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Analysis of colliding-beam hadron experiments (p+7 — X and p+p — X)) often depend
upon observation of “jets” - a highly collimated spray of particles such as 7,K,e,u, and
vs forming clusters of energy depositionin calorimeters. In this paper we outline how to
define jets from such clusters and discuss the meaning of jet quantities such as transverse
energy and mass. Data from the D@ experiment are used to illustrate these concepts. In
addition, we review the motivations for using certain optimal coordinates for describing
energy-momentum 4-vectors, and derive interesting relationships among the kinematic
variables.

1. Kinematics of Hadron Collider Events

To motivate some of the kinematic quantities traditionally used to describe pp
experiments, one must first recognize that the center-of-mass energy (/s) of the
scattering in these experiments centers is not fixed. This is a direct consequence of
the proton substructure !, where the scattering constituents are quarks and gluons
that reside inside the nucleons, with each parton carrying a fraction z of the total
nucleon energy. Scattering of partons of different energy results in a center-of-
momentum that does not necessarily coincide with the laboratory frame. A lack of
knowledge of the center-of-mass energy guides the choice of kinematic variables.

1.1. Phase Space Volume

We start with the definition of a relativistically invariant phase space volume dr
for an object of momentum p and energy E. For a fixed particle mass, d7 can be
written as (see 2):

E E

Defining z as the pp collision axis, we see that of the 4-momentum coordinates
Pz, Py, Pz, and E, only the first two are invariant with respect to a Lorentz transfor-
mation from the lab frame along the z direction, by virtue of their direction being
normal to that of the boost. In addition, we see that even though the coordinates p
and 8 are not invariant with respect to boosts along z, invariance will be preserved
in the product pcos ¢ siné, which is p,.

A choice of momentum coordinates which more explicitly reflect the Lorentz
invariance of the phase space element is (pr,y, ¢, m), where pr is the momentum
transverse to z direction, ¢ is the azimuthal angle about z, m is the mass, and y is
the “rapidity” along the z direction, defined as

d®p  dpydp,dp,
dr = 22 _ 2P=0PyaP: (1)
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. 11 E+p, 11 1+ Bcosb @)
vy=9 nE—pZ T2 nl—,@cosG
or, equivalently,
Bcosf = tanh y, (3)

where 8 = p/E, and 8 is, as above, the polar production angle relative to the 2
axis. For a boost along the z direction with some 8 = (3, a transformation from
the lab frame to the new frame will change the rapidity as follows:

Y=Y+

where

yp = Infys(1 4 Bs)]

Because cos8 = 1 for boosts along z, it follows that

By = tanh ys.

The advantage of using the above set of coordinates is clear: the effect of a boost
along the z-axis changes only y, and that by only an additive constant.
To calculate d7 in these coordinates, we first differentiate Eq. (2):

7] dy 0F
dy:dpz(y Y )

dp, + oF dp,

~ dp E _p p
‘\E*-p? E*-plE

which simplifies to

The components dp, and dp, are related to the elements dpr and d¢ via a trans-
formation from cartesian to polar coordinates in 2 dimensions:

1
dp.dpy = prdprdé = §dp;f’rd¢-

We can now write the volume element dr as
L
dr = §dedyd¢>.

Thus particles produced in processes that have a matrix element that varies slowly
with rapidity (y) should be distributed uniformly in y. This is the origin of the
“rapidity plateau” for single-particle production in hadronic collisions.?

Our chosen set of kinematic coordinates is well suited to the analysis of physics
issues, and is used extensively to describe the results of measurements in high energy
physics. In the following sub-sections, we develop formulae and relationships among
pr, ¢, 3y, and m and other quantities of interest.

1.2. Transverse Energy (Et) and Momentum (pt)
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One can define the “transverse energy” Er of a particle as its energy in the rest
frame where its p, = 0. Because this quantity is invariant to boosts along z, we can
write in general:

E%Epi—i—p;—i—mz:p%—l—mz:Ez—pi (4)
From Eq. (2) we can solve for p,, yielding:
p, = Etanhy (5)

Combining the above two equations gives:

E: = E?_ E%tanh’y
= E*(1- tanh? Y)
= E%/cosh®y
or equivalently
E = Egcoshy. (6)
Note that the pp is always defined in terms of the 3-momentum g’ as

pr = psiné. (7)

We wish to stress that these two relativistically invariant quantities (Er and pr)
are not defined in the same way (that is, Ex # Esinf). More on this below.
Combining Eq. (5) and (6) gives

p, = Epsinhy (8)

1.3. Invariant Mass

The invariant mass of two particles is defined as

M7, (P + P5)(P1u + P2u)

m} + m3 + 2(E1E; — 1 - B2) (9)

Using the (pr, ¢,y and m) variables, and applying equations from the proceeding
sections, we calculate

E1FEs = Epqcoshyi Epg cosh ys.

and

P1:P2 = PziPz1 + Py1Py1 + Pz1P:1

P11 COS $1p12 COS 2 + pr1Sin d1pra sin o + Pr1pa2
PT1PT2 COS 6P + Po1P22

pr1pT2 €08 84 + BTy sinh y; By sinh yp

=  Eq1Er2(Bri1Bra2 cos 8¢ + sinh y; sinh ys).

where By = pr/Er = Bsinf coshy, and §¢ = ¢1 — ¢».

Combining the above results gives
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Mfz = mf + mg + 2E41 FEi2(cosh 6y — B118:2 cos 66), (10)

where y = y1 — y2 and cosh éy = cosh y; cosh y2 + sinh y; sinh y2. We will discuss
the consequences of Eq. (10) in the limit 8 — 1 in a subsequent section.

1.4. Pseudo-Rapidity

In order to determine the rapidity of a particle, one needs both its cos @ and velocity
B. Since the velocity requires measuring both E and the mass m, this precludes
using a single detector component to measure rapidity. However, in the limit of
B — 1 (or m <« pr), Eq. (3) becomes cosf = tanhy, which often provides an
excellent approximation to use for the rapidity. We therefore define the “pseudo-
rapidity” n as the rapidity of a particle with zero mass (or 8 = 1): 7 = y|m=o.
Using Eq. (2) for y, and setting 8 = 1, one obtains

1. 1+4cosf 0
= 5 Hm = —lntani. (11)
and the inverse equation, which is often useful
cosf = tanhn. (12)

Eliminating cos 8 from Egs. (2) and (11) we have the relationship
tanh y = Btanh #. (13)

This last equation shows clearly that in the limit m — 0 or 8 — 1, we have n = y.
The pseudo-rapidity n, defined to be independent of G, is therefore another way to
measure the location of a particle, equivalent to measuring its polar angle 4. In
addition, we can use Eq. (12) to derive the transformation

df = —sin8dny = —dn/ cosh 7. (14)

Since B is always < 1 and the function tanh(z) is monotonic, the pseudo-rapidity
|n| of a particle of given pr is larger than its true rapidity |y|. Figure 1 shows the
difference between 7 and y as a function of 5 for protons, for several choices of
constant pr, and Figure 2 shows a similar plot for pions. In each plot, a dashed
line is drawn at constant |n| — |y| = 0.1, corresponding to the size of the calorimeter
readout pad at D@*. Rapidity and pseudo-rapidity are equal to within 0.1 for pion
pr of > 0.3 GeV/c, and proton pr of > 2.0 GeV/c, for all . This means that one
can use 7 in place of y in kinematic calculations involving pions and protons in this
range of pr values.

It is important to recall that, for fized pr, the velocity 8 is a function of pseudo-

rapidity 5. To see the explicit form, we start with 8 = p/E, E = /p? + m?, use
Eq. (7) for pr, and Eq. (12) to relate n to 8, to get

rr
= 15
A \/EZ — m? tanh n? (15)
which gives
tanh
tanhy = pr et

\/E% — m2tanh®y

Given the fact that |n| > |y|, we would expect that for fixed pr, any single-
particle spectrum that is independent of y (do/dy is constant) would become de-
pleted in the central region when plotting as a function of . This type of effect
would be especially large for particles with low pr and significant mass:
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Fig. 1. |n| — |y| for protons at various pr.

PIONS
2.00 ‘

1.00

Pr= 0.1GeV/c

P,= 0.2GeV/c

| Pp= 0.3GeV/c

|
—2 [4) 2 4
n (pseudo—rapidity)

Fig. 2. |n| — |y| for pions at various pr.
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do do dy d_y

= dy
where k is a constant. An analytic form for dy/dn can be derived starting with Eq.
13, substituting for 8 using Eq. (15), differentiating and rearranging terms to get
the result that

dy
% = ,3(77) (16)

with B(n) given by Eq. (15). This result, although somewhat surprising, can be
understood in the following sense: at large y (and therefore large n), the function
tanhy converges to 1. Hence, for large y, both the tanhy and tanhn converge to
1, which means 8 ~ 1 (which would be true for large p and fixed pr). In this case,
there is little if any functional dependence of y on 7. At small y, we can use the
approximation tanhy ~ y and tanhn ~ 5 to get the relation y = Bn, which gives
dy/dn = B. We therefore expect dy/dn to be constant for large y or (8 = 1), with
all of the n dependence coming at small 7.

Figure 3 shows a histogram of dN/dn for 10® pions generated with constant
pr = 0.5 GeV/c and uniformly in dN/dy. The smooth curve is the function 8(n),
that is dy/dn for pions with fixed pr = 0.5 GeV/c.

1.50 ‘ ‘

HIST=dy/dn
LINE=8(n)

1.25

1.00

0.75

0.25

0.00

Fig. 3. The histogram shows dy/dn for pions generated uniformly in rapidity y, with fixed p7 = 0.5
GeV/c. The smooth curve is the corresponding function 8(n).

1.5. Invariant Masses for 8 =1

In the limit m — 0, y — n and 8 = Br — 1. We can then write the invariant mass
of two massless particles (using Eq. (10)) as:

M?, = 2E7, Exa(cosh 61 — cos §6). (17)
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This expression is often quite useful, as we show below.

1.6. Transverse Mass and “Missing” Transverse Energy

Non-interacting particles such as neutrinos can be detected only via an apparent
imbalance of momentum in an event. In pp (or pp) interactions, where most of the
longitudinal (parallel to the beam — Z) momentum in the collision is lost down the
beam pipe, it is essentially impossible to measure momentum conservation along z.
However, given a detector with sufficiently large acceptance, measuring momentum
balance in the plane transverse to the beam direction is relatively straightforward.
Thus, that amount of transverse momentum required to satisfy momentum con-
servation (the “missing” transverse momentum) can be in large part attributed to
the presence of any unobserved non-interacting particles, especially when the total
momentum (and energy) in the detector is large (since for small total detected en-
ergy, small fluctuations in the measured momentum along any given direction can
give a small, statistically insignificant, missing transverse momentum). Since the
neutrino is massless (certainly on these scales), this quantity (missing transverse
momentum) is virtually equivalent to the missing transverse energy (or Fr) in the
event.

For particles such as the W boson, which decay into lepton—neutrino pairs, the
lack of a measurement of p, for the neutrino precludes a direct measurement of the
invariant mass of the W. However, one can calculate an invariant transverse mass of
these two particles (denoted by Mr), defined as the invariant 2-particle mass using
only the momentum components in the transverse plane (pg; and py;, i=1,2). From
this definition, the transverse mass is defined as

M:% = (phy + Do) (Pur1 + Put2),

where pl.. = (Eqi, Pri). For two zero-mass particles, (Ep; = pr;) we have

MZ = 2(Er1Er2— Bri-Pr2)
2E71E7r3(1 — cos b¢)

= 4E7r,Er; sinz(%). (18)
or, equivalently,

Mr = QSin(%)\/ETlETz- (19)

We can see that this formula is equivalent to Eq. (17) with the condition 71 = 73,
that is the transverse mass and the invariant mass are equivalent for particles which
are produced at the same rapidity (6n = 0). As such, My < My, (ignoring the
detector resolution and intrinsic width T'y). As a rule, Mz will deviate from M1,
as én gets large, that is as the particles decay more “forward-backward” in the lab
frame. Distributions in Mz will therefore have a tail at low My (forward-backward),
will peak at M;,, and will fall to zero above My in the same manner as Mys.

It is important to note that these formulae require that Er be defined using Eq.
(4) and not as Esin6. They are equivalent only in the limit m/pr — 0. Of course,
Eq. (7) is true in general. As will be shown below, in the small mass limit of 8 — 1,
the difference between Er and pr becomes insignificant.

An interesting relationship involving the invariant mass of 3 particles is

2 _ ag2 2 2 2 2 2
Mi5s = Mi, + M5+ Mi3 —my —mj —m;3

which in the limit of m; — 0 becomes
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M3 = M7 + M35 + M7, (20)

This formula is interesting to keep in mind when searching for 3-body decays, say
A — a+b+ec. Ifit is appropriate to ignore the three masses m,, my, and m,, then
you do not have to know which of the three bodies is a, b, or ¢ specifically in order
to calculate the correct value for my — you only have to know that these are the 3
bodies of which you are interested.

Lastly, since the mass of the W particle is well known °, we can constrain the
invariant mass of the e, v pair, and solve for the longitudinal momentum of the
neutrino. To do this, we can use Eq. (17):

5

MI?V = 2Er1E72(coshén — cos 6¢).

Rewriting this expression, we get

hé Myy + cos ¢ (21)
cos = —— +cosbo.
"~ 2E11Brs
Solving for én gives
2-1
on = lnH—fr, (22)

where r is the right-hand side of Eq. (21). Because 7 is the difference in pseu-
dorapidity between the electron and the neutrino, there are two solutions to the
problem. That is, there is no way of resolving the ambiguity of whether the neu-
trino is at a lower or higher rapidity relative to the electron as seen from the fact
that the hyperbolic cosine cosh §7 is even in §7. Both solutions are possible, at least
in principle.

2. Jets

Quantum Chromodynamics (QC is the currently accepted theory of the strong
interaction between particles (partons) that carry “color”. These partons (quarks g
and gluons g) appear in detectors as “sprays”, or “jets”, of particles. In this section,
we will discuss issues concerning the observation of jets and their origin in QCD.

D 678

2.1. Definition of a Jet

There are various ways to define jets. For instance, most of the LEP, PEP, and
PETRA ete~ experiments define jets using information just from tracking cham-
bers ®. One of the less ambiguous ways to define jets is motivated by what we
understand to be the physics of fragmentation, namely that a jet is the result of
the hadronization of a parent parton. A way to visualize hadronization is through
virtual gluon emission by the parent parton (¢ — ¢+ ¢ and ¢ — g + g), followed
by gluon splitting to ¢g pairs, forming the color singlet hadrons that we measure.
For high precision studies of parton QCD fragmentation in eTe™ collisions, this
model is too naive. However, in hadronic collisions, where the presence of the soft
“underlying event” part of a high @Q? collision complicates the analysis, the naive
model is adequate for describing how a parton turns into a jet.

To see how this simple fragmentation model can be related to the concept of
a jet, we consider the transverse momentum (kz) of (radiated) gluons relative to
the jet axis. The distribution of kr has been found to be exponential in —kZ, with
(kr) ~ 300 MeV/c at SPEAR 1© and DORIS ! energies (1/s ~ 10GeV), increasing

to (kr) ~ 1GeV/c at SppS energies.!? We define ¢ as the angle of the gluon with
respect to some reference in the plane perpendicular to the momentum direction of
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3 R
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\ JET AXIS

Fig. 4. Radiated gluons make an angle ¢ with respect to an arbitrary direction in the plane
perpendicular to the jet axis.

the parent parton (see Figure 4). Since the physics of gluon radiation is independent
of this angle, we expect the probability distribution for ¥ will be uniform in 1. The
jet axis can be defined by a cluster of calorimeter cells (less often by tracks in the

tracking chamber) in space that minimize the total vector ET of the jet remnants.
This means requiring:

> ki =0, (23)

We can use Eq. (23) to form the jet cluster into an equivalent particle with
4-momentum p* = (E, p), that can be used, for example, to calculate an invariant
mass (for example W — jet+jet). Let us specialize to calorimetry, and assume that
the jet will be constructed as a cluster of cells (or towers for projective geometry

calorimeters). If one represents the energy E; in each cell of a calorimeter ¢ as a

“particle” with zero mass, one can then define E; = E;fi; where fi; is the unit vector
pointing from the interaction vertex to cell :. The jet is therefore defined in the rest
frame of the detector as an object consisting of a set of these zero mass particles
(and therefore p; = F;), one per calorimeter cell. Note that this representation of
a jet (using zero mass particles) does not imply that the jet also has zero mass, or
p = E, since the constituents (the cells) will each have an opening angle between
them, and this opening angle will “generate” a jet mass. To see this explicitly,
consider Eq. (9, the invariant mass of two particles. If the particles have zero mass,
we drop the terms m; and mg, set By = p; and E; = py, leaving

M?2, = 2By Ey(1 — cos8) = 4B, By sin? 6,

where 6 is the angle between the two particles. We see clearly that if § = 0, the
invariant mass is also zero.
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To form a jet from these calorimeter cells, we must apply Eq. (23) relative to
the axis that defines the jet direction. The transformation of the cells to this axis
involves an Fuler rotation with 2 degrees of freedom: ¢;.; and 6;.;. The rotation
matrix M, defined by E! = ME;, is a function of the yet to be determined Euler
angles, and is given by 3

—sin ¢ e COS ¢ et 0
—c050;.1CO8 50t —cOsGjopsindjes sinbey
sin 0;.4 cos ¢j et SinOje¢sin gjer  cos et

The transformation equations which relate the cell energies in the frame of the jet
(primed) to those in the frame of the detector (unprimed) are therefore

E;Z- = —Egsingje+ Ey;cosdje
= ETi sin 5¢1
E?'“- = —E;;c080j.1c08Pjer — Eyi cos0;e15In it + Ejisin ey
= —COo8 gjetETi CcOos 5¢z + sin gjet Ezi
E,, = E;;sin6j. cosdjer + Eyisinbjessin djer + Eyy cos b,y
= sinbj. Eq; cosb¢; + cosb; E,i, (24)

where Ep; = E;sin6;, and 6¢; = ¢; — ¢jer. As a check of Eq. (24), we can
imagine a jet with a single tower which when rotated to the jet axis should retrieve
E, = E;, = 0 and E, = Eje. Thus, setting §¢ = 0 (remember that §¢ is the
difference in ¢ between the jet and the tower), the above equations yield E. = 0,
E?'! = E,sinb;.; — Ey cosb;.; = 0 (using tanbj.; = Ep/E,), and E, = Ersinfj.; +
E,cos6;et = Ejet (using Ep = Esinbj,; and E, = FEcosbj.;). Here we have
assumed that such a hypothetical jet would be massless since it is contained in a
single tower, allowing E;.; = pje: in the above. This is discussed further below.
The momentum vectors of each tower can now be rotated into the frame of
the jet, summed over the transverse components E., = kg; and E?’“- = ky;, and

separately set to zero, as required by Eq. (23):
ZE;”' = —sindyet-ZEmi—l—coscﬁjet-ZEyi =0 (25)

and

!
E Eyi = —c080;.4C08;.: 0" E FEg; —
i i
€08 0 ¢¢ SiN @y ey - E Ey; +sinb;., - E E,
i i

_— (26)

We therefore have two equations (25 and 26) and two unknowns (@je: and 6;e.).
Solving Eq. (25) yields the following relation:

_ EE?!i _ ZETiSind’i
Y Exi Y Ericosé;

tan ¢; e (27)

Solving Eq. (26) gives
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COS Gjer- 2 Egi +5in@jer- >, Eyi
Ei B '

Equations (27) and (28) describe the coordinates of the jet cluster in a way which
is consistent with the defining Eq. (23).

The jet is a true physical object, which might have originated through the show-
ering of some virtual parton, and it must therefore have a 4-vector (Ejt, Pje:) that
corresponds to an object of some finite mass. We can define the angles of our jet in
the laboratory, as follows:

(28)

tanb;.; =

tan ¢je; = Pyjet (29)
Dzjet
and
tanf;.; = Ptjet (30)
Dzjet

or equivalently, using the relation that sinhnptanf =1,

sinh7e; = Pzjet (31)
Dijet

Equating the numerators and denominators of Eqs. (27)and (29), we obtain the
result:

H#towers
Prjet = } Emi
=1

H#towers

= Z E;sin 8; cos ¢;
=1

H#towers

= Z Er;cos ¢;. (32)
=1
and

H#towers
Pyjet = E Eyi
=1

H#towers

= Z E;sin 8; sin ¢;
=1

H#towers

= ) Bnsing:. (33)
=1

By comparing the numerators and denominators of Egs. (28) and (30), we get



12 Jets and Kinematics in Hadronic Collisions

Pzjet = Z Ezi

H#towers

Z Erp;sinhn;, (34)

=1

where we have again used the relationship sinh ntan 8 = 1, and not shown the details
of the algebra. We have also used the fact that, for the towers, Ep; = E;sin§;
remembering that in our approximation each calorimeter tower be represented as a
particle of zero mass.

It should be recognized that the coordinate 8;.; was derived from Eq. (28),

and the coordinate 7n;e; from Eq. (31), using the relationship 7 = —logtané/2.
Consequently, the true 1 does not correspond to the energy weighted result 7;.: =

Y Erini/ Y Er;.

The energy of the jet is given by an energy sum over all towers in the cluster:

H#towers

Ejet = Z Ei. (35)
=1

We have therefore established a self-consistent prescription for turning a “cluster”
of energy towers into a physical jet, which is a particle with 4-momentum in the
detector frame given by

Pl = O Ei Y Bi) =) B,y Eiby) (36)

and with directional coordinates ;.4 (or nje:) and @je; derived from the above
momentum components, or as calculated using Eq. (32) through (34).

It is worth investigating expressions for the jet 4-vector that involve not just
sums over towers at specific angles 7; and ¢;, but rather sums that involve angles
relative to the jet axis: én; = nj.: — 1 and 8¢; = @jer — &;.

The expression for prje; is straightforward. We use the numerator of Eq. (28):

Prjet = €08 $jer- D Boi +5ingjer- Y By
: :

and substitute in Ez; = E7;cos ¢; and Ey; = Er;sin ¢;. This gives

PTjet = COSQPjes- Z Ep;cos¢; + sinje: ¢ - Z Erp;sin¢;
B B

> Ericosé¢; (37)
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The expression for Egje: is not as straightforward. First, we form E2 = E? — p?
and use the relation cosh?z — sinh®z = 1 to get

2 _ 2 2
ETjet - E]et pzjet
2 2 . 2 2 2 . 2
Ejet(COSh Njet — sinh njet) - pzjet(COSh Njet — sinh njet)

2 2 2 . 2 2 2 2 2
= (Ejet cosh Niet T Pzjet sinh njet) - (Ejet sinh Niet T Pzjet cosh njet)

If we add and subtract the quantity 2E;.:p,;es sinh n;.; cosh 15,4, and then use Eqgs.
(35) and (34) in the above equation we get

E%jgt jet cosh MNjet — Pzjet sinh Ui et) + (E sinh MNjet — Pzjet cosh njet)z

Z Eg;coshn;sinh ;e — Z Exg;sinh »; cosh n; et)

(E
(
= (Z E7; coshn; coshnjer — Z Erp;sinhn;sinhn;e)? +
(
(Z E7; cosh 677Z Z Er7;sinh 5771)

This equation is not altogether transparent. However, consider the symmetry of
the sinh and cosh functions — the former is odd, the latter is even. If the jet is
symmetric (in energy and physical extent) about the jet axis, then the sum over
Er;sinh én; will vanish, leaving

ETjet = Z ETi COSh 57’]1' (39)

Egs. (37) and (39) will prove useful later in our exposition.

2.2. Jet (or Clustering) Algorithm

The final missing ingredient is an algorithm for determining which calorimeter cells
to include in a cluster that is consistent with Eq. (23). One such scheme, usually
referred to as a “fixed-cone” algorithm used by UA1 %, CDF %, and D@8, works
in the following way:

o All towers above a moderate energy threshold serve as “seed towers” for initial
“proto-clusters”.

e All immediately neighboring towers within some cone cutoff R in n¢ space
(a common range for the cone cutoff R is 0.3-0.7), relative to the center of

the proto-cluster (R = 1/én% + §¢?) are added to form a new cluster. The
centroids (or 1st moments) of the cluster in n and ¢ are recalculated. These
towers may or may note be subject to a small energy threshold.

e If the jet centroid in n¢ changes by more than some small preset value, then
all towers within the cone R are re-combined to form a new cluster. Again
the centroids are calculated in n and ¢. This procedure is iterated until the
centroid of the cluster remains stable.

o After all clusters are found, some may contain overlapping (same) calorimeter
towers. If so, such clusters are merged, depending on the fraction of transverse
energy present in the shared towers. The smaller Ep cluster is then subsumed.

Z E;coshnjet — Z E,;sinhn; et) 24 Z E;sinhn;e; — Z FE,; cosh njet)z
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A threshold parameter controls the merging. For the data to be shown in this
report, the merging parameter was set to 0.5 (50% of the energy shared by
any two clusters will cause merging).

Another algorithm, called the “nearest-neighbor” algorithm, was the primary clus-
tering algorithm used by UA2, and is described elsewhere. 7

2.3. The Shape of a Jet

Equation (24) can be used to calculate the component of the tower energy (or
momentum) that is transverse to the jet direction: k2, = E'2 + E?’ﬁ For those
towers that are “close” to the jet axis, the small-angle limit of Eq. (24) gives

¢

E,; Erid¢;
Egl/i ~ sin Gjethi — COS gjetETi
sin 0.+ F; cos 8; — cos ;.. E; sin 6;
= Ei sin 591
~ FE;60;
= —Erién;

where we have used 68 = —sin8én from Eq. (14), and the relation Er; = E; sin 6;.
Squaring and adding the components gives

k%; ~ EZ,(6¢7 + 6n),

or, equivalently,

kr; ~ Er;R; (40)
where R; is the distance between the jet and cell 7 in n¢ space defined by

RZ = én7 + 6¢7. (41)

Thus, the momentum of each “particle” in the n¢ plane is given by the product of
the Er of the particle (in the lab frame) and the distance in n¢ space from the jet
axis. Since the kp; are expected to be symmetrically distributed about the jet axis
(Figure 4), this suggests that jets have circular shapes in n¢ space. Of course, this
small angle limit is not a good approximation for “particles” (cells) that are far off
the jet axis.

It is best to define the shape of a jet using an energy weighting procedure. This
reduces the dependence of the shape on low energy towers that are both far from
the jet axis and have a negligible contribution to the total jet energy. The shape
of a jet is often characterized by an Er;-weighted second moment (variance) of the
distance in the transverse plane. Since the first moment vanishes:

ZETi = ZETiﬁi =0,

we have

> EriR} _ Y Bri(6¢7 + 6n7)
Y. Er; > Br

2
ORr

which is equivalent to

U?{ = 0nn + 04g (43)
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when we define o, and 044 as:

_ Y Erién? _ Y Eri6¢2
E ETz E ETz

Referring to data, for some specific R we first define

OR =10k = /O + 04 (45)

using events from D@ described in Appendix 1 (Sample 1). This data sample was
selected to minimize jet merging (2 to 1), a process that has origin in higher-order
QCD effects that are distinct from those of jet fragmentation.

Figure 5 shows the distribution of the second moment ¢ for three jet cone
cutoffs of R = 0.3,0.5, and 0.7. The points are DO data. The effect of the cone
cutoff is clear: the larger the cone, the larger the 2nd moment in both mean and
width. The main source of the broadening is simply due to the presence of additional
towers for the larger cone cutoffs. Figure 5 also shows the results of Gaussian fits
to the distributions. The fits reveal that for unmerged jets, the distribution of jet
widths is well described by a Gaussian, with a central value that is a function of
the cone cutoff. This is not to say that the energy flow around the jet axis has a
Gaussian distribution - rather, this is only describing the fluctuations in og (the jet
RMS) around the average og, which is itself a function of the jet cone parameter.
Table 1 shows the results for the fits, and Figure 6 shows that the central value of

(44)

Table 1. Results of a Gaussian fit to distributions of o g using the data from Sample 1.

R 7R RMS(oR)
0.3 132 4+ .002 .024 + .002
0.5 .193 4+ .004 .040 £+ .004
0.7 .255 4+ .005 .054 + .005

the distribution in og (mean of the Gaussian) scales linearly with the cone cutoff .

The small angle approximation used above is clearly excellent. Figure 5 shows
that even for jets with R = 0.7, or < 0.42 about 90% of the time. This shows that
the above approximation is valid for all but perhaps 1% of the R = 0.7 jets (with
largest RMS widths).

2.4. Jet nd Correlation Matrix

Detector effects, gluon radiation, and the underlying event, all contribute to dis-
torting the shape of jets. Figure 7 shows a sketch of a typical elliptical “real” jet,
with « defined as the smaller of the angles between the semi-major axis and either
the n or ¢ axis. The angle a can be calculated from the variance in 7 and ¢, as
defined in Eq. 44, and from the corresponding correlation term o,4, defined as

> Epibnibe;
0'7]¢ = W

The shape of the jet can be characterized by the correlation term 0,4 and the
“diagonal” terms oy, and ogg in the shape matrix:

( Onn  Ong )
Ong Og¢¢

Upon diagonalization, the two eigenvalues corresponding to the semi-major (U:‘I’_)

(46)

and semi-minor (02 ) axes are
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Fig. 7. Jet ellipse. Semi-major and -minor axes represent the square root of the second moment
inn (onn) and ¢ (044)-
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2
Cpn + Tg¢ Cnn — Ogo
RRB = RN

It is clear that for a circular jet (0,4 = 0), 0'_2|_ =0y and 0% = oyy.

We now return to Eq. (45), which defined the quantity og, the RM.S width of
the jet in n¢ space. This quantity is of course the square root of the sum of the two
diagonal terms of the shape matrix, and not the root of the sum of the squares of
these two terms. The off-diagonal term 0,4 does not affect og.

2.5. The Et of a Jet

A common way for experimenters to characterize the hard scattering energy scale
(@?) for QCD collisions which produce jets is to use the transverse energy Er of
a produced jet. The measure of Er which is most often used to compare data to

QCD theory is

Er = Z Er;. (48)

It has the advantage that one can hope to establish a correspondence between the
energy observed in each tower (experiment) and the particles radiated by a jet (a
hadronized parton). There are, however, two other ways to define Er, one of which
is more amenable for treating a jet as a collection of physical objects (particles),
and possibly more appropriate for calculating invariant masses involving jets. The
first is:

ET = Ejet sin gjet (49)

where sin 6, is related to 7;.; through Eq. (12), and Ej.; is calculated using Eq.
(35). The second way to define Er uses Eqgs. (4) and (36). As long as there is
consistency in comparing theory to experiment, it is relatively arbitrary how one
defines Er (given that all internal variables are calculated consistently). However,
because of the differences between pr and Er, the definition in Eq. (49) should not
be used in calculating the invariant mass given in Eq. (17). For such cases, only
the Er defined in Eq. (4) is appropriate.
To see this clearly, we use the relation E? = p? + m? and write

(Esin6)? = (p® 4+ m?)sin®0 = p2 + m?sin?4.

We see that this definition gives a systematically lower value for the transverse
energy Er than the relativistically correct definition from Eq. (4). The difference,
of course, is insignificant in the high energy limit (jet velocity 8 ~ 1), and for jets
that are produced at 90° (n = 0) to the beam axis (so-called “central jets”).

We can quantify the difference in the two definitions of Ex through the quantity:

Esin8 \/p% + m2sin? 6
A=1-=227 T— (50)

Er B /P + m?

which measures the fractional “error” in using Eq. (49). Expanding Eq. (50) for
small mass, and keeping only the lowest powers of m?/p2., gives

m? tanh?

A=
2p2

(51)
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This shows the explicit dependence of the difference (A) on pr (for arbitrary values

of ). For small n, tanh? 7 ~ 5? and A rapidly approaches zero. Coupled with the
fact that m < Erp, for all but the smallest-Ep jets, we conclude that, typically, Eq.
(49) and Eq. (4) agree at the few percent level for n < 0.5.

Figure 8 shows the distribution in A for the highest-Ez jet in 2-jet events from
our Sample 1 (Appendix 1). Figure 9 shows the integrated probability as a function
of a lower cutoff on A (the percentage of jets that would be mismeasured, if A were
greater than the value given on the abscissa). The distributions clearly broaden with
jet cone size. Because A is proportional to m?, the broadening can be attributed
to the broadening of the mass of a jet due to the increase in the number of jet
towers with the cone size (including towers that might not “belong” in the jet).
Such broadening can also come about from the failure to merge two jets into one,
where one of the two jets might have an energy below an Er threshold. (Such a
threshold is usually employed by the experiments to eliminate the number of jets
found at very low energy.)
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Fig. 8. Distributionin A as defined using Eq. (50) for jets of Sample 1, required to have |n| > 0.5.

The Er defined in Eq. (48) also underestimates the true Er of the jet (as defined
using Eq. 4). This can be seen as follows. Suppose there is a cluster with just 2
towers, then Eq. (4) would yield

BE® —p} (E1+ E2)® — (pa1 + P22)?
(E1+ E2)2 — (Eycosb1 + E;cos 92)2
= E2, + E2, +2E1E5(1 — cos 6 cosby)

while equation (48) would yield
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required to have |n| > 0.5.

(ZETi)z = (Eu + Ei)?

(El sin 91 + E2 sin 92)2
= EZ, + EZ, +2E1E;sinf;siné,.

If we form the difference of the two expressions, we get
(E* —p) — (Z Er;)? = E1E;sin’ 66,

where 60 = 0; —0;. We see that this difference is always positive, which means that
using Eq. (48) underestimates the true Er of a jet.
Again, we form the quantity

o 2B
A=1- S (54)

which shows the fractional “error” in using Eq. (48) for the transverse energy, as
opposed to Egs. (4) and (36) for the “true” Ep. Figure 10 shows the distribution
in A as so defined. As can be seen in the figure, the two different definitions of
transverse energy give similar results. Differences are not large, and, in fact, Eq.
(48) gives a smaller “error” than one obtains when using Eq. (49).

2.6. The Mass of a Jet
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Fig. 10. Same as Figure 8, E7 defined using Eq. (48).

The mass of a jet can be calculated from its transverse momentum and energy using

Egs. (37) and (39):

2 — 2 2
Mjet = Ejet_pjet

2 2
ETjet — Prjet

(ETjet — DTjet) (BTjet + PTjet) (55)

Note that in the above equation, we formed the mass by using either E? — p? or
EZ — pZ. One should not confuse the mass of the jet as defined by EZ — p2 with
what we have previously described as the “transverse mass”. In fact, the transverse
mass is only defined when dealing with 2 (or more) 4-vectors. A jet does not have
a transverse mass.

In the limit when the jet energy gets large, the jet narrows — §¢; — 0 and
én; — 0. We expand Eq. (37) for small 6¢; and Eq. (39) for small é7;, yielding

62
Prjec — Y Bri(1— 5 ) (56)
and
§n?
ETjet — ZETi(l 4+ 7271 ) (57)

Calculating the difference and sum between Erj.; and prj.:, we have

1
ETjet — PTjer = §ZET1'(5773+5¢?)
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1
Erjer + Prjer = §ZET1'(4+577¢2 — 6¢7)
~ 2 Z Er; (58)

where we have ignored the terms in é7; and 8¢; in the second equation. Inserting
these relations into Eq. (55) gives

M2, =) Er; Y Eri(6n? +6¢7) (59)

Now we proceed to the small angle (thin jet) limit for large-Er jets. As in the
sections above, we can use the approximation Erj.; >~ Y Er;, and combine with
Eq. (42) to obtain the relation for the invariant mass of the jet as

Mjet ~OR" ETjet- (60)

This equation confirms what we know intuitively about the invariant mass of a
multiparticle system, namely that the mass of the system is “generated by” the
angles between the (approximately zero mass) particles.

Figure 11 shows the normalized distribution in mass (Mj.;) for jets that were
reconstructed with cone cutoffs of 0.3, 0.5, and 0.7. The distributions broaden as
the cutoff increases due to inclusion of more towers further away from the jet center.

1/Ny,, dN/dM per 1 GeV/c”

15 20

Fig. 11. Mass distribution for jets of different cone size.

In Figure 12 we plot the ratio 0 g« Exje1/Mjes, on an event by event basis. These
distributions show that the ratio is well within the few percent level of unity for all
jet cones (note the vertical log scale used).

2.7. Jet Merging



Jets and Kinematics in Hadronic Collisions

23

\ \

0oL _
100 £ E
i /// Y + R=0.3 ]
— F / \ :
S i /X L1 X R=0.5 |
E: o7l = / \\x ¢ R=0.7 —
F ;° \t E
e L / \! ]
= [ \ ]

&) |
N 1078 = / | =
=2 g % h £
; g / e ]
L Il i

> -3 / o “‘\
1079 = v il 3
F / I ]
C / M ]
L / | i

a H

104 Lo v \ AW \
0.8 0.9 1.0 11 1.2
Ep¥og/M
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The merging of two jets is usually reflected in the value of og, and, of course, in
the size of the elements of the shape matrix. To study merging, we have used data
from D@, paying particular attention to whether there is evidence of any merging or
splitting of jets as controlled by the jet algorithm parameters (see section ). These
data constitute our samples as described in the appendices.

Figure 13 shows the normalized distributions in og for merged and not merged
jets using our Sample 1, for R = 0.3, 0.5, and 0.7 cone sizes. We see a marked in-
crease in the width of the merged jets for all cone cutoffs. (This sample is somewhat
biased by the requirement that, after merging, there must be 2 and only 2 jets for
all three defining cone sizes.)

Figure 14 shows the normalized distributions in g using jets with cone cutoffs
of 0.5 and 0.7, for events from Sample 2 (Appendix B). This sample was chosen
to maximize the probability of collecting merged jets (unlike Sample 1, which was
chosen to maximize the probability of collecting unmerged jets). The crosses and
the dots are, respectively, og spectra for the merged and unmerged jets respectively
of Figure 13. Tt should be understood that each jet with B = 0.7 (0.5) in Sample
2 is required to be reduced to 2 jets of R = 0.5 (0.3). Figure 14 shows that og
correlates well, on average, with whether or not a jet is the result of a merging.
We can therefore use the distributions from Figure 14 to construct a likelihood for
a jet being from a merged or unmerged sample. Figure 15 shows the ratio of the
probability distributions for non-merged and merged jets versus og for cones of 0.3,
0.5, and 0.7. The points indicate the values of o for relative likelihoods of 1 (equal
probability of being from either distribution); these are listed in Table 2.

Finally, we investigate the shape of jets via correlations in o, /o4 with respect to
merging. If jets were circular in n¢ space, we would expect that the quantity Ao =
\/Tnn — 4/Tg¢ would be Gaussian-distributed around 0. If jets result from merging,
then we expect the shape of the jet in n¢ space to become elongated, forming an
ellipse, and the quantity Ao would deviate from 0. We use the normalized quantity
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Fig. 15. Relative likelihood for a jet being non-merged to a jet being merged as a function of o g,
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Table 2. Value for og corresponding to a a relative likelihood of unity for jets to be from non-

merged or merged distributions.

0.3
0.5
0.7

or(1)
0.155
0.224
0.292
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)
bpp = ————

Tnn + T¢s
which, to first order, should be independent of the cone size for symmetric jets.

This is indeed observed in Figure 16, where we show 8,4 for jets from Sample 1
with cones 0.3, 0.5, and 0.7. Figure 17 shows the same distribution from Sample 2.
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Fig. 16. The distribution in §,4 = % using unmerged jets with cone cutoffs of 0.3, 0.5, and
nn

0.7 from Sample 1.

As demonstrated above, these jets are broader than “pure” unmerged jets, however
Figure 17 also shows that the broadening of or can be associated with a broadening
in either 6, or d4.

2.8. Summary

The above sections are intended to give a pedagogic description of jets, towards an
understanding which is self consistent and illuminating. For the particle physicist,
the next step is to learn more about the physics of jets, i.e. characteristics of jet
production, which in turn will allow understanding of the fundamental processes
underlying the physics of interest.

Appendix A - Events Used in Sample 1

A sample of events was used with the following requirements:

(i) Pathologies (Main Ring splash, cosmic rays, etc.) were eliminated.
(ii) The position of the collision vertex was required be within +60cm of the
longitudinal center of the D@ detector.
(iii) Each event had to have 2 and only 2 reconstructed jets for cones of 0.3, 0.5,
and 0.7, with none of the jets formed from merging of two or more jets of lower
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0.7 from Sample 2.

transverse energy (by merging, we mean that there was no explicit merging
by the jet cone algorithm as described above).

(iv) All 7, electron, and photon candidates are rejected by requiring a minimum
for cluster o, and o044, depending on the cone size. The cutoffs used were

(0.025)2, (0.040)%, and (0.060)2 for cones of 0.3, 0.5, and 0.7, respectively.

These requirements were chosen to maximize the probability of selecting events with
only 2 jets at tree level. Nevertheless, we cannot exclude the presence of events with
3 or more jets, where jets were merged two at a time a priori due to their extreme
closeness in n¢ space. Such contamination should be small. In addition, there are
(probably small) biases due to e.g. trigger thresholds (since the DO jet trigger
starts with a single trigger tower threshold, thinner jets are more likely than fat
jets to pass the trigger requirement) and primary vertex cuts (item 4 above is not a
very restrictive cut). However, the results presented here are intended to be purely
qualitative in nature.

Appendix B - Events selected for Sample 2

These events were chosen to have a sample of merged jets. Events were required to
satisfy the same criteria 1 and 2 used to define Sample 1, but only events that had
3 jets reconstructed with a cone size of 0.3, and 2 jets with a cone size of 0.5 or 0.7
were analyzed, guaranteeing the presence of two well separated clusters of energy
within a jet. About 6.5% of all events were classified in this manner.
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