

Horizon 2020 European Union funding for Research & Innovation

Three dimensional breast cancer models for X-ray imaging research

Development of breast tumours models database

Kristina Bliznakova

*

University of Naples – Federico II Italy

Laboratory of Computer Simulations in Medicine

Maxima team

location 🕲

The place

Outline

- Why realistic models of abnormalities?
- Our approach and advances
- Exploitation of results in practice

Earlier validation studies

Earlier validations

? Anthropomorphic breast phantoms ?

Creation of a Breast Model

Tool for creation of breast models.

- ✓ Shape✓ Size
- ✓ Glandular tissues
- ✓ Adipose tissue
- ✓ Skin
- ✓ Abnormalities

Breast Modelling						×
Breast Design						
Component:	ouct System			Extern	nal Shape	Preview
Duct System Major ducts		ducts	: Lactiferous ducts :			
×0: -14.50 mm	number:	5	1	number:	5	
y0: 0.000 mr	n height:	1.000	mm max	height:	6.000	mm
z0: -2.000 mr	n radius:	2.000	mm limi	t height:	2.200	mm
phi: -10.00	color:			radius:	0.120	mm
thita: -10.00	att_coeff:	0.060	mm ⁻¹ lobule	e radius:	0.500	mm
Generate Breast Model						
Generated Data						
Duct trees:	1200		Initial duct radius:			DO
	1208			raulus.	0.7.	20 mm
Ellipsoids:	4		Initial lenght	radius: radius:	6.0	20 mm 30 mm
Ellipsoids: Total objects:	4	Min	Initial lenght Max texture	radius: values:	6.0) 0.01(20 mm 00 mm 0 / 0.050
Ellipsoids: Total objects:	4 4526	Min M	Initial lenght I/Max texture Iin/Max matrix	radius: values: values: value:	6.0 0.010 0	20 mm 00 mm 0 / 0.050 / 0.8
Ellipsoids: Total objects: Breast Parameter Ev	4 4526 aluation	Min M	Initial lenght I/Max texture Iin/Max matrix	radius: values: value:	6.0 0.010 0	20 mm 20 mm 2 / 0.050 / 0.8
Ellipsoids: Total objects: Breast Parameter Ev Breast volume:	4 4526 aluation 1.428380E-	Min M ⊦0005	Initial lenght I/Max texture lin/Max matrix mm ³	radius: values: value: Glandula	0.01 0.01 0 ar: Fatty	20 mm 00 mm 0 / 0.050 / 0.8

BreastSimulator

Anthropomorphic phantom

Modeled breast phantom

Compressed breast phantom

Phantom Analytical Image Simulation Visualization Tools Window Help

Breast shape – Clear resin; Glandular tree – Clear resin;

Anthropomorphic phantoms

Animal fat;
Thickness – 31 mm;
Wall thickness – 1.7 mm.

Physical phantoms

Courtesy Danail Ivanov et al, FOCHOS, 2016

? Realistic in shape, size and absorption properties tumors

Outline

- Why realistic models of abnormalities?
- Our approach and advances
- Exploitation of results in practice

The Maxima objective

• The **main objective** of the project is to increase the research and innovation capacity of the host organisation in the field of computational modelling of breast tumours and their use in studies of advanced x-ray breast imaging techniques such as breast tomosynthesis and phase contrast imaging.

To develop

the MaXIMA Breast Tumours Models' Database, which is intended to provide researchers with computerbased breast tumours models, both:

- Segmented from Patient data
- Mathematically modelled realistic in shape

Methods

Segmented lesions

- Sources
- Algorithms
- Evaluation
- Storage

Modelled lesions

- Mathematical algorithms
- Evaluation
- Storage

Methods

Segmented lesions

- Sources
- Algorithms
- Evaluation
- Storage

Modelled lesions

- Mathematical algorithms
- Evaluation
- Storage

Segmented lesions

Initial idea

Courtesy of Prof Hilde Bosmans, KU Leuven

Idea

For each slice

Outlining the tumor by the algorithm

example

Outlining the tumor by a doctor

Comparison

Bliznakova et al :Computer-aided pre-operative evaluation of the residual liver volume using Computed Tomography images J Digit Imaging. 2015 Apr: 28(2): 231–239. Segmentation of lesions from patient data

Segmentation of lesions from patient data

Sources of data

✓ CT patient data from radiotherapy department

- Image size 512 x 512 pixels, 1.17mm x 1.17mm
- Slice thickness 5 mm
- 188 slices of the whole body
- Philips GEMINI TF TOF 16

Courtesy: Nikolay Dukov, Fochos 2016

Sources of data

✓ Tomosynthesis – Alexandrovska Hospital, Sofia
University Hospital, Leuven

 ✓ CT - mastectomy University Hospital of Varna Segmentation of lesions from patient data

Segmenting the tumour area

Choosing ROI

Obtaining binary image Artefact reduction

Tumor segmentation

Dukov et al , RAD, 2017

Segmentation of lesions from patient data

Manual post-processing

Dukov et al , RAD, 2017

Segmentation of lesions from patient data

Example

Unprocessed Images

Segmented images

Combined Images

Segmented tumors

✓ More than sixty different 3D models of lesions with irregular shapes were created.

✓ Evaluated by experienced radiologists.

Segmentations

Dukov et al Models of breast abnormalities based on three-dimensional medical x-ray breast images, under revision in Physica Medica

Comparison of segmented slices obtained by using the algorithm and outlined by three radiologists and the corresponding volumes

Dukov et al Models of breast abnormalities based on three-dimensional medical x-ray breast images, under revision in Physica Medica

A comparison of segmented (on tomographic slices) shapes obtained with the algorithm (in red) and the three radiologists (green) who participated in the study

Dukov et al Models of breast abnormalities based on three-dimensional medical x-ray breast images, under revision in Physica Medica

Future work

- Correct the shape in z direction
- Classification and full characterization of segmented abnormalities
- Generation of more spiculated in shape abnormalities
- Radiomics with the use of deep learning combined with machine learning
- Generation of new abnormality types from the existing models

Paolo

Methods

Segmented lesions

- Sources
- Algorithms
- Evaluation
- Storage

Modelled lesions

- Mathematical algorithms
- Evaluation
- Storage

Modelling is based on random walk is a random process consisting of a sequence of discrete steps of fixed length.

Modelling is based on random walk is a random process consisting of a sequence of discrete steps of fixed length.

Modelling is based on random walk is a random process consisting of a sequence of discrete steps of fixed length.

Modelling is based on random walk is a random process consisting of a sequence of discrete steps of fixed length.

Modelling is based on random walk is a random process consisting of a sequence of discrete steps of fixed length.

Modelling is based on random walk is a random process consisting of a sequence of discrete steps of fixed length.

Modelling is based on random walk is a random process consisting of a sequence of discrete steps of fixed length.

Modelling is based on random walk is a random process consisting of a sequence of discrete steps of fixed length.

Modelling is based on random walk is a random process consisting of a sequence of discrete steps of fixed length.

Modelling is based on random walk is a random process consisting of a sequence of discrete steps of fixed length.

Models

<figure>

3D averaging

3D dilation

3D erosion

Models

Evaluation

Detector

NN_1_200_2000_3000_4

NN_1_500_500_2000_4

nn_500_500_1000_4_256x256 0°

NN_1_500_500_3000_4

NN_1_500_500_4000_4

NN_1_500_1000_3000_4

NN 1 500 1000 2000

nn_500_1000_3000_4_300x 300 90°

NN_1_500_1000_5000_4

nn_500_1000_4000_4_300x 300 0°

nn_500_1000_5000_4_300x 300 90°

NN_1_500_2000_2000_4

nn_500_2000_1000_4_ 450x450 0°

nn_500_2000_2000_4_450x450 0°

n_500_2000_1000_4_ 450x450 90°

nn_500_2000_2000_4_450x450 90°

NN_1_500_2000_3000_4

NN_1_500_2000_4000_4

nn_500_2000_3000_4_450x450 0°

nn_500_2000_3000_4_ 450x450 9 0º

NN_1000_1000_1000

NN1000_1000_2000

NN1000_1000_3000

NN1000_1000_4000

nn_1000_1000_3000_4_400x400 **0**°

nn_1000_1000_5000_4_400x400 **90**°

Under development

Gospodinova, 2018, ACT2018, Ohrid

The created Images are stored in a database and will be used in the further assessment, research and educational activities.

Objective evaluation

Subjective evaluation 4 AFC

Database organisation

Database web-based interface

Ноте	View Records	MaXIMA Insert Re	Imaging Data	base s Settings		n stime N	/laX	(IMA Imaging D	Datal	oase		
List of ava	ilable images					Home View Records		Insert Records Browse	e Images	Settings	Logo	out
All records												
Records found	: 82					Search						
Record title \$	Target of Imaging \$	Imaging Modality \$	Data source 🔶	Data location 🖨	D	Record title:		Target of imaging:		Added by:		
Patients	Breast	FFDM	University Hospital - Leuven, BE	<u>196401 7884</u>	20	keyword or part of the name		keyword or part of the name		name or part of the name		
Patients	Breast	FFDM	University Hospital - Leuven, BE	195307 8855	20	e.g.: Patient images from hospital		e.g.: Breast gland		e.g.: John Doe		
Patients	Breast	FFDM	University Hospital - Leuven, BE	<u>194902 8746</u>	20	Imaging modality:		Data source:		Date of acquisition		
Patients	Breast	FFDM	University Hospital - Leuven, BE	194901 7284	20		•		•			
Patients	Breast	FFDM	University Hospital - Leuven, BE	<u>194810 8806</u>	20	<u>N</u>				Newerthan		
Patients	Breast	FFDM	University Hospital - Leuven, BE	194810 7070	20					U NGWEI UIDII		
Patients	Breast	FFDM	University Hospital - Leuven, BE	194803 7443	20							
Patients	Breast	FFDM	University Hospital - Leuven, BE	194801 8983	20			Submit				
Patients	Breast	FFDM	University Hospital - Leuven, BE	194709 7085	20							
Patients	Breast	DBT	University Hospital - Leuven, BE	UZL 196401 7884	20						and the second	
Patients	Breast	FFDM	University Hospital - Leuven, BE	<u>195308 8753</u>	20	© Technical University of Varna 2017					About us	Links
Patients	Breast	FFDM	University Hospital - Leuven, BE	195408 6069	20-1/	1ar-2017						

Database organisation

Kara Arr	AXIMA Project C	Database		
Home Sear	ch Insert records	Settings	Lo	ogout
Search Record title:	Target of imaging	:	Added by:	
Imaging modality:	Data source:	\$	Date of acquisition Older than Newer than	
		Submit		
© Technical University of Varna 20	017		About	us Links

Database organisations

Database organisation

R2 /	МАХ	IMA Project I	Database		
Home	Search	Insert records	Settings		Logout
DB Records	5	Edit record Record title: pat1 Target of imaging: dog Imaging modality: St. Anna Data source: CT Image location (Click to chang baubau	je):	\$	
		Date of acquisition:			
		11/25/2014			
		Additional details:	Submit	æ	

22	МАХ	IMA Project I	Database		
Home	Search	Insert records	Settings		Logout
DB Records		Insert record Record title: Target of imaging: Imaging modality: Data source: Image location (Click to change Date of acquisition: 06/23/2017 Additional details:	ge):	•	
			Submit	<i>h</i>	

Irregular masses - description

Outline

- Why realistic models of abnormalities?
- Our approach and advances
- Exploitation of results in practice

Exploitation of results

• Research

Education

• Fun

Exploitation of results

• Research

Education

• Fun

Research

To study novel breast imaging techniques

Creation of breast model PMMA plates Simulation of the compression procedure

Dukov et al, IUPESM, 2018

t al. IUPESM. 2018

Compressed breast model

3D view

slice

Dukov et al, IUPESM, 2018

Example

Software X-ray Imaging Simulators

Images obtained with the software phantom

Dukov et al, IUPESM, 2018

Phantoms for the study

Breast shape – Clear resin;
 Glandular tree – Clear resin;

Container – Clear resin;
 Glandular tree – Clear resin;

Water;
Thickness – 49 mm;
Wall thickness – 2.4 mm.

Phantoms for the study

~ 33000 PMMA spheres;
 > radiuses [0.79 - 7.94] mm;

PMMA container;water.

27 spheres from Gray resin;
radiuses [6 - 13] mm;
white resin container;

animal fat;wall thickness 3 mm.

Setup

- √60keV
- ✓ Planar images
- ✓ Tomosynthesis 25 projection images

Exploitation of results

• Research

Education

• Fun

Eutempe-net training course, Varna 22-26/05/2017

- How to model x-ray imaging chain;
- How to model breast;
- How to model breast cancer;
- How to work in a team;
- How to write abstracts;
- How to present a scientific work.

Virtual study to investigate the detectability of breast abnormalities on 2D mammography and digital breast tomosynthesis

Kristina Tri Wigati^{1,2}, Hannah Manssens³, Liesbeth Vancoillie², Lesley Cockmartin⁴, Djarwani S. Soejoko¹, Hilde Bosmans^{2,4}, and Kristina Bliznakova⁵

¹ Department of Physics, Faculty of Mathematics and Natural Sciences, University of Indonesia
 ² Department of Imaging and Pathology, Faculty of Medicine, KU Leuven
 ³ Barco nv, Belgium
 ⁴ Department of Radiology, University Hospitals Leuven
 ⁵ Laboratory of Computer Simulations in Medicine, Technical University of Varna

E-mail: kristina.tw@ui.ac.id

Received August 11 2017 Revised December 06 2017 Accepted for publication February 12 2018 Published March 05 2018

Abstract: This paper describes the use of virtual clinical trial software, as developed and improved in the frame of the Horizon2020 MaXIMA project, to study particular aspects of 2D mammography and digital breast tomosynthesis. A voxel-based breast phantom with inserted mathematical models of an irregular mass and two microsclatifications was created. Image accusivities was simulated by using

Phantom

Dimension of the phantom:

Width : 641 pixels Length : 357 pixels Height : 175 pixels

Voxel size: 0.27 mm [each side]

Kristina Tri Wigati, Hannah Manssens, Anthropomorphic phantoms, Eutempe-net training course, Varna 22-26/05/2017

Breast abnormalities

Irregular mass

- The voxelized of irregular mass matrix was placed about the center of the normal breast phantom;
- Resolution: 0.27 mm/pixel

Kristina Tri Wigati, Hannah Manssens, Anthropomorphic phantoms, Eutempe-net training course, Varna 22-26/05/2017

Virtual clinical study

Table 4. Mean pixel value, signal difference, SDNK and contrast of the irregular mass in the 2D mammography and DBT reconstructed slice at Z = 0.

System	Mean pixel value	SD	SDNR	Contrast (%)
2D Mammography	2.25	0.05	1.66	2.47
DBT ±9°, 10 proj	84.84	10.42	0.21	14.00
DBT ±13°, 14 proj	83.49	9.65	0.21	13.07
DBT ±15°, 16 proj	84.64	10.88	0.25	14.75
DBT ±21°, 22 proj	86.24	10.95	0.25	14.54
DBT ±25°, 26 proj	87.49	12.80	0.30	17.14

Table 5. Measurements of FWHM calculated using Gaussian interpolation

" and contrast profiles of the image '

Kristina Tri Wigati, Hannah Manssens, JMPB, 5(1), p. 124-138, 2018

Addition of noise

Kristina Tri Wigati, Hannah Manssens, Anthropomorphic phantoms, Eutempe-net training course, Varna 22-26/05/2017

Qualitative comparison

Mammography

Tomosynthesis with 26 projection images

Kristina Tri Wigati, Hannah Manssens, Anthropomorphic phantoms, Eutempe-net training course, Varna 22-26/05/2017

Exploitation of results

• Research

Education

• Fun

Exploitation

Dukov et al, FOCHOS 2017

CT Scanning

Dukov et al, FOCHOS 2017
Segmenting a health part

Dukov et al, FOCHOS 2017

3D printing

Dukov et al, FOCHOS 2017

Exploitation

Dukov et al, FOCHOS 2017

Conclusions

• The developed database will serve as an imaging data source for researchers, working on breast imaging and early breast cancer detection with the help of existing or newly developed imaging modalities.

Acknowledgments

This project has received funding from the *European Union's Horizon 2020 research and innovation programme* under grant agreement No 692097.

