Sacramento, California 95817

O. Alonzo-Proulx Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario M4N 3M5, Canada

S.-Y. Huang UC Davis Medical Center, University of California-Davis, Sacramento, California 95817

C. L. Peressotti Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario M4N 3M5, Canada

A. Al-Mayah and K. Brock University Health Network, University of Toronto, Toronto, Ontario M5G 2M9, Canada

(Received 30 April 2009; revised 23 September 2009; accepted for publication 29 September 2009; published 5 November 2009)

Breast Density (amplitude)

Median VBD = 16%

2.5% loss in breast density every decade

Beam Shaping Filter

3D BMF

V3 Phantom

Six phantoms (V1-V6)

Mean volume and shape in each quintile

- Physical Dosimetry
- Image Quality Assessment
- Mold for breast immobilization

Aquaplast[®] thermoplastic

hot water bath

molding

breast immobilizer

Breast Immobilization & Beam Equalization

Breast Alignment System

Titanium 3D Beam Modulation Filter

source-to-filter distance = 8 cm

V3 phantom
Implementation on bCT Platform

Clinical Workflow

MC Simulation Results: Projection

V3 phantom

MC Simulation Results: Projection

V3 phantom

MC Simulation Results: SPR

V3 phanto	m
-----------	---

	SPR _{central}		
V1	- 11.5%		
V3	-28.1%		
V5	-29.4%		

MC Simulation Results: SPR

V3 phantom

MC Simulation Results: Glandular Dose

• Normalized to number of quanta reaching detector under thickest region of the breast:

mGy / 10 ⁹ photon	No Filter	3D BMF	Change
V1	26	17	-34%
V3	45	25	-45%
V5	56	34	-40%

Breast CT: Technology development and clinical potential

Introduction

Technology Development Radiation Dose Assessment Image Quality Metrics Clinical Observations Observer Performance Other Cool Spinoffs

Summary

- Breast CT has superior mass detection than mammography, based upon texture analysis, computer and human observer studies
- CE breast CT highlights malignant calcifications and is likely equivalent to CE-breast MRI
- Breast CT is FDA approved for diagnostic breast imaging, need to push the technology to achieve superior screening performance
- Breast CT is an emerging technology which will have an important role in reducing breast cancer mortality in the near future.

Future Work:

- Implement beam shaping filter with breast immobilization system
- Compare high resolution non-contrast bCT with mammography for microcalcification detection performance
- Compare CE-bCT with CE-breast MRI for cancer detection performance

University of California Davis

