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Definition of probability 
•  Two main different definitions of the concept of 

probability are possible 
•  Frequentist 

–  Probability is the ratio of the number of occurrences of an 
event to the total number of experiments, in the limit of very 
large number of repeatable experiments. 

–  Can only be applied to a specific classes of events 
(repeatable experiments) 

–  Meaningless to state: “probability that the lightest SuSy 
particle’s mass is less than 1 TeV” 

•  Bayesian 
–  Probability measures someone’s the degree of belief that a 

statement is (or will be…) true 
–  Can be applied to most of unknown events (past, present, 

future): 
•  “Probability that Velociraptors hunted in groups” 
•  “Probability that R.S.C. Anderlecht will win next championship”  
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Problems with probability definitions 
•  Frequentist probability is, to some extent, circularly defined 

–  A phenomenon can be proven to be random (i.e.: obeying laws of statistics) 
only if we observe infinite cases (“converge in probability”) 

–  F.James et al.: “this definition is not very appealing to a mathematician, since it 
is based on experimentation, and, in fact, implies unrealizable experiments 
(N→ ∞)”. But a physicist can take this with some pragmatism 

–  Frequentist models can be justified from details of poorly predictable 
underlying physical phenomena 

•  Deterministic dynamic but poorly predictable (chaos theory, …) 
•  Quantum Mechanics: intrinsically probabilistic…! 

–  A school of statisticians state that Bayesian statistics is a more natural and 
fundamental concept, and frequentist statistic is just a special sub-case 

•  On the other hand, Bayesian statistics is subjectivity by 
definition, which is unpleasant for scientific applications. 

–  Bayesian reply that it is actually inter-subjective, i.e.: the real essence of 
learning and knowing physical laws… 

•  Frequentist approach is preferred by the large fraction of 
physicists (probably the majority), but Bayesian statistics is 
getting more and more popular in many application, also thanks 
to its simpler application in many cases 
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Axiomatic definition (A. Kolmogorov) 
•  Axiomatic probability definition applies to both 

frequentist and Bayesian probability 
–  Let (Ω, F⊆ 2Ω, P) be a measure space that satisfy: 

–  1 

–  2 

–  3 

–  Terminology: Ω = sample space, F = event space,  
P = probability measure 

•  So we have a formalism to deal with different types of 
probability 

Andrej Nikolaevič Kolmogorov 

(1903-1987) 
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Conditional probability 
•  Probability of A, given B: P(A | B)  
•  i.e.: probability that an elementary experiment, known 

to belong to set B, is also a member of set A: 

•  Event A is said to be  
independent on B if the  
conditional probability of  
A given B is equal to the  
probability of A: 
–  P(A | B) = P(A) 

•  Hence, if A is independent on B: 
–  P(A ∩ B) = P(A) P(B) 

•  à If A is independent on B, B is independent on A 

A B
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Bayes theorem 

•  P(A) = prior probability 
•  P(A|B) = posterior probability 

Thomas Bayes (1702-1761) 
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Bayes and likelihood function 
•  Likelihood function definition: a PDF of the variables x1, …, xn: 

•  Bayesian posterior probability for  θ1, …, θm: 

•  Where: 
–  P(θ1, …, θm) is the prior probability.  

•  Often assumed to be uniform in HEP papers, but there is no motivation for this 
choice (and a uniform distribution depends on the parameterization choice!) 

–  ∫L(…)P(…) dmθ is a normalization factor 
•  Interpretation: 

–  The observation modifies the prior knowledge of the unknown parameters 
as if L is a probability distribution function for θ1, …, θn 

–  F.James et al.: “The difference between P(θ)  and P(θ | x) shows how one’s 
knowledge (degree of belief) about θ has been modified by the observation x. The 
distribution P(θ | x) summarizes all one’s knowledge of θ and can be used 
accordingly.” 
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Bayesian inference 
•  Just use the (normalized) product of likelihood function times the 

prior probability as the posterior PDF for the unknown 
parameter(s) θ: 

•  You can evaluate then: 
–  The average value of θ 
–  The variance of θ 
–  The mode (most likely value) and a (68%) coverage interval 
–  In many cases, the most likely value and average don’t coincide! 

•  Notice that the Maximum Likelihood estimate is the mode of 
Bayesian inference with a uniform prior 

•  Upper limits are easily computed using the Bayesian approach 

In literature often the 
notation π(θ) is used to 
define prior  



Counting experiments 
•  The only information from our measurements is the number of observed events 

of the kind of interest 
•  Expected distribution is Poissonian: 

•  Hypotheses test terminology: 
–  Null hypothesis (H0): s = 0 
–  Alternative hypothesis (H1): test against a specific value of s > 0 

•  An experiment outcome is a specific value of n: n =  nobs 
•  If we observe zero events we can state that: 

–  No background events have been observed (nb = 0) 
–  No signal events have been observed (ns = 0) 

•  Further simplification: let’s assume that the expected background b is negligible: 
b ≅ 0 

Gent, 28 Oct. 2014 Luca Lista 9 



Bayesian inference of a Poissonian 
•  Posterior probability, assuming the prior to be π(s), 

setting b = 0 for simplicity: 

•  If is π(s) is uniform, the denom. is: 

•  We have:                           ,  
•  Most probable value: 
 

… but this result 
depends on the 
choice of the prior! 
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Bayesian upper limit 
•  The posterior PDF for s, assuming a uniform prior, is: 
 

•  The cumulative distribution is: 

 

•  In particular for n=0: 

•  We will see that by chance this result 
is identical also for a frequentist limit: 

•  But the interpretation is very different! s 

f(s|0) 

0 1 2 3 

α=5% 
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For zero 
observed 
events 
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Frequentist vs Bayesian 
•  Interpretation of parameter errors: 

–  θ = θest ± δ                 θ ∈[ θest − δ, θest + δ]       
–  θ = θest +δ2

−δ1                θ ∈[ θest − δ1, θest + δ2]          

•  Frequentist approach: 
–  Knowing a parameter within some error means that a large fraction 

(68% or 95%, usually) of the experiments contain the (fixed but 
unknown) true value within the quoted confidence interval: 
 [θest - δ1, θest + δ2] 

•  Bayesian approach: 
–  The posterior PDF for θ is maximum at θest and its integral is 68% 

within the range [θest - δ1, θest+ δ2] 

•  The choice of the interval, i.e.. δ1 and δ2 can be done in different 
ways, e.g: same area in the two tails, shortest interval, 
symmetric error, … 

•  Note that both approaches provide the same results for a 
Gaussian model using a uniform prior, leading to possible 
confusions in the interpretation 



Problems with Bayesian inference/limits 

•  Bayesian inference, as well as Bayesian limits, 
require the choice of a prior distribution 
–  This makes estimates somewhat subjective 

•  Choices frequently adopted in physics are not 
unique: 
–  Uniform PDF as a function of the signal strength? 
–  Uniform PDF as a function of the Higgs boson mass? 

•  In some cases results do not depend strongly on the 
assumed prior 
–  But this usually happens when the statistical sample is 

sufficiently large, which is not often the case for upper limits 
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Choosing the prior PDF 
•  If the prior PDF is uniform in a choice of variable 
•  Uniform PDF not preserved when applying coordinate transformation 
•  Given a prior PDF in a random variable, there is always a 

transformation that makes the PDF uniform 
•  Harold Jeffreys’ prior: chose the prior form that is invariant under 

parameter transformation 
•  metric related to the Fisher information (metrics invariant!) 

•  Some common cases: 
–  Poissonian mean: 
–  Poissonian mean with background b: 
–  Gaussian mean: 
–  Gaussian r.m.s: 
–  Binomial parameter:  

•  Problematic with more than one dimension! 
–  Reference priors…. 
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Frequentist approach: p-value 
•  p-value: probability to observe at least nobs events if the null hypothesis H0 (s = 0) 

is true 
•  Probability that a background (over)fluctuation gives at least the observed 

number of events 

 

 
 
 

•  If H0 is true (s = 0) the distribution of the p-value is uniform if the distribution is 
continuous. It is approximately uniform in case of discrete distributions 

•  Remark: the p-value is not the probability that H0 is true: this is probability has 
meaning only under the Bayesian approach! 
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Significance and discovery 
•  The p-value, which measures the observed “incompatibility” with the 

background-only hypothesis is often converted into a number of 
standard deviations (“nσ”) corresponding to a Gaussian distribution 

       or: 
 
 
 

•  Usually, in literature: 
–  If the significance is > 3 (“3σ”) one claims “evidence of” 
–  If the significance is > 5 (“5σ”) one claims “observation”  

(discovery!) 
•  probability of background fluctuation p < 2.87×10−7   

•  For a counting (=Poissonian) experiment with a large expected 
background b, a Gaussian approximation may be accurate enough: 
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Φ = cumulative of a 
normal distribution  



Discovery and scientific method 
•  From Cowan et al., EPJC 71 (2011) 1554: 

It should be emphasized that in an actual scientific context, 
rejecting the background-only hypothesis in a statistical 
sense is only part of discovering a new phenomenon. One’s 
degree of belief that a new process is present will depend 
in general on other factors as well, such as the plausibility 
of the new signal hypothesis and the degree to which it can 
describe the data. Here, however, we only consider the 
task of determining the p-value of the background-only 
hypothesis; if it is found below a specified threshold, we 
regard this as “discovery”. 

“ 
” Complementary role of Frequentist and Bayesian approaches J  
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Excluding a signal hypothesis 
•  Assuming a given value of s > 0 (H1), a corresponding 

p-value can be computed 
•  in this case the p-value measures  the probability of a 

signal underfluctuation (n ≤ nobs ) 
–  Null hypothesis is inverted w.r.t. the discovery case 

•  The exclusion of a signal hypothesis usually has 
milder requirements: 
–  p < 0.05 (i.e.: 95% confidence level):  Z = 1.64 
–  p < 0.10 (i.e.: 90% confidence level):  Z = 1.28 

•  Discovering a new signal usually requires more 
stringent evidence than excluding it! 
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Zero events observed 
•  The probability to observe n = ns events expecting s events (H1), is:  

  
 

–  The probability to observe n ≤ nobs =  0 (p-value) is: 

•  We can set an upper limit on the expected signal yield s excluding 
values of s for which the p-value p = e−s  is less than 5% or 10% 

–  p = e−s  ≥  α = 1 − CL 

•  So: s ≤ −ln(α) = sup. For α = 5% or 10%: 
–  s ≤ 2.996 @ 95% C.L. 
–  s ≤ 2.303 @ 90% C.L. 
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Same results as for the Bayesian case, but 
the interpretation is different! 
 
In general, Bayesian and frequentist limits 
do not coincide 



A more realistic case 
•  A variable (e.g.: reconstructed invariant mass) is 

samples for a number of events 
•  It’s distribution is used to look for a signal 
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Likelihood model 
•  The probability to observe the present (unbinned) 

sample is given by the extended likelihood function: 

 
•  µ is usually the “signal strength” (i.e.: σ/σSM) in case 

of Higgs search, instead of number of signal events s 
•  Or, considering just the binned information:   
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si, bi = signal/background templates, 
µ = signal strength 
θ = nuisance parameters 



Nuisance parameters 
•  So called “nuisance parameters” (θ) are unknown 

parameters that are not interesting for the 
measurement (µ) 
–  E.g.: background rate, detector resolution, background 

shape modeling, other sources of systematic uncertainties, 
etc. 

•  Two main possible approaches: 
•  Add the nuisance parameters together with the 

interesting unknown to your likelihood model 
–  But the model becomes more complex!  
–  Easier to incorporate in a fit than in upper limits 

•  “Integrate them away” (à Bayesian) 
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Nuisance pars. in Bayesian approach 
•  Notation below: 

–  µ = parameter of interest, θ = nuisance parameters 

•  No particular treatment: 

•  P(µ|x) obtained as marginal PDF, “integrating out” θ: 

Gent, 28 Oct. 2014 Luca Lista 23 



Frequentist: the test statistics 
•  A test statistics has to be chosen to discriminate the 

two hypotheses 
•  Neyman-Pearson lemma suggests to adopt a 

likelihood ratio between two hypotheses to achieve 
the “best” discrimination: 

 
•  Variations are available on the market 

–  Mainly: how to deal with nuisance parameters 
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Profile Likelihood 
•  Adopted test statistics: 

 
 

•  Profile likelihood shape is broadened by 
nuisance parameters θ (loss of information) 

•  Nice asymptotic property: distribution of  
qµ = -2lnλ(µ) tends to a χ2 distribution with one degree of freedom due 
to Wiks’ theorem (one parameter of interest = µ)  

•  Different ‘flavors’ of test statistics, e.g.: deal with unphysical µ < 0, … 

 

Fix µ, fit θ 

Fit both µ and θ 

compatible 
with signal 

incompatible 
with signal 
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Bump hunting 
•  Significance evaluation can 

be performed by generating 
random pseudo-experiments 
(“toy MC”) 

•  p-value estimated as the 
fraction of toys with value of 
t = qµ less than tobs. 

•  In the presented case, 
assuming no nuisance 
parameter (µ is the only 
parameter of the model): 

•  p = 374/105 = 3.7±0.2% 
•  Z = 2.7  
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Determining the signal strength 
•  A scan of the test statistics reveals its minimum at the 

best parameter value (µ=signal strength here)  
•  The fit value of µ is the maximum-likelihood estimate 

–  µ = 1.24+0.49
-0.48 

•  Using the likelihood ratio instead of just the likelihood: 
from Wilks’ theorem, the likelihood ratio 
approximately follows 
a χ2 distribution in the null 
hypothesis 
–  In presence of signal: 

•  Significance Z ~ √-tmin 

•  In this case Z ~ 2.7 

–  Goodness-of-fit, in case of 
no presence of signal 
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Dealing with systematics 
•  Several assumptions done in the model are affected by systematic 

uncertainties 
•  In the present case, the uncertainty on the background rate/shape has 

large effect on the signal estimate 
•  The amount of background can be scaled by a factor β, which becomes 

one of the nuisance parameters (θ) of the model 
•  More in general, for binned cases, the effect may be modeled by 

shifting “up” or “down” the signal 
and background templates  
corresponding to the uncertainty  
amount 
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Effect of systematic uncertainty 
•  Larger uncertainty: µ = 1.40+0.61

-0.60 

•  Smaller significance: Z~2.3 

 
•  Other uncertainties may have similar 

treatment: background shape (affects bi), 
signal resolution (affects si), etc. 
 

Gent, 28 Oct. 2014 Luca Lista 29 

•  Practical side effects: 
–  Slower generation of toy MC 

(require a minimization for each 
extraction) 

–  Asymptotic (=Wilks’ 
approximation) evaluations are 
more convenient in those cases 

–  For a counting experiment the 
following approximation is a valid 
for large n: 

 



Jerzy Neyman’s confidence intervals 
•  Scan an unknown 

parameter θ (or µ) over its 
range 

•  Given θ, compute the 
interval [x1, x2] that contain x 
with a probability CL = 1−α 

•  Ordering rule is needed! 
–  Central interval? Asymmetric? 

Other? 
•  Invert the confidence belt, 

and find the interval [θ1, θ2] 
for a given experimental 
outcome of x 

•  A fraction 1−α of the 
experiments will produce x 
such that the corresponding 
interval  
[θ1, θ2] contains the true 
value of µ (coverage 
probability) 

•  Note that the random 
variables are [θ1, θ2], not θ  

Plot from PDG statistics review 
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Ordering rule 
•  For a fixed θ = θ0 we different possible intervals 

choices give the same probability 1−α 

x 

f(x|θ0) 

1−α 
x 

f(x|θ0) 

1−α 
α/2 

α/2 

Upper limit choice Central interval 

α 
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•  Upper limit construction from inversion 
of Neyman belt with asymmetric intervals 

•  Building a confidence interval on the  
observable 

–  The observable x is the number of events n for  
counting experiments 

–  Final confidence interval must be asymmetric  
if we want to compute upper limits: 

•  s ∈ [s1, s2] ⇒ s ∈ [0, sup]  
–  Upper limit = right-most edge of asymmetric 

interval 
–  Hence, we should have an asymmetric interval on n:  

•  n ∈ [n1, n2] ⇒ n ∈ [nmin, ∞]  
•  Poissonian distributions involve discrete values, can’t exactly satisfy coverage: 

produce the smallest overcoverage 
–  Use the smallest interval that has at least the desired C.L.: 

     P(s ∈ [0, sup])  ≥  CL = 1 - α 
                            ⇔ 
           P(n ∈ [nmin, ∞]) = 1 − p  ≥  CL = 1 - α  

Frequentist upper limits 

, θ
 =

 s 

, x = n 

n

P(
n;

s)
 

1 − p ≥ 1−α 

p ≤ α 

s = 4, b = 0 

nmin ≤ n ≤ ∞ 

0 
≤ 

s ≤
 sup

 
Gent, 28 Oct. 2014 Luca Lista 32 



Feldman-Cousins ordering 
•  Find the contour of the likelihood ratio that gives an 

area α 
•  Rµ = {x : L(x|θ) / L(x|θbest) > kα} 
•  Motivation discussed in next slides 

x 

f(x|θ0) 

1-α 

f(x|θ0)/f(x| θbest(x)) 

Gary J. Feldman, Robert D. Cousins, Phys.Rev.D57:3873-3889,1998 
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“Flip-flopping” 

•  When to quote a central value or upper limit? 
•  E.g.: 

– “Quote a 90% C.L. upper limit of the 
measurement is below 3σ;  
quote a central value otherwise” 

•  Upper limit  ↔ central interval decided 
according to observed data 

•  This produces incorrect coverage! 
•  Feldman-Cousins interval ordering 

guarantees the correct coverage 



“Flip-flopping” with Gaussian PDF 

•  Assume Gaussian with a fixed width: σ=1 

x 

µ 

3 

µ < x + 1.28155 

x 

90% 
x 

µ = x ±1.64485 

10% 5% 

10% 

90% 

5% 5% 

Gary J. Feldman, Robert D. Cousins, Phys.Rev.D57:3873-3889,1998 

Coverage is 85% for low µ!  
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Upper limit 

Central interval 
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Feldman-Cousins approach 

•  Define range such that:  
– P(x|µ) / P(x|µbest(x)) > kα 

x 

µ 

µbest = max(x, 0) 

Asymmetric errors 

Upper limits 

Usual errors  µbest = x for x  ≥ 0 

Solution can be found numerically 



Feldman-Cousins: Poissonian case 

b = 3, 
90% C.L. 

Purely frequentist 
 
ordering based on 
likelihood ratio 
 
Belt depends on b,  
of course 

G.Feldman, R.Cousins, 
Phys.Rev.D,57(1998), 
3873 
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Upper limits with Feldman-Cousins 

G.Feldman, R.Cousins, 
Phys.Rev.D,57(1998), 
3873 

90% C.L. 
Note that the curve for  
n = 0 decreases with b,  
while the result of the  
Bayesian calculation  
is independent on b, 
at 2.3 
 
F&C reply:  
frequentist interval 
do not express P(µ|x) ! 
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A Close-up 

C. Giunti, 
Phys.Rev.D,59(1999), 
053001 

Note the ‘ripple’ 
Structure due to 
the discrete nature 
of Poissonian 
statistics 
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Pros and cons of F&C approach 
•  Pros: 

–  Avoids problems with physical boundaries on parameters 
•  Important in many cases, e.g.: cross-section measurement, neutrino 

bounds, … 

–  Never returns an empty confidence interval 
–  Does not incur flip-flop problems 
–  Ensure proper statistical coverage 

•  Cons: 
–  Constructing the confidence intervals is complicated, 

requires CPU-intensive numerical algorithms, and often 
large toy Monte Carlo generations 

–  Systematic uncertainties are not easily to incorporate 
–  Peculiar features with small number of events 
–  In case of zero observed events, gives better limits for 

experiments that expect higher background 
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From PDG Review… 

“The intervals constructed according to the unified 
procedure for a Poisson variable n consisting of 
signal and background have the property that for  
n = 0 observed events, the upper limit decreases for 
increasing expected background. This is counter-
intuitive, since it is known that if n = 0 for the 
experiment in question, then no background was 
observed, and therefore one may argue that the 
expected background should not be relevant. The 
extent to which one should regard this feature as a 
drawback is a subject of some controversy” 
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•  Method developed for Higgs limit at LEP-II 
•  Using the likelihood ratio as test statistics:  

•  Confidence levels estimator (àdifferent from Feldman-Cousins): 

–  Gives over-coverage w.r.t. classical limit (CLs > CLs+b: conservative) 
–  Similarities with Bayesian C.L. 

•  Identical to Bayesian limit for  
Poissonian counting! 

•  “approximation to the confidence in the signal hypothesis, one might have obtained if 
the experiment had been performed in the complete absence of background” 

•  No problem when adding channels with low discrimination 

Modified frequentist method: CLs 
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CLs with toy experiments 
•  The actual CLb and CLs+b are computed in practice 

from toy Monte Carlo experiments 
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Main CLs features 
•  CLs+b: probability to obtain a result which is 

less compatible with the signal than the 
observed result, assuming the signal 
hypothesis 

•  CLb: probability to obtain a result less 
compatible with the signal than the observed 
one in the background-only hypothesis 

•  If the two distributions are very well 
separated than 1−CLb will be very small ⇒ 
CLb ~1 and CLs ~ CLs+b , i.e: the ordinary 
p-value of the s+b hypothesis 

•  If the two distributions are very close than 
1−CLb will be large ⇒ CLb small, preventing 
CLs to become very small 

•  CLs < 1−α prevents to reject where there is 
little sensitivity  

−2ln(Q) 

exp. 
for b 

exp. 
for s+b 

1−CLb ~ 0 
CLs+b ~ CLs 

−2ln(Q) 

exp. 
for b 

exp. 
for s+b 

1−CLb ~ 1 
CLs+b < CLs 
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Observations on CLs method 
•  “A specific modification of a purely classical statistical 

analysis is used to avoid excluding or discovering signals 
which the search is in fact not sensitive to” 

•  “The use of  CLs is a conscious decision not to insist on 
the frequentist concept of full coverage (to guarantee that 
the confidence interval doesn’t include the true value of 
the parameter in a fixed fraction of experiments).” 

•  “confidence intervals obtained in this manner do not have 
the same interpretation as traditional frequentist 
confidence intervals nor as Bayesian credible intervals” 

A. L. Read, Modified frequentist analysis of search results  
(the CLls method), 1st Workshop on Confidence Limits, CERN, 2000 
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Nuisance parameters, frequentist 
•  Introduce a complementary dataset to constrain the 

nuisance parameters θ (e.g.: calibration data, 
background estimates from control sample…) 

•  Formulate the statistical problem in terms of both the 
main data sample (x) and control sample (y) 

•  Use likelihood method in more than one dimension 
•  May be CPU intensive 
•  Usually leads to results that are very similar to the 

hybrid Cousins-Highland hybrid method 
(à next slide) 
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Cousins-Highland hybrid approach 
•  No fully solid background exists on a genera approach to 

incorporate nuisance parameters within a frequentist approach 
•  Hybrid approach proposed  by Cousins and Highland 

–  Integrate(“marginalize”) the likelihood function over the nuisance 
parameters (Nucl.Instr.Meth.A320 331-335, 1992) 

•  Also called “hybrid” approach, because some Bayesian 
approach implicit in the integration:  
‘‘seems to be acceptable to many pragmatic frequentists”  
(G. Zech, Eur. Phys. J. C 4 (2002) 12) 
–  Bayesian integration of PDF, but likelihood used in a frequentist way 

•  Some numerical studies with Toy Monte Carlo showed that 
the frequentist calculation gives very similar results in many 
cases 

•  May undercover in case of high significance 
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•  Use profile likelihood as test statistics, then evaluate CLs  

 
•  The constraint              ensures that upward fluctuations of the data such that                

            are not considered as evidence against the signal hypothesis, namely a 
signal with strength µ 

•  Agreed estimator between  
ATLAS and CMS for Higgs 
search: 

–  ATL-PHYS-PUB-2011-11 

CLs with profile likelihood at LHC 
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LEP, Tevatron, LHC Higgs limits 
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•  The constrain              imposed on the profile likelihood distorts its from 
Wilks’[*] asymptotic approximation, so the distribution tends no longer to 
a χ2, but: 

•  Where:                        and qµ,A is the test statistics evaluated on the  
 
Asimov set (à next slide) 

•  Approximations are a valuable way to perform computation quickly 
•  More details on asymptotic approximations: 

–  Cowan, Cranmer, Gross, Vitells, arXiv:1007.1727, EPJC 71 (2011) 1554 
–  [*]  S.S. Wilks, The large-sample distribution of the likelihood ratio for testing composite 

hypotheses. Ann. Math. Stat. 9, 60–62 (1938) 
–  A. Wald, Tests of statistical hypotheses concerning several parameters when the 

number of observations is large. Trans. Am. Math. Soc. 54(3), 426–482 (1943) 

Asymptotic approximations 
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Asimov[*] sets 
•  Approximate evaluation of expected (median) limits avoiding CPU-intensive 

generation of toy Monte Carlo samples by using a single “representative set” 
•  Replace each bin of the observable distribution (e.g.: reconstructed Higgs mass 

spectrum) by its expectation value 
•  Set nuisance parameters to their nominal value 
•  Approximation valid in the asymptotic limit 
•  Median significance can be approximated with the sqrt of the test statistic, 

evaluated at the Asimov set:  

•  Uncertainty bands on expected upper limits  
can also be evaluated using Asimov sets,  
 

avoiding large toy MC extractions:  
 

•  Mathematical validity and approximations of  
this approach are discussed by Cowan et al. [**] 

[*]  Asimov, Franchise, in Isaac Asimov: The Complete Stories,  
vol. 1 (Broadway Books, New York, 1990) 
[**] Cowan, Cranmer, Gross, Vitells, arXiv:1007.1727,  
EPJC 71 (2011) 1554 
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Look-Elsewhere Effect (LEE) 
•  Imagine you search for a signal peak over a background 

distribution that is spread over a wide range 
•  You could either: 

–  Know which mass to look at, e.g.: search for a rare decay with a 
known particle, like Bs→µµ 

–  Search for a peak at an unknown mass value, like for the Higgs 
boson 

•  In the former case it’s easy to compute the peak significance: 
–  Evaluate the test statistics for µ=0 (background only) at your 

observed data sample  
–  Evaluate the p-value according to the expected distribution of t under the 

background-only hyp., possibly convert it to the area of a Gaussian tail: 
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LEE (cont.) 
•  In case you search for a peak at an unknown mass, the previous p-value has 

only a “local” meaning: 
–  Probability to find a background fluctuation as large as your signal or more at a fixed 

mass value: 

–  Different w.r.t. the (global) probability to find a background fluctuation at least as large 
as your signal at any mass value 

–  “local” p-value would be an overestimate of the “global” p-value  
•  The chance that an over-fluctuation occurs on at least one mass value increases 

with the searched range 
•  Magnitude of the effect: roughly proportional to the ratio of resolution over the 

search range 
–  Better resolution = less chance to have more events compatible with the same mass 

value 
•  Possible approach: let also m fluctuate in the test statistics fit: 
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Estimate LEE 
•  The effect can be evaluated with brute-force Toy Monte Carlo 

–  Run N experiments with background-only, find the largest ‘local’ significance over the 
entire search range, and get its distribution to determine the ‘overall’ significance 

–  Requires very large toy Monte Carlo samples: need to go down to ~10−7 (5σ: p = 2.87×10−7) 

•  Approximate evaluation based on local p-value, times correction factors 
(“trial factors”, Gross and Vitells, EPJC 70:525-530,2010, arXiv:1005.1891) 

 

 

 
•  〈Nu〉 is the average number of up-crossings of the likelihood ratio scan, can be 

evaluated at some lower referene level (toy MC) and scaled: 

u 

Asympt. limit 
(Wilk’s theorem) 

Toy MC 
Scaling 
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In conclusion 
•  Many recipes and approaches available 
•  Bayesian and Frequentist approaches lead to similar 

results in the easiest cases, but may diverge in 
frontier cases 

•  Be ready to master both approaches! 
•  … and remember that Bayesian and Frequentist 

limits have very different meanings 
 

•  If you want your paper to be approved soon: 
–  Be consistent with your assumptions 
–  Understand the meaning of what you are computing 
–  Try to adopt a popular and consolidated approach (even 

better, software tools, like RooStats), wherever possible 
–  Debate your preferred statistical technique in a statistics 

forum, not a physics result publication! 
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General likelihood definition 
•  The exact definition of the likelihood function 

depends on the data model “format”. In general: 

•  Binned case (histogram): 

•  Unbinned case (signal/background PDFs): 

signal strength nuisance parameters 
PDF, typically Gaussian, 
log-normal, flat 
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Upper limit with event counting 

From PDG 
in case of no background 

It happens that the upper 
limit from [central 
Neyman interval] 
coincides numerically 
with the Bayesian upper 
limit for a Poisson 
parameter, using a 
uniform prior p.d.f. for 
ν. 

More details on Neyman 
limits in next slides… 

“ 

” 
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•  Let’s start with the Bayesian approach which has an easier 
treatment 

•  A uniform prior, π(s) = 1, from 0 to ∞  
simplifies the computation: 

 
•  Where, for a fixed b: 

 

•  The limit sup can be obtained  
inverting the equation: 

•  The special case with b = 0, n = 0 
gives the previous result 

Upper limits with background 
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Upper limits with background (cont.) 
•  Graphical view (due to O. Helene, 1983) 

b 

sup 

n 

sup 

b 

n 

Remember, it’s under the Bayesian approach 

O. Helene. Nucl. Instr. and Meth. A 212 (1983), p. 319 
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Limits in case of no background 

From PDG 
 
“Unified” (i.e.: Feldman-
Cousins) limits for Poissonian 
counting in case of no 
background are larger than 
Bayesian limits 
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•  Perform analytical integration 
–  Feasible in very few cases 

•  Use numerical integration 
–  May be CPU intensive 

•  Markov Chain Monte Carlo 
–  Sampling parameter space efficiently using a random walk heading 

to the regions of higher probability 
–  Metropolis algorithm to sample according to a PDF f(x) 

1.  Start from a random point, xi, in the parameter space 
2.  Generate a proposal point xp in the vicinity of xi 
3.  If f(xp) > f(xi) accept as next point xi+1 = xp 

else, accept only with probability p = f(xp) / f(xi) 
4.  Repeat from point 2 

–  Convergence criteria and step size 
must be defined 

How to compute Posterior PDF 

RooStats::BayesianCalculator 

RooStats::MCMCCalculator 
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