

Padova, 26-02-2015

Top: the heaviest particle

charm

1,29

strange

0,16

neutrinos

~0

muon

0,11

up

0,002

down

0,004

leptons

electron

0,0005

quark

top

173

bottom

4.6

tau

1,78

unit: GeV

W 80,4

Z 91,2

Force mediators

Higgs boson

photon

gluon

- W: $t \rightarrow Wq$
- Top lifetime is shorter than the typical hadronization time

$$\Gamma_t = \frac{G_F m_t^3}{8\pi\sqrt{2}} \left(1 - \frac{M_W^2}{m_t^2} \right)^2 \left(1 + 2\frac{M_W^2}{m_t^2} \right) \left[1 - \frac{2\alpha_s}{3\pi} \left(\frac{2\pi^2}{3} - \frac{5}{2} \right) \right] \quad \square \quad \tau_t \simeq 0.5 \times 10^{-24} s$$

• Top decays before top-flavored hadrons or tt-quarkonium-bound states can form $(\tau_{had} \approx 10^{-23} \text{s} \sim 20 \times \tau_t)$

It's a unique opportunity to study "bare" quark properties

Top mass and Higgs field stability

Top history timeline

- 1977 b-quark discovered, top quark hypothesizes as weak isospin partner and 6th quark to complete the three SM generations
- I980-90's direct search in e⁺e⁻ colliders, increasing limits on the top mass
- ~1990 indirect estimate of quark mass from LEP
 precision EWK measurements
 - Corrections $\Delta r \sim m_t^2$, $ln(m_H)$ to EWK predictions
- 1995 discovered at FNAL by CDF and D0 in direct top-pair production
 - 24th feb: papers submission: PRL 74, 2626–2631, PRL 74, 2632–2637

Top mass history

Luca Lista

Padova, 26-02-2015

7

Top mass history (Tevatron)

Luca Lista

8

Top mass history (LHC)

Padova, 26-02-2015

Luca Lista

9

Top production at hadron colliders

Czakon, et al..: PRL110(2013)252004 Cacciari et al.: PLB710,612 (2012)

Baernreuther et al.: PRL109,132001 (2012) Czakon, Mitov:

arXiv:1207.0236 (2012),

arXiv:1210.6832 (2012) N. Kidonakis: top-pair strong production gg dominates at LHC (85%) over qqbar (15%) PRD83(2011)091503, PRD81(2010)054028 (2010), PRD82(2010)054018. g arXiv:1205.3453 0000 a 00000 00000 g 00000 \overline{q} g single-top electroweak production t channel tW channel s channel q'b W + g 0000 b

		t ch.	tW ch.	s ch.	tt
Tevatron (pp)	2 TeV	2.08pb	0.25pb	1.05pb	7.08pb
	7 TeV	64.6 pb	15.6 pb	4.59 pb	172pb
LHC (pp)	8 TeV	87.6 pb	22.2pb	5.55pb	249pb
	14 TeV	248pb (×3.2)	84.8pb (×3.8)	11.9pb (×2.1)	954 pb (×3.9)

Top decay and final-state particles

 W^+

b

- The SM values for top coupling to other quarks (Cabibbo-Kobayashi-Maskawa matrix elements) are:
 |V_{tb}|≈ I, |V_{td}| ≈ 4×10⁻³, |V_{ts}| ≈ 4×10⁻² → Top quark decays ~100% of the times to Wb
- W decays from $t \rightarrow Wb$ dictate top event signature
- Hadronic W decay:
 - Non-b jets are present in the event
- Leptonic W decay
 - Neutrinos accompany leptons
- Possible final states of a $tt^{bar} \rightarrow WWbb$ events:
 - ▶ Dileptonic (e, µ): ~5%
 - Leptons + jets (e, μ): ~30%
 - All hadronic: ~45%

Two or more hadronic jets from b-quark
 fragmentation are present in a tt^{bar} event

$\ell^+ \nu$	(10.80 \pm	0.09) %
$e^+ \nu$	(10.75 \pm	0.13) %
$\mu^+ \nu$	(10.57 \pm	0.15) %
$ au^+ u$	(11.25 \pm	0.20) %
hadrons	(67.60 \pm	0.27) %

Top Pair Decay Channels

ĊS	n+jets	muon+jets	tau+jets	all-badronic	
ūd	electro			an-nauronic	
ч ^і	еτ	μτ	ξĩ	tau+j	jets
'n'	eμ	do to	μτ	muon+jets electron+jets	
υ	еÒ	eμ	еτ		
Necat	e^+	μ^+	τ^+	иd	cs

LHC experiments: CMS

Total weight : 14,000 tonnes Overall diameter : 15.0 m Overall length : 28.7 m Magnetic Field : 3.8 T

Reference system, (pseudo)rapidity

Detecting final-state particles

15

Luca Lista

Top physics

LHC experiments: ATLAS

A top candidate event $t \rightarrow (W^+ \rightarrow e^+ v)b, \bar{t} \rightarrow (W^- \rightarrow \mu^- v)\bar{b}$

A top candidate event $t \rightarrow (W^+ \rightarrow e^+ v)b, \bar{t} \rightarrow (W^- \rightarrow \mu^- v)\bar{b}$

 e,μ

Hadronic jets: tracks

A top candidate event $t \rightarrow (W^+ \rightarrow e^+ v)b, \bar{t} \rightarrow (W^- \rightarrow \mu^- v)\bar{b}$

Top-antitop cross section

- Most precise measurements performed in the dileptonic channel
 - In particular, $e\mu$ less affected by Drell–Yan contamination ($Z^{(*)} \rightarrow e^+e^-$, $Z^{(*)} \rightarrow \mu^+\mu^-$)
- Main residual backgrounds with $e+\mu+jets+ME_T$ in the final state: W^+W^- , $Z/\gamma^* \rightarrow \tau^+\tau^-$,

Number of signal (tt^{bar}) and background (WW and Z/γ*) events can be determined simultaneously from data using the distributions of ME_T and N_{jets}

Top-antitop cross section

- From the signal yield in data, a fiducial cross section is first determined within kinematic boundaries
 - $E_T(e) > 25$ GeV, $|\eta(e)| < 2.47$ (excl. 1.37< $|\eta(e)| < 1.52$)
 - ▶ $p_T(\mu) > 20$ GeV, $|\eta(\mu)| < 2.5$
 - ▶ $p_T(jet) > 40 \text{ GeV}, |\eta(jet)| < 2-5$
- The fiducial cross section is then extrapolated to the entire phase space assuming the acceptance from the a generator simulation (MC@NLO)

 $\sigma_{\overline{tt}}^{\text{tot}} = \frac{N^{\text{evt}}}{\varepsilon \times \mathcal{A} \times \mathcal{B} \times \mathcal{L}} = \frac{\sigma_{\overline{tt}}^{\text{fid}}}{\mathcal{A} \times \mathcal{B}}$ efficiency
efficiency
acceptance
branching
fraction
c $\sigma_{\overline{tt}}^{\text{fid}} = 2720 \pm 40(\text{stot}) \pm 140(\text{sust}) \pm 50(\text{lumi}) \pm 50(\text{lumi})$

•
$$\sigma_{\bar{t}t}^{\rm int} = 2730 \pm 40 (\text{stat.}) \pm 140 (\text{syst.}) \pm 50 (\text{lumi.}) \pm 50 (\text{beam}) \,\text{fb}$$

 $\sigma_{\bar{t}t}^{\rm tot} = 181.2 \pm 2.8 (\text{stat.})^{+9.7}_{-9.5} (\text{syst.}) \pm 3.3 (\text{lumi.}) \pm 3.3 (\text{beam}) \,\text{pb}$

tt results and LHC combination

Differential measurements

 Subtract background + unfold experimental removing instrumental effects by correcting bin-by-bin migrations

- Precise measurements of top-quark distributions are a crucial task:
 - Tests of perturbative QCD in different phase space regions
 - Enhance sensitivity to New Physics in top processes
 - Control background for Higgs, rare processes and many Beyond-Standard-Model searches

$t\bar{t}$ pair: m_{tt} , y_{tt} , p_{T} ^{tt}

ATLAS-CONF-2013-099 (I+jets, 7 TeV) ATLAS: EPJC73 (2013) 2339 (dileptons, 7 TeV) CMS-PAS TOP-12-027 (I+jets, 8 TeV) CMS-PAS TOP-12-028 (dileptons, 8 TeV)

- Potentially sensitive to new physics!
- Many distribution studied, good agreement with theory predictions so far

Single-top production

- Electroweak top-production
- Unique opportunity to study the Wtb vertex at production
 - May be sensitive to new physics
 - t-channel: Flavour-changing neutral currents
 - ▶ s-channel:W', H+, ...

 $\begin{pmatrix} V_{ud} & V_{us} & V_{ub} & V_{uX}? \\ V_{cd} & V_{cs} & V_{cb} & V_{cX}? \\ V_{td} & V_{ts} & V_{tb} & V_{tX}? \\ V_{Yd}? & V_{Ys}? & V_{Yt}? & V_{YX}? \end{pmatrix}$

- Measure $|V_{tb}|$ in the production vertex
 - New physics may be not accessible in decay if new particles are too heavy
- Possibly constrain proton's PDF

t channel: CMS

- Signal selection: one e or µ, two jets of which one b tagged, one forward
- Number of signal and background (W +jets, tt^{bar}) events determined from a fit to the $|\eta_{i'}|$ distribution
- Distributions for W+jets and tt^{bar} are determined from control regions in data (n-jets, m-b tags)

•
$$\sigma_{t-ch.} = 83.6 \pm 2.3(stat) \pm 7.4(syst) \text{ pb}$$

 $R_{8/7} = 1.24 \pm 0.08(\text{stat}) \pm 0.12(\text{syst})$

 Largest uncertainty: signal modeling (generator), jet energy scale

> JHEP06(2014)090 CMS PAS TOP-12-002/ATLAS-COM-CONF-2013-061

s [TeV]

tW, s-ch. production

- More rare modes affected by large background due to tt^{bar} events
- Probe different production modes
- Multivariate discriminators (Boosted Decision Trees) adopted to enhance the signal/ background separation.
- tW (12.2fb⁻¹, 8TeV): σ_{tW} = 23.4^{+5.5}-5.4 pb significance: 6.1σ obs. (5.4^{+1.5}-1.4σ exp.)
- s-ch. (19.3fb^{-1,}8TeV): $\sigma_{s-ch.} < 11.5 \text{ pb} = 2.1 \times \sigma \text{SM}, 95\% \text{CL}$
 - Assuming SM signal: $\sigma_{s-ch.} = 6.2^{+8.0}_{-5.1} \text{ pb} (68\% \text{ FC int.})$
 - Significance: $0.9\sigma \exp, 0.7\sigma obs$

27

Main limitation to both channel is the modeling of the very large tt^{bar} background

Single top LHC cross sect. summary

 All measurements are in agreement with theory calculations (reached the NNLO or approx. NNLO)

$|V_{tb}|$ from single top

- ► The $|V_{tb}|$ measurement in single-top events provides a unique opportunity to directly probe the top production Wtb vertex: $|V_{tb}| = \sqrt{(\sigma/\sigma^{th}(|V_{tb}|=1))}$, assuming $|V_{tb}| \gg |V_{ts}|$, $|V_{td}|$ or equivalently $\mathcal{B}(t \rightarrow Wb) = 1$
 - Deviations from the SM are potentially sensitive to new physics
- Eight measurements in the t channel and in tW, the latter with less precision

t-channel: distributions

- The *t*-channel data sample is large enough to study distributions
 - ightarrow differential cross section measurements
- Signal can be enhanced by requiring e.g.: large forward jet pseudorapidity: $|\eta_{i'}| > 2.0$

Top/antitop ratio

- $R_t = \sigma_t(t)/\sigma_t(t^{bar})$ is potentially sensitive to the proton's PDF
- ATLAS, 7 TeV:
 - $\sigma_t(t) = 53.2 \pm 10.8 \text{ pb},$ $\sigma_t(t^{\text{bar}}) = 29.5 + 7.4 - 7.5 \text{ pb}$
 - $R_t = 1.81^{+0.23}_{-0.22}$

proton

CMS, 8 TeV:

- $\sigma_t(t) = 53.8 \pm 1.5(\text{stat}) \pm 4.4(\text{syst}) \text{ pb},$ $\sigma_t(t^{\text{bar}}) = 27.6 \pm 1.3(\text{stat}) \pm 3.7(\text{syst}) \text{ pb}$
- $R_t = 1.95 \pm 0.10(stat) \pm 0.19(syst)$
- Approaching the precision necessary to discriminate between different PDF models

Main sources of uncertainty: jet energy scale, signal modeling

7 TeV: ATLAS-CONF-2012-056 8 TeV: CMS: JHEP06(2014)090

Top quark polarization

- Test of parity violation in the SM performed on a "free" quark at the production vertex
 - The top quark from electroweak production is 100% polarized due to the V-A structure of the interaction at the Wtb production vertex

In the SM P_t = I:
$$A_l = \frac{1}{2}P_t = \frac{N(\uparrow) - N(\downarrow)}{N(\uparrow) + N(\downarrow)}$$

The cos θ *[†] distribution is obtained in a signalenriched sample after unfolding the experimental effects, and compared to:

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}\cos\theta^*} = \frac{\Gamma}{2}(1 + P_{\mathrm{t}}\cos\theta^*)$$

Measured top polarization:

 $P_{t} = 0.82 \pm 0.12(stat) \pm 0.32(syst), e+\mu$ combined

[†] $\theta *_l$ = angle between lepton in W rest frame and the W in top rest frame.

0

-1

-0.5

0.5

 $\cos \theta^*$

0

W polarization in tt^{bar}

- Test of parity violation in the SM performed on a "free" quark at the decay vertex
 - Top quarks are produced unpolarized in strong interactions
 - The t→Wb decay induces a W polarization due to the V-A structure of weak charged current

$$\frac{1}{\Gamma}\frac{d\Gamma}{d\cos\theta^*} = \frac{3}{8}\left(1-\cos\theta^*\right)^2 F_L + \frac{3}{8}\left(1+\cos\theta^*\right)^2 F_R + \frac{3}{4}\sin^2\theta^* F_0$$

Anomalous tWb couplings can be probed:

Also studied in . Ве(g_R) ATLAS and CMS preliminary single top $\sqrt{s} = 7 \text{ TeV}, L_{int} = 35 \text{ pb}^{-1} - 2.2 \text{ fb}^{-1}$ F_{R} F Fo [HEP 01 (2015) 053 NNLO QCD 0.6 LHC combination preliminary $V_{L}=1, V_{B}=0$ Combination \sqrt{s} =7 TeV, L_{int}=35 pb⁻¹ - 2.2 fb⁻¹ $\bullet \bullet \bullet$ Data (F_B/F₁/F₀) 0.4 68% CL ATLAS 2010 (single lepton) 95% CL 0.2 ATLAS 2011 (single lepton) ★ SM ATLAS 2011 (dilepton) CMS 2011 (single muon) LHC combination -0.2 33 0 0.5 -0.4 0.2 W boson helicity fractions

CMS-PAS-TOP-14-001

Jet

W

Jet

Top-quark mass (CMS, *l*+jets)

- ▶ Signal selection: one lepton, \geq 4 jets, \geq 2 b-tagged jets
- Kinematic fit: m_{W} constraint on both W, equal mass of decaying heavy particles; goodness-of-fit from χ^2 : $P_{gof} = P(\chi^2) = \exp(-\frac{1}{2}\chi^2)$
- Weight possible permutations by χ^2 probability (at least P(χ^2)>0.2 required)

$$\mathcal{L}(m_{t}, \text{JES}|\text{sample}) \propto \prod_{\text{events}} \left(\sum_{i=1}^{n} c P_{\text{gof}}(i) P\left(m_{t,i}^{\text{fit}}, m_{W,i}^{\text{reco}} | m_{t}, \text{JES}\right) \right)^{w_{\text{events}}}$$

Top-quark mass (cont.)

 Simultaneous fit of m_t and of jet energy scale from reconstructed W-mass distribution (hadonic W)

 $m_{\rm t} = 172.04 \pm 0.19 \,({\rm stat.+JSF}) \pm 0.75 \,({\rm syst.}) \,{\rm GeV},$

JSF = 1.007 ± 0.002 (stat.) ± 0.012 (syst.).

- Reached ultimate Tevatron precision
 - Most precise measurement by D0:

 $m_t = 174.98 \pm 0.76 \text{ GeV} (arXiv:1405.1756, l+jets)$

	om _t (Gev)
Experimental uncertainties	
Fit calibration	0.10
$p_{\rm T}$ - and η -dependent JES	0.18
Lepton energy scale	0.03
MET	0.09
Jet energy resolution	0.26
b tagging	0.02
Pileup	0.27
Non-tt background	0.11
Modeling of hadronization	
Flavor-dependent JSF	0.41
b fragmentation	0.06
Semi-leptonic B hadron decays	0.16
Modeling of the hard scattering process	
PDF	0.09
Renormalization and factorization scales	$0.12 {\pm} 0.13$
ME-PS matching threshold	$0.15 {\pm} 0.13$
ME generator	$0.23 {\pm} 0.14$
Modeling of non-perturbative QCD	
Underlying event	$0.14{\pm}0.17$
Color reconnection modeling	$0.08{\pm}0.15$
Total	0.75

Padova, 26-02-2015

35

Top-quark mass from single top

- Theoretical uncertainties complementary to tt^{bar} measurements
 - Color reconnection effect different in electro-weak and strong processes
- Event selection similar to *t*-channel cross section analysis (Neural Network, for ATLAS)
- Sample composition: ~50% single top, ~23% tt^{bar}
- Mass measured from the distribution of the lepton+b invariant mass
 - Varied for both single-top and tt^{bar}
- Precision still limited mainly by jet energy scale (1.5 GeV), t-channel hardronization model (0.7 GeV), backgrounds (0.6 GeV)

Top-quark mass combinations

- World combination released, including Tevatron results
- Should be updated with latest CMS measurement

Luca Lista

Charge and FB asymmetries

- Hints of FB asymmetry reported since long by Tevatron (mainly CDF)
- In the SM no forward-backward asymmetry is expected in $gg \rightarrow tt^{bar}$ processes
- Small asymmetry in $qq^{bar} \rightarrow tt^{bar}$ due to interference of higher order diagrams (ISR + FSR)
- The exchange of exotic particles may enhance the asymmetry
- LHC data not directly comparable to Tevatron: symmetric pp initial state vs asymmetric pp^{bar}
- Charge asymmetry measured at LHC instead of forward-backward asymmetry, measured at Tevatron
- Either top or lepton y used as direction

 $\Delta |y| = |y_{\rm t}| - |y_{\rm \bar{t}}|$

PRD90(2014)072011

$A_{\rm FB}, A_{\rm C}$ (cont.)

- SM prediction for A_{FB} at Tevatron is zero at LO (appears at $\mathcal{O}(\alpha_s^{-3})$)
- Historically A_{FB} larger than SM for large m_{tt} at Tevatron, though recent measurements are less pronounced
 - Also theory predictions "moved" towards data
- SM prediction for A_C at LHC is ~1%
- Best measured by ATLAS and CMS (and their combination) in the *l*+jets channel

$A_{\rm FB}$, $A_{\rm C}$ (differential)

- Both total and differential (m_{tt}-dependent) measurement give no indication of deviations from SM predictions
- Limits can be set on new physics models

ATLAS

s= 7 TeV

L dt = 4.7 fb⁻¹

Data

SM

Axigluon m=300 GeV

SM: Bernreuther & Si

Axigluon m=7000 GeV

0.2

0.15

0.1

0.05

-0.05

-0.1

0

New physics in single top

FCNC in single-top production may arise from several new physics scenarios affecting both production (u/c \rightarrow t) and decay (e.g. u/c \rightarrow tZ, t γ , tg)

Z

$$\mathcal{L} = \sum_{\substack{q=u,c}} \left[\sqrt{2}g_s \frac{\kappa_{gqt}}{\Lambda} \bar{t} \sigma^{\mu\nu} T_a(f_q^L P_L + f_q^R P_R) q G_{\mu\nu}^a \right] \text{gut, gct}$$

$$+ \frac{g}{\sqrt{2}c_W} \frac{\kappa_{Zqt}}{\Lambda} \bar{t} \sigma^{\mu\nu} (\hat{f}_q^L P_L + \hat{f}_q^R P_R) q Z_{\mu\nu} \right] + \text{h.c. Zut, Zct}$$

$$\frac{u/c}{\sqrt{2}c_W} \frac{u/c}{g} \frac$$

- CMS looked for FCNC in associated tZ production (CMS PAS TOP-12-021, 7 TeV)
- ATLAS also looked for CP violation in the Wtb vertex using lepton angular distribution in single-top (ATLAS-CONF-2013-032, 7 TeV)
 - No deviation from SM prediction spotted so far

ATLAS: $\kappa_{gut}/\Lambda < 5.1 \times 10^{-3} \text{ TeV}^{-1}$ $\kappa_{gct}/\Lambda < 1.1 \times 10^{-2} \text{ TeV}^{-1}$ CMS: $\kappa_{7ut}/\Lambda < 0.45 \,\text{TeV}^{-1}$ $\kappa_{Zct}/\Lambda < 2.27 \text{ TeV}^{-1}$ $B(t \rightarrow gu) < 3.1 \times 10^{-5}$ $B(t \rightarrow gc) < 1.6 \times 10^{-5}$ $B(t \rightarrow Zu) < 5.1 \times 10^{-3}$ $B(t \rightarrow Zc) < 0.1140$ (95% CL)

 $A_{FB}^{N} = 0.03 I \pm 0.065 (stat.)^{+0.029}_{-0.031} (syst)$ anomalous tensor coupling: -0.2< సె(g_R) <0.3, 95%CL

Luca Lista

Single top and exotic Higgs

- Probe Higgs anomalous coupling to top quark (y_t = -1), due to interference of diagrams with ttH and WWH vertices
- Upper limits to cross section set:

42

- $\sigma(tHq, H\rightarrow bb) < 7.6 \times \sigma(y_t=-1), 5.1 \text{ exp.}, 95\%$ CLs
- ► $\sigma(tHq, H\rightarrow\gamma\gamma) < 4.1 \times \sigma(y_t=-1), 4.1 \text{ exp., 95%CLs}$
- May probe up to SM Higgs coupling with run-II data, complementing ttH search
 CMS PAS HIG-14-015

CMS Preliminary, L = 19.7 fb⁻¹ at \sqrt{s} = 8 TeV

120 130 140 150 160 170

180

Data

tHq (Ct = -1) Extra ttH (Ct = -1)

ttH (125) VH (125)

Events / (2 GeV)

0.5

0.3

0.2

0.1

100

110

Top reconstruction at high energy

- > The high-energy LHC regime forces top decays to be reconstructed in the same hadronic jet
- Important to measure high-p_T ends of SM processes, for top-quark from exotic decays having large boost and for run-II data at 13-14 TeV

Dedicated algorithms identify jet substructures and identify top decay products (top taggers)

Boosted top in SM processes

- ATLAS measured tt^{bar} differential cross section using boosted techniques at high top p_T (in *l*+jets)
- Background to may new physics searches
- Simulation does not reproduce well the high- p_T regime

Boosted tops and new physics

Padova, 26-02-2015

Luca Lista

Conclusions

- After 20 years from its discovery, the top quark field is very active and rich in new results
- LHC reached very good precision in many measurements, ranging from production cross section and distributions to top-quark properties

- Top can couple to new physics but so far no hint of deviations from the SM has been identified
- Advanced analysis technique have been developed to exploit in an optimal way the forthcoming I3–I4 TeV LHC

Stay tuned for new results from LHC run-II !

Top quark p_T, jet multiplicity

- Top p_T:
 - POWHEG best agrees with data
 - ATLAS reports ALPGEN, MC@NLO, and the NLO calculation above data for p_T > 200 GeV
 - CMS reports low-p_T spectrum not well reproduced, but in agreement with approx. NLO calculations
- Jet multiplicity:

48

 MC@NLO+Herwig showering predicts lower jet multiplicity than observed

CMS: EPIC73(2013)2339 (7 TeV)

s channel at Tevatron

Top-quark mass from cross section

 Limited precision, but does not suffer from top mass definition from a renormalization scheme (pole mass)

Perspectives on m_t for run–II and beyond

 Different assumptions done on uncertainty evolutions, including theory (PDF, cross sections, pole vs MC mass, ...)

$\mathcal{B}(t \rightarrow Wb) / \mathcal{B}(t \rightarrow Wq)$ from $t\bar{t}$ and Γ_t

- $|V_{tb}|$ measured in tt^{bar} from top decays
- $R = \mathcal{B}(t \rightarrow Wb)/\mathcal{B}(t \rightarrow Wq) = |V_{tb}|^2$
- Dilepton channel used (e or μ ; Drell-Yan removed if $|M_Z M_{\parallel}| < 15 \text{ GeV or } ME_T < 40 \text{ GeV}$)
- b flavour content of tt^{bar} events probed counting the number of b jets after independent data-driven measurement of b-tagging efficiency
- Result:

R = 1.014 ± 0.003 (stat.) ± 0.032 (syst.) $|V_{tb}| > 0.975, 95\%$ CL

Indirect measurement of Γ_t : including single-top t-channel cross-section measurement:

Assuming the SM value $[t \rightarrow Wb] = 1.329 \text{ GeV}$ (corresponding to $m_t = 172.5 \text{ GeV}$), and $\sum_q B(t \rightarrow Wq) = 1$, hence $R = \mathcal{B}(t \rightarrow Wb)$:

 $\Gamma_{t} = 1.36 \pm 0.02 \text{ (stat.)}^{+0.14} \text{ (syst.) GeV}$

Luca Lista

Search for four tops

- SM process with very low cross section:
 - σSM_{8TeV}(tttt) ≈ I fb(LO) + ~20÷30% (NLO)
 V. Barger et al., PLB687(2010)70
 M.W. G. Bevilacqua, JHEP1207(2012)111
- Production largely enhanced in several models beyond the SM
 - Composite top and Higgs, extra dimensions, supersymmetric cascade decay with multitop final states, ...)
- Analysis strategy look for:
 - (1) top decay to e or μ
 - 3 tops decay hadronically
 - 3-jet combinations scored as top decay using a dedicated BDT ("multitopness") against semileptonic tt
 - Second BDT adding more event variables
 - No significant excess observed:
 - σ (tttt) < 63 fb (exp: 42⁺¹⁸₋₁₃ fb) , 95%CL

CMS-PAS-TOP-13-012

8 TeV, 20 fb⁻¹

