

Higgs searches at CMS

A.de Cosa (INFN, Napoli)

* Presentation of the very last HOT results about the Higgs searches at the Compact Muon Solenoid (CMS)

- * quick scan of the main analyses
- * focus on the results
- ↔ A deeper look at the H→ZZ→2l2q analysis
 - * the CMS Naples group is involved in this search

 \ast First results with data collected by the CMS Experiment were presented on the 4th of July

- $\$ It was a great day for all (physicists and not $\ensuremath{\mathfrak{O}}$)
- * Results were based on the analysis of and integrated luminosity of

 $\star \sim \! 5 \ fb^{\text{-1}} \, data \, collected \, in \, 2012, \, \sqrt{s} = 8 \, TeV$

 \ast Combination of results from searches in different channels for 7 and 8 TeV periods

The SM Higgs boson decays

The main decay modes exploited in CMS are:

* bb, $\tau \tau$, WW, ZZ, $\gamma \gamma$

* In the low mass region:

 \ast bb and $\tau\tau$ has larger BR, but more affected by backgrounds

* $H \rightarrow ZZ \rightarrow 41$ and $H \rightarrow \Upsilon \Upsilon$ very good resolution

* At high mass:

- $\star\,\mathrm{WW}$ higher yields but worse resolution
- * ZZ channels good for discovery at high mass

- * Clear signature:
 - * two isolated, high ET gamma;
 - $\boldsymbol{\ast}$ narrow peak (~1% resolution) in mgg over decreasing background
 - $\star\,2$ additional jets for the VBF channel
- Main backgrounds:
 - * Reducible: fake photons (γ +jet, Drell-Yan to electrons)
 - \ast Irreducible: $\gamma\gamma$ QCD production

Main analysis is a Multi-Variate-Analysis (MVA)

MVAs for photon ID and event classification
Fit mass distribution in 4 event classes
based on a diphoton MVA output + 2 di-jet
categories

 $\sigma(\mathbf{H} \rightarrow \gamma \gamma)_{\mathbf{95\%CL}} / \sigma(\mathbf{H} \rightarrow \gamma \gamma)_{\mathbf{80}}$

3.5

3

1.5

0.5

 Expected 95% CL exclusion 0.76 times SM at 125 GeV

*Largest excess at 125 GeV

*Minimum local p-value at 125 GeV with a local significance of 4.1σ

Similar excess in 2011 and 2012

≶2000E

ص 1800

61600

<u>5</u>1400

CMS Preliminary

vs = 7 TeV, L = 5.1 fb⁻¹

vs = 8 TeV, L = 5.3 fb⁻¹

S/B Weighted Data

Bkg Fit Component

S+B Fit

 $\pm 1 \sigma$ $\pm 2 \sigma$

* Clear signature:

- $\star\,2$ pairs of isolated, hoght pT leptons of opposite sign
- * one Z boson can be off-mass shell
- * narrow peak, low background
- * Main backgrounds:
 - * Reducible: Z+jets, ttbar, WZ
 - ✤ Irreducible: ZZ^(*)

Analysis strategy:

* 2D analysis performed on m_{41} and the output of a kinematic discriminator build on angular variabl distributions.

* Expected 95% CL exclusion in the range 121-550 GeV

✤ Excess at 125.5 GeV

*Minimum local p-value at 125.5 GeV with a local significance of 3.2σ

Similar excess in 2011 and 2012

- * Clear signature:
 - $\star~2~hight~p_T~leptons~~and~large~missing~E_T$
- Main backgrounds:
 - * WW, ttbar. Others: W+jets, dibosons

Analysis strategy:

- Data-driven background estimation
- Split in categories, 0/1jet + VBF, and final state lepton flavors
- * Cut based approach for the first 2012 result
- MVA analysis for 2011 data analysis

Combined limits from 2011 and 2012

7 TeV result using a multivariate discriminant and updated with the final luminosity measurement
8 TeV cut-based analysis, shape in preparation

- * High σ BR at low mass
- Sensitive to all production modes
- * Probe couplings to leptons
- Challenging large background

Analysis strategy:

Analysis divided into 5 categories (# of jets + p_T)
All categories are fit simultaneously

- ✤ Largest BR for mH <130 GeV</p>
- Test specific production & decay couplings
- Large backgrounds

Analysis strategy: Fit the shape of the MVA output distribution

Combination of results

Expected in absence of SM Higgs boson:

110 600 GeV at 95% CL
110 580 GeV at 99% CL
110 520 GeV at 99.9% CL

The pvalue is the probability that background fluctuates to give an excess as large as the (average) signal size expected for a SM Higgs.

This is the first observation of a new boson with a mass of $125.3\pm0.6~GeV$ At 4.9 σ significance

Now…we need to investigate more to understand if it is really the Higgs boson we are looking for ☺

- * Main features:

 - * Large background (mainly Z+Jets, TTbar and diboson events
 - * Worse resolution (due to jets)
 - Fully reconstructed final state:
 - $\ast~2$ isolated leptons and 2 jets
 - \ast lepton and jet pairs peaking at Z mass
- * Analysis more sensitive at high mass

CMS Experiment at LHC, CERN Data recorded: Sun Jun 12 04:43:37 2011 CEST Run/Event: 166864 / 145883149 Lumi section: 139 Orbit/Crossing: 36364347 / 1978

The results presented refer to 4.6 fb⁻¹ of collision data recorded at CMS in 2011 with a centre-of-mass energy $\sqrt{s}=7$ TeV

Fighting backgrounds: Low mass

Analysis strategy – 2011:

- * Reconstruction of Higgs candidates starting from 2 leptons and 2 jets:
 - $\ast~2$ leptons isolated from other activities in the calorimeters and in the tracker
 - $\boldsymbol{\ast}$ high quality leptons and with high transverse momentum, $p_T\!\!:$

* $p_T{}^{(1)}\!\!>\!\!40$ GeV and $p_T{}^{(2)}\!\!>\!\!20$ GeV

- * 2 jets with $p_T\!\!>\!30~GeV$
 - Resolution improved using a kinematic fit
- Constraint on dilepton and dijet mass:

 \star 70 $< m_{II} < 110~GeV$ and 75 $< m_{jj} < 115~GeV$

in Z+jets events, jets come from quarks and gluons (signal jets come only from q)
quarks and gluons hadronize differently:

* build a quark-gluon discriminator

Classify events in 3 categories according to the number of b-jets

 Powerful signal-background discrimination provided by different distribution of Higgs production and decay angular variables

Events are classified in 3 exclusive categories according to the number of b-jets identified in the final state

Kinematics of the event described by 5 production and decay angles:

- * A likelihood discriminant is built:
 - $\boldsymbol{\ast}$ based on the probability ratio of the signal and background hypotheses
 - $\ensuremath{\bullet}$ Probability parametrized as function of m_{ZZ}
- Selection on LD optimized per category

 $\ensuremath{\ast}$ Strategy: definition of m_{jj} sidebands for a data-driven estimation of the background:

* Number of background events in signal region extrapolated by control region using factor $\alpha(mZZ)$ taken by MC:

* $N_{bkg}(m_{ZZ}) = N_{sb}(m_{ZZ}) \times \alpha(m_{ZZ})$

 $\ast \alpha(m_{ZZ}) = N^{sim}_{bkg}(m_{ZZ})/N^{sim}_{sb}(m_{ZZ})$

 $\$ Fit to extrapolated background with empirical function, able to model the core and the long tail at high masses

- * Analysis performed on diboson reconstructed mass, m_{ZZ}
- * Background estimated from data
- * Blue line is the shape extrapolated from sidebands

* For the low mass analysis cut on lepton p_T are released: * $p_T{}^{(1)}\!\!>\!20~GeV$ and $~p_T{}^{(1)}\!\!>10~GeV$

- * Background estimated from m_{ii} sidebands:
 - Normalization taken from mZZ sidebands
 - unique shape for the 3 categories

Reached 3xSM around 155 GeV
Close to exclusion at high mass: 1xSM in 370÷400 GeV

σ_{95%} / σ_{SM}

 A Higgs boson is excluded in the 4th fermion standard model in the ranges 153÷162 GeV and 200÷470 GeV

200 250 300 350 400 450 500 550 600

___ CL, Observed

SM

CL_c Expected ± 1σ

----- CL_c Expected ± 2σ

CMS. L = 4.6 fb⁻¹ at √s = 7 TeV

m_⊢ [GeV]

* The results presented refer to 4.6 fb^{-1} of collision data recorded at CMS in 2011 with a centre-of-mass energy $\sqrt{s}=7\text{TeV}$

* Results have been published at the begin of 2012 on the Journal Of High Energy Physics, JHEP:

* arXiv:1202.1416v1

* Analysis on 2012 data are ongoing, not yet public

CMS detector

Diphoton MVA

- Diphoton MVA trained on signal and background MC with input variables largely independent of $m_{_{\!\rm VV}}$
 - Kinematics: $p_T and \eta$ of each photon, and $cos\Delta\phi$ between the 2 photons
 - Photon ID MVA output for each photon
 - per-event mass resolution and vertex probability
- Encode all relevant information on signal vs background discrimination (aside from $m_{\gamma\gamma}$ itself) into a single di-photon MVA output to first order independent of $m_{\gamma\gamma}$

- For BG only make analysis sub-optimal
- For signal would cause some category migration included in the systematic errors