### ATLAS Higgs Searches Giovanni Zurzolo

LHC Physics lecture, 12/07/2012

giovedì 12 luglio 12

# 2012 Data Taking

2

- Increased  $\sqrt{s}$  to 8 TeV
- Inst. luminosity L  $\simeq$  3-6 10<sup>33</sup> cm<sup>-2</sup>s<sup>-1</sup>
  - $\approx 6.3$  fb<sup>-1</sup> recorded ( $\approx 95\%$  of delivered)
  - $\approx$  5.8 fb<sup>-1</sup> with good detector performance ( $\approx$  94% of efficiency)



#### ATLAS p-p run: April-June 2012 Inner Tracker Calorimeters Muon Spectrometer Magnets Pixel SCT TRT LAr Tile MDT RPC CSC TGC Solenoid Toroid 100 99.6 96.2 99.1 100 99.6 100 100 99.4 100 100 All good for physics: 93.6% Luminosity weighted relative detector uptime and good quality data delivery during 2012 stable beams in pp collisions at

Vs=8 TeV between April 4<sup>th</sup> and June 18<sup>th</sup> (in %) – corresponding to 6.3 fb<sup>-1</sup> of recorded data. The inefficiencies in the LAr calorimeter will partially be recovered in the future.

### Standard Model Measurements



- SM measurements important for validation
- top and diboson processes studied and well measured
- experimental cross-section for many background processes (ZZ, ttbar) at 8 TeV



# A difficult environment



- Trigger and reconstruction algorithms optimized (MET, soft jet, ecc.)
- Pile-up suppression using track informations
- Reconstruction and identification ~ indipendent from pile-up
- Primary vertices reconstructed ~ 60% of int/cross
- Stable resolutions

#### missing E<sub>T</sub> resolution



# Higgs hunting



#### A Z → μμ event with 25 reconstructed vertices



@125 GeV gg fusion dominates O(10 pb)

important contribution O(pb) also from others production channel (VBF, VH)

Higgs production cross section increases ~ 1.3 w.r.t.  $\sqrt{s} = 7$  TeV (similar for backgrounds)

Expected increase in signal sensitivity  $\rightarrow$  10-15%



### Higgs searches



Higgs searches @125 GeV achievable in different channels

► H → WW,  $\tau\tau$  are dominant but difficult (jets, missing E<sub>T</sub> signatures)

Significant contributes from  $H \rightarrow ZZ$ ,  $\gamma\gamma$  decay channels

# 2011 Exclusion limits

7



Combination of several channels:

 $H \rightarrow \gamma \gamma$ 

- $H \rightarrow \tau \tau$  (3 final states)
- $H \rightarrow ZZ(*) \rightarrow 4l$ , llqq, llvv
- $H \rightarrow WW(*) \rightarrow lvlv, lvqq$
- $VH \rightarrow Vbb (3 \text{ final states})$

111.4 < mH < 116.6 GeV 119.4 < mH < 122.1 GeV 129.2 < mH < 541 GeV

Excluded at 95% CL 3 regions

# Status before 4th July

8

### **Local** $\mathbf{p}_{0} \rightarrow$ consistency with background-only hypothesis



| Channel               | Obs | Exp |
|-----------------------|-----|-----|
| γγ                    | 2.8 | 1.4 |
| $ZZ^* \rightarrow 4l$ | 2.1 | 1.4 |
| WW* → lvlv            | 0.8 | 1.6 |
| Comb                  | 2.9 | 2.9 |

#### For SM Higgs boson signal → signal strength µ = 1



#### minimum po observed @126 GeV

small differences b/w observed and expected values in the single channels <u>but</u>

▷ combination compatible with SM expection  $(\mu = 1.1 \pm 0.4 \text{ for } m_H = 126 \text{ GeV})$ 

# 2012 Analysis update

9

#### Improvements

- improved reconstruction and identification of physics objects
- ▶ gain in  $e/\gamma/\mu$  efficiencies
  - pile-up dependences minimized
  - smaller systematic uncertainties
  - well studied detector performances

#### Analysis strategy

MC based optimization

data check in signal sidebands and background control regions

#### if all is undertood

#### signal region data inspection

# $H \rightarrow \gamma\gamma$ channel

10

- $\sigma \simeq 50 \text{ fb} @126 \text{ GeV}$
- simple signature  $\rightarrow$  2 high-p<sub>T</sub> photons (E<sub>T</sub> > 40, 30 GeV)
- Main background  $\rightarrow \gamma\gamma$  continuum
- 10 different categories based on  $\gamma$  rapidity, converted/unconverted  $\gamma$ , p<sub>Tt</sub> variable, 2jets bin
- VBF channel introduced (+3% in sensitivity)
- optimized γ identification and isolation(+15% in sensitivity)

| Category                           | $\sigma_{CB}$ | FWHM  | Observed        | S               | B      |
|------------------------------------|---------------|-------|-----------------|-----------------|--------|
|                                    | [GeV]         | [GeV] | $[N_{\rm evt}]$ | $[N_{\rm evt}]$ | [Nevt] |
| Inclusive                          | 1.63          | 3.87  | 3693            | 100.4           | 3635   |
| Unconverted central, low $p_{Tt}$  | 1.45          | 3.42  | 235             | 13.0            | 215    |
| Unconverted central, high $p_{Tt}$ | 1.37          | 3.23  | 15              | 2.3             | 14     |
| Unconverted rest, low $p_{Tt}$     | 1.57          | 3.72  | 1131            | 28.3            | 1133   |
| Unconverted rest, high $p_{Tt}$    | 1.51          | 3.55  | 75              | 4.8             | 68     |
| Converted central, low $p_{Tt}$    | 1.67          | 3.94  | 208             | 8.2             | 193    |
| Converted central, high $p_{Tt}$   | 1.50          | 3.54  | 13              | 1.5             | 10     |
| Converted rest, low $p_{Tt}$       | 1.93          | 4.54  | 1350            | 24.6            | 1346   |
| Converted rest, high $p_{Tt}$      | 1.68          | 3.96  | 69              | 4.1             | 72     |
| Converted transition               | 2.65          | 6.24  | 880             | 11.7            | 845    |
| 2-jets                             | 1.57          | 3.70  | 18              | 2.6             | 12     |

After all selections: B = 3635 exp. S = 100.4 exp. @126 GeV S/B inclusive  $\approx 3\%$ 



# Myy spectrum fit

12



#### γγ, γj, jj background model

- invariant mass spectrum fit in each categories
- signal plus background (4th Bernstein pol.) fit model
- model with small potential bias @125 GeV
- unweighted sum of events passing kinematic selections

### Updated Limit Results



- Expected exclusion (95% CL): 110-139.5 GeV
  - Observed exclusion (95% CL): 112-122.5 GeV and 132-143 GeV

| Data      | po min @  | Obs | Exp |
|-----------|-----------|-----|-----|
| 2011      | 126 GeV   | 3.5 | 1.6 |
| 2012      | 127 GeV   | 3.4 | 1.9 |
| 2011+2012 | 126.5 GeV | 4.5 | 2.4 |

# Signal strength µ



14

- almost all the categories analized are consistent with the SM but
- there are some small deviations

Best fit value for  $m_H = 126.5$  $\rightarrow \mu = 1.9 \pm 0.5$ 

# $H \rightarrow ZZ^* \rightarrow 4l channel$

15

- $\triangleright$   $\sigma \times BR \approx 2.5 \text{ fb} (@126 \text{ GeV})$ 
  - clear leptonic signature
  - good signal to background ratio  $S/B \approx 1$
  - Main background: irreducible ZZ\* and Zbb, Z+jets and tt (at low mass region)
  - High acceptance and good leptons reconstruction and identification for low-p<sub>T</sub>
  - Good  $E_T/p_T$  lepton resolutions

#### Improvements

- kinematic cuts optimized
- increased electron-ID efficiency (brem.,ecc.)
- standalone and calo-tagged muons added
- gain of 20% ( $\mu$ ) and 30% (e) in signal significance

| Selection            | Original                          | Optimized                       |
|----------------------|-----------------------------------|---------------------------------|
| Lepton $p_T (e/\mu)$ | 20,20,7,7                         | 20,15,10,7/6                    |
| $m_{12}$ cut         | $ m_{12} - m_Z  < 15  \text{GeV}$ | $50 < m_{12} < 106 \text{ GeV}$ |
| m <sub>34</sub> cut  | $m_{th} < m_{12} < 115 \ GeV$     | $m_{th} < m_{12} < 115 \ GeV$   |

### Electron Reconstruction and Identification

16







electron reconstruction efficiency ~ stable vs  $\eta$  and  $E_T$ 



- Re-optimized e-ID using pile-up robust variables (TRT, calo-strip, ecc.)
- Identification efficiency ~ indipendent from pile-up
- Efficiency 95(80)% for loose(tight) identifications quality

### Muon Reconstruction and Mass Resolutions



Muon reconstruction efficiency stable (~ 97%) vs E<sub>T</sub> up to 6 GeV

Mass resolutions measured in 3 different channels (1.8-2.5 GeV)



giovedì 12 luglio 12

# High Mass control region



- $m_{4l} > 160 \text{ GeV control region} \rightarrow$ dominated by ZZ\* background
- Events expected =  $147 \pm 11$
- Events observed = 191
- $\approx$  1.3 times ZZ\* SM prediction
- deviation consistent with experimental ZZ\* cross section value
- local po values unchanged leaving ZZ\* normalization free to float

# Low Mass control region



 $m_{4l} < 105$  GeV control region  $\rightarrow$  peak at  $m_Z$  for single-resonant 4l production

Events expected =  $65 \pm 5$ 

Events observed = 57

Consistency b/w data and SM prediction within uncertainties

Data-driven methods for background estimation



19

Enhanced relaxing cuts on  $m_{12(34)}$  and  $p_{T,4}$ 

# 41 Signal Region



#### In the mass range 120-130 GeV (SR)

| Data Sample | Exp. B        | Exp. H(125)   | Obs |
|-------------|---------------|---------------|-----|
| 2011        | $2 \pm 0.3$   | $2 \pm 0.3$   | 4   |
| 2012        | $3 \pm 0.4$   | $3 \pm 0.5$   | 9   |
| 2011+2012   | $5.1 \pm 0.8$ | $5.3 \pm 0.8$ | 13  |

#### 3 leptonic sub-channels

| 2011+2012 | 4μ  | 2e2µ | 2e  |  |  |
|-----------|-----|------|-----|--|--|
| Data Obs  | 6   | 5    | 2   |  |  |
| Exp. S/B  | 1.6 | 1    | 0.5 |  |  |

Data observation consistent with signal plus background SM prediction

### Updated Limit Results



- Expected exclusion (95% CL): 124-164 GeV and 176-500 GeV
  - Observed exclusion (95% CL): 131-162 GeV and 170-460 GeV



| Data      | p <sub>o</sub> min @ | local po | Obs | Exp |
|-----------|----------------------|----------|-----|-----|
| 2011      | 125 GeV              | 1.1%     | 2.3 | 1.5 |
| 2012      | 125.5 GeV            | 0.4%     | 2.7 | 2.1 |
| 2011+2012 | 125 GeV              | 0.03%    | 3.4 | 2.6 |



### Signal Strength



23

giovedì 12 luglio 12

### **Excess Inspection**



2-dim likelihood fit to signal mass ( $m_H$ ) and strength ( $\mu$ )

 $m_H$  and  $\mu$  compatible within 95% CL contours

### Conclusions

- Updated analysis based on 2011+2012 data in different channel
  - $\vdash H \rightarrow \gamma \gamma / H \rightarrow ZZ^* \rightarrow 4l, llvv / H \rightarrow WW^* \rightarrow lvlv / H \rightarrow \tau \tau / VH \rightarrow Vbb$
- Observation of significant excess in the search for SM Higgs boson
  - excess around  $m_{\rm H} = 126.5$  GeV with local significances of  $4.5\sigma$  ( $\gamma\gamma$ ) and  $3.4\sigma$  (4l)
  - combined result gives a local significance of  $5.0\sigma$  at  $m_{\rm H} = 126.5$  GeV Evidences for a new narrow resonance (boson) with a mass  $\approx 126$  GeV