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Analysis of colliding�beamhadron experiments 	p
p� X and p
p� X� often depend
upon observation of �jets � a highly collimated spray of particles such as ��K�e��� and
�s forming clusters of energy deposition in calorimeters� In this paper we outline how to
de�ne jets from such clusters and discuss the meaning of jet quantities such as transverse
energy and mass� Data from the D� experiment are used to illustrate these concepts� In
addition� we review the motivations for using certain optimal coordinates for describing
energy�momentum ��vectors� and derive interesting relationships among the kinematic
variables�

�� Kinematics of Hadron Collider Events

To motivate some of the kinematic quantities traditionally used to describe pp
experiments� one must �rst recognize that the center�of�mass energy �

p
s� of the

scattering in these experiments centers is not �xed� This is a direct consequence of
the proton substructure �� where the scattering constituents are quarks and gluons
that reside inside the nucleons� with each parton carrying a fraction x of the total
nucleon energy� Scattering of partons of di�erent energy results in a center�of�
momentum that does not necessarily coincide with the laboratory frame� A lack of
knowledge of the center�of�mass energy guides the choice of kinematic variables�

���� Phase Space Volume

We start with the de�nition of a relativistically invariant phase space volume d�
for an object of momentum �p and energy E� For a �xed particle mass� d� can be
written as �see ���

d� � d�p

E
�

dpxdpydpz
E

� �	�

De�ning z as the pp collision axis� we see that of the 
�momentum coordinates
px� py� pz� and E� only the �rst two are invariant with respect to a Lorentz transfor�
mation from the lab frame along the �z direction� by virtue of their direction being
normal to that of the boost� In addition� we see that even though the coordinates p
and � are not invariant with respect to boosts along �z� invariance will be preserved
in the product p cos� sin �� which is px�
A choice of momentum coordinates which more explicitly re�ect the Lorentz

invariance of the phase space element is �pT � y� ��m�� where pT is the momentum
transverse to �z direction� � is the azimuthal angle about �z� m is the mass� and y is
the �rapidity along the �z direction� de�ned as

�
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y � 	

�
ln
E � pz
E � pz

�
	

�
ln
	 � � cos �

	� � cos �
���

or� equivalently�

� cos � � tanh y� ���

where � � p�E� and � is� as above� the polar production angle relative to the �z
axis� For a boost along the �z direction with some � � �b� a transformation from
the lab frame to the new frame will change the rapidity as follows�

y � y � yb

where

yb � ln��b�	 � �b��

Because cos � � 	 for boosts along �z� it follows that

�b � tanh yb�

The advantage of using the above set of coordinates is clear� the e�ect of a boost
along the z�axis changes only y� and that by only an additive constant�
To calculate d� in these coordinates� we �rst di�erentiate Eq� ����

dy � dpz

�
	y

	pz
�

	y

	E

	E

	pz

�

� dpz

�
E

E� � p�z
� pz

E� � p�z

pz
E

�

which simpli�es to

dy �
dpz
E

�

The components dpx and dpy are related to the elements dpT and d� via a trans�
formation from cartesian to polar coordinates in � dimensions�

dpxdpy � pTdpTd� �
	

�
dp�Td��

We can now write the volume element d� as

d� �
	

�
dp�Tdyd��

Thus particles produced in processes that have a matrix element that varies slowly
with rapidity �y� should be distributed uniformly in y� This is the origin of the
�rapidity plateau for single�particle production in hadronic collisions��

Our chosen set of kinematic coordinates is well suited to the analysis of physics
issues� and is used extensively to describe the results of measurements in high energy
physics� In the following sub�sections� we develop formulae and relationships among
pT � �� y� and m and other quantities of interest�

���� Transverse Energy �ET� and Momentum �pT�
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One can de�ne the �transverse energy ET of a particle as its energy in the rest
frame where its pz � �� Because this quantity is invariant to boosts along �z� we can
write in general�

E�
T � p�x � p�y �m� � p�T �m� � E� � p�z �
�

From Eq� ��� we can solve for pz� yielding�

pz � E tanh y ���

Combining the above two equations gives�

E�
T � E� � E� tanh� y

� E��	� tanh� y�
� E�� cosh� y

or equivalently

E � ET cosh y� ���

Note that the pT is always de�ned in terms of the ��momentum �p as

pT � p sin �� ���

We wish to stress that these two relativistically invariant quantities �ET and pT �
are not de�ned in the same way �that is� ET �� E sin ��� More on this below�
Combining Eq� ��� and ��� gives

pz � ET sinh y ���

���� Invariant Mass

The invariant mass of two particles is de�ned as

M�
�� � �p�� � p�� ��p�� � p���

� m�
� �m�

� � ��E�E� � �p� � �p�� ���

Using the �pT � �� y and m� variables� and applying equations from the proceeding
sections� we calculate

E�E� � ET� cosh y�ET� cosh y��

and

�p� � �p� � px�px� � py�py� � pz�pz�
� pT� cos��pT� cos �� � pT� sin��pT� sin�� � pz�pz�
� pT�pT� cos 
�� pz�pz�
� pT�pT� cos 
��ET� sinh y�ET� sinh y�
� ET�ET���T��T� cos 
�� sinh y� sinh y���

where �T � pT�ET � � sin � cosh y� and 
� � �� � ���
Combining the above results gives
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M�
�� � m�

� �m�
� � �Et�Et��cosh 
y � �t��t� cos 
��� �	��

where 
y � y� � y� and cosh 
y � cosh y� cosh y� � sinh y� sinh y�� We will discuss
the consequences of Eq� �	�� in the limit � � 	 in a subsequent section�

���� Pseudo�Rapidity

In order to determine the rapidity of a particle� one needs both its cos � and velocity
�� Since the velocity requires measuring both E and the mass m� this precludes
using a single detector component to measure rapidity� However� in the limit of
� � 	 �or m � pT �� Eq� ��� becomes cos � � tanh y� which often provides an
excellent approximation to use for the rapidity� We therefore de�ne the �pseudo�
rapidity � as the rapidity of a particle with zero mass �or � � 	�� � � yjm���
Using Eq� ��� for y� and setting � � 	� one obtains

� � 	

�
ln
	 � cos �

	� cos � � � ln tan �
�
� �		�

and the inverse equation� which is often useful

cos � � tanh �� �	��

Eliminating cos � from Eqs� ��� and �		� we have the relationship

tanh y � � tanh �� �	��

This last equation shows clearly that in the limit m� � or � � 	� we have � � y�
The pseudo�rapidity �� de�ned to be independent of �� is therefore another way to
measure the location of a particle� equivalent to measuring its polar angle �� In
addition� we can use Eq� �	�� to derive the transformation

d� � � sin �d� � �d�� cosh �� �	
�

Since � is always� 	 and the function tanh�x� is monotonic� the pseudo�rapidity
j�j of a particle of given pT is larger than its true rapidity jyj� Figure 	 shows the
di�erence between � and y as a function of � for protons� for several choices of
constant pT � and Figure � shows a similar plot for pions� In each plot� a dashed
line is drawn at constant j�j� jyj � ��	� corresponding to the size of the calorimeter
readout pad at D��� Rapidity and pseudo�rapidity are equal to within ��	 for pion
pT of � ��� GeV�c� and proton pT of � ��� GeV�c� for all �� This means that one
can use � in place of y in kinematic calculations involving pions and protons in this
range of pT values�
It is important to recall that� for �xed pT � the velocity � is a function of pseudo�

rapidity �� To see the explicit form� we start with � � p�E� E �
p
p� �m�� use

Eq� ��� for pT � and Eq� �	�� to relate � to �� to get

� �
pTp

E�
T �m� tanh��

�	��

which gives

tanh y �
pT tanh �q

E�
T �m� tanh� �

�

Given the fact that j�j � jyj� we would expect that for �xed pT � any single�
particle spectrum that is independent of y �d��dy is constant� would become de�
pleted in the central region when plotting as a function of �� This type of e�ect
would be especially large for particles with low pT and signi�cant mass�
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Fig� �� j�j � jyj for protons at various pT �

Fig� �� j�j � jyj for pions at various pT �
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d�

d�
�

d�

dy
� dy
d�
� k � dy

d�
�

where k is a constant� An analytic form for dy�d� can be derived starting with Eq�
	�� substituting for � using Eq� �	��� di�erentiating and rearranging terms to get
the result that

dy

d�
� ���� �	��

with ���� given by Eq� �	��� This result� although somewhat surprising� can be
understood in the following sense� at large y �and therefore large ��� the function
tanh y converges to 	� Hence� for large y� both the tanhy and tanh � converge to
	� which means � � 	 �which would be true for large p and �xed pT �� In this case�
there is little if any functional dependence of y on �� At small y� we can use the
approximation tanh y � y and tanh � � � to get the relation y � ��� which gives
dy�d� � �� We therefore expect dy�d� to be constant for large y or � �� � 	�� with
all of the � dependence coming at small ��
Figure � shows a histogram of dN�d� for 	�� pions generated with constant

pT � ��� GeV�c and uniformly in dN�dy� The smooth curve is the function �����
that is dy�d� for pions with �xed pT � ��� GeV�c�

Fig� �� The histogram shows dy�d� for pions generated uniformly in rapidity y� with �xed pT � ���
GeV�c� The smooth curve is the corresponding function �	���

���� Invariant Masses for � � �

In the limit m� �� y � � and � � �T � 	� We can then write the invariant mass
of two massless particles �using Eq� �	��� as�

M�
�� � �ET�ET��cosh 
� � cos 
��� �	��
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This expression is often quite useful� as we show below�

���� Transverse Mass and �Missing� Transverse Energy

Non�interacting particles such as neutrinos can be detected only via an apparent
imbalance of momentum in an event� In pp �or pp� interactions� where most of the
longitudinal �parallel to the beam � �z� momentum in the collision is lost down the
beam pipe� it is essentially impossible to measure momentum conservation along �z�
However� given a detector with su�ciently large acceptance� measuring momentum
balance in the plane transverse to the beam direction is relatively straightforward�
Thus� that amount of transverse momentum required to satisfy momentum con�
servation �the �missing transverse momentum� can be in large part attributed to
the presence of any unobserved non�interacting particles� especially when the total
momentum �and energy� in the detector is large �since for small total detected en�
ergy� small �uctuations in the measured momentum along any given direction can
give a small� statistically insigni�cant� missing transverse momentum�� Since the
neutrino is massless �certainly on these scales�� this quantity �missing transverse
momentum� is virtually equivalent to the missing transverse energy �or E�T � in the
event�
For particles such as the W boson� which decay into lepton�neutrino pairs� the

lack of a measurement of pz for the neutrino precludes a direct measurement of the
invariant mass of the W� However� one can calculate an invariant transverse mass of
these two particles �denoted by MT �� de�ned as the invariant ��particle mass using
only the momentum components in the transverse plane �pxi and pyi� i�	���� From
this de�nition� the transverse mass is de�ned as

M�
T � �p�T� � p�T���p�T� � p�T���

where p�Ti � �ETi� �pTi�� For two zero�mass particles� �ETi � pTi� we have

M�
T � ��ET�ET� � �pT� � �pT��
� �ET�ET��	� cos 
��
� 
ET�ET� sin

��

�

�
�� �	��

or� equivalently�

MT � � sin�

�

�
�
p
ET�ET�� �	��

We can see that this formula is equivalent to Eq� �	�� with the condition �� � ���
that is the transverse mass and the invariant mass are equivalent for particles which
are produced at the same rapidity �
� � ��� As such� MT � M�� �ignoring the
detector resolution and intrinsic width �W �� As a rule� MT will deviate fromM��

as 
� gets large� that is as the particles decay more �forward�backward in the lab
frame� Distributions inMT will therefore have a tail at lowMT �forward�backward��
will peak at M��� and will fall to zero above M�� in the same manner as M���
It is important to note that these formulae require that ET be de�ned using Eq�

�
� and not as E sin �� They are equivalent only in the limitm�pT � �� Of course�
Eq� ��� is true in general� As will be shown below� in the small mass limit of � � 	�
the di�erence between ET and pT becomes insigni�cant�
An interesting relationship involving the invariant mass of � particles is

M�
��� �M�

�� �M�
�� �M�

�� �m�
� �m�

� �m�
�

which in the limit of mi � � becomes
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M�
��� �M�

�� �M�
�� �M�

��� ����

This formula is interesting to keep in mind when searching for ��body decays� say
A� a� b� c� If it is appropriate to ignore the three masses ma� mb� and mc� then
you do not have to know which of the three bodies is a� b� or c speci�cally in order
to calculate the correct value for mA � you only have to know that these are the �
bodies of which you are interested�
Lastly� since the mass of the W particle is well known �� we can constrain the

invariant mass of the e�  pair� and solve for the longitudinal momentum of the
neutrino� To do this� we can use Eq� �	���

M�
W � �ET�ET��cosh 
� � cos 
���

Rewriting this expression� we get

cosh 
� �
M�

W

�ET�ET�

� cos 
�� ��	�

Solving for 
� gives


� � ln
r �

p
r� � 	
�

� ����

where r is the right�hand side of Eq� ��	�� Because 
� is the di�erence in pseu�
dorapidity between the electron and the neutrino� there are two solutions to the
problem� That is� there is no way of resolving the ambiguity of whether the neu�
trino is at a lower or higher rapidity relative to the electron as seen from the fact
that the hyperbolic cosine cosh 
� is even in 
�� Both solutions are possible� at least
in principle�

�� Jets

QuantumChromodynamics �QCD ��	� is the currently accepted theory of the strong
interaction between particles �partons� that carry �color� These partons �quarks q
and gluons g� appear in detectors as �sprays� or �jets� of particles� In this section�
we will discuss issues concerning the observation of jets and their origin in QCD�

���� De�nition of a Jet

There are various ways to de�ne jets� For instance� most of the LEP� PEP� and
PETRA e
e� experiments de�ne jets using information just from tracking cham�
bers �� One of the less ambiguous ways to de�ne jets is motivated by what we
understand to be the physics of fragmentation� namely that a jet is the result of
the hadronization of a parent parton� A way to visualize hadronization is through
virtual gluon emission by the parent parton �q � q � g and g � g � g�� followed
by gluon splitting to qq pairs� forming the color singlet hadrons that we measure�
For high precision studies of parton QCD fragmentation in e
e� collisions� this
model is too naive� However� in hadronic collisions� where the presence of the soft
�underlying event part of a high Q� collision complicates the analysis� the naive
model is adequate for describing how a parton turns into a jet�
To see how this simple fragmentation model can be related to the concept of

a jet� we consider the transverse momentum �kT � of �radiated� gluons relative to
the jet axis� The distribution of kT has been found to be exponential in �k�T � with
hkT i 	 ��� MeV�c at SPEAR �� and DORIS �� energies �

p
s 	 	�GeV �� increasing

to hkT i 	 	GeV�c at SppS energies��� We de�ne � as the angle of the gluon with
respect to some reference in the plane perpendicular to the momentum direction of



Jets and Kinematics in Hadronic Collisions �

Fig� �� Radiated gluons make an angle � with respect to an arbitrary direction in the plane
perpendicular to the jet axis�

the parent parton �see Figure 
�� Since the physics of gluon radiation is independent
of this angle� we expect the probability distribution for � will be uniform in �� The
jet axis can be de�ned by a cluster of calorimeter cells �less often by tracks in the

tracking chamber� in space that minimize the total vector �kT of the jet remnants�
This means requiring� X

�kTi � �� ����

We can use Eq� ���� to form the jet cluster into an equivalent particle with

�momentum p� � �E� �p�� that can be used� for example� to calculate an invariant
mass �for exampleW � jet�jet�� Let us specialize to calorimetry� and assume that
the jet will be constructed as a cluster of cells �or towers for projective geometry
calorimeters�� If one represents the energy Ei in each cell of a calorimeter i as a

�particle with zero mass� one can then de�ne �Ei � Ei�ni where �ni is the unit vector
pointing from the interaction vertex to cell i� The jet is therefore de�ned in the rest
frame of the detector as an object consisting of a set of these zero mass particles
�and therefore pi � Ei�� one per calorimeter cell� Note that this representation of
a jet �using zero mass particles� does not imply that the jet also has zero mass� or
p � E� since the constituents �the cells� will each have an opening angle between
them� and this opening angle will �generate a jet mass� To see this explicitly�
consider Eq� ��� the invariant mass of two particles� If the particles have zero mass�
we drop the terms m� and m�� set E� � p� and E� � p�� leaving

M�
�� � �E�E��	� cos �� � 
E�E� sin

� ��

where � is the angle between the two particles� We see clearly that if � � �� the
invariant mass is also zero�
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To form a jet from these calorimeter cells� we must apply Eq� ���� relative to
the axis that de�nes the jet direction� The transformation of the cells to this axis
involves an Euler rotation with � degrees of freedom� �jet and �jet� The rotation

matrix M� de�ned by �E�
i � M �Ei� is a function of the yet to be determined Euler

angles� and is given by ��

�
� � sin�jet cos�jet �

� cos �jet cos�jet � cos �jet sin�jet sin �jet
sin �jet cos�jet sin �jet sin�jet cos �jet

�
A

The transformation equations which relate the cell energies in the frame of the jet
�primed� to those in the frame of the detector �unprimed� are therefore

E�

xi � �Exi sin�jet� Eyi cos �jet
� ETi sin 
�i

E�

yi � �Exi cos �jet cos�jet �Eyi cos �jet sin�jet �Ezi sin �jet

� � cos �jetETi cos 
�i � sin �jetEzi

E�

zi � Exi sin �jet cos�jet �Eyi sin �jet sin�jet� Ezi cos �jet

� sin �jetETi cos 
�i � cos �jetEzi� ��
�

where ETi � Ei sin �i� and 
�i � �i � �jet� As a check of Eq� ��
�� we can
imagine a jet with a single tower which when rotated to the jet axis should retrieve
E�
x � E�

y � � and E�
z � Ejet� Thus� setting 
� � � �remember that 
� is the

di�erence in � between the jet and the tower�� the above equations yield E�
x � ��

E�
y � Ez sin �jet�ET cos �jet � � �using tan �jet � ET�Ez�� and E

�
z � ET sin �jet�

Ez cos �jet � Ejet �using ET � E sin �jet and Ez � E cos �jet�� Here we have
assumed that such a hypothetical jet would be massless since it is contained in a
single tower� allowing Ejet � pjet in the above� This is discussed further below�
The momentum vectors of each tower can now be rotated into the frame of

the jet� summed over the transverse components E�
xi � kxi and E�

yi � kyi� and
separately set to zero� as required by Eq� �����X

i

E�
xi � � sin�jet �

X
i

Exi � cos�jet �
X
i

Eyi � � ����

and

X
i

E�
yi � � cos �jet cosjet � �

X
i

Exi �

cos �jet sin�jet �
X
i

Eyi � sin �jet �
X
i

Ezi

� �� ����

We therefore have two equations ��� and ��� and two unknowns ��jet and �jet��
Solving Eq� ���� yields the following relation�

tan�jet �

P
EyiP
Exi

�

P
ETi sin�iP
ETi cos �i

� ����

Solving Eq� ���� gives
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tan �jet �
cos �jet �

P
iExi � sin�jet �

P
iEyiP

iEzi

� ����

Equations ���� and ���� describe the coordinates of the jet cluster in a way which
is consistent with the de�ning Eq� �����
The jet is a true physical object� which might have originated through the show�

ering of some virtual parton� and it must therefore have a 
�vector �Ejet� �pjet� that
corresponds to an object of some �nite mass� We can de�ne the angles of our jet in
the laboratory� as follows�

tan�jet �
pyjet
pxjet

����

and

tan �jet �
ptjet
pzjet

����

or equivalently� using the relation that sinh � tan � � 	�

sinh �jet �
pzjet
ptjet

� ��	�

Equating the numerators and denominators of Eqs� ����and ����� we obtain the
result�

pxjet �
�towersX

i��

Exi

�

�towersX
i��

Ei sin �i cos �i

�

�towersX
i��

ETi cos �i� ����

and

pyjet �
�towersX
i��

Eyi

�

�towersX
i��

Ei sin �i sin�i

�

�towersX
i��

ETi sin�i� ����

By comparing the numerators and denominators of Eqs� ���� and ����� we get
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pzjet �
�towersX
i��

Ezi

�

�towersX
i��

Ei cos �i

�

�towersX
i��

Ei tanh �i

�

�towersX
i��

ETi sinh �i� ��
�

where we have again used the relationship sinh � tan � � 	� and not shown the details
of the algebra� We have also used the fact that� for the towers� ETi � Ei sin �i
remembering that in our approximation each calorimeter tower be represented as a
particle of zero mass�
It should be recognized that the coordinate �jet was derived from Eq� �����

and the coordinate �jet from Eq� ��	�� using the relationship � � � log tan ����
Consequently� the true � does not correspond to the energy weighted result �jet �P

ETi�i�
P

ETi�
The energy of the jet is given by an energy sum over all towers in the cluster�

Ejet �
�towersX
i��

Ei� ����

We have therefore established a self�consistent prescription for turning a �cluster
of energy towers into a physical jet� which is a particle with 
�momentum in the
detector frame given by

p�jet � �
X

Ei�
X

�pi� � �
X

Ei�
X

Ei�ni� ����

and with directional coordinates �jet �or �jet� and �jet derived from the above
momentum components� or as calculated using Eq� ���� through ��
��
It is worth investigating expressions for the jet 
�vector that involve not just

sums over towers at speci�c angles �i and �i� but rather sums that involve angles
relative to the jet axis� 
�i � �jet � �i and 
�i � �jet � �i�
The expression for pTjet is straightforward� We use the numerator of Eq� �����

pTjet � cos �jet �
X
i

Exi � sin�jet �
X
i

Eyi

and substitute in Exi � ETi cos �i and Eyi � ETi sin�i� This gives

pTjet � cos�jet �
X
i

ETi cos �i � sinjet � �
X
i

ETi sin�i

�
X
i

ETi cos 
�i ����
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The expression for ETjet is not as straightforward� First� we form E�
T � E� � p�z

and use the relation cosh� x� sinh� x � 	 to get

E�
Tjet � E�

jet � p�zjet

� E�
jet�cosh �

�
jet � sinh ��jet�� p�zjet�cosh �

�
jet � sinh ��jet�

� �E�
jet cosh �

�
jet � p�zjet sinh �

�
jet� � �E�

jet sinh �
�
jet� p�zjet cosh �

�
jet�

If we add and subtract the quantity �Ejetpzjet sinh �jet cosh �jet� and then use Eqs�
���� and ��
� in the above equation we get

E�
Tjet � �Ejet cosh �jet� pzjet sinh �jet�

� � �E sinh �jet � pzjet cosh �jet�
�

� �
X

Ei cosh �jet�
X

Ezi sinh �jet�
� � �

X
Ei sinh �jet �

X
Ezi cosh �jet�

�

� �
X

ETi cosh �i cosh �jet�
X

ETi sinh �i sinh �jet�
� �

�
X

ETi cosh �i sinh �jet �
X

ETi sinh �i cosh �jet�
�

� �
X

ETi cosh 
�i�
� � �

X
ETi sinh 
�i�

� ����

This equation is not altogether transparent� However� consider the symmetry of
the sinh and cosh functions � the former is odd� the latter is even� If the jet is
symmetric �in energy and physical extent� about the jet axis� then the sum over
ETi sinh 
�i will vanish� leaving

ETjet �
X

ETi cosh 
�i ����

Eqs� ���� and ���� will prove useful later in our exposition�

���� Jet �or Clustering� Algorithm

The �nal missing ingredient is an algorithm for determining which calorimeter cells
to include in a cluster that is consistent with Eq� ����� One such scheme� usually
referred to as a ��xed�cone algorithm used by UA	 ��� CDF ��� and D���� works
in the following way�


 All towers above a moderate energy threshold serve as �seed towers for initial
�proto�clusters�


 All immediately neighboring towers within some cone cuto� R in �� space
�a common range for the cone cuto� R is ��������� relative to the center of

the proto�cluster �R �
p

�� � 
��� are added to form a new cluster� The

centroids �or 	st moments� of the cluster in � and � are recalculated� These
towers may or may note be subject to a small energy threshold�


 If the jet centroid in �� changes by more than some small preset value� then
all towers within the cone R are re�combined to form a new cluster� Again
the centroids are calculated in � and �� This procedure is iterated until the
centroid of the cluster remains stable�


 After all clusters are found� some may contain overlapping �same� calorimeter
towers� If so� such clusters are merged� depending on the fraction of transverse
energy present in the shared towers� The smallerET cluster is then subsumed�
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A threshold parameter controls the merging� For the data to be shown in this
report� the merging parameter was set to ��� ���� of the energy shared by
any two clusters will cause merging��

Another algorithm� called the �nearest�neighbor algorithm� was the primary clus�
tering algorithm used by UA�� and is described elsewhere� ��

���� The Shape of a Jet

Equation ��
� can be used to calculate the component of the tower energy �or
momentum� that is transverse to the jet direction� k�Ti � E��

xi � E��
yi� For those

towers that are �close to the jet axis� the small�angle limit of Eq� ��
� gives

E�
xi � ETi
�i

E�

yi � sin �jetEzi � cos �jetETi

� sin �jetEi cos �i � cos �jetEi sin �i
� Ei sin 
�i
� Ei
�i
� �ETi
�i

where we have used 
� � � sin �
� from Eq� �	
�� and the relation ETi � Ei sin �i�
Squaring and adding the components gives

k�Ti 	 E�
Ti�
�

�
i � 
��i ��

or� equivalently�

kTi 	 ETiRi �
��

where Ri is the distance between the jet and cell i in �� space de�ned by

R�
i � 
��i � 
��i � �
	�

Thus� the momentum of each �particle in the �� plane is given by the product of
the ET of the particle �in the lab frame� and the distance in �� space from the jet
axis� Since the kTi are expected to be symmetrically distributed about the jet axis
�Figure 
�� this suggests that jets have circular shapes in �� space� Of course� this
small angle limit is not a good approximation for �particles �cells� that are far o�
the jet axis�
It is best to de�ne the shape of a jet using an energy weighting procedure� This

reduces the dependence of the shape on low energy towers that are both far from
the jet axis and have a negligible contribution to the total jet energy� The shape
of a jet is often characterized by an ETi�weighted second moment �variance� of the
distance in the transverse plane� Since the �rst moment vanishes�X

�kTi �
X

ETi
�Ri � ��

we have

��R �
P

ETiR
�
iP

ETi

�

P
ETi�
��i � 
��i �P

ETi

�
��

which is equivalent to

��R � ��� � ��� �
��
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when we de�ne ��� and ��� as�

��� �
P

ETi
�
�
iP

ETi

� ��� �
P

ETi
�
�
iP

ETi

� �

�

Referring to data� for some speci�c R we �rst de�ne

�R �
q
��R �

p
��� � ��� �
��

using events from D� described in Appendix 	 �Sample 	�� This data sample was
selected to minimize jet merging �� to 	�� a process that has origin in higher�order
QCD e�ects that are distinct from those of jet fragmentation�
Figure � shows the distribution of the second moment �R for three jet cone

cuto�s of R � ���� ���� and ���� The points are D� data� The e�ect of the cone
cuto� is clear� the larger the cone� the larger the �nd moment in both mean and
width� The main source of the broadening is simply due to the presence of additional
towers for the larger cone cuto�s� Figure � also shows the results of Gaussian �ts
to the distributions� The �ts reveal that for unmerged jets� the distribution of jet
widths is well described by a Gaussian� with a central value that is a function of
the cone cuto�� This is not to say that the energy �ow around the jet axis has a
Gaussian distribution � rather� this is only describing the �uctuations in �R �the jet
RMS� around the average �R� which is itself a function of the jet cone parameter�
Table 	 shows the results for the �ts� and Figure � shows that the central value of

Table �� Results of a Gaussian �t to distributions of �R using the data from Sample ��

R �R RMS	�R�
��� ����� ���� ����� ����
��� ����� ���� ����� ����
��� ����� ���� ����� ����

the distribution in �R �mean of the Gaussian� scales linearly with the cone cuto� �
The small angle approximation used above is clearly excellent� Figure � shows

that even for jets with R � ���� �R � ��
� about ��� of the time� This shows that
the above approximation is valid for all but perhaps 	� of the R � ��� jets �with
largest RMS widths��

���� Jet �� Correlation Matrix

Detector e�ects� gluon radiation� and the underlying event� all contribute to dis�
torting the shape of jets� Figure � shows a sketch of a typical elliptical �real jet�
with � de�ned as the smaller of the angles between the semi�major axis and either
the � or � axis� The angle � can be calculated from the variance in � and �� as
de�ned in Eq� 

� and from the corresponding correlation term ���� de�ned as

��� �
P

ETi
�i
�iP
ETi

� �
��

The shape of the jet can be characterized by the correlation term ��� and the
�diagonal terms ��� and ��� in the shape matrix��

��� ���
��� ���

�

Upon diagonalization� the two eigenvalues corresponding to the semi�major ���
�
and semi�minor ����� axes are
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Fig� �� Jet probability distribution in �R for single unmerged jets�

Fig� �� Results of a Gaussian �t to distributions in �R as a function of the cone cuto� R� The
straight line is from a linear �t to the points yielding �R � 	������ ������
 	����� ����� �R�
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α

φ

η

Fig� �� Jet ellipse� Semi�major and �minor axes represent the square root of the second moment
in � 	���� and 	 	�����
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��� �
��� � ���

�
�
s�

��� � ���
�

��
� ���� �
��

It is clear that for a circular jet ���� � ��� ��
 � ��� and ��� � ����
We now return to Eq� �
��� which de�ned the quantity �R� the RMS width of

the jet in �� space� This quantity is of course the square root of the sum of the two
diagonal terms of the shape matrix� and not the root of the sum of the squares of
these two terms� The o��diagonal term ��� does not a�ect �R�

���� The ET of a Jet

A common way for experimenters to characterize the hard scattering energy scale
�Q�� for QCD collisions which produce jets is to use the transverse energy ET of
a produced jet� The measure of ET which is most often used to compare data to
QCD theory is

ET �
�towersX

i��

ETi� �
��

It has the advantage that one can hope to establish a correspondence between the
energy observed in each tower �experiment� and the particles radiated by a jet �a
hadronized parton�� There are� however� two other ways to de�ne ET � one of which
is more amenable for treating a jet as a collection of physical objects �particles��
and possibly more appropriate for calculating invariant masses involving jets� The
�rst is�

ET � Ejet sin �jet �
��

where sin �jet is related to �jet through Eq� �	��� and Ejet is calculated using Eq�
����� The second way to de�ne ET uses Eqs� �
� and ����� As long as there is
consistency in comparing theory to experiment� it is relatively arbitrary how one
de�nes ET �given that all internal variables are calculated consistently�� However�
because of the di�erences between pT and ET � the de�nition in Eq� �
�� should not
be used in calculating the invariant mass given in Eq� �	��� For such cases� only
the ET de�ned in Eq� �
� is appropriate�
To see this clearly� we use the relation E� � p� �m� and write

�E sin ��� � �p� �m�� sin� � � p�T �m� sin� ��

We see that this de�nition gives a systematically lower value for the transverse
energy ET than the relativistically correct de�nition from Eq� �
�� The di�erence�
of course� is insigni�cant in the high energy limit �jet velocity � � 	�� and for jets
that are produced at ��� �� � �� to the beam axis �so�called �central jets��
We can quantify the di�erence in the two de�nitions of ET through the quantity�

 � 	� E sin �

ET

� 	�

q
p�T �m� sin� �p

p�T �m�
� ����

which measures the fractional �error in using Eq� �
��� Expanding Eq� ���� for
small mass� and keeping only the lowest powers of m��p�T � gives

 �
m� tanh� �

�p�T
� ��	�
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This shows the explicit dependence of the di�erence � � on pT �for arbitrary values
of ��� For small �� tanh� � 	 �� and  rapidly approaches zero� Coupled with the
fact that m � ET � for all but the smallest�ET jets� we conclude that� typically� Eq�
�
�� and Eq� �
� agree at the few percent level for � � ����
Figure � shows the distribution in  for the highest�ET jet in ��jet events from

our Sample 	 �Appendix 	�� Figure � shows the integrated probability as a function
of a lower cuto� on  �the percentage of jets that would be mismeasured� if  were
greater than the value given on the abscissa�� The distributions clearly broaden with
jet cone size� Because  is proportional to m�� the broadening can be attributed
to the broadening of the mass of a jet due to the increase in the number of jet
towers with the cone size �including towers that might not �belong in the jet��
Such broadening can also come about from the failure to merge two jets into one�
where one of the two jets might have an energy below an ET threshold� �Such a
threshold is usually employed by the experiments to eliminate the number of jets
found at very low energy��

Fig� �� Distribution in � as de�ned using Eq� 	��� for jets of Sample �� required to have j�j � ����

The ET de�ned in Eq� �
�� also underestimates the true ET of the jet �as de�ned
using Eq� 
�� This can be seen as follows� Suppose there is a cluster with just �
towers� then Eq� �
� would yield

E� � p�z � �E� �E��
� � �pz� � pz��

�

� �E� �E��
� � �E� cos �� � E� cos ���

�

� E�
T� �E�

T� � �E�E��	 � cos �� cos ���
����

while equation �
�� would yield
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Fig� �� I� �
R
�

�
dP 	����

R
�

�
dP 	���� where P 	�� is the distribution in Figure �� Jets were

required to have j�j � ����

�
X
i

ETi�
� � �Et� � Et��

�

� �E� sin �� �E� sin ���
�

� E�
T� �E�

T� � �E�E� sin �� sin ���

����

If we form the di�erence of the two expressions� we get

�E� � p�z�� �
X
i

ETi�
� � E�E� sin

� 
��

where 
� � ������ We see that this di�erence is always positive� which means that
using Eq� �
�� underestimates the true ET of a jet�
Again� we form the quantity

 � 	�
P

iETi

ET

��
�

which shows the fractional �error in using Eq� �
�� for the transverse energy� as
opposed to Eqs� �
� and ���� for the �true ET � Figure 	� shows the distribution
in  as so de�ned� As can be seen in the �gure� the two di�erent de�nitions of
transverse energy give similar results� Di�erences are not large� and� in fact� Eq�
�
�� gives a smaller �error than one obtains when using Eq� �
���

���� The Mass of a Jet
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Fig� ��� Same as Figure �� ET de�ned using Eq� 	����

The mass of a jet can be calculated from its transverse momentumand energy using
Eqs� ���� and �����

M�
jet � E�

jet � p�jet

� E�
Tjet � p�Tjet

� �ETjet � pTjet��ETjet � pTjet� ����

Note that in the above equation� we formed the mass by using either E� � p� or
E�
T � p�T � One should not confuse the mass of the jet as de�ned by E

�
T � p�T with

what we have previously described as the �transverse mass� In fact� the transverse
mass is only de�ned when dealing with � �or more� 
�vectors� A jet does not have
a transverse mass�
In the limit when the jet energy gets large� the jet narrows � 
�i � � and


�i � �� We expand Eq� ���� for small 
�i and Eq� ���� for small 
�i� yielding

pTjet �
X

ETi�	� 
��i
�
� ����

and

ETjet �
X

ETi�	 �

��i
�
�� ����

Calculating the di�erence and sum between ETjet and pTjet� we have

ETjet � pTjet �
	

�

X
ETi�
�

�
i � 
��i �
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ETjet � pTjet �
	

�

X
ETi�
 � 
��i � 
��i �

	 �
X

ETi ����

where we have ignored the terms in 
�i and 
�i in the second equation� Inserting
these relations into Eq� ���� gives

M�
jet �

X
ETi

X
ETi�
�

�
i � 
��i � ����

Now we proceed to the small angle �thin jet� limit for large�ET jets� As in the
sections above� we can use the approximation ETjet 	

P
ETi� and combine with

Eq� �
�� to obtain the relation for the invariant mass of the jet as

Mjet 	 �R �ETjet� ����

This equation con�rms what we know intuitively about the invariant mass of a
multiparticle system� namely that the mass of the system is �generated by the
angles between the �approximately zero mass� particles�
Figure 		 shows the normalized distribution in mass �Mjet� for jets that were

reconstructed with cone cuto�s of ���� ���� and ���� The distributions broaden as
the cuto� increases due to inclusion of more towers further away from the jet center�

Fig� ��� Mass distribution for jets of di�erent cone size�

In Figure 	� we plot the ratio �R �ETjet�Mjet� on an event by event basis� These
distributions show that the ratio is well within the few percent level of unity for all
jet cones �note the vertical log scale used��

���� Jet Merging
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Fig� ��� The distribution in the ratio �R � ETjet�Mjet for di�erent cone sizes�

The merging of two jets is usually re�ected in the value of �R� and� of course� in
the size of the elements of the shape matrix� To study merging� we have used data
from D�� paying particular attention to whether there is evidence of any merging or
splitting of jets as controlled by the jet algorithm parameters �see section �� These
data constitute our samples as described in the appendices�
Figure 	� shows the normalized distributions in �R for merged and not merged

jets using our Sample 	� for R � ���� ���� and ��� cone sizes� We see a marked in�
crease in the width of the merged jets for all cone cuto�s� �This sample is somewhat
biased by the requirement that� after merging� there must be � and only � jets for
all three de�ning cone sizes��
Figure 	
 shows the normalized distributions in �R using jets with cone cuto�s

of ��� and ���� for events from Sample � �Appendix B�� This sample was chosen
to maximize the probability of collecting merged jets �unlike Sample 	� which was
chosen to maximize the probability of collecting unmerged jets�� The crosses and
the dots are� respectively� �R spectra for the merged and unmerged jets respectively
of Figure 	�� It should be understood that each jet with R � ��� ����� in Sample
� is required to be reduced to � jets of R � ��� ������ Figure 	
 shows that �R
correlates well� on average� with whether or not a jet is the result of a merging�
We can therefore use the distributions from Figure 	
 to construct a likelihood for
a jet being from a merged or unmerged sample� Figure 	� shows the ratio of the
probability distributions for non�merged and merged jets versus �R for cones of ����
���� and ���� The points indicate the values of �R for relative likelihoods of 	 �equal
probability of being from either distribution�! these are listed in Table ��
Finally� we investigate the shape of jets via correlations in ����� with respect to

merging� If jets were circular in �� space� we would expect that the quantity  � �p
��� �p��� would be Gaussian�distributed around �� If jets result from merging�
then we expect the shape of the jet in �� space to become elongated� forming an
ellipse� and the quantity  � would deviate from �� We use the normalized quantity
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Fig� ��� Normalized distributions in �R for jets that were merged 	bottom� and those that have
not been merged 	top�� for di�erent cone sizes�

Fig� ��� Normalized distributions of �R for single jets that are associated with � jets found by
way of a smaller cone cuto� 	see text��
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Fig� ��� Relative likelihood for a jet being non�merged to a jet being merged as a function of �R�
for three jet cones� Relative likelihoods of � are indicated by the points on the curves�

Table �� Value for �R corresponding to a a relative likelihood of unity for jets to be from non�
merged or merged distributions�

R �R	��
��� �����
��� �����
��� �����
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�� � ��� � ���
��� � ���

which� to �rst order� should be independent of the cone size for symmetric jets�
This is indeed observed in Figure 	�� where we show 
�� for jets from Sample 	
with cones ���� ���� and ���� Figure 	� shows the same distribution from Sample ��

Fig� ��� The distribution in 
�� �
�������
�������

using unmerged jets with cone cuto�s of ���� ���� and

��� from Sample ��

As demonstrated above� these jets are broader than �pure unmerged jets� however
Figure 	� also shows that the broadening of �R can be associated with a broadening
in either 
� or 
��

��	� Summary

The above sections are intended to give a pedagogic description of jets� towards an
understanding which is self consistent and illuminating� For the particle physicist�
the next step is to learn more about the physics of jets� i�e� characteristics of jet
production� which in turn will allow understanding of the fundamental processes
underlying the physics of interest�

Appendix A 
 Events Used in Sample �

A sample of events was used with the following requirements�

�i� Pathologies �Main Ring splash� cosmic rays� etc�� were eliminated�
�ii� The position of the collision vertex was required be within ���cm of the

longitudinal center of the D� detector�
�iii� Each event had to have � and only � reconstructed jets for cones of ���� ����

and ���� with none of the jets formed frommerging of two or more jets of lower
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Fig� ��� The distribution in 
�� �
�������
�������

using merged jets with cone cuto�s of ���� ���� and

��� from Sample ��

transverse energy �by merging� we mean that there was no explicit merging
by the jet cone algorithm as described above��

�iv� All � � electron� and photon candidates are rejected by requiring a minimum
for cluster ��� and ���� depending on the cone size� The cuto�s used were
��������� ����
���� and �������� for cones of ���� ���� and ���� respectively�

These requirements were chosen to maximize the probability of selecting events with
only � jets at tree level� Nevertheless� we cannot exclude the presence of events with
� or more jets� where jets were merged two at a time a priori due to their extreme
closeness in �� space� Such contamination should be small� In addition� there are
�probably small� biases due to e�g� trigger thresholds �since the D� jet trigger
starts with a single trigger tower threshold� thinner jets are more likely than fat
jets to pass the trigger requirement� and primary vertex cuts �item ii above is not a
very restrictive cut�� However� the results presented here are intended to be purely
qualitative in nature�

Appendix B 
 Events selected for Sample �

These events were chosen to have a sample of merged jets� Events were required to
satisfy the same criteria � and � used to de�ne Sample 	� but only events that had
� jets reconstructed with a cone size of ���� and � jets with a cone size of ��� or ���
were analyzed� guaranteeing the presence of two well separated clusters of energy
within a jet� About ���� of all events were classi�ed in this manner�
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