
Chapter 6

Noncommutative Spaces

Fedele Lizzi

In this chapter we present some of the basic concepts needed to describe noncommu-

tative spaces and their topological and geometrical features. We therefore comple-

ment the previous chapters where noncommutative spaces have been described by

the commutation relations of their coordinates. The full algebraic description of or-

dinary (commutative) spaces requires the completion of the algebra of coordinates

into a C⋆-algebra, this encodes the Hausdorff topology of the space. The smooth

manifold structure is next encoded in a subalgebra (of “smooth” functions). Relax-

ing the requirement of commutativity of the algebra opens the way to the definition

of noncommutative spaces, which in some cases can be a deformation of an ordinary

space. A powerful method to study these noncommutative algebras is to represent

them as operators on a Hilbert space. We discuss the noncommutative space gener-

ated by two noncommuting variables with a constant commutator. This is the space

of the noncommutative field theories described in this book, as well as the elemen-

tary phase space of quantum mechanics. The Weyl map from operators to functions

is introduced in order to produce a ⋆-product description of this noncommutative

space.

6.1 Commutative geometry (and topology)

In Hilbert’s foundations of geometry [1] the concepts of points, lines, and planes

are considered intuitive and no attempt is made to define them. These “undefined”

points are nevertheless the basis of any topological space, differentiable manifold,

bundle, and so on, all geometrical concepts built on spaces made of points. This

gave the impression that geometrical notions cannot survive without points. Quan-

tum mechanics forced a change of this attitude. While in classical mechanics the

state of a system can be described by a point in a phase space, Heisenberg’s uncer-

tainty principle makes the concept impossible in quantum mechanics. This led von

Neumann [2] to speak of pointless geometry.
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In the following we introduce the basic mathematics of noncommutative geom-

etry at an unspecialized level, that of a high-energy physics student for example.

Sometimes we sacrifice rigor and refer to some of the classic reference books [3–6]

for details and proofs. An extended and more rigorous treatment of the topics of this

chapter will also appear in the forthcoming book [7].

In the present section we discuss ordinary topology and geometry from a point of

view which enables its generalization to a noncommutative setting. The main tool is

the transcription of the usual geometrical concepts in terms of algebras of operators.

The starting point is a series of theorems due to Gel’fand and Naimark (for a review

see for example [4, 5]). They established a complete equivalence between Hausdorff

topological spaces and commutative C∗-algebras. From a physicist point of view

one can look at this activity as describing the topology (and geometrical properties)

of a space not seeing it as a set of points, but as the set of fields defined on it. In

this sense the tools of noncommutative geometry resemble the methods of modern

theoretical physics.

6.1.1 Topology and algebras

A topological space M is a set on which a topology is defined: a collection of open

subsets obeying certain conditions, this enables the concept of convergence of suc-

cession of points xn ∈ M to a limit point x = limn xn. Together with the concept of

convergence goes the notion of continuous function. A function from a topological

space into another topological space is continuous if the inverse image of an open

set is open, but as a consequence it maps convergent sequences into convergent se-

quences:

lim
n

f (xn) = f (x). (6.1)

A Hausdorff topology makes the space separable, i.e., given two points it is always

possible to find two disjoint open sets each containing one of the two points. The

common topological spaces encountered in physics (for example, manifolds) are

separable.

Of particular interest in this context is the set of complex-valued continuous func-

tion. They form a commutative algebra because the sum or product of two continu-

ous functions is still continuous. We will show how it is possible to define the topol-

ogy of a space from the algebra of continuous functions on it. Moreover, we will

show how to construct the topological space starting from the abstract algebra. On

one hand every Hausdorff topological space defines naturally a commutative alge-

bra, the algebra of continuous complex-valued functions over it. Remarkably, under

certain technical assumptions spelled below, the reverse is also true, i.e., given a

commutative algebra A as an abstract entity, it is always possible to find a topologi-

cal space whose algebra of continuous functions is A . Therefore, we can establish a

complete equivalence between topological spaces and algebras. In the following we
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will describe these mathematical structures from an “user” point of view, keeping

the technicalities at a minimum and refer the literature for proofs and details.

The technical assumptions we have mentioned are resumed in the fact that the

algebra A must be a C∗-algebra. This is, first of all, a vector space with the structure

of an associative algebra over the complex numbers C, i.e., a set on which we can

define two operations, sum (associative and commutative) and product (associative

but not necessarily commutative), and the product of a vector by a complex number,

with the following properties:

(1) A is a vector space over C, i.e., αa+βb ∈ A for a,b ∈ A and α,β ∈ C.

(2) It is distributive over addition with respect to left and right multiplication, i.e.,

a(b+ c) = ab+ac and (a+b)c = ac+bc, ∀ a,b,c ∈ A .

A is further required to be a Banach algebra:

(3) It has a norm ‖ · ‖ : A → R with the usual properties

a) ‖a‖ ≥ 0 , ‖a‖ = 0 ⇐⇒ a = 0

b) ‖αa‖ = |α|‖a‖
c) ‖a+b‖ ≤ ‖a‖+‖b‖
d) ‖ab‖ ≤ ‖a‖‖b‖

The Banach algebra A is called a ∗-algebra if, in addition to the properties above,

it has a hermitian conjugation operation ∗ (analogous to the complex conjugation

defined for C) with the properties

(4) (a∗)∗ = a

(5) (ab)∗ = b∗a∗

(6) (αa+βb)∗ = ᾱa∗ + β̄b∗

(7) ‖a∗‖ = ‖a‖
(8) ‖a∗a‖ = ‖a‖2

for any a,b ∈ A and α,β ∈ C, where ᾱ denotes the usual complex conjugate of

α ∈ C. Finally,

(9) It is complete with respect to the norm.

C∗-algebras play a very important role in mathematics because as we will see their

study is basically the study of topology. A good introduction to their properties is

found in the book [8].

Example 6.1.

Examples of C∗-algebras are n × n matrices, bounded operators on an infinite-

dimensional Hilbert space, as well as compact operators. The norm is the supre-

mum norm in all these cases. These are noncommutative, examples of commutative

algebras are C itself, or the continuous functions on the plane. Note that several

commonly used algebras do not satisfy all of the definitions. For example, the set

of upper triangular matrices does not have the hermitian conjugation, trace class

operators are not complete, and the Hilbert space of L2 functions has a norm which

does not satisfy item (8) above. �
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Every Hausdorff topological space has a natural commutative C∗-algebra asso-

ciated with it: the algebra of continuous complex-valued functions. If the space is

compact this algebra contains the unity I and is called unital. The converse is also

true. Every unital commutative C∗-algebra is the C∗-algebra of continuous func-

tions on some compact topological space. Nonunital algebras are similarly associ-

ated with noncompact Hausdorff spaces.

6.1.2 Reconstructing the space from the algebra

We now show how the topological space can be reconstructed from the algebra. We

first introduce the notion of state. A state is a linear functional from a C∗-algebra A

(not necessarily commutative) into complex numbers:

φ : A −→ C, (6.2)

with the positivity and normalization requirements

φ(a∗a) ≥ 0 ∀a ∈ A , ‖φ‖ = 1 . (6.3)

In this case the norm is defined as

‖φ‖ = sup
‖a‖≤1

{φ(a)} . (6.4)

If the algebra is unital φ(I) = 1.

The space of states is convex, i.e., any linear combination of states of the kind

cos2 λφ1 + sin2 λφ2 is still a state for any value of λ . Some states cannot be ex-

pressed as such convex sum, they form the boundary of the set and are called pure

states.

Example 6.2.

Consider the case of n× n complex-valued matrices. A state is given by a matrix

(which with an abuse we still call φ ) with the definition

φ(a) = Trφa. (6.5)

Positivity requires the matrix φ to be self-adjoint with positive eigenvalues, and

normalization requires it to have unit trace. Since the matrix is self-adjoint it can

be diagonalized. There are two possibilities. Either more than one eigenvalues is

different from zero, and in this case it is immediate to see that we can write it as the

convex sum of two diagonal matrices of trace 1. Alternatively only one eigenvalue is

different from zero, and it must be the unity. In this case it is not possible to express

φ as the convex sum of two matrices of trace 1, since positivity requires diagonal

elements to be positive numbers less than 1. So pure states are nothing else but

pure density matrices, which correspond to the projectors, these in turn are in a
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one-to-one correspondence with the normalized n-dimensional vectors (the rays).

This construction can be carried over to the infinite-dimensional case, considering

bounded operators on an infinite-dimensional separable Hilbert space. �

Consider next a commutative algebra and its set of pure states. We can give to

this set a topology as follows: given a succession of pure states δxn we find its limit

as

lim
n

δxn = δx ⇔ lim
n

δxn(a) = δx(a) ∀a ∈ A . (6.6)

We have constructed the topological space associated with the C∗-algebra A . We

have therefore a duality between topological spaces and C∗-algebras: a topologi-

cal space determines the C∗-algebra of its continuous complex-valued functions.

Conversely any commutative C∗-algebra, using uniquely algebraic techniques, de-

termines a topological space whose algebra of continuous functions is the initial

C∗-algebra.

The reconstruction of the topological space from the algebra via the set of pure

states is one of various equivalent ways to obtain the space from the algebra. It is

worth to briefly comment on some of the alternatives since in the noncommutative

case these are not anymore the same and capture different aspects of the noncommu-

tative geometry. For commutative algebras it turns out that the space of pure states

is the same as the state of irreducible one-dimensional representations. It is possible

to give a topology (called regional topology) [9] directly on the space of represen-

tations of an algebra, and in the commutative case this topology is the same as the

one described earlier. In this case the space of points is also the same as the space

of maximal ideals of the algebra. An ideal of an algebra is a subalgebra I with the

property that

ab ∈ I ∀a ∈ A , ∀b ∈ I , (6.7)

the relevant example of ideal for the algebra of functions on some space is the set of

functions vanishing in some closed set. Recall that if a continuous function vanishes

on some set of a topological space, it will vanish also on the closure of the set, there-

fore the structure of ideals feels the topology of the underlying space. A maximal

ideal is an ideal which is not contained in any other ideal (and is not the whole al-

gebra). Since the ideal of functions vanishing in a given set is contained in the ideal

of functions vanishing in any smaller set contained in the first set, it is intuitively

obvious that the functions vanishing at a given point are an ideal not contained in

any other ideal, hence the one-to-one correspondence between points and maximal

ideals. A topology based on the closure of the set of ideals can be given (called

hull-kernel topology), thus giving a third (equivalent) manner to reconstruct a space

from a C∗-algebra. We have seen three different sets that we can build exclusively

form the algebra:

– pure states

– irreducible (one-dimensional) representations

– maximal ideals

On this set we can build, purely algebraically, three topologies, which turn out to be

same for commutative algebras.
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6.1.3 Geometrical structures

We have mainly dealt so far with the topology of Hausdorff spaces, which we can

call, in the spirit of these notes, commutative spaces. What about the other geometri-

cal structures? We can transcribe all standard concepts of geometry at the algebraic

level, as properties of C∗-algebras and of other operators. This program, started by

Connes [3], has been going for some time in the construction of some sort of dic-

tionary transcribing the concepts of commutative geometry into concepts connected

to C∗-algebras. The aim of this exercise should be evident: once we have translated

pointwise geometry into operations at the algebraic level, these are more robust

and can still be used at the level of noncommutative C∗-algebras, thus describing a

noncommutative geometry. Let us give a few entries of this continuously evolving

dictionary.

The presence of a smooth structure, i.e., a manifold structure, is equivalent to

considering a subalgebra A∞ ⊂ A of “smooth” functions. This subalgebra can be

given the structure of a Fréchet algebra, which is a locally convex algebra with its

topology generated by a sequence of seminorms ‖ · ‖k which separate points: that is,

‖a‖k = 0∀k ⇔ a = 0. The seminorms for this algebra are

‖a‖k = sup
x∈M

{ |∂ α a(x)| for |α| ≤ k } . (6.8)

A theorem of Serre and Swan establishes an equivalence between bundles and

modules. A bundle E over topological space M (called the base) is a triple composed

by E (which is also a topological space), M, and a continuous surjective map π : E →
M and such that for each x ∈ M the space π−1(x) is homeomorphic to a space F ,

called the typical fiber. When F is a vector space we have a vector bundle. Locally

the bundle is trivial, i.e., there is a covering Ui of M such that locally π−1(Ui) =
Ui ×F . A section of a bundle is a map s : E → M such that π ◦ s = idM. Examples

of bundles abound in physics, often with the further structures, like fiber bundles,

which are vector bundles together with the action of a group G on the fiber F .

Yang–Mills fields are sections of fiber bundles. It turns out that a vector bundle

over a manifold M is completely characterized by its space of smooth sections E =
Γ (E,M).

It is possible to substitute the concept of bundle with the one of projective mod-

ule. A left module E is a vector space over C on which the algebra acts, that is, for

a,b ∈ A , η ,xi ∈ E we have

aη ∈ E (6.9)

and

(ab)η = a(bη) , (a+b)η = aη +bη , a(η +ξ ) = aη +aξ . (6.10)

The definition of right module is analogous. We have purposive used the same sym-

bol for the sections of a bundle and for the module, since the latter is a relevant ex-

ample of the former, where the algebra is the algebra of continuous functions over
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the base. A module E is finite if it is generated by a finite number of generators, and

it is projective if given any two other modules M and N , and a homomorphism

φ : M → N connecting them, then any surjective homomorphism φM : E → M

can be lifted to a homomorphism such that φN = φ ◦φM . What this means actually is

quite simple, it is saying that, heuristically, any finite projective module is made of

matrices with elements in the algebra. The Serre–Swan theorem then says that any

finite projective module over the algebra of smooth functions is isomorphic to the

space of sections of a bundle and that conversely the space of sections of a bundle

is isomorphic to a finite projective bundle. This means that it is always possible to

write the space of sections Γ (E,M) = pA N where is a matrix of elements of the

algebra p ∈ MN(A ) with the property that p2 = p. AU: Please check the

words “where is a

matrix” in the

sentence “This means

that it is . . .”. There

seems to be a missing

variable.

The transcription in algebraic terms of geometry comprises several more entries.

Differential forms are realized as operators with the help of a generalized Dirac

operator D, integrals of functions are calculated as traces of the corresponding op-

erators, and the list goes on to comprise several more entries. It is possible to char-

acterize a manifold, given by an algebra A∞ with its differential structure, given by

the generalized Dirac operator D, exclusively in algebraic terms [10]. The dimen-

sionality is encoded in the growth of the eigenvalues of D, differentiability is given

by multiple commutators of the elements of the algebra with D, as well as the do-

main of Dm acting on the Hilbert space on which A∞ is represented. There are other

conditions which mirror smoothness. We refer to the cited literature for details of

this and the other entries of the dictionary and proceed to the generalization of this

commutative geometry to noncommutative spaces.

6.2 Noncommutative spaces

In the previous section we have established the one-to-one correspondence between

commutative C∗-algebras and ordinary Hausdorff spaces and we have shown how

to reconstruct the points using purely algebraic methods. It now is possible to go

beyond commutativity and define a noncommutative space as the object described

by a noncommutative C∗-algebra. One can now ask if there are still points and a

topology to recognize in this novel setting. In general we can still recognize a set of

pure states, of representations (possibly of dimension larger than one), and of max-

imal ideals (now one has to distinguish among left, right, or bilateral ideals). These

spaces now do not coincide anymore. Moreover, the algebra of continuous func-

tions on the “points”, being commutative, cannot anymore be the starting algebra.

The concept of point becomes evanescent, and in some cases one is forced to aban-

don it altogether. Take for example the set of n× n complex matrices. It has only

one representation (n-dimensional), but not one-dimensional representations. It has

n unitarily equivalent pure states and no maximal ideals (apart from the whole alge-

bra). One could be tempted to say that it describes a single point, but there is more

structure in this algebra than in its commutative counterpart (complex numbers).

The same can be said in the infinite-dimensional case of compact operators. We will
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see below that the equivalence of these algebras with C as far as the representations

are concerned is captured by Morita equivalence.

6.2.1 The GNS construction

Still it is possible to do geometry, noncommutative geometry. This means that we

extract geometric information directly form the algebra. The main technique is to

represent the C∗-algebra in a Hilbert space. There is another result due to Gel’fand

and Naimark (and Segal) which states that any C∗-algebra can be represented as

bounded operators on a Hilbert space, and this of course strikes a chord in the hearth

of physicists! The proof is constructive, namely, given a C∗-algebra one has a natural

procedure (called GNS construction) to build a Hilbert space on which the algebra

acts as bounded operators, with the C∗ norm given by the operatorial norm.

The GNS construction is based on the fact that since every algebra has an obvious

action on itself, we can consider the algebra itself as the starting vector space for the

construction of the Hilbert space. To make this space a Hilbert space we first need

an inner product with certain properties, and then we need to complete in the norm

given by this product. Note that the Hilbert space norm is not the original norm of

the C∗-algebra.

First we note that any state φ gives a bilinear map with some of the properties of

inner product: φ(a∗b). The problem with this map is that there may be instances in

which φ(a∗a) is zero, even if a is not the null vector. To this end consider the space

of null elements defined as,

Nφ = {a ∈ A | φ(a∗a) = 0} . (6.11)

This space turns out to be a left ideal. This can be proven using the relation

φ(a∗b∗ba) ≤ ‖b‖2φ(a∗a) , (6.12)

so that a ∈ Nφ ⇒ ba ∈ Nφ ∀b ∈ A . This ideal of null states can be eliminated by

considering the space of equivalence classes of the elements of A up to elements of

Nφ . We can then equip this space with the scalar product

〈[a], [b]〉φ = φ(a∗b) . (6.13)

This product is by definition independent from the representative of the equivalence

class. It defines a norm, and the Hilbert space is the topological completion of the

space of equivalence classes with respect to this norm.

The algebra A is naturally represented on the Hilbert space by associating to any

element a ∈ A an operator â with action

â[b] = [ab] , (6.14)

and again the action does not depend on the representative.
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Thus, we have a representation of our algebra on the Hilbert space. The operators

corresponding to the elements of A are bounded, in fact, expressing with

‖â‖φ = sup
φ(b∗b)≤1

φ(b∗a∗ab), (6.15)

we have the operator norm on the Hilbert space, using (6.12)

‖â[b]‖2 = φ(b∗a∗ab) ≤ ‖a‖2φ(b∗b), (6.16)

and considering the supremum over φ(b∗b)≤ 1 one obtains ‖â‖φ ≤ ‖a‖. Therefore,

since all operators of a C∗-algebra have finite norms, â is a bounded operator on the

Hilbert space Hφ that we have just built. Note that the association of an operator to

the element of the algebra depends on the choice of the state φ .

Conversely, given an algebra of bounded operators on a Hilbert space, any nor-

malized vector |ξ 〉 defines a state with the expectation value

φξ (a) = 〈ξ | â |ξ 〉 . (6.17)

It results that to any state φ it corresponds a vector state, i.e., there is a vector

ξφ ∈ Hφ such that
〈

ξφ

∣

∣ â
∣

∣ξφ
〉

= φ(a) . (6.18)

The vector ξφ is defined by

ξφ := [I] = I+Nφ (6.19)

and is readily seen to verify (6.18). Furthermore, the set {πφ (a)ξφ | a ∈ A } is just

the dense set A /Nφ of equivalence classes. This fact is encoded in the definition of

cyclic vector. The vector ξφ is cyclic for the representation (Hφ ,πφ ). By construc-

tion, a cyclic vector is of norm one: ‖ξφ‖2 = ‖φ‖ = 1.

The cyclic representation (Hφ ,πφ ,ξφ ) is unique up to unitary equivalence. It can

be shown that this representation of the algebra is irreducible if φ is a pure [11] state.

Example 6.3.

Let us consider the example of the commutative algebra of continuous functions on

the real line vanishing at infinity. Choosing as pure state

δx0
(a) = a(x0), (6.20)

the null space is given by all functions vanishing at x0. The inner product is then

given by

〈a,b〉δ = a(x0)
∗b(x0) , (6.21)

and the Hilbert space turns out to be just C. The algebra acts on this space by

multiplication of complex numbers:

â[b] = a(x0)b(x0) . (6.22)
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We should not be surprised of the fact that the Hilbert space is C, the state is

pure, and the only irreducible representations of a commutative algebra are one-

dimensional.

The situation is different if we choose a non-pure state, for example,

φ(a) =
1√
π

∫ ∞

−∞
dxe−x2

a(x). (6.23)

This time there are no nonzero elements of the algebra such that φ(a∗a) = 0. The

Hilbert space therefore contains the continuous functions, the inner product is given

by

〈a,b〉φ =
1√
π

∫ ∞

−∞
dxe−x2

a∗(x)b(x). (6.24)

The completion of this space gives the space L2(R) with a gaussian measure. Then

the operator representation of the algebra is just given by the pointwise multiplica-

tion of functions

âb(x) = a(x)b(x) . (6.25)

�

Example 6.4.

Let us give a noncommutative example: the matrix algebra M2(C) with the two pure

states

φ1

([

a11 a12

a21 a22

])

= a11 , φ2

([

a11 a12

a21 a22

])

= a22 . (6.26)

The corresponding representations are equivalent, being indeed both equivalent to

the defining two-dimensional one. The ideals of elements of “vanishing norm” of

the states φ1,φ2 are, respectively,

N1 =

{[

0 a12

0 a22

]}

, N2 =

{[

a11 0

a21 0

]}

. (6.27)

The associated Hilbert spaces are then found to be

H1 =

{[

x1 0

x2 0

]}

≃ C2 =

{

X =

(

x1

x2

)}

,
〈

X ,X ′〉 = x∗1x′1 + x∗2x′2 ,

H2 =

{[

0 y1

0 y2

]}

≃ C2 =

{

Y =

(

y1

y2

)}

,
〈

Y,Y ′〉 = y∗1y′1 + y∗2y′2 .

(6.28)

As for the action of any element A ∈ M2(C) on H1 and H2, we have

π1(A)

[

x1 0

x2 0

]

=

[

a11x1 +a12x2 0

a21x1 +a22x2 0

]

≡ A

(

x1

x2

)

,
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π2(A)

[

0 y1

0 y2

]

=

[

0 a11y1 +a12y2

0 a21y1 +a22y2

]

≡ A

(

y1

y2

)

. (6.29)

The two cyclic vectors are given by

ξ1 =

(

1

0

)

, ξ2 =

(

0

1

)

. (6.30)

The equivalence of the two representations is provided by the off-diagonal matrix

U =

[

0 1

1 0

]

, (6.31)

which interchanges 1 and 2 : Uξ1 = ξ2. Since π1 and π2 are irreducible represen-

tations and since any nonvanishing vector is a cyclic vector if the representation

is irreducible, we see that π1 and π2 are unitary equivalents and can therefore be

identified. �

6.2.2 Commutative and noncommutative spaces

Sometimes, even in the presence of a noncommutative algebra, we are still in

the presence of an ordinary space. Consider functions from a manifold into n× n

complex-valued matrices. In this case the algebra can obviously still be associated

with the original manifold, and we cannot really talk of a noncommutative geometry.

Note that in this case, since algebra of n× n matrices has only one representation,

we have one representation for each point of the original manifold, as in the commu-

tative case. There are more pure states, as in (6.26), but they are unitarily equivalent.

It is like we had points, but with an inner structure. This is sometimes refereed to as

an “almost commutative geometry”. AU: Please check the

change of “uitatily” to

“unitarily” in the

sentence “There are

more pure . . .”

This characteristic is captured by the concept of (strong) Morita equivalence [12].

Two C∗-algebras A and B are Morita equivalent if there exists a complex vector

space E which is a left module for A and a right one for B. In E two inner prod-

ucts,1 are defined with values in the two algebras, such that the representations are

continuous and bounded, and with the property

〈η ,ξ 〉
A

χ = η 〈ξ ,χ〉
B

∀ η ,ξ ,χ ∈ E . (6.32)

The important property of Morita equivalent algebras is that they have the

same space of (classes of unitary inequivalent) representations with the same

topology. In particular all algebras, Morita equivalent to commutative algebras,

are algebras of function from some Hausdorff topological space which can be

uniquely reconstructed. Morita equivalent algebras also have the same (algebraic)

1 There are other requirements of continuity and density for the definition. The two inner products

are sesquilinear forms with the usual properties. For details see [5].



100 Fedele Lizzi

K-theory. Hence in some sense two Morita equivalent algebras are algebras of func-

tions on the same “space”.

6.2.3 Deformations of spaces

There are several noncommutative spaces that have been studied: deformations

(with one or more continuous parameters) of commutative algebras of functions on

a topological space, or algebras of matrix-valued functions on commutative spaces.

There are then truly noncommutative structures that are not linked to a “classical”

(commutative) manifold. In some instances these NC algebras can be associated

with non-Hausdorff spaces, the typical example being that of torus foliations for ir-

rational theta. Similarly examples of spaces with a nonseparating topology in which

a finite set of points can keep track of the homotopy of the original space are de-

scribed in [13].

The standard example of a genuine noncommutative geometry is the noncommu-

tative torus [3, 5] which we now briefly describe. In Fourier transform one can write

functions on the torus (characterized by xi ∈ [0,1]) as

f (x) = ∑ fmnUn
1 Um

2 , (6.33)

with Ui = e2πixi and obviously U1U2 = U2U1. In this setting continuous functions

are the ones with coefficients such that limni→±∞ fn1n2
→ 0 faster than n−2

i . From

this C∗-algebra it is possible to reconstruct the torus as a topological space as shown

in the previous section. If one now generalizes the commutation relation of the U’s

to the case

U1U2 = ei2πθU2U1, (6.34)

the algebra generated by (6.33) is a noncommutative algebra; it describes a defor-

mation of the torus called noncommutative torus. When θ is irrational there is no

ordinary space underlying it, in this case we are in the presence of a truly noncom-

mutative space. The name noncommutative torus is given to various completions,

with different norms, of the algebra (6.33) with the relation (6.34), corresponding

to functions continuous, differentiable, analytic, etc. They all correspond to the var-

ious classes of functions of a “manifold” whose coordinates obey the commutation

relation [x1,x2] = iθ . It should however be kept in mind that this is just an heuristic

view, as it is impossible to talk of a topological space in this case. We do not have

the points of the space in this case!

Noncommutative tori are very different mathematical structures in the cases of θ
rational or irrational. In the first case, θ = p/q, p,q integers, the noncommutative

torus is Morita equivalent to the algebra of functions on the ordinary torus [14],

they are in fact isomorphic to the algebra of q× q matrices on a torus. In the ir-

rational case the algebra does not describe any Hausdorff topological space. It can

be seen that they describe the space of orbits of the points of a circle under the ac-

tion of rotation of an angle 2πθ . As is known every orbit is dense, and therefore
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in the neighborhood of any point there is the whole space. If one considers then

the circle quotiented by these rotations the Hausdorff topology would give a single

point. Likewise if we consider functions which are constant on any given orbit, we

obtain only functions constant on the circle. In noncommutative geometry there is

a well-defined procedure, called the crossed product, which, starting from the ac-

tion of functions on a manifold and the action of a group on it, gives the algebra on

the quotient space. The application of this procedure to the case of the circle with

the action of discrete irrational rotations gives the algebra of the noncommutative

torus. Hence the noncommutative algebra captures more structure. In general non-

commutative tori with parameters θ and θ ′ are Morita equivalent iff the parameters

are connected by a SL(2,Z) transformation:

θ ′ =
aθ +b

cθ +d
, ad −bc = 1, (6.35)

with a,b,c,d integers.

Finally, a relevant example of noncommutative spaces is that of quantum groups

and Hopf algebras, discussed in the next chapter.

6.3 The noncommutative geometry of canonical commutation

relations

The original example of a noncommutative space is quantum phase space; this is

a well-established concept from the early days of quantum mechanics, with h̄ a

dimensionful quantity, with the dimensions of the area of the phase space of a one-

dimensional particle. It is a “small” parameter, in the sense that in the limit in which

it goes to zero, classical mechanics should emerge. In the usual view, for example

in the courses of the standard physics curriculum, quantum and classical mechanics,

however, are two different theories, using different mathematical tools, and the pas-

sage from one to the other (the classical limit) is not an immediate and unambiguous

procedure. In reality there is a procedure, deformation quantization, which connects

the two. In this case quantum mechanics is seen as a deformation of the classical

theory, and the two theories are both seen as a theory of states on the ∗-algebra of

observables. The crucial difference between the two theories is that in the quantum

case the algebra is noncommutative.

The geometry underlying Hamiltonian classical mechanics is a Poisson (sym-

plectic) geometry. The space of position and momenta, the phase space, is equipped

with a Poisson bracket, and time evolution is generated by a Hamiltonian vector

field. The set of functions on phase space is the set of observables of the theory:

position, momentum, angular momentum, energy, temperature, etc. Under the con-

ditions described in the first sections of this chapter it is possible to reconstruct the

phase space from these observables. It is important that we can shift the emphasis
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from the points of phase space to the observables. The points are then the (pure)

states of the algebra of observables.

Quantum mechanics forces the loss of the classical phase space; positions and

momenta are substituted by noncommuting self-adjoint operators. We like to say that

quantization is the rendering of a classical phase space a noncommutative geometry.

In this section we will discuss the quantum phase space of a one-dimensional parti-

cle. This is an important and relevant example per se, but if we change the notation

and send the pair p,x into the pair x1,x2, and h̄ → θ , we are then considering the

standard, canonical, noncommutative geometry discussed in most of this book.

The barest minimum for a manifold to be seen as a phase space is the presence

of the Poisson bracket, a bilinear map among C∞(M) functions on M

{·, ·} : C∞(M)×C∞(M) −→C∞(M) , (6.36)

with the properties of being antisymmetric, satisfying the Jacobi identity, and the

Leibniz rule

{ f ,gh} = g{ f ,h}+{ f ,g}h . (6.37)

A Poisson bracket is defined by a Poisson bivector Λ ∈ Γ (M,∧2T M), which satis-

fies the (Jacobi) property

Λ il∂lΛ
jk +Λ jl∂lΛ

ki +Λ kl∂lΛ
i j = 0, (6.38)

where ∂i := ∂/∂ui and the u’s are the local coordinates of M.

We consider the case of a two-dimensional phase space M = R2 with global

coordinates (x, p) and Poisson bracket

{ f ,g} =
∂ f

∂x

∂g

∂ p
− ∂ f

∂ p

∂g

∂x
. (6.39)

A state of the physical system is a point of the phase space, or more generally a

probability distribution. The terminology is the same as in Sect. 6.1, and indeed the

pure states are the points, while the non-pure states are probability distributions, in

which the system is in a probabilistic superposition of states.2 Classical observables

are (real) functions on M, and the C∗-algebra they generate carries all topological

information of the phase space. Some observables are the infinitesimal generators

of a physically relevant transformation, the infinitesimal variation being given by

the Poisson bracket, for example, time evolution is generated by the Hamiltonian

function
d f

dt
=

∂ f

∂ t
+{H, f} , (6.40)

rotations are generated by the angular momentum, etc.

2 Note that the ensuing uncertainty of measurement is not the one inherent to measurement in

quantum mechanics, but it only reflects the possibility that the state of a system is not completely

known.
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All this has to change drastically upon quantization and the presence of an uncer-

tainty principle. Observables are not defined anymore as functions, but as operators

on a Hilbert space, and they form a noncommutative algebra. Contact with classical

mechanics is via the correspondence principle, which associates to each classical

observable f an element f̂ of a noncommutative algebra, with the basic requirement

that the Poisson bracket is replaced (to leading order) by the commutator:

{ f ,g} 
−→ − i

h̄
[ f̂ , ĝ] . (6.41)

This brings about the usual commutation relation between position and momentum:

[x̂, p̂] = i h̄ . (6.42)

As is known x̂ and p̂ are unbounded operators, but it is possible to exponentiate

them to obtain unitary operators and use them to build a C∗-algebra. This can then

be represented as an algebra of bounded operators on some Hilbert space. The most

common representation is on L2(Rx), the square integrable functions of position, but

one could use functions of momentum. Another commonly used representation is in

terms of the eigenstates of an operator with discrete spectrum, say the Hamiltonian

of the harmonic oscillator. In this case the basis of the Hilbert space is countable, and

the operators can be seen as infinite matrices. We will see later on in Example 6.6

how the GNS construction applies to this case.

On square integrable functions of x the operators x̂ and p̂ are represented as

x̂ψ(x) = xψ(x), p̂ψ(x) = − i h̄∂xψ(x). (6.43)

The association of an operator to other functions of x and p is, however, ambiguous,

and moreover it is preferable to deal with bounded operators. Weyl [15] has given a

well-defined map from functions into operators, this procedure was implicitly used

in Appendix 1.9. We first define the operator (sometimes called the quantizer [5] in

this context)

Ŵ (η ,ξ ) = e
i
h̄
(ξ ·p̂+η ·x̂). (6.44)

The correspondence is then defined as

f (p,x) 
−→ Ω̂( f )(p̂, x̂) =
∫

dξ dη f̃ (ξ ,η)Ŵ (ξ ,η) , (6.45)

where

f̃ (ξ ,η) =
∫

dxd p

2π
f (p,x)e− i

h̄
(ηx+ξ p) (6.46)

is the Fourier transform of f . If we were to forget the hat on p and x in (6.44),

the expression (6.45) would look just like the expression which Fourier transforms

back f̃ to the original function. Because of the operatorial nature of Ŵ , instead it

associates an operator to functions, with the property that real functions are mapped

into hermitian operators. The inverse of the Weyl map is called the Wigner map [16]:
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Ω−1(F̂)(p,x) =
∫

dηdξ

(2π)2h̄
e− i

h̄
(ηx+ξ p)TrF̂ Ŵ (ξ ,η). (6.47)

The Weyl map gives a precise prescription associating an operator to any function

for which a Fourier transform can be defined. It has the characteristic of mapping

real functions into hermitian operators and is a vector space isomorphism between

L2 functions on phase space and Hilbert–Schmidt operators [17–19].

The correspondence between functions and operators implicitly defines a new

noncommutative product [20, 21] among functions on phase spaces defined as fol-

lows:

f ⋆g = Ω−1(Ω̂( f )Ω̂(g)) . (6.48)

This product called the Grönewold–Moyal, or simply Moyal, or ⋆-product, is as-

sociative but noncommutative and it reproduces the standard quantum mechanical

commutation relation:

x⋆ p− p⋆ x = i h̄. (6.49)

There are several integral expressions (see for example [22, 23]) for the ⋆-product,

with a fairly large domain of definition. In the context of this book it is useful to see

the ⋆-product as a twisted convolution of Fourier transforms. Given two functions f

and g the Fourier transform of their product is

(̃ f ⋆g)(ξ ,η) =
∫

dξ ′dη ′

2π
e i h̄(ξ η ′−ξ ′η) f̃ (ξ ′,η ′)g̃(ξ −ξ ′,η −η ′) . (6.50)

Without the exponential this expression would just give the commutative convo-

lution product among Fourier components. The exponential breaks the symmetry

between f and g and gives noncommutativity.

Another very common form of the product is the differential expansion of the

product (6.50) given by

( f ⋆g)(u) := f (u) exp

(

i h̄

2

←−
∂i Λ

i j−→∂ j

)

g(u) , (6.51)

where the notation
←−
∂i (resp.

−→
∂i ) means that the partial derivative acts on the left

(resp. right). This expression is an asymptotic expansion of the integral one [24],

obtained by expanding the exponential in (6.50). The product can be seen as acting

with the twist operator

F = e
i h̄
2 (∂x⊗∂p−∂p⊗∂x) (6.52)

on the tensor product of the two functions, before evaluating them on the same

point. In this sense, as is discussed at length in this book, the ⋆-product is a twisted

product.

Expressions (6.51) and (6.50) have different domains of definition, but they are

both well defined if both function are Schwarzian functions, and in this case their

product is still Schwarzian. The star product (both in the differential and integral

forms) is also well defined on polynomials, which however do not belong to the C∗-
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algebra, and in fact they are not mapped into bounded operators. It is nevertheless

useful to consider them, which is what we do when we talk of the commutation

relations (6.42). If one is not interested in the presence of the norm, then one can

define the algebra of formal series in the generators x and p. This is basically the

construction described in Sect. 1.2.

The asymptotic form (6.50) is convenient because it enables to write immediately

the ⋆-product of two functions as a series expansion in the small parameter h̄. The

first term of the expansion is the ordinary commutative product. In this sense this

product is a deformation [25] of the usual pointwise product. The second term in

the expansion is proportional to the Poisson bracket:

f ⋆g = f g+ i h̄{ f ,g}+O(h̄2) . (6.53)

Considering less trivial phase spaces, starting from the work of [26, 27] a whole

theory of deformed products with the property that to first order in h̄ they reproduce

the Poisson bracket has been developed, under the name of ⋆-quantization or (for-

mal) deformation quantization. This culminated in the work of Kontsevich [28] who

proved that it is always possible, given a manifold with a Poisson bracket, to con-

struct a ⋆-product that quantizes the Poisson structure. That is, such that the product

is associative and whose commutator, to first order in the deformation parameter, is

proportional to the Poisson bracket.

Consider the Heisenberg equation of motion for observables which do not depend

explicitly on time:

d f̂

dt
= i

[ f̂ , Ĥ]

h̄
(6.54)

and the classical analogous in terms of the Poisson bracket

d f

dt
= { f ,H}, (6.55)

where f and H are observable and the Hamiltonian for classical system, respec-

tively, and f̂ , Ĥ the operators obtained with the Weyl correspondence. In terms of a

deformed classical mechanics we can define

d f

dt
=

1

i h̄
( f ⋆H −H ⋆ f ) = { f ,H}+O(h̄2). (6.56)

Here we can see that the two evolutions coincide in the limit h̄ → 0. In this sense

classical mechanics can be seen as the classical limit of quantum mechanics. The

⋆-commutator is called the Moyal bracket [21] and plays the role of a quantum

mechanics Poisson bracket.

Example 6.5.

The algebra of functions on the (p,x) plane with the ⋆-product is isomorphic to the

algebra of operators generated by p̂ and x̂. For further illustration in this example,

we see how the algebra with the ⋆-product as well can be seen as a (infinite) matrix

algebra.
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Consider first the function3:

ϕ0 = 2e− p2+x2

2 . (6.57)

This function is a projector, that is,

ϕ0 ⋆ϕ0 = ϕ0 . (6.58)

It is in fact the first of a whole class of projectors, as it is the function obtained

applying the Wigner map to the projection operator corresponding to the ground

state of the harmonic oscillator

ϕ0 = Ω−1(|0〉〈0|). (6.59)

Consider then the functions

a =
1√
2
(x+ i p) ā =

1√
2
(x− i p) . (6.60)

These two operators are easily recognized as the functions corresponding (with the

Wigner map) to the usual creation and annihilation operators. They have the prop-

erty that for a generic function f

a⋆ f = a f +
∂ f

∂ ā
f ⋆a = a f − ∂ f

∂ ā
, (6.61)

and analogous relations involving ā.

Define now the functions [22]

ϕnm =
1√

2n+mm!n!
ān ⋆ϕ0 ⋆am . (6.62)

These are the functions corresponding via the Wigner map to the operators |m〉〈n|
and have the property

ϕmn ⋆ϕkl = δnkϕml , (6.63)

which is easily proven using (6.61) and (6.58).

The ϕmn are a basis for the functions of p and q, or alternatively of a and ā:

f =
∞

∑
m,n=0

fmnϕmn, (6.64)

relation (6.63) ensures that

( f ⋆g)mn =
∞

∑
p=0

fmpgpn. (6.65)

3 For simplicity set h̄ = 1.



6 Noncommutative Spaces 107

In this sense the deformed algebra can be seen as multiplication of (infinite) matri-

ces. �

Example 6.6.

Example 6.3 can be immediately generalized to arbitrary size matrices and even to

infinite matrices (operators on ℓ2(Z)). In fact using the matrix basis described in

Example 6.5 for functions f = ∑mn fmnϕmn the same construction can be applied

using the state

φ( f ) = f00 =

∫

d pdx ϕ0 ⋆ f ⋆ϕ0 . (6.66)

The ideal Nφ is given by functions with f0m = 0 and we can identify the Hilbert

space with functions of the kind

ψ = ∑
n

ψnϕn0 . (6.67)

Upon recalling that ϕn0 = 1√
2nn!

ān ⋆ϕ0 one recognizes the usual countable basis of

the Hilbert space L2(R) composed of Hermite polynomials multiplied by a gaussian

function. �

Example 6.7.

The noncommutative torus is a compact version of the algebra described in this

section. It can be seen as a deformation of the algebra of functions on the torus in

the sense of Moyal. Given a function on the torus with Fourier expansion

f (x) =
∞

∑
n1,n2=−∞

fn1n2
e in1x1 e in2x2 , (6.68)

we associate to it the operator

f̂ =
∞

∑
n1,n2=−∞

fn1n2
Û

n1
1 Û

n2
2 , (6.69)

where the operators Ui act on the Hilbert space of infinite sequences of complex

numbers c = {cn} as

(

Û1c
)

n
= e inθ cn ;

(

Û2c
)

n
= cn+1. (6.70)

It is not difficult to see that the Û’s satisfy the relation (6.34) and the ⋆-product

defined as in (6.48) can also be expressed as

( f ⋆g)(x) = e
iε i jθ∂ξi

∂η j f (ξ )g(η)
∣

∣

∣

ξ=η=x
. (6.71)

�
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6.4 Final remarks

Noncommutative geometry started from the need to describe quantum mechanics,

and it has led to see it as a deformation of classical mechanics. The freedom from

the need to describe spaces as sets of points opened a whole new quantum world,

needed on physical grounds to describe atomic physics. This deformation was the

main stimulus for large body of mathematical literature, which not only helped to

clarify and develop quantum mechanics, but also led to the construction of several

other “noncommutative geometries”, together with their symmetries. The catalog

of noncommutative spaces is already large, and still growing, and noncommutative

geometry has proven to be an useful tool also to understand standard, commutative

geometries.

Historically quantum mechanics started from a “cutoff”, imposed by Planck to

avoid the ultraviolet divergences in the calculation of the black body spectrum. It is

natural to think that the tools of noncommutative geometry may help the solution of

the other ultraviolet divergences that we are encountering in the search for a theory

that unifies quantum mechanics and gravity. Hence the study of field theories on

noncommutative spaces, which is the main object of this book.
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