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Résumé. — On présente un modéle simple et nouveau pour décrire la dynamique de la
réorientation optique obtenue par un rayon laser dans un cristal liquide nématique aligné
homéotropiquement. Contrairement aux précédents modéles sur ce sujet, on a rendu compte de
P’échange du moment angulaire entre la lumiére et le milieu. On a trouvé une dynamique riche et
assez inattendue, méme dans le cas d’une polarisation linéaire de la lumiére incidente.

Abstract. — A new simple model is presented to describe the dynamics of the optical
reorientation induced by a laser beam into a homeotropically aligned nematic liquid crystal.
Unlike previous models on the subject, we accounted for transfer of angular momentum from
light to the sample. A rich and somewhat unexpected dynamics is found also in the case of linear
polarization of the incident light.

1. Introduction.

The Optical Fréedericksz Transition (OFT) was first observed in Nematic Liquid Crystals
(NLC) by using a linearly polarized laser beam at normal incidence [1]. The effect consists in a
strong optically induced reorientation of the mean direction n of the molecules in the sample,
when the laser intensity exceeds a characteristic threshold. The unit vector n is called the
molecular director.

It is commonly accepted that this effect is very similar to the well known Fréedericksz
transition induced in nematics by external static fields [2]. It is argued, in fact, that, in view of
the linear polarization of the light inside the sample, the liquid crystal molecules feel an
average optical field which is constant both in intensity and in direction. Consequently, all
models proposed in the literature to explain the phenomenon retain this picture and lead to
results that are very similar to the ones obtained in the static-field case [3].

Nevertheless, some recent experiments [4] have shown that the interaction between
nematics and light is essentially different from the interaction between nematics and static
fields because liquid crystals directly couple with the angular momentum carried by the optical
field. In simple geometries, the transfer of angular momentum from the radiation to the liquid
crystal may lead to Self-Induced Stimulated Light Scattering [5].
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This suggests that also in the simplest case, namely in the optical Fréedericksz transition
with linearly polarized light at normal incidence, the coupling between the angular
momentum of the light and the LC medium cannot be ignored so that completely new
features should appear having no analog in the static-field case.

In this work a simple model is presented for the OFT with linearly polarized light at normal
incidence where angular momentum balance is taken into accouat. It will be shown that
unforeseen effects as multistability, hysteresis and oscillating relaxation toward steady-state
appear naturally as a consequence of angular momentum transfer. All these effects, that may
occur also very near to the threshold for the OFT, cannot be derived from the known models
and their observation was never reported in the literature, although they should be certainly
observable in accurate measurements.

The main difference between our model and all others reported in the literature is that we
allow for a precessional motion of the director n around the direction of propagation of the
laser beam even if the laser beam is linearly polarized. In all previous works, in fact, n was
bound to stay in the plane formed by the polarization direction and the propagation direction
of the beam. Releasing these constraints leads to the occurrence of new phenomena, related
to angular momentum transfer, that will be the main object of study of this work.

Since our theoretical model seems to be interesting in its own right and differs sensibly from
all other models existing in the literature, it will be the object of the present paper. The
experiments about the observation of the new effects expected from the model will be
presented in separate paper.

This work is organized as follows : in section 2 the relevant geometry is presented and the
general equations governing the motion of the molecular director as well as the change in the
polarization of the laser beam are derived from a general Lagrangian formalism, presented
elsewhere [6].

In section 3 the equations are specialized to the case under study and some approximations
are used to put them in a simpler form. The validity of the approximations involved is also
discussed.

Finally, in section 4 the new effects expected on the basis of the model are presented and
their eventual experimental observation is discussed.

2. The model.

The results presented in this section have been already reported in [6].

We consider a thin film of NLC of thickness L between glass plane walls coated with
surfactant for homeotropic alignment. The anchoring at the wall is supposed to be strong. The
local alignment of the molecules in the film is accounted for by the unit vector
n(r). Due to the homeotropic anchoring, in the absence of external field n is uniformly
directed along the z-axis normal to the sample walls. At some instant a monochromatic laser
beam with an arbitrary polarization is focused at normal incidence onto the film. When the
intensity 7 of the beam at the sample reaches the characteristic threshold 74 for the OFT, the
molecular director is reoriented and changes in time until a final steady state is reached. As
shown by the experiment reported in [4], the final steady state may also be time dependent,
corresponding to a continuous precession of n around the z-axis. In the case of linear
polarization of the incident beam, however, both experiment and theory lead to a time
independent final state.

The basic equations governing the interaction between the director n and the laser optical
field have been derived in [6] in the limit of plane wave (all fields depend on z only) and of
slow envelope. Both these approximations are largely exploited in the literature and usually
met in ordinary experiments. In particular, the consistency of the slow envelope approxi-
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mation (often referred to as the Geometric Optics Approximation (GOA)) requires that the
material birefringence is low, viz. An = n, — n, <1, where n, and n, are the extraordinary
and ordinary indexes of the material. This condition is usually satisfied in ordinary nematic
liquid crystals. Moreover, light absorption is neglected, so that the only effect of the sample
on the laser beam is a change of its polarization.

In the following, the director m will be described by means of its polar and azimuthal angles
9 and ¢ [n = (sin 9 cos ¢, sin I sin ¢, cos ¥ )]. Because nematics are not polar, n and
—n are physically indiscernible, so that we have one-to-one correspondence with distinct
physical states by taking ¢ in the range [0, 1/2 7] and ¢ in the range [— 7, 7 ].

The polarization of the laser beam may be described by means of its ellipticity e and ellipse
orientation angle . (The absolute value of e is the ratio between the minor and major axis of
the beam polarization ellipse and its sign is positive for left-handed polarization and negative
for right-handed polarization. The angle ¢ is the angle formed by the ellipse major axis with
respect to an x-axis fixed in the laboratory.) It turns out to be useful introducing also the
quantity £, = — (I/w) e, where w =2 w/A is the frequency of the laser beam and I its
intensity (average Poynting vector along z). It is evident that £, is the component of the
average angular momentum carried by the beam along its propagation direction.

The time-independent equation of motion for the azimuthal angle ¢ and the polar angle %
of the director can be obtained from the minimization of the total (elastic + optical) free-
energy [6]

F=Fy+ W, 1)

where F is the elastic free energy density of the NLC, given by
Fy = % (kg sin? & + k3 cos? @) sin? & (dep/dz)? +

+ % (kyy sin & + ka3 cos? @) (d9/dz) )

and W is the energy density of the optical field, that can be written out in terms of ¢ and ¢ as

W = (In,/c) + ({/2 ¢) An(t}){l + \/1 —e?cos [2(y — c{))]} . 3)

In equations (2) and (3) k;; denote the NLC elastic constants and ¢ the speed of light (cgs
units are used). Finally, the birefringence An () as seen by the optical wave is given by

A Hy
\/;300s2 9 +nlsin’ 9

As stressed in [6], the total free-energy F must be considered as a Hamiltonian H for the
whole system, provided we introduce the quantities

An(9d) = —n,. 4)

Py = (kyysin® @ + ky;cos® 9) sin® 9 (de/dz)
ps = (ky; sin? & + k3 cos® 9)(dd/dz)
py=—-Ll. =+ (jw)e (5)

i

as moments conjugate to the generalized coordinates ¢, 9 and ¢, respectively, and express F
as F = H(d” 7, ‘/”p ¢np1?7p(,//)'

Immediate consequences of this Hamiltonian formulation is that, in time-independent
states, H itself (i.e. the total free-energy F) is constant along the sample (F = const. ) and so
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is the quantity
Py +Py = (kysin® & + k3 cos® &) sin® 9 (d¢/dz) + (I/w) e = const. (6)

The conservation law (6) expresses the conservation of the total (elastic plus optical)
average angular momentum flux along the beam propagation direction.

The distortion angles ¢ (z) and ¥ (z) as well as the polarization state ¢ (z), e(z) along the
sample are obtained from Hamilton’s equations :

Py
d¢/dz = Ta
¢/ (ky sin? & + k43 cos? &) sin® & (72)
Py
dd/dz = 7b
/ ki sin? & + k3 cos® @ (70)
dpg/dz =~ (I/c) An(F) /1 — e?sin [2(¢ — ¢)] (7¢)

dpy/dz = — (J/2c) An' (8) {1 + \/1 —e’cos [2(¢ — ¢ )N} +
+sin & cos & {(ky; — k1) (d9/dz)” ~ [ky3 — 2(kz3 — kpy) . sin? 9] (d/dz)*} (7d)

e
dujdz = — (w/2¢) An(®) ( N ) cos [2(4 — $)] 76)
de/dz = (w/c) An () /1 —e*sin [2(¢ —d)]. (79)

Equations (7a-f) must be supplemented with boundary conditions at the sample walls. For
homeotropic alignment these are

9(0)=I(L)=0; d¢/dz(0) =d¢/dz(L) =0. (8)

Moreover, we must impose ¢(0) = e, and ¢ (0) = ¢, at the input plane z = 0, where
ey and ¢, are the ellipticity and ellipse angle of the incident laser beam.

These results hold for time-independent states only. In the not stationary case we must add
phenomenological viscous terms on the left of equations (7¢) and (7d) having the form
— ysin? 9 3¢ /dt and — y 99/dt, respectively, where y is an appropriate viscosity coefficient,
and change all total derivatives into partial derivatives (d/dz — 9/9z) [7]. In this case, the
angular momentum balance equation assumes the form

Ly fL 3 /ot sin® 9 dz = (I/w) Ae, ©)
0

where Ae = e(L) — e¢(0) is the change of the polarization ellipticity suffered by the beam in
traversing the sample.

Finally, we note that equations (7¢) and (7f) can be rewritten in terms of Stokes’ reduced
parameters s; (i = 1,2, 3) in the simpler form

ds/dz = Q, x s (10)

where s = (s, 5,, §3) with

sp=~1—-e?cos2 ¢
s =+ 1—e’sin2 ¢

§3 =€ (11)
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and Q = Q (9, ¢ ) is given by
O, = (w/c) An(F) (cos (2 ¢ ),sin (2¢),0). (12)

The boundary conditions on equation (12) are evidently s(0) = (s, S20, S39), Where
S100 S0 and sy are the Stokes parameters of the incident beam.

3. The simplified model.

Equations (7a-f) describe the laser induced molecular reorientation in the NLC and the
change in polarization of the beam in the plane-wave and slow envelope approximations. It is
evident that these equations are very awkward, so we need simplification.

In view of the boundary conditions (8), which must hold at any time ¢, we may expand
F(z,t) as

¥z, 1) = Z\i 9, (¢) sin (nmwz/L) . (13)

For laser intensity very close to the threshold to induce the OFT, & is small and we may
retain only the first term in the sum (13), so that

3 (z,t) = &,(¢) sin (wz/L). (14)

Moreover, since ¥ is small, we retain only terms up to & ° in equations (7b) and (7c). This
yields the following approximate equation for 9 :
2 —~
9 0k ks 20 nZI(ﬂ_an3)(1 +50c0s2d), (15)
ot az2 9z 3

where we posed

71L2
k
k=1-1"
k33
ne
8=__
(e}
2
4_9-58
867
-f
th
I C7T252k33 (16)
BT L5 - 1)

1, is the threshold intensity for the OFT with linearly polarized light. The same expression
of I, was obtained with a different approach in [2].

Experiments show that the azimuthal ¢ angle may rotate over several 7, so we cannot
consider it small in general. Nevertheless we assume that, in view of the boundary conditions
(8), which are « free » for ¢, we may neglect the rwist of ¢ in the interior of the cell. In other
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words, we assume ¢ (z, ¢) large, but 3¢ /dz small (8¢ /0z is exactly zero at the walls). At the
zero-order approximation we have 3¢ /3z = 0, so that ¢ = ¢ (7) only. Inserting then equation
(14) into equation (15), multiplying by sin (#z/L) and integrating from z = O to z = L yields a
single equation for 4,(7):

(7)) =729, (1 ~%k03) +%772I~01(1 —A9H(1 + s5c082 ), 17

where &, = d9,/dr and the reduced time 7 is given by the first of equations (16).

The evolution equation for ¢ (7) is obtained directly from the angular momentum balance
equation (9). Inserting expression (14) for 4(z, 7)< 1 and assuming ¢ independent of
z, the integration in equation (9) can be performed yielding

2027 N
T ()~ sl (18)
201+ 8) L

¢ (1) =

where we introduced the dimensionless thickness L = (w/c) n,(8 — 1) L.

Within these approximations, the equation (10) governing the change of the beam
polarization can be solved analytically. It is convenient passing to the new independent

variable u(z, 7 ) defined by 8u/dz = (w/c) An (9 (z, 7)). Then we obtain 8s/du = Q,(7) x s,
with ©,(r) = (cos 2 ¢ (7),sin 2 ¢ (7), 0), whose solution is

s(u(z, 7)) = Q(D -s9) + [(Dy x 59) x @] cos (u) + (£, x s¢) sin () . (19)

Moreover, using equations (4) and (14) and since 9 <1, we find

u(z, v)

(w/c) F An(9(z, 7)) dz

0
a(t)[(z/L) — (1/2 w)sin (2 7z/L)], (20)

1

where we introduced the birefringence phase angle « (7) given by

13(5+1)1?

TE i(r) =Bdi(r). @1

a(r)=u(L,7) =

The angle « is the phase difference accumulated by the optical wave in traversing the film
with respect to an ordinary wave.

The polarization state s(r) = s(L, 7 ) of the light emerging from the cell is obtained from
equation (19) as a function of ¢ (7) and &,(7), by substituting for u its end-point value
a (7). In particular we may evaluate 53(1:, 7) and insert it into equation (18), obtaining

¢;(T)=_1w2i(s301_°°‘°‘“+smsmasm2¢). 22)
2 a o

Finally, using again equation (21), we may rewrite equation (17) in terms of a(7):

@ (r) = —%772{& - (k/2,3)a2—%1~a[1 —(A4/B) @]l +sloc052¢)} @)

Equations (22) and (23) are the main result of this section. They form a set of two first-
order ordinary differential equations in the unknown functions ¢ (¢) and a(z). Once a
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solution (¢ (7 ), a (7)) of equations (22) and (23) is found, the polar angle 9 (z, 7 ) is given by
equation (14) and the light polarization state at each point in the sample is given by equation
(19) with u derived from equation (20).

We notice that although 9, is supposed very small, we cannot consider the birefringence
phase angle « as a small quantity, because the coefficient B in equation (21) may be very large
in practical cases. For example, in the case of the nematic 5CB (n, = 1.7, n, = 1.5) and
assuming a film thickness L of 75 wm and a wavelength A = 0.515 um, we have

B = L(ji;l) = 70. In particular, we cannot expand sin @ and cos « in equation (23) as a
power series of a, unless 9, < 8~ 1= 0.01, in typical conditions.

4. The case of linear polarization.

Although equations (22) and (23) hold in general for any polarization state of the incident
beam, in the following we assume the polarization to be linear, so that we have
S19 = 1, 850 = 0 and s = 0. In this case, we see that « = 0 and ¢ = 0 or + 7 are trivial steady
solutions of equations (22) and (23). Obviously, ¢ = = 7 represent the same physical state.
Strictly speaking, when « = 0 the value of ¢ is undetermined. It is not so in equations (22)
and (23). To understand the real physical meaning of these equations we must study their
behavior in the limit of very small «. The solution of equations (22) and (23) for small
a, in fact, represents the initial dynamics of the system when it is moving from the undistorted
homeotropic alignment. Retaining only terms in the first order in «, equations (22) and (23)
can be solved yielding

¢ (7) =tan"' (tan ¢, e‘z”zif)

(24)

.
1 . 1 1 +tan? ppe= 277"
a(r):aoexp{jﬂz(l—l)f-{»zln( [+ tan’ gy ,

where ay <1 and — m = ¢ ; = 7 are the initial values of a and ¢, respectively. If no external
field except the optical field is applied to the system, the induced reorientation starts from
noise and a, and ¢, must be considered as random initial data. Notice that ¢ is not bounded
to be small. Equations (24) show that whenever a and ¢4 may be, ¢ (1) tends asymptotically

to0or + 7 as 7 - o0, and & (7) tends asymptotically to zero for I = I/I,; < 1 and to infinite
for [ = I/I4 > 1. Then, in order to induce the reorientation starting from noise in the

undistorted state o =0, we must have / =1, i.e. / must be larger than the threshold
I;, for the OFT. The second of equations (24) shows, however, that, for I=1 and
¢, # 0, a (7) decreases first and then increases again passing through a minimum value. Only
for ¢, = 0 we have an exponential grow of a (7), as claimed in all previous works. This not
monotonic behavior of the birefringence « in time could be observed, for example, by
preparing the system in a slightly rotated state with n lying in a plane forming an angle
¢o # 0 with the polarization of the laser beam.

As the time goes on, a increases until saturation is reached. Saturation is governed by
higher-order terms in « in equation (23). An exact solution of equations (22) and (23) for
linear polarization is ¢ = 0 and « (7) given by

Qg ay

a(r) = 1 , (I=1) (25)
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where a, = 0 is the initial value of a and
281 1)
247~k

a(f) = (26)

The solution (25) was already studied in Ong’s paper [8]. This solution shows that if
a; >0 then «(7) tends asymptotically to the saturation value e, = a;. If a; <0, instead,
a (1) grows asymptotically to infinite, so that saturation is governed eventually by terms of
the order of a* or higher, which we have neglected in equation (23). Since ¢ = 0 along this
solution, the polarization of the beam stays linear for any value of « (7).

The case a; < 0 was discussed in some detail by Ong [8], who showed that, in this case, a
first order (i.e. discontinue) OFT is to be expected. The condition a; < 0 is always satisfied if
the material constants are so that k = 2 4. In view of equations (16), this is precisely the same
condition obtained by Ong [8]. It is worth noting that PAA (p-azoxyanisole) and a few
mixtures of nematic liquid crystals can have k =2 4 [9]. But, to our knowledge, any attempt
made to observe a first-order OFT in these materials failed. For this reason in this work we
assume a, positive.

We pass now to consider in some detail the steady states of the system.

a) The steady-states. — The steady-states of the system for linear light polarization are
obtained by setting 5,0 = 1, 530 = 0 and ¢ = 9 = 0 in equations (22) and (23). The resulting
time-independent states (¢, ) are given (implicitly) by

sin2¢sin@ =0
I(1+cos2¢)—2

a=p— — . 27)
Al(l +cos2 ¢) -k

Since « is positive semidefinite we must retain only solutions of equations (27) with
@ = 0. Below the threshold (I < 1), no distortion can be optically induced in the sample and
the only stable state is the state o = 0. We shall consider, therefore, only states at laser
intensity I greater than the threshold. At all steady states the polarization of the beam
emerging from the sample is still linearly polarized as the input light, as required by the
angular momentum conservation. If this were not the case, in fact, angular momentum would
be deposited into the sample, producing rotation of the molecular director n around the beam
axis.

A first steady stateis ¢ = 0 (or + 7) and @ = «a, (I'), as given by equation (26). This is the
state that the system should reach at saturation, provided the ¢ angle is bound to stay on the
polarization plane of the incident light. As previously mentioned, this state was the only
steady state considered in the literature. In this state, the polarization of the beam remains
unchanged (linear) at any point in the sample. We will refer to this state as the unrotated state
of the system.

Besides this state, however, we have two more sets of time-independent states, correspond-
ing to n out of the light polarization plane. We will refer to these sets of states as the rotated
states of the system. The two sets of states are given by @ =nm and é == é,(J)

(n=0,1,.. ) with n odd and n even, respectively. For each n, ¢, (1) is found implicitly from
equation (27) as

mﬁ&Q:i(zﬁ_ZAMT)—l. 28)

2B —knm
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For the set of steady states with odd n, the optical retardation phase « is locked at 7 and
sample behaves as a % A -plate rotated at an angle ¢ ,(7). In these states, the polarization of

the beam emerging from the sample is still linearly polarized, but is rotated with respect to the
incident polarization direction of an angle 2 ¢ ,(/), depending on the incident power. This
fixed-retardation behavior may be useful for applications. A standard Lyapounov’s stability
analysis shows that these states are stables foci (unless ¢, is very small, in which case they are
stable nodes). It is expected, therefore, that the director n approaches these states with
damped oscillations.

In the set of steady states with even n, the sample behaves as a A-plate. In these states, the
beam emerges with the same polarization as it enters, although the polarization state may
vary inside the film. These states are found to be unstable saddle points and should be not
observed.

A plot of d),,(f ) for both sets of states is shown in figure 1, the dashed curves referring to
the unstable states.

@ (RAD)

N R I R e O . - .-41 : . :
1 11 1.2 13
/1

TH

Fig. 1. — Steady-state director ¢-angle as a function of intensity 7, Solid curves refer to
a = nm with odd »n and are stable states. Dashed refer to « = n7 with even »n and are unstable states. In
the numerical calculations we used typical values for nematic 5 CB as reported in Ong’s paper [3] and
film thickness L = 75 pm and wavelength A = 0.514 pm.

The rotated states coalesce with the unrotated state ¢ =0, a = czl(I~ ) at characteristic

branching points 7 =7, (n =0, 1, ... ) given by a(l,) = nw, viz.

j,:%’%gu%(u_k) (n=0,1,..). (29)

In the last term we used the fact that 8 is large. We notice that because in all practical cases
B is large and A and k are of the same order of magnitude, the difference AT = I, | — I, is
usually very small, i.e. the branching points on the curve @ ([) are very dense. In accordance
with the alternating stability of the rotated states, it turns out that the unrotated state changes
its stability at the branching points (29). Unlike claimed in all previous work, the present

analysis shows, therefore, that the unrotated state is sometime destabilized by the ¢ degree of
freedom. This is made evident by linearizing equations (22) and (23) around the unrotated
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state ¢ =0, a = ozl(I~ ). The fluctuations §a and 8¢ around this state are found to be
Sa(r) - SaOCXp[—% (- 1) T] 50

(30)

. sin 0 for si 0
6¢(T)—»8d>oexp[—(7r21) a‘f] { or e

a oo for sina; <0.

We see that the fluctuations of the angle a (or ) are damped out, but the fluctuations of
the ¢ angle may grow in time if sin a; < 0. The motion of the director n is henceforth
asymptotically stable if sin a; > 0 and asymptotically unstable if sin a; < 0. Therefore, if the

laser intensity 7 is so that

I,<I<I,,, withoddn, (3D

n

the molecular director will deviate out of the plane of polarization of the light (plane
¢ =0) and will reach finally some equilibrium state which is rotated at an angle

¢ # 0. The saturated undistorted state ¢ = 0, a = a (/) is unstable and cannot be reached
by the system.

It should be pointed out, however, that even in the cases where the unrotated state
¢ = 0 is stable, it may happen that the dynamics of the system may drive it to some other

rotated (¢ s 0) stable state, preventing it from reaching the state ¢ =0, a = a(I).

b) The dynamics. — The system is characterized by a large number of steady states, so its
dynamics is complex. The differential equations (22) and (23) have been numerically
integrated for the case of linear polarization. The results are reported in figure 2, where the

T T T

= 0.00

6 T T T T T T T T T I T T T I f T T

1/1,(0)= 1.045

|
X

lll\l

|I!I]llILYI

t

Fig. 2. — Trajectories of the director n in the (n,, n,)-plane for linear polarization and I =1.045. For
this intensity no stable state exists at ¢ = 0.
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trajectories followed by the director n in the xy-plane are drawn. The figure refers to a case
where 7 is in the interval (31), so that no stable state exists with ¢ = 0. The figure shows that
if the initial state is close enough to the undistorted state a =0, the system will evolve
towards a rotated final state, executing damped oscillations in both n, = sin ¥ cos ¢ and
n, = sin & sin ¢. This oscillating approach to equilibrium should be experimentally observ-
able. Similar results are obtained in the case where / is not in the interval (31). The unrotated
state can now be reached, since it is stable, but many trajectories still exist that fall spiraling
around some other rotated state. '

Moreover we found that the dynamics of n is very sensitive to the ellipticity parameter

X = %sin‘](sm) of the input beam. A value of x as small as 0.01, for example, drives the
director to a quite different final steady-state, as it is shown in figure 3. We notice that the
symmetry in the change ¢ — — ¢ is strongly broken for y # 0, so that, for instance, the state

C which is the symmetric of the stable state B, becomes actually unstable.

T I LI B |

x = 001

|

LLI 1

Fig. 3. — Trajectories of the director n in the (n, n,)-plane for almost linear polarization

(x =0.01) and T = 1.05. Trajectories starting from small a end onto the state B instead of A, as it
happens for exactly linear polarization. Unlike state B, the state C is unstable.

5. The case of circular polarization.

Putting s, = 0, 530 = £ 1 in equations (22) and (23) they can be solved in the form

&g &y
a(r) = : - a, as T -0
73#(112)7
ag+ (ay—ag)e
, .Tsinzéa(s)
¢(r)=¢o—(wzl)j —— —dsos P+ 27 as T o0, 32)
0 a(s)
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!
sin” = a,
2 =— (7D
a;
B(I-2)
az_ —
AT —k

(33)

Wee see that, provided I =2 (which is the threshold to induce reorientation with circularly
polarized light) after a transient the system is put into uniform rotation with constant

asymptotic angular velocity 2 [10]. The asymptotic motion of n is actually a uniform
precession around the beam propagation direction with fixed tilt angle 9, =

\/ @,/B and

angular velocity 2. This precessional motion was effectively observed in [3]. A plot of
2 and ¥, as functions of the reduced intensity I is shown in figure 4. The zeroes of

0 correspond to the vanishing of the angular momentum transfer [see Eq. (18)].
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Fig. 4. — Polar angle 9 and angular velocity {2 as functions of I for circular polarization of the input

beam.
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The stability analysis of the solution (32) is made in the usual way by considering small
fluctuations 8¢ (7) and Sa (7). We find

~;[¢ﬂ2(f~2)r
Sa(r)=38age

(34)

- 1 -
l1—cosa,— a,sina, —gmd-2)r
aaoe

a¢'(7)=5ﬁ(7):w2(

2(12

Both the fluctuations of the angle a (or 4) and of the angular velocity 2 tend to be damped
out in time above the threshold, so the precession motion is orbitally stable. We notice
however, that the hysteretic behavior of this regime as reported in [3] is not found in the limit
of the present model. This may be due to some amount of twist inside the sample which tends
to overstabilize the precession motion, leading to hysteresis. A generalization of the present
model accounting also for twist should be then advisable, in order to explain the experimental
observations.

6. The case of elliptical polarization.

In the case of elliptical polarization, the director dynamics can be studied solving equations
(22) and (23) numerically. Typical results are shown in figures 5 and 6.
The threshold to induce reorientation for general x is given by
2

—_ . 35
1 +cos2y (33)

Ip(x) =

For I > flh( Xx), two possible asymptotic regimes were found :

1) Stationary steady states.

2) Limit cycles.

Limit cycles, however, have never been found for y < ¥ =0.4.

As shown in figures 4 and 5, for y > ¥, the limit cycle is reached when the laser intensity
I is increased to destabilize the two foci at the center of the figures. The limit cycle
corresponds actually to a non-uniform precession-nutation of n around the laser beam axis.
The observation of this kind of regimes was actually reported in [4]. The persistent oscillation
regimes observed in the second of [4] was not found, however, from our model. As we
pointed out at the end of section 5 for the hysteresis of the rotation regime, the occurrence of
persistent oscillations could be essentially related to the presence of twist in the sample, which
is completely neglected in the present model.

7. Final remarks.

Although the model presented in this paper is in many respects oversimplified, it shows
clearly that the transfer of angular momentum from a light beam to a liquid crystalline
medium leads, in general, to peculiar dynamical effects having no analog in the d.c.-field case.
Some of these effects have been observed experimentally using circular or elliptical
polarization [4]. In all reported experiments on the Optical Fréedericksz Transition with
linear polarization at normal incidence, instead, neither multistability was found nor
oscillating relaxation to equilibrium was reported [1]. We believe that this is due to the fact
that in usual experiments the phase retardation o was measured by simply looking at the
diffraction rings in the far field pattern beyond the sample (yielding to an accuracy on a of
roughly + 7r) and that the power of the incident beam was varied in relatively large steps. In
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Fig. 6. — Trajectories of the director n in the (n,, n,)-plane for elliptical polarization (y = 0.7) and
I =2.03. All trajectories end in a limit cycle.
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order to resolve the multistable structure shown in figure 1, in fact, the incident power should
be varied in very small amounts, of the order of 1 % each, and the phase retardation & should
be measured with much better accuracy. The dynamics of the system, in fact, is so that if the
angle ¢ is initially small and the intensity 7 is suddenly increased in steps much larger than the

difference AI between two successive thresholds I:, for instability (Eq. (27)), ¢ can never

become large and, approximately, the steady-state value of a is always very close to the value
given by equation (26), according to the experimental observations made in [1]. Large values
of ¢ and the locking of a at half integer # could be observed only by driving the system
adiabatically along one of the stable branches in figure 1, which requires very accurate control
of the laser power. In view of the high long term stability of c.w. laser available today,
however, the observation of the multistability and the locking of the phase « in the OFT
should be not beyond the actual experimental possibility [11].
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