

Electroweak results from CMS experiment

Luca Lista

INFN - Napoli On behalf of CMS collaboration

W and Z production at LHC

- W and Z production in pp collisions proceeds mainly form the scattering of a valence quark with a sea anti-quark
- The involved parton fractions are low (10⁻³ < x < 10⁻¹) and scattering of a sea quark with a sea anti-quark is also important
- W production is charge asymmetric: σ(W⁺)/σ(W⁻)~1.43
 (< 2, as from valence + sea only) in the Standard Model
- W and Z events produce very clean signals and allow to perform precision measurements
 - Large background control samples are available in data and reduce the need to rely on simulations

$$Q^2 = m_{W,Z}^2 = x_1 x_2 s$$

- Accurate theoretical predictions are available
 - NLO event generators: POWHEG and MC@NLO
 - NNLO cross section and differential distributions: FEWZ, RESBOS, DYNNLO
 - Uncertainties in valence and sea PDF limit the accuracy of theoretical predictions
- Differential distributions are sensitive to PDF

$W \rightarrow lv$ analysis

- W event selection is based on:
 - Loose single-lepton trigger
 - Lepton identification cuts, well understood
 - Lepton p_T >25 GeV, η within trigger fiducial volume
 - Isolation: tracker and calorimeter activity within $\Delta R = \sqrt{(\Delta \phi^2 + \Delta \eta^2)} < 0.3$, normalized to the lepton p_T
 - Di-lepton veto (no Drell-Yan events)
- Signal extraction
 - W yield from fit to missing E_T distribution
 - Parameterized shapes or fixed binned templates
 - QCD shape determined from data inverting lepton id / isolation selections
 - Lepton efficiencies from Z tag and lepton probe as a function of p_T and η
 - Missing E_T studied using Z recoil
 - Momentum scale and resolution studied from $Z \rightarrow l^+ l^-$ data

lepton

hadronic

recoil

$Z \rightarrow ll$ analysis

- Isolated di-lepton pairs with p_T>20 (μ), 25 GeV (e) and η within trigger fiducial region. Mass range: 60 < m_{II} < 120 GeV
- Fit simultaneously yield and efficiencies using different di-lepton categories (µµ)
- Cut and count analysis using tag & probe efficiencies (ee)

Systematic uncertainties

 Data-driven methods to determine efficiencies, background and signal shapes allow to reduce experimental uncertainties

- Theory uncertainties affect acceptance determination:
 - PDF (PDF4LHC: CTEQ, MSTW, NNPDF), Initial-state radiation modeling, higher order effects (RESBOS), EWK corrections, Final-state radiation (HORACE), factorization and renormalization scale (FEWZ)

Source	$W \rightarrow e\nu$	$W ightarrow \mu \nu$	$Z \rightarrow e^+e^-$	$Z ightarrow \mu^+ \mu^-$
Lepton reconstruction & identification	1.3	0.9	1.8	n/a
Trigger pre-firing	n/a	0.5	n/a	0.5
Momentum scale & resolution	0.5	0.22	0.12	0.35
$\not\!$	0.3	0.2	n/a	n/a
Background subtraction / modeling	0.35	0.4	0.14	0.28
Total experimental	1.5	1.1	1.8	0.7
PDF uncertainty for acceptance	0.6	0.7	0.9	1.2
Other theoretical uncertainties	0.7	0.8	1.4	1.6
Total theoretical	0.9	1.1	1.7	2.0
Total	1.7	1.6	2.5	2.1

INFN

- Benchmark for searches using taus $(H^+ \rightarrow \tau v, t)$ Н→тт, …)
- Particle Flow: combine tracker and • calorimeter measurements to determine particle candidates
- Main systematic: tau id (23%) fit from data ٠
- Challenging trigger on tau plus missing E_{T} for W→тv

 $p_{T}(T) > 20 \text{ GeV}, p_{T}(\text{track}) > 15 \text{ GeV},$

CMS-EWK

Events / (10 GeV)

150

100

50

0

50

100

CMS-PAS-FWK-10-013

arXiv:1104.1617

Events / (10 GeV)

100

50

0

50

100

CMS

36 pb⁻¹ at $\sqrt{s} = 7$ TeV

 $Z \rightarrow \tau \tau \rightarrow \tau_u \tau_{had}$

data

Ζ → ττ

QCD

EWK+tť

vields from fit

200

CMS

150

Visible Mass [GeV]

INFN

36 pb⁻¹ at $\sqrt{s} = 7$ TeV

 $Z \rightarrow \tau \tau \rightarrow \tau_e \tau_{had}$

data

QCD

Ζ → ττ

EWK+tť

vields from fit

200

200

CMS

150

Visible Mass [GeV]

CMS

- Ratios are not affected by luminosity uncertainty
- W⁺/W⁻ potentially sensitive to PDF, W/Z has precise prediction

Good overall agreement with theory predictions at NNLO

JHEP04 (2011) 050

- W^+/W^- ratio measured as a function of the lepton pseudorapidity η
- Sensitive to PDF; several uncertainties cancel in the ratio

$$\mathcal{A}(\eta) = \frac{\mathrm{d}\sigma/\mathrm{d}\eta(\mathrm{W}^+ \to \ell^+ \nu) - \mathrm{d}\sigma/\mathrm{d}\eta(\mathrm{W}^- \to \ell^- \bar{\nu})}{\mathrm{d}\sigma/\mathrm{d}\eta(\mathrm{W}^+ \to \ell^+ \nu) + \mathrm{d}\sigma/\mathrm{d}\eta(\mathrm{W}^- \to \ell^- \bar{\nu})} \ \mathbf{d}\sigma/\mathrm{d}\eta(\mathrm{W}^+ \to \ell^+ \nu) + \mathrm{d}\sigma/\mathrm{d}\eta(\mathrm{W}^- \to \ell^- \bar{\nu})$$

- Similar selection to inclusive cross section analysis
- Two p_T thresholds (25, 30 GeV) to probe different phase space regions
- Charge mis-id: 0.1(barrel)-0.4(endcap)% for electrons, <10⁻⁴ for muons
- Systematic uncertainties (<1.6%) can be improved with increasing size of Drell-Yan data sample
 - Separate efficiency estimates for + and leptons
 - p_T scale and resolution
 - Background and signal modeling

- Large statistics allows to study differential cross sections vs y and p_T
- compared to theory after an unfolding procedure correcting for resolution and final-state radiation

INFN

W, Z + n jets

CMS-PAS-EWK-10-012

- Important test of perturbative NLO predictions and background to Higgs and many searches
- Jets reconstructed from Particle Flow using anti- k_T algorithm (R=0.5), $E_T > 30$ GeV
- Systematics dominates, mainly due to energy scale and unfolding for large *n* (Singular Value Decomposition, assuming MadGraph jet migration from particle-level jets)
- Agreement with MadGraph, discrepancies with Pythia observed

Luca Lista

- Two production mechanism: b pair produced from qq, gg scattering ("fixed flavour"), or single b quark at partonic level ("variable flavour")
- Selection: two isolated leptons forming a Z, no missing E_T (top veto), b-tagging (lifetime)
- B-tagging purity determined from template fit to the distribution of the invariant mass of tracks
 associated to the secondary vertex

- More precise measurement with muons
 - smaller background: ~250 / 14000

WW production

Phys. Lett. B 699 (2011) 25

- Challenging analysis, benchmark for $H \rightarrow WW$ search
- Limits to anomalous WWy and WWZ couplings set

- Using W decays to electrons and muons (W→TV signal also included)
- Drell-Yan vetoed (missing E_T required, di-leptons mass far from Z peak)
- Z→TT suppressed: missing E_T projection transverse to closest leptons > 35 GeV
- Top quark veto using number of jets, also using soft muon and b-tagging veto

Summary of CMS EW results

CMS preliminary

36 pb⁻¹ at $\sqrt{s} = 7$ TeV

INFN

- CMS produced many EWK measurements with the first 36 pb⁻¹ of LHC data at 7 TeV
- Precision measurements of inclusive W and Z production cross section with large statistics
- Detailed studies of differential cross sections and many observables, like asymmetry
- W and Z production associated to jets, including Z plus b-jets, studied W polarization in W+jets
- Di-boson production: Wy, Zy, WW
- All measurements are so far in agreement with theoretical predictions from the standard model

Backup

$p_{ m T}^\ell > 25{ m GeV}/c$												
	Electron Channel			Muon Channel								
$ \eta $ bin	[0.0,	[0.4,	[0.8,	[1.2,	[1.6,	[2.0,	[0.0,	[0.4,	[0.8,	[1.2,	[1.5,	[1.8,
	0.4]	0.8]	1.2]	1.4]	2.0]	2.4]	0.4]	0.8]	1.2]	1.5]	1.8]	2.1]
Charge Misident.	0.02	0.03	0.03	0.08	0.09	0.10	0	0	0	0	0	0
Eff. Ratio	0.70	0.70	0.70	0.70	0.70	0.70	0.59	0.39	0.92	0.72	0.81	1.17
e/μ Scale	0.11	0.09	0.19	0.47	0.40	0.45	0.50	0.48	0.50	0.48	0.50	0.42
Sig. & Bkg. Estim.	0.16	0.19	0.26	0.33	0.25	0.25	0.23	0.29	0.34	0.40	0.53	0.58
Total	0.73	0.73	0.77	0.90	0.85	0.87	0.80	0.68	1.10	0.95	1.08	1.37
$p_{ m T}^\ell > 30{ m GeV}/c$												
	Electron Channel				Muon Channel							
$ \eta $ bin	[0.0,	[0.4,	[0.8,	[1.2,	[1.6,	[2.0,	[0.0,	[0.4,	[0.8,	[1.2,	[1.5,	[1.8,
	0.4]	0.8]	1.2]	1.4]	2.0]	2.4]	0.4]	0.8]	1.2]	1.5]	1.8]	2.1]
Charge Misident.	0.02	0.02	0.03	0.07	0.08	0.10	0	0	0	0	0	0
Eff. Ratio	0.70	0.70	0.70	0.70	0.70	0.70	0.59	0.39	0.93	0.72	0.82	1.18
e/μ Scale	0.07	0.17	0.26	0.46	0.53	0.55	0.80	0.78	0.83	0.81	0.73	0.77
Sig. & Bkg. Estim.	0.16	0.19	0.26	0.33	0.25	0.25	0.20	0.20	0.27	0.35	0.51	0.56
Total	0.72	0.75	0.79	0.91	0.92	0.93	1.01	0.90	1.27	1.14	1.21	1.52

Systematic uncertainties (%)

Disagreement w.r.t. POWHEG is significant in some bins

Non-perturbative effects dominate at low p_T , and are part of the 'tune' of the underlying model

- Benchmark for searches using taus $(H^+ \rightarrow TV, H \rightarrow TT, ...)$
- Particle Flow: combine tracker and • calorimeter measurements to determine particle candidates
- p_⊤(*I*)>15 GeV, p_⊤(had)>20 GeV ٠
- $M_T(l, miss. E_T) < 40 \text{ GeV} (lep+had)$
- Missing $E_{T} < 50$ GeV(lep+lep) to suppress W+jets
- Main systematic: tau id eff. in hadronic mode (23%), determined from data

0

20

40

60

Events / (10 GeV) 50 15

250

200

150

100

50

• Simultaneous fit of tau id and cross section

- Events triggered a single tau plus missing E_T
 - challenging, especially as luminosity increases
 - Trigger cuts: $p_T(\tau) > 20$ GeV, $p_T(track) > 15$ GeV, missing $E_T > 25$ GeV
- QCD estimate from control regions

Selection:

- $p_T(\tau) > 30 \text{GeV}$, tightened as offline cut
- Tau isolated from other particle-flow particles
- $p_T(\tau) / \Sigma p_T(all jets) > 0.65$
- Missing $E_T > 35 \text{ GeV}$

Process	Events
W→τv (sim.)	174 ± 3
EWK (sim.)	46 ± 2
QCD (sideband)	109 ± 6
Data	372