
Learning GNU C

Ciaran O’Riordan

Learning GNU C
by Ciaran O’Riordan

Copyright © 2002 Ciaran O’Riordan

This file is a C programming tutorial using the GNU C compiler and GNU Libc.

Copyright © 2002 Ciaran O’Riordan.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or

any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy

of the license is included in the section entitled “GNU Free Documentation License”.

with the no Invariant Sections, with the Front-Cover Texts being “Richard Stallman Rules”, and with the Back-Cover Texts being “This is a Free

book, Free as in Freedom. Permission is granted to copy, distribute, and edit this book under the GNU Free Documentation License”.

Table of Contents
Preface...i

1. Target Audience..i
2. Scope of this text...i
3. Why learn C?...i
4. Why use GNU?... ii
5. Why Free Software?.. ii
6. References to persons... iii

1. Introduction to C ...1

1.1. What are Programming Languages?...1
1.2. What is C?...1
1.3. Programming Tools...3
1.4. Introducing GCC...3
1.5. Who definesValid C?..5

1.5.1. “K&R” C ..5
1.5.2. ISO C..5
1.5.3. C99...5
1.5.4. GNU C..5
1.5.5. Choosing a Dialect...6
1.5.6. Future Standards...6

1.6. Conclusion..6

2. Staring With Functions ...7

2.1. What are functions?..7
2.2. A Line-by-Line Dissection..8
2.3. Comments...9
2.4. Making your own Functions...10
2.5. Multiple Files..11
2.6. Header Files..11
2.7. A Larger (non)Program...12
2.8. Another new Function...14
2.9. Primer Summary...14

3. Data and Expressions..15

3.1. Bicycle Dissection...15
3.2. Data Types...16
3.3. Another Example of Assignment..17
3.4. Quick Explanation ofprintf() ...18
3.5. Simple arithmetic..19
3.6. Global Variables..20
3.7. Static Variables..20
3.8. Constant Variables...20

4. Flow Control...21

4.1. Branching..21
4.2. if ... else...22
4.3. Loops...23
4.4. while..23

iii

4.5. for..24
4.6. do .. while..24
4.7. Switch..25
4.8. The Conditional Operator...25
4.9. break & continue...26

5. Pointers...27

5.1. The Basics...27
5.2. The Address of a Variable...28
5.3. Pointers as Function Arguments...28
5.4. Pointer Arithmetic...29
5.5. Generic Pointers..29

6. Structured Data Types...31

6.1. What is Structured data?...31
6.2. Arrays..31
6.3. Declaring and Accessing Arrays...31
6.4. Initialising Arrays...32
6.5. Multidimensional Arrays..32
6.6. Arrays of Characters (Text)...33
6.7. Defining data types..33
6.8. Structured Data...34
6.9. Unions...35

7. Run-time Memory Allocation...36

7.1. Why you need this...36
7.2. Dynamic Memory Functions..36
7.3. Run-time Memory Summary..36

8. Strings and File I/O ...37

8.1. Introduction...37

9. Storage Classes...38

9.1. What are Storage Classes?..38
9.2. auto..38
9.3. static..38
9.4. extern...39
9.5. register...39
9.6. the restrict type qualifier...39
9.7. typedef...40

10. The C Preprocessor...41

10.1. What is the C Prepressor...41
10.2. What is it used for?...41
10.3. Some sample macros...42
10.4. Caveats for macros..42
10.5. Are macros necessary?..43
10.6. Replacing Simple Macros...43
10.7. Replacing Complex Macros..43

11. Variable Length Arguments...45

11.1. What are Variable Length Arguments?...45

iv

12. Tricks with Functions..46

12.1. What are Virtual Functions?..46
12.2. Nesting functions..46
12.3. The Benefits of Nested Functions...46
12.4. Declaring and Defining Nested Functions..46
12.5. Scope...47

13. Taking Command Line Arguments..48

13.1. How does C handle command line arguments?..48
13.2. Argp...48
13.3. Using More of the Argp Functionality..49
13.4. Environment Variables..51

14. Using and Writing Libraries ...52

14.1. What are Libraries?...52
14.2. Using Libraries..52
14.3. Stages of Compilation...52
14.4. Writing a library..52
14.5. Dynamic or Static..52

15. Writing Good Code..53

15.1. Readability..53

16. Speed...54

16.1. About Optimising..54
16.2. What are function attributes?..54
16.3. Function Attribute Syntax...54
16.4. What arepure andconst?...54

A. GNU Free Documentation License..56

A.1. 0. PREAMBLE..56
A.2. 1. APPLICABILITY AND DEFINITIONS ..56
A.3. 2. VERBATIM COPYING...58
A.4. 3. COPYING IN QUANTITY...58
A.5. 4. MODIFICATIONS...59
A.6. 5. COMBINING DOCUMENTS...60
A.7. 6. COLLECTIONS OF DOCUMENTS..61
A.8. 7. AGGREGATION WITH INDEPENDENT WORKS..61
A.9. 8. TRANSLATION..61
A.10. 9. TERMINATION...61
A.11. 10. FUTURE REVISIONS OF THIS LICENSE...62
A.12. ADDENDUM (How to use this License for your documents)..62

v

List of Examples
1-1. C vs. Assembly language...2
1-2. tiny.c...3
1-3. tiny2.c...4
2-1. hello.c...7
2-2. hello2.c...9
2-3. three_functions.c..10
2-4. main.c...12
2-5. display.c..12
2-6. display.h..13
2-7. prices.c..13
2-8. prices.h...14
3-1. bicycles.c..15
3-2. sizeof_types.c...17
3-3. displaying_variables.c..18
3-4. more_printf.c..19
3-5. wages.c...19
4-1. using_if.c..21
4-2. cows2.c...22
4-3. guess_my_number.c...23
4-4. for_ten.c..24
4-5. guess_my_number.c...24
4-6. apples.c...25
5-1. pointers_are_simple.c...27
5-2. swap_ints.c...28
5-3. generic_pointer.c..30
6-1. first_arrays.c...31
6-2. initialise_array.c...32
6-3. number_square.c...32
6-4. person_struct.c..34
9-1. list_squares.c..38
9-2. battleships.c..40
10-1. box_of_stars.c...41
10-2. max_macro.c..42
10-3. max_macro_problem.c...42
12-1. virtual_function.c...46
12-2. simple nested function..47
13-1. list_args.c..48
13-2. simple_argp.c...49
13-3. better_argp.c...49

vi

Preface

1. Target Audience

Welcome toLearning GNU C. The aim of this book is to teach GNU users how to write software in C. It
is written primarily as a tutorial for beginners but should be thorough enough to be used as a reference by
experience programmers. The basics are layed down in full in the first few chapters, beginners will read
these chapters carefully while those with prior experience can skim through them. All the information is
there, no prior knowledge of programming is assumed.

The reader is assumed to have access to a computer with a GNU system installed. Although the target
audience is GNU users, the content of the book should also be 98% relevant to users of OpenBSD,
FreeBSD, or NetBSD. Some familiarity with using your computer from the shell (the command line)
would be helpful although all commands will be shown along side programming examples. The only
piece of software you do need experience with is a text editor. Any text editor will do. GNU Emacs is an
especially good one for programmers. It has been in development for over twenty years and contains
hundreds useful features. GNU Nano is a simple text editor you could use, some programmers like to use
vi (pronounced vee eye). If you already have a favorite text editor, you can use that. There are also
graphical editors geared towards programmers such as Anjuta and KDevelop but most programmers
preferr text based editors.

2. Scope of this text

The contents of this book can be divided into two topics: the core C language, and the standard
functionality made available to the programmer. The standard functionality I mention is provided by
GNU Libc, this is alibrary of C functionality that is part of every GNU system. Neither of these topics is
of much use without the other but there is a focus on the core langauge near the beginning and more
discussion on Libc near the end. The ordering of topics is designed to teach C programming in an
incremental fashion where each chapter builds on the previous one. Some aspects of the core langauge
are only really of use to experienced programmers and so appear near the end.

The C language on it’s own can make decisions, repeat commands, store data, and perform mathematics.
Equally importantly, it provides a method to make use of extra functionality such as Libc.

Libc provides functionality such as reading and writing files, sorting and searching data, getting input
from the user, displaying data to the user, communicating across networks, creating easily translatable
programs, and many other things.

i

Preface

3. Why learn C?

C is a standard. It is the programmers programming language. It is the standard programming language
of GNU and BSD based systems. The majority of these systems and the applications that run on them, is
written in C. C was developed over thirty years ago for writing operating systems and applications. It’s
small, extensible design has allowed it to evolve with the computer industry. Because of it’s age and
popularity, C is a very well supported language. Many tools exist to make C programming easier and
these tools are often very mature and of a high standard. All the software we will use in this book is
written in C.

4. Why use GNU?

GNU is a complete, Unix-like operating system that has been in development for just over twenty years.
GNU software is known for it’s stability and standard compliance.

Most GNU systems useLinux as a kernel. These systems are often known as GNU/Linux systems.

5. Why Free Software?

The greatest thing about GNU is that the entire system is what is known asFree Software. Software is
“Free Software” when people have the freedom to: Use the software for any purpose, make changes to
the software, share the software with others, and distribute modified versions of the software.

Software that isn’t Free Software is calledproprietarysoftware. It is so-called because a person claims
the software to be their property and bans others from sharing and making changes to it.

From an ethical standpoint, writing Free Software is a much more social way to act. Free Software
empowers it’s users by allowing them to help themselves by making changes they want to the software
(or getting someone else to make these changes). It allows people to help their neighbours by sharing the
software, proprietary software does the opposite: it makes sharing illegal telling people that it is a
criminal offenses to say “yes” when someone asks for help. And Free Software allows people to help
their community by distributing improved versions of the software.

Free Software also doesn’t descriminate against poorer people or people from developing nations. By
allowing them all the above freedoms it permits them to use computers without having to pay impossible
amounts of money for the “privilage”.

Finally there are the technical benefits. Free Software is free from marketing plots. It doesn’t restrict
itself to force users to buy extra pieces of software. Each piece of GNU is designed to be as useful as
possible. As a programmer you can use the same C programming software that is used in major projects.

ii

Preface

Non-Free programs are generally distributed in a machine readable form only. This means that the user
cannot see what is going on inside a program. In contrast, Free Software is required to come with source
code in a human readable format. As a programmer you can read the source code for any piece os Free
Software you like. If there are errors in a program, you can fix them.

This freedom to fix errors and add functionality is what has made GNU software so good. All code is
available for peer review.

Free Software will change the world for the better

6. References to persons

The terms “he” and “she” will be used as little as possible. They are usually unnecessary. The reader will
be referred to as “the reader” or “you” while imaginary people will be called by there role (i.e. “the
programmer” or “the manager”. When referring to myself I will use “we”. This is so that the text will not
have to be changed if others help out with writing the book. (NOTE: I’m not looking for co-authors right
now.) If I get stuck and have to use “he” or “she” I will opt for the latter. This is to balance up the bias of
most books. I will also ask the reader to picture this female to have two disabilities and be of an
under-represented race (i.e. an blind, stuttering eskimo). Thank you.

iii

Chapter 1. Introduction to C

1.1. What are Programming Languages?

A programming langauge defines a format for laying out ordered sets of intructions to be executed by a
computer. Programming langauges can be sorted into three three categories: interpretted languages,
compiled languages, and machine languages. Of these types only machine languages can be understood
directly by a computer.

A machine langauge is the set of instructions that a computer’s CPU (central processing unit)
understands. All instructions and information are represented by numbers; very fast for computers, very
hard for human brains to read or write. To ease the task of computer programming, people created easier
languages calledassembly languages. An assembly language is one which provides textual names for the
available machine language commands. This, along with the fact that assembly languages allowed
programmers to add spaces and tabs to their code, made assembly languages far easier to program with.
Assembly code can then be fed to anassemblerwhich translates it into the machine language of the
target computer’s CPU.

The use of assembly languages spread very fast, they became known as “second generation languages”
but there was still two problems with assembly langauges. Firstly, each command does only a very basic
task such as add two numbers or load a value from memory. Using these small commands was quite
tedious. The second problem was much bigger. Programs written in an assembly language are bound to a
particular type of CPU. Each type of CPU has it’s own machine language and, therefore, it’s own
assembly language. The next task was to design a language that could be translated into the machine
language of many CPUs.

These newmachine independantlangauges were known as “third generation” or “high-level” languages.
Designed to be easy to read, these languages were made up of english words, basic mathematical
symbols and a few punctuation characters. These languages allow simple statements to be expressioned
concisely, for example, adding two numbers and storing the result in memory could be expressed as:

data = 10 + 200;

rather than:

Load R1, 10
Load R2, 200
Addi R1, R2
Store R2, L1

1

Chapter 1. Introduction to C

1.2. What is C?

A tool called acompileris then used to convert the high-level code into machine language. A program
can be written in C and compiled for any computer, it’s up to the compiler to get the hardware-specific
instructions right.

To see just how readable C is compared to Assembly language, take a look at the following tiny program
written in each:

Example 1-1. C vs. Assembly language

.section .rodata
.LC0:

.string "Tax Due: %d\n"

.text

.align 2
.globl main

.type main,@function
main:

pushl %ebp
movl %esp, %ebp
subl $24, %esp
andl $-16, %esp
movl $0, %eax
subl %eax, %esp
movl $1000, %eax
movl $400, %edx
movl $0x3e6147ae, -12(%ebp)
subl %edx, %eax
pushl %eax
fildl (%esp)
leal 4(%esp), %esp
fmuls -12(%ebp)
fnstcw -18(%ebp)
movw -18(%ebp), %ax
movb $12, %ah
movw %ax, -20(%ebp)
fldcw -20(%ebp)
fistpl -16(%ebp)
fldcw -18(%ebp)
subl $8, %esp
pushl -16(%ebp)
pushl $.LC0
call printf
addl $16, %esp
movl $1, %eax
leave
ret

.Lfe1:
.size main,.Lfe1-main

2

Chapter 1. Introduction to C

And the program in C:

#include <stdio.h >

int
main()
{

int wages = 1000;
int tax_allowance = 400;
float tax_rate = 0.22;
int tax_due;

tax_due = (wages - tax_allowance) * tax_rate;

printf("Tax Due: %d euro\n", tax_due);

return 0;
}

Which did you find easier to understand, even without knowing C. The output of both programs is the
same: “Tax Due: 131 euro”. The Assembly code shown is written in the “80386” instruction set, it will
not work on machines that use a different instruction set. The C code can be compiled for practically any
computer.

1.3. Programming Tools

GNU comes with a compiler calledGCC. Originally this stood for “GNU C Compiler” but since it can
now compile languages other than C it’s name was changed to “GNU Compiler Collection”. To check if
you have GCC installed, type the following:

ciaran@pooh:~/book$ gcc --version
3.2.1
ciaran@pooh:~/book$

The version of GCC you have installed may be different, anything similar, such as “2.95.2” or “3.3.0”, is
ok. If you got an error message sayingcommand not foundthen you don’t have GCC installed. If you
installed GNU from a CD, you should find GCC there. If you don’t know how to install applications
from a CD then get a friend or the person who installed your GNU system to do it for you.

1.4. Introducing GCC

Now we’re going to show you a tiny bit of C code and how to compile it. The point here is to show you
how to use GCC so we won’t explain the C code yet. Here’s the smallest C program that GCC will
compile. It does nothing.

3

Chapter 1. Introduction to C

Example 1-2. tiny.c

main()
{
}

Type this piece of code into your text editor and save it to a file calledtiny.c . You can choose any name
so long as it ends with.c , this is the extension used by C programs, GCC checks for this extension when
compiling a program. With the file saved, you can now compile it into an executable program by typing:

ciaran@pooh:~/book$ gcc tiny.c
ciaran@pooh:~/book$

This command should succeed with no output. If you got any error messages check that you typed the
program in correctly. Weighing in at eight characters we’ll assume you’ve gotten this much correct and
move on. A file calleda.out should have appeared in your directory. This is the machine language
program created from the above code, if you run it you will see that it really does nothing at all. The
namea.out exists for historical reasons, it is short forassembler output.

Although GCC will compile this code, it isn’t strictly complete. If we enable GCC’s warnings we will be
told what is missing. You are not expected to understand the warning messages right now, we show this
only to demonstrate GCC’s warnings. You enable warnings by adding the-Wall switch to your
compilation command.

ciaran@pooh:~/book$ gcc -Wall tiny.c
tiny.c:2: warning: return-type defaults to ‘int’
tiny.c: In function ‘main’:
tiny.c:3: warning: control reaches end of non-void function
ciaran@pooh:~/book$

These warnings appear because our program is not strictly complete. To get rid of these warnings we
must add two more lines. So here’s the smallestvalid C program.

Example 1-3. tiny2.c

int
main()
{

return 0;
}

When we compile this with the-Wall option we will get no warnings. Another option:-o filenamecan
be used to specify the name you want to give to your program (instead ofa.out).

ciaran@pooh:~/book$ gcc -Wall -o tiny-program tiny2.c
ciaran@pooh:~/book$ ls

4

Chapter 1. Introduction to C

tiny2.c tiny-program
ciaran@pooh:~/book$./tiny-program
ciaran@pooh:~/book$

1.5. Who defines Valid C?

For you, the programmer, “valid C” is defined by the compiler. There are many dialects of C in existence,
thankfully they are all very similar. There are also other languages that are based on C such asObjective
C andC++ . These languages are very like C in there appearance but there usages is quite different. GCC
understands many dialects of C as well as many other languages (including Objective C and C++).

1.5.1. “K&R” C

C was created by Dennis Ritchie between 1969 and 1973. In 1978 Dennis Ritchie along with Brian
Kernighan published an excellent C tutorial “The C programming language”. This was the first formal
definition of the language. Being the original C dialect it is sometimes calledTraditional C.
Unfortunately the book left many aspects of the language undefined, this meant that people writing
compilers had to make decisions as to how to handle these aspects. The result was that a piece of code
would behave differently depending on what compiler was used. This dialect is no longer used, GCC
supports it only for compiling very old programs. We mention it here purely for historical purposes.

1.5.2. ISO C

In 1983 the American National Standards Institute (ANSI) set up a committee to draw up a more exact
standard and fix a few shortcomings they saw in the language. In 1989 they finalised this standard which
was accepted by the International Standards Organisation (ISO). This new dialect became known as
“C89”. It is also called “ISO C” or “ANSI C”. GCC is one of the most conforming compilers available.

1.5.3. C99

The ANSI C committee meets infrequently to update the standard. The latest updated standard was
released in 1999 and is known as “C99”. Few compilers fully support C99 yet; making changes to one of
the most important pieces of software to an operating system takes time. GCC’s C99 support is mostly
complete (at the time of this writing) but the developers are working on it.

5

Chapter 1. Introduction to C

1.5.4. GNU C

GNU C is most similar to C89 but has a lot of the new features of C99 added and a few other extensions.
These extensions have been added conservatively by the developers as problems are found that C99
doesn’t provide good solutions to. GNU C is the default dialect of GCC and is the dialect we will use in
this book. We will try our best to point out GNU extensions when we use them but in general, it is better
to make full use GNU C. Use of ISO C is limiting your programs to the lowest common denominator and
should only be used in special cases.

1.5.5. Choosing a Dialect

If you would like to use a dialect other than the default, you can specify your choice with the-std=
switch followed by name of the dialect. The names are:c89, c99, gnu89and,gnu99. “gnu89” is the
current default but “gnu99” will become the default when C99 support is complete. The change will not
be very noticeable.

1.5.6. Future Standards

Extensions such as those added by GCC are the main source of inspiration for new ISO C standards.
When the ANSI C group see a lot of compilers implementing an extension they review the necessity of
that feature and if they decide it would be of benefit they work out a standard way to implement it. Some
of GCC’s extensions may make it into the next standard, some will not.

1.6. Conclusion

This concludes our introduction. Hopefully you now have a grasp of what programming is. In the next
chapter we’ll start writing basic programs that actually do something and explain how they do it.

6

Chapter 2. Staring With Functions

2.1. What are functions?

Functions are the building blocks of C programs. The majority of a C program is made up of named
blocks of code calledfunctions. When you write a program you will write many functions to perform the
tasks you need. There are, however, a lot of common tasks such as displaying text to the screen that a lot
of programmers will need. Instead of having everyone reinventing the wheel, GNU systems come with
libraries of pre-defined functions for many of these tasks. Over the years, thousands of such functions
have accumulated. If you were writing a program that plays the game, BINGO, you would have to write
the game specific functions yourself but you would find that others have already written functions for
generating random numbers, displaying results to the screen, getting input from the player etc.

Every C program must have a function calledmain(), this is where execution of the program begins. The
code of a programcouldbe completely contained inmain() but it is more usual to split a program into
many small functions.

The first piece of useful code we will look at is a classic. When compiled and run it will display a simple
greeting to your screen. This programdefinesa function calledmain() andcalls (uses) a function called
printf() . printf() is a function provided for us by the “Standard Device Input/Output library”. This
library comes with every GNU system. Here’s our little program:

Example 2-1. hello.c

#include <stdio.h >

int
main()
{

printf("hello, world\n");

return 0;
}

Compile and run this program before moving on. If all goes well, it will display the text string “hello,
world” to your terminal (the standard output device). Here’s the compilation command just in case
you’ve forgotten:

ciaran@pooh:~/book$ gcc -Wall -o hello hello.c
ciaran@pooh:~/book$./hello
hello, world
ciaran@pooh:~/book$

7

Chapter 2. Staring With Functions

If you got any error or warning messages check that your code matches the code in this book exactly.
Any messages you got should tell you the line of code where your mistake is. If you’ve typed the code in
correctly you will get no such messages.

2.2. A Line-by-Line Dissection

We’ll do a quick description of what each line does. Don’t worry if your not sure about some parts, we’ll
do plenty more examples.

#include <stdio.h >

This line tells GCC toincludeinformation about how to use the functions from the Standard Device
Input/Output library. Usually the standard input device is your keyboard and the standard output device a
terminal (which is displayed on your monitor. This library is very widely used, we’ll come across a lot of
functions from it in this book.

int
main()

These two lines begin the definition of the functionmain(). We’ll explain the first of these two lines later.

{

The open curly braces signals the beginning of a block of code. All code between this curly brace and it’s
matching closing brace is part of the functionmain().

printf("hello, world\n");

This line is afunction call, the function is already defined for you. When you callprintf() you must pass
it anargumentto tell it what to display.

return 0;

Thereturn statement ends execution of the functionmain(), any statements after this line would not be
executed. Whenmain() ends your program exits. When a function ends, it can pass a value back to
whoever called it, this is done by placing the value afterreturn . main() alwaysreturnsan integer (a
positive or negative number with no decimal point). We tell the compiler to expect this by preceding the

8

Chapter 2. Staring With Functions

definition ofmain() with int . When returning frommain() it is convention to return zero if no problems
were encountered.

}

The closing curly brace signals the end of the block of code that makes upmain().

The two lines that make up the body ofmain() are known asstatements. More specifically they are
simple statements(as opposed to compound statements which we will encounter in chapter 4).
Statements are to C what sentences are to spoken languages. A semi-colon ends a simple statement. The
blank lines in the program are optional, C never requires a blank line but they make code much easier to
read.

We mentioned that our functionmain() returnsthe value zero. For most functions the return value can be
used within the program but since returning frommain() signals the end of the program it returns it to
the shell. The return value of a program is stored by the shell, if you want to see it, type the following:

ciaran@pooh:~/book$ gcc -Wall -o hello hello.c
ciaran@pooh:~/book$./hello
hello, world
ciaran@pooh:~/book$ echo $?
0
ciaran@pooh:~/book$

2.3. Comments

Comments are a way to add explanatory text to your program, they are ignored by the compiler so they
don’t affect your program in any way. As the programs you write get larger you will find it helpful to
have comments in your code to remind you what you are doing. In the examples in this book we will use
comments to explain what is going on. There are two ways to insert a comment into your program, the
most common way is to start and end your comments with/* and*/ respectively. Comments of this sort
can span multiple lines. The second way is by placing// at the start of your comment. Comments of this
sort are terminated at the end of a line. Here’s our “hello, world” program with comments.

Example 2-2. hello2.c

/* The purpose of this program is to
* display some text to the screen
* and then exit.
*/

#include <stdio.h >

9

Chapter 2. Staring With Functions

int
main()
{

/* printf() displays a text string */
printf("hello, world\n");

return 0; //zero indicates there were no errors
}

When compiled, this code will produce exactly the same executable. Lines 2 and 3 of the comment at the
top start with an asterisk, this is not necessary but it makes it clear that the comment extends for four
lines.

2.4. Making your own Functions

In that last example we defined just one function. To add another function you must generally do two
things. First you mustdefinethe function, just like we definedmain(). Also you you mustdeclareit.
Declaring a function is like telling GCC to expect it, we didn’t have to declaremain() because it is a
special function and GCC knows to expect it. The name, or identifier, you give to a function must appear
in both the definition and the declaration.

Functions identifiers can be made up of the alphabetic characters “a”-“z” and “A”-“Z”, the numeric
characters “0”-“9” and the underscore character “_”. These can be used in any order so long as the first
character of the identifier is not a number. As we said earlier, C is case-sensitive soMy_Function is
completely different tomy_function. A functions identifier must be unique. Identifiers can safely be up
to 63 characters long or as short as 1 character.

Along with it’s identifier you must give each function atypeand a block of code. Thetypetells the
compiler what sort of data itreturns. The return value of a function can be ignored,printf() returns an
integer saying how many character it displayed to the terminal. This information wasn’t important to us
so we ignored it in our program. In the next chapter we’ll discuss types of data in detail, until then we’ll
gloss over return values.

Here’s a program that defines three functions:

Example 2-3. three_functions.c

#include <stdio.h >

/* function declarations */
int first_function(void);
int goodbye(void);

int

10

Chapter 2. Staring With Functions

main() // function definition
{

printf("the program begins...\n");
first_function();
goodbye();

return 0;
}

int
first_function() // function definition
{

/* this function does nothing */
return 0;

}

int
goodbye() // function definition
{

printf("...and the program ends.\n");

return 0;
}

In the above example we wrotefirst_function() which does nothing andgoodbye()which displays a
message. Functions must be declaredbeforethey can be called are called, in our case this means they
must appear our definition ofmain(). In practice, function declarations are generally grouped at the top
of a file after any#include lines and before any function definitions.

2.5. Multiple Files

Programs do not have to be written in just one file, your code can split up into as many files as you want,
if a program is comprised of forty functions youcouldput each function into a separate file. This is a bit
extreme though. Often functions are grouped by topic and put into separate files. Say you were writing a
program that worked out the price of a pizza and displayed the result, you could put the calculation
functions into one file, the display functions into another and havemain() in a third one. The command
you would use to compile your program would look something like this:

ciaran@pooh:~/book$ gcc -o pizza_program main.c prices.c display.c

Remember: If you define a function inprices.c and you want tocall this function inmain.c you must
declare the function inmain.c .

11

Chapter 2. Staring With Functions

2.6. Header Files

Keeping track of function declarations can get messy, for this reasonHeader filesare used to house C
code that you wish to appear in multiple files. You have actually already used a header file.stdio.h is a
header file which contains many function declarations, it contains the function declarations forprintf()
andprintf() . Once you have placed the function declarations you wish to share into a header file you can
#includeyour header in each C file that needs the information. The only difference being that you
surround your filename in quotes instead of angle brackets ("my_header.h" instead of
<system_header.h>). To illustrate these points we’ll write that pizza program I mentioned earlier.

2.7. A Larger (non)Program

The small amount of programming we have shown so far isn’t enough to make a decent interactive
program. To keep it simple, we will write just a skeleton program so you can see the structure and usage
of header files without getting bogged down in new concepts. In Chapter 3 we will write a full version of
this program. The code here can be compiled and run but it will not ask the user for any input or
calculate the price.

First we havemain.c , this will only contain the functionmain(). main() will call some of the functions
we define in other files. Note thatmain.c doesn’t have a line#include<stdio.h> as it does not use any
of the functions in the Standard Device I/O library.

Example 2-4. main.c

#include "display.h"
#include "prices.h"

int
main()
{

display_options();
calculate_price();
display_price();

return 0;
}

Next we havedisplay.c . This contains two functions, both of which are called frommain() and so we
put there declarations in a header filedisplay.h .

Example 2-5. display.c

#include <stdio.h >

int
display_options()

12

Chapter 2. Staring With Functions

{
printf("Welcome to the pizza parlor\n");
printf("What size pizza would you like? (in inches)");

return 0;
}

int
display_price()
{

printf("Your pizza will cost 0.00\n");

return 0;
}

Example 2-6. display.h

/* header file just contains function declarations, an file that wants
* to use either of these functions just has to #include this file */

int display_options(void);
int display_price(void);

Finally we haveprices.c which contains the functions for getting input from the user and calculating
the total cost of the pizza. Only one of these functions is called frommain(), the declarations for the
other two are therefore put at the top of the file. We’ll fill in the code for these functions in Chapter 3.

Example 2-7. prices.c

int get_size(void);
int get_toppings(void);

int
calculate_price()
{

/* insert code here. Will call get_size() and get_toppings(). */
return 0;

}

int
get_size()
{

/* insert code here */
return 0;

}

int get_toppings()
{

/* insert code here */
return 0;

13

Chapter 2. Staring With Functions

}

Example 2-8. prices.h

int calculate_price(void);

This can then be compiled with the command:gcc -Wall -o pizza_program main.c prices.c display.c.
When run, it will display a greeting and announce that your pizza costs “£0.00”.

2.8. Another new Function

Before we move on, let’s take a look at one more function from the Standard Device I/O Library:
printf() . The “Print Formatted” command is an advanced form ofprintf() . The string you pass to
printf() can contain character sequences which have special meanings. Unlikeprintf() , there is no
automatic new-line at the end of a string displayed byprintf() to insert a new-line you add the characters
\n.

2.9. Primer Summary

What we’ve covered so far shouldn’t be too hard. If you’d like to experiment, try writing similar
programs that output a few lines. Split your program into a couple of functions and divide them into two
files.

Always enable GCC’s warnings when compiling your program. Warnings mean your code is unclear or
incomplete, GCC will guess at the correct meaning and will usually get it right but you should not rely
on this. Looking at and correcting the warnings will help you get used to the language. Most warnings
are accompanied by the line number where the problem is. If you can’t see anything wrong with that line
check the line above it; if a statement is incomplete GCC won’t notice that it is an error until it
encounters the beginning of the following statement. Don’t forget your semi-colons.

14

Chapter 3. Data and Expressions

Really useful programs take in data, perform actions on it and output it somewhere. In C, you use named
pieces of memory calledvariablesto store data. C programs can change the data stored in a variable at
any time, hence the name. Every variable has an identifier which you can use to refer to it’s data when
you want to use or change it’s value. Anexpressionis anything that can be evaluated i.e.1 + 1 is an
expression of the value2. In this expression, the plus sign is abinary operator; it operates on two values
to create a single value.

The rules for naming a variable are the same as for naming a function, you can use letters, numbers, and
the underscore character and the first character must not be a number. Also like functions, variables must
be declared before they can be used. The identifier you give to a variable should say what the the variable
will be used for, this makes you code much easier to read. You can define your own variables or you can
use one of thetypesalready defined for you. Before we get bogged down in terminology let’s look at a
quick code example to show how simple it all is. In this example we will use two variables of the
pre-defined typeint .

Example 3-1. bicycles.c

#include <stdio.h >

int
main()
{

int number_of_bicycles;
int number_of_wheels;

number_of_bicycles = 6;
number_of_wheels = number_of_bicycles * 2;

printf("I have %d bicycles\n", number_of_bicycles);
printf("So I have %d wheels\n", number_of_wheels);

return 0;
}

3.1. Bicycle Dissection

There are a few new things to look at here, we’ll break the program into chunks to explain them.

int number_of_bicycles;
int number_of_wheels;

15

Chapter 3. Data and Expressions

These two lines each declare a variable.int is one of the built-in data types of the C language. Variables
of type int can store positive or negative whole numbers.

number_of_bicycles = 6;

This line stores the value6 in the variablenumber_of_bicycles. The equals sign is known as “the
assignment operator”, it assigns the value on the right hand side of it to the variable on the left hand side.

number_of_wheels = number_of_bicycles * 2;

Again, this line uses the assignment operator but it also uses the multiplication operator. The asterisk is
another binary operator, it multiplies two values to create a single value. In this case it creates the value
12which is then stored innumber_of_wheels.

printf("I have %d bicycles\n", number_of_bicycles);
printf("So I have %d wheels\n", number_of_wheels);

Here we seeprintf() again but it’s being used unlike we have seen before. Here it is taking two
argumentswhich are separated by a comma. The first argument toprintf() is known as theformat string.
When a%d is encountered in the format stringprintf() knows to expect an extra argument. The%d is
replaced by the value of this extra argument. One addition argument is expected for each%d
encountered.

With this new knowledge it should be no surprise that when we compile and run this piece of code we
get the following:

I have 6 bicycles
So I have 12 wheels

As always, don’t worry if you are unsure about certain parts. We’ll do plenty more examples.

3.2. Data Types

All the data types defined by C are made up of units of memory calledbytes. On most computer
architectures a byte is made up of eightbits, each bit stores a one or a zero. These eight bits with two
states give 256 combinations (28). So an integer which takes up two bytes can store a number between 0
and 65535 (0 and 216. Usually however, integer variables use the firstbit to store whether the number is
positive or negative so their value will be between -32768 and +32767.

16

Chapter 3. Data and Expressions

As we mentioned, there are eight basic data types defined in the C language. Five types for storing
integers of varying sizes and three types for storingfloating pointvalues (values with a decimal point). C
doesn’t provide a basic data type for text. Text is made up of individual characters and characters are
represented by numbers. In the last example we used one of the integer types:int . This is the most
commonly used type in the C language.

The majority of data used in computer programs is made up of the integer types, we’ll discuss the
floating point types a little later. In order of size, starting with the smallest, the integer types arechar,
short, int , long andlong long. The smaller types have the advantage of taking up less memory, the
larger types incur a performance penalty. Variables of typeint store the largest possible integer which
does not incur this performance penalty. For this reason,int variables can be different depending what
type of computer you are using.

Thechar data type is usually one byte, it is so called because they are commonly used to store single
characters. The size of the other types is dependent on the hardware of your computer. Most desktop
machines are “32-bit”, this refers to the size of data that they are designed for processing. On “32-bit”
machines theint data type takes up 4 bytes (232). Theshort is usually smaller, thelong can be larger or
the same size as anint and finally thelong long is for handling very large numbers.

The type of variable you use generally doesn’t have a big impact on the speed or memory usage of your
application. Unless you have a special need you can just useint variables. We will try to point out the
few cases where it can be important in this book. A decade ago, most machines had 16-bit processors,
this limited the size ofint variables to 2 bytes. At the time,short variables were usually also 2 bytes and
long would be 4 bytes. Nowadays, with 32-bit machines, the default type (int) is usually large enough to
satisfy what used to require a variable of typelong. Thelong long type was introduced more recently to
handle very large numeric values.

Some computers are better at handling really big numbers so the size of the data types will be bigger on
these machines. To find out the size of each data type on your machine compile and run this piece of
code. It uses one new language constructsizeof(). This tells you how many bytes a data type takes up.

Example 3-2. sizeof_types.c

int
main()
{

printf("sizeof(char) == %d\n", sizeof(char));
printf("sizeof(short) == %d\n", sizeof(short));
printf("sizeof(int) == %d\n", sizeof(int));
printf("sizeof(long) == %d\n", sizeof(long));
printf("sizeof(long long) == %d\n", sizeof(long long));

return 0;
}

17

Chapter 3. Data and Expressions

3.3. Another Example of Assignment

Time for another example. This bit of code demonstrates a few more new things which we’ll explain in a
minute.

Example 3-3. displaying_variables.c

#include <stdio.h >

int
main()
{

short first_number = -5;
long second_number, third_number;

second_number = 20000 + 10000;

printf("the value of first_number is %hd\n", first_number);
printf("the value of second_number is %ld\n", second_number);
printf("the value of third_number is %ld\n", third_number);

return 0;
}

We’ve used ashort and twolong variables. We could have usedint variables but chose to use other types
to show how similar they are. In the first line ofmain() we declare a variable and give it a value all in one
line. This is pretty normal. The second line declares two variables at once by separating them with a
comma. This can be handily but code is often more readable when variable declarations get a line to
themselves.

The third line is very like some code from the first example, the addition operator produces the value
30000which gets stored insecond_number. The last thing to point out is that instead of%d , the format
string ofprintf() contains%hd for theshort variable and%ld for the long variables. These little
groupings of characters are calledconversion specifiers. Each type of variable has it’s own conversion
specifier. If you want to print a single percent sign (“%”) you must write%% .

When you compile and run this you will see the value of your variables. The value ofthird_number will
be strange. This is because it was never assigned a value. When you declare a variable, the operating
system allocates some memory for it. You have no way of know what this memory was used for
previously. Until you give your variable a value, the data stored in it is essentially random. Forgetting to
assign a value to a variable is a common mistake among beginning programmers.

18

Chapter 3. Data and Expressions

3.4. Quick Explanation of printf()

You may have noticed two characters near the end of ourprintf() statements\n. These don’t get
displayed to the screen, they are the notationprintf() uses to represent “newline”.’\’ is the cescape
characterwhen it is encountered within quotes the following character usually has a special meaning.
Another example is\t which is used to represent a TAB.

Another special character thatprintf() looks out for is’%’ , this tells it to look at the next few characters
and be ready to replace them with the value of a variable.%d is the character sequence that represents a
variable of typeint to be displayed using the decimal counting system (0 .. 9). For every%d in the
format string you must tellprintf() what variable you want it replaced with. Here’s some more use of
printf() in code:

Example 3-4. more_printf.c

int
main()
{

int one = 1;
int two = 2;
int three = 4; /* the values are unimportant here */

printf("one ==\t%d\ntwo ==\t%d\nthree ==\t%d\n", one, two, three);

return 0;
}

3.5. Simple arithmetic

We mentioned at the start of this chapter that point of a program usually involves performing actions on
data. By using standard mathematical symbols, arithmetic in C is easily readable.

Example 3-5. wages.c

int
main()
{

int hours_per_day;
int days_per_week;

hours_per_day = 8;
days_per_week = 5;

printf("I work %d hours a week.\n", (days_per_week * hours_per_day));

19

Chapter 3. Data and Expressions

printf("%d %d hour days\n", days_per_week, hours_per_day);

return 0;
}

3.6. Global Variables

These have there place but are often used to fix badly written code. If two functions need to operate on a
variable you should use pointers to share this variable rather than make it available toeveryfunction.

3.7. Static Variables

text.

3.8. Constant Variables

A good rule to follow is to never use numbers other than1 and0 in your code. If you require another
numeric constant you should make it aconstvariable; this way it gets a nice meaningful name. The
number 40 has little meaning, however, the identifierHOURS_WORKED_PER_WEEK tells us
something about what a function is doing. Another benefit is that you can change the value of a const
variable in one place rather than having to change all occurrences of 40. Using the latter method it is easy
to make a mistake by changing an unrelated occurrence of40or forgetting to change an occurrence.

20

Chapter 4. Flow Control

Taking actions based on decisions

C provides two sytles of decision making:branchingandlooping. Branching is deciding what actions to
take and looping is deciding how many times to take a certain action.

4.1. Branching

Branchingis so called because the program chooses to follow one branch or another. Theif statement is
the most simple of the branching statements. It takes an expression in parenthesis and an statement or
block of statements (surrounded by curly braces).if the expression is true (evaluates to non-zero) then
the statement or block of statements gets executed. Otherwise these statements are skipped.if statements
take the following form:

if (expression)
statement ;

or
if (expression)

{
statement1 ;
statement2 ;
statement3 ;

}

Here’s a quick code example:

Example 4-1. using_if.c

#include <stdio.h >

int
main()
{

int cows = 6;

if (cows > 1)
printf("We have cows\n");

if (cows > 10)
printf("loads of them!\n");

21

Chapter 4. Flow Control

return 0;
}

When compiled and run this program will display:

ciaran@pooh:~/book$ gcc -Wall -Werror -o cows using_if.c
ciaran@pooh:~/book$./cows
We have cows
ciaran@pooh:~/book$

The secondprintf() statement does not get executed because it’s expression is false (evaluates to zero).

4.2. if ... else

A second form ofif statement exists which allows you to also specify a block of code to execute if the
test expression is false. This is known as anif ... elsestatement and is formed by placing the reserved
wordelseand another block of code after the usualif statment. You program will execute one of the two
blocks of code based on the test condition after theif . Here’s what it looks like:

Example 4-2. cows2.c

int
main()
{

int cows = 0;

if (cows > 1)
{

printf("We have cows\n");
printf("%d cows to be precise\n", cows);

}
else

{
if (cows == 0)

printf("We have no cows at all\n");
else

printf("We have only one cow\n");
}

if (cows > 10)
printf("Maybe too many cows.\n");

return 0;
}

22

Chapter 4. Flow Control

You should be able to guess the output by now:

ciaran@pooh:~/book$./cows2
We have no cows at all
ciaran@pooh:~/book$

In the last example there was anif .. elsestatement inside anotherif .. elsestatement. This is perfectly
legal in C and is quite common. There is another form of branching you can use but it’s a little more
complex so we’ll leave it to to end of the chapter.

4.3. Loops

Loops provide a way to repeat commands and control how many times they are repeated. Say you
wanted to print the alphabet to the screen, you could do this with a call toprintf() . This is one solution
but it doesn’t scale very well, what if you wanted to print all the numbers between one and one thousand
in a column? this could be handled by one bigprintf() or loads ofprintf() calls but repetitive work
should be done by the computer, leaving you more time to work on the interesting parts of your program.

4.4. while

The most basic loop in C is thewhile loop. A while statement is like a repeatingif statement. Like anIf
statement, if the test condition is true: the statments get executed. The difference is that after the
statements have been executed, the test condition is checked again. If it is still true the statements get
executed again. This cycle repeats until the test condition evaluates to false. If the test condition is false
the first time, the statments don’t get executed at all. On the other hand if it’s test condition never
evaluates to false it may continue looping infinitely. To control the number of times a loop executes it’s
code you usually have at least one variable in the test condition that gets altered in the subsequent block
of code. This allows the test condition to become false at some point.

Here’s the quick example you are probably expecting. It’s a simple guessing game, very simple for the
person who is writing the code as they know the answer. When testing this program remember to guess
the wrong answer a few times.

Example 4-3. guess_my_number.c

#include <stdio.h >

int
main()
{

const int MAGIC_NUMBER = 6;
int guessed_number;

printf("Try to guess what number I’m thinking of\n");

23

Chapter 4. Flow Control

printf("HINT: It’s a number between 1 and 10\n");

printf("enter your guess: ");
scanf("%d", &guessed_number);

while (guessed_number != MAGIC_NUMBER);
{

printf("enter your guess: ");
scanf("%d", &guessed_number);

}

printf("you win.\n")

return 0;
}

The block of code following thewhile statement will be executed repeatedly until the player guesses the
number six.

4.5. for

for is similar towhile, it’s just written differently.for statements are often used to proccess lists such a
range of numbers:

Example 4-4. for_ten.c

#include <stdio.h >

int
main()
{

int i;

/* display the numbers from 0 to 9 */
for (i = 0; i < 10; i++)

printf("%d\n", i);

return 0;
}

4.6. do .. while

do .. while is just like awhile loop except that the test condition is checked at the end of the loop rather
than the start. This has the effect that the content of the loop are always executed at least once.

24

Chapter 4. Flow Control

Example 4-5. guess_my_number.c

#include <stdio.h >

int
main()
{

const int MAGIC_NUMBER = 6;
int guessed_number;

printf("Try to guess what number I’m thinking of\n");
printf("HINT: It’s a number between 1 and 10\n");

do
{

printf("enter your guess: ");
scanf("%d", &guessed_number);

}
while (guessed_number != MAGIC_NUMBER);

printf("you win.\n")

return 0;
}

4.7. Switch

Theswitch statement is much like a nestedif .. elsestatement. Its mostly a matter of preference which
you use,switch statement can be slightly more efficient and easier to read.

4.8. The Conditional Operator

The?: operator is just like anif .. elsestatement except that because it is an operator you can use it
within expressions.

Blah, blah, here’s an example:

Example 4-6. apples.c

#include <stdio.h >

int
main()
{

apples = 6;

25

Chapter 4. Flow Control

printf("I have %d apple%s\n", apples, (apples == 1) ? "" : "s");

return 0;
}

?: is aternaryoperator in that it takes three values, this is the only ternary operator C has.

4.9. break & continue

You’ve seebreak already, we ended eachcaseof ourswitch statement with one.break exits out of a
loop.

continue is similar to break in that it short circuits the execution of a code block butcontinuebrings
execution back to the start of a loop.

26

Chapter 5. Pointers

sorting the programmers from the students

5.1. The Basics

A limitation you may have noticed is that functions can only affect your program via their return value,
so what do you do when you want a function to alter more than one variable? You use pointers. A pointer
is a special kind of variable. Pointers are designed for storing memory address i.e. the address of another
variable. Declaring a pointer is the same as declaring a normal variable except you stick an asterisk ’*’ in
front of the variables identifier. There are two new operators you will need to know to work with
pointers. The “address of” operator ’&’ and the “dereferencing” operator ’*’. Both are prefix unary
operators. When you place an ampersand in front of a variable you will get it’s address, this can be store
in a pointer. When you place an asterisk in front of a pointer you will get the value at the memory
address pointed to. As usual, we’ll look at a quick code example to show how simple this is.

Example 5-1. pointers_are_simple.c

#include <stdio.h >

int
main()
{

int my_variable = 6, other_variable = 10;
int *my_pointer;

printf("the address of my_variable is : %p\n", &my_variable);
printf("the address of other_variable is : %p\n", &other_variable);

my_pointer = &my_variable;

printf("\nafter \"my_pointer = &my_variable\":\n");
printf("\tthe value of my_pointer is %p\n", my_pointer);
printf("\tthe value at that address is %d\n", *my_pointer);

my_pointer = &other_variable;

printf("\nafter \"my_pointer = &other_variable\":\n");
printf("\tthe value of my_pointer is %p\n", my_pointer);
printf("\tthe value at that address is %d\n", *my_pointer);

return 0;
}

27

Chapter 5. Pointers

The output shows you the address of the two variables, the addresses your system assigns to the variables
will be different to mine. Inprintf() you’ll notice we used%p to display the addresses. This is the
conversion specifier for all pointers. Anyway, here’s the output I got:

the address of my_variable is : 0xbffffa18
the address of other_variable is : 0xbffffa14

after "my_pointer = &my_variable":
the value of my_pointer is 0xbffffa18
the value at that address is 6

after "my_pointer = &other_variable":
the value of my_pointer is 0xbffffa14
the value at that address is 10

There. That’s not too complicated. Once you are comfortable with pointers you’re well on your way to
mastering C.

5.2. The Address of a Variable

When your program is running and a variable declaration is encountered, you program makes a request
for some memory. The operating system finds a spare piece of memory that is large enough and tells
your program the address of this piece of memory. Any time your program wants to read the data stored
in that variable, it looks at it’s memory address and reads the number of bytes equal to the size of the data
type of that variable.

If you run the example from the start of this chapter a second time you may or may not get the same
result for the addresses, this depends on your system but even if you repeatably get the same addresses
right now there is no guarantee that you will get the same result tomorrow, in fact it’s rather unlikely.

5.3. Pointers as Function Arguments

One of the best things about pointers is that they allow functions to alter variables outside of there own
scope. By passing a pointer to a function you can allow that function to readand writeto the data stored
in that variable. Say you want to write a function that swaps the values of two variables. Without pointers
this would be practically impossible, here’s how you do it with pointers:

Example 5-2. swap_ints.c

#include <stdio.h >

int swap_ints(int *first_number, int *second_number);

int
main()

28

Chapter 5. Pointers

{
int a = 4, b = 7;

printf("pre-swap values are: a == %d, b == %d\n", a, b)

swap_ints(&a, &b);

printf("post-swap values are: a == %d, b == %d\n", a, b)

return 0;
}

int
swap_ints(int *first_number, int *second_number)
{

int temp;

/* temp = "what is pointed to by" first_number; etc... */
temp = *first_number;
*first_number = *second_number;
*second_number = temp;

return 0;
}

As you can see, the function declaration ofswap_ints()tells GCC to expect two pointers (address of
variables). Also, theaddress-ofoperator (&) is used to pass the address of the two variables rather than
their values.swap_ints()then reads

5.4. Pointer Arithmetic

Arithmetic can be performed on pointers just like any other variable, this is only useful in a few cases
though. If you were (for some reason) to divide a pointer by two it would then point to an area of your
computers memory that would probably not belong to your program. If your program tried to read or
write to this area of memory the textsegmentation faultwill display and your program will abort. A
“segmentation fault” occurs when a program tries to access a segment of memory that it does not have
permission to access.

There are times however when simple addition can be used on a pointer. We’ll see this in the next chapter
when we discuss arrays (multiple variables at consecutive memory addresses). In the case of addition
(and subtraction), arithmetic is performed in units equal to the size of the pointers data type.

29

Chapter 5. Pointers

5.5. Generic Pointers

When a variable is declared as being a pointer to typevoid it is known as ageneric pointer. Since you
cannot have a variable of typevoid, the pointer will not point to any data and therefore cannot be
dereferenced. It is still a pointer though, to use it you just have to cast it to another kind of pointer first.
Hence the termGeneric pointer.

This is very useful when you want a pointer to point to data of different types at different times.

Here is some code using a void pointer:

Example 5-3. generic_pointer.c

int
main()
{

int i;
char c;
void *the_data;

i = 6;
c = ’a’;

the_data = &i;
printf("the_data points to the integer value %d\n", *(int*) the_data);

the_data = &c;
printf("the_data now points to the character %c\n", *(char*) the_data);

return 0;
}

30

Chapter 6. Structured Data Types

contiguous and structured data

6.1. What is Structured data?

C provides two methods for defining structured, oraggregatedata types: arrays and structs. Both can
contain any of the standard data types including pointers as other structs and arrays. Arrays contain many
variables of the same type while structs can contain any mixture of types.

6.2. Arrays

An array is a data type which contains many variables of the same type. Each element of the array is
given a number by which you can access that element. For an array of 100 elements, the first element is 0
(zero) and the last is 99. This indexed access makes it very convenient to loop through each element of
the array.

6.3. Declaring and Accessing Arrays

Declaring an array is much the same as declaring any other variable except that you must specify the
array size. The size (or number of elements) is an integer value placed in square brackets after the arrays
identifier.

Example 6-1. first_arrays.c

int
main()
{

int person[10];
float hourly_wage[4] = {2, 4.9, 10, 123.456};
int index;

index = 4;
person[index] = 56;

printf("the %dth person is number %d and earns $%f an hour\n",
(index + 1), person[index], hourly_wage[index]);

return 0;
}

31

Chapter 6. Structured Data Types

NOTE: it is up to you to make sure you don’t try to access an element that is not in the array such as the
eleventh element of a ten element array. Attempting to access a value past the end of an array will either
crash your program or worse, it could retrieve garbage data without telling you that an error occurred.

6.4. Initialising Arrays

In the above example we initialised the arrayhourly_wageby placing a comma separated list of values
in curly braces. Using this method you can initialise as few or as many array elements as you like
however you cannot initialise an element without initialising all the previous elements. If you initialise
some but not all elements of an array the remaining elements will be automatically initialised to zero.

To get around this inconvenience, a GNU extension to the C language allows you to initialise array
elements selectively by number. When initialised by number, the elements can be placed in any order
withing the curly braces preceded by[index]=value. Like so:

Example 6-2. initialise_array.c

#include <stdio.h >

int
main()
{

int i;
int first_array[100] = { [90]=4, [0]=5, [98]=6 };
double second_array[5] = { [3] = 1.01, [4] = 1.02 };

printf("sure enough, first_array[90] == %d\n\n", first_array[90]);
printf("sure enough, first_array[99] == %d\n\n", first_array[99]);

for (i = 0; i < 5; i++}
printf("value of second_array[%d] is %f\n", i, second_array[i]);

return 0;
}

6.5. Multidimensional Arrays

The array we used in the last example was aone dimensionalarray. Arrays can have more than one
dimension, these arrays-of-arrays are calledmultidimensional arrays. They are very similar to standard
arrays with the exception that they have multiple sets of square brackets after the array identifier. A two
dimensional array can be though of as a grid of rows and columns.

32

Chapter 6. Structured Data Types

Example 6-3. number_square.c

#include <stdio.h >

const int num_rows = 7;
const int num_columns = 5;

int
main()
{

int box[num_rows][num_columns];
int row, column;

for(row = 0; row < num_rows; row++)
for(column = 0; column < num_columns; column++)

box[row][column] = column + (row * num_columns);

for(row = 0; row < num_rows; row++)
{

for(column = 0; column < num_columns; column++)
{

printf("%4d", box[row][column]);
}

printf("\n");
}

return 0;
}

If you compile and run this example you’ll get a box of numbers like this:

0 1 2 3 4
5 6 7 8 9

10 11 12 13 14
15 16 17 18 19
20 21 22 23 24
25 26 27 28 29
30 31 32 33 34

The above array has two dimensions and can be called a doubly subscripted array. GCC allows arrays of
up to 29 dimensions although actually using an array of more than three dimensions is very rare.

6.6. Arrays of Characters (Text)

Text in C is represented by a number of consecutive variables of typechar terminated with the null
character’\0’ .

33

Chapter 6. Structured Data Types

6.7. Defining data types

The C language provides only the most basic, commonly used types, many languages provide a larger set
of types but this is only for convenience. C’s way of handling text strings is a good example of this. At
times you may think it would be handy if there were other data types which could store complex data. C
allows you to define your own.

6.8. Structured Data

In C you can create a new type e.g. “Person”. Person can store an int called “age”, a string called “name”
and another int called “height_in_cm”. Here’s the code to make this new type:

struct Person
{

char[40] name;
int age;
int height_in_cm;

};

This code creates a variable calledstruct Person. You can declare variable and pointers to variables of
this type in the usual way. Say you declared a variablejohnof typestruct Person. To access the “age”
field you would usejohn.age. I’ll make this clearer with a quick example using the previous definition of
struct Person:

Example 6-4. person_struct.c

int
main()
{

struct Person hero = { 20, "Robin Hood", 191 };
struct Person sidekick;

john.age = 31;
john.name = "John Little"
john.height_in_cm = 237;

printf("%s is %d years old and stands %dcm tall in his socks\n",
sidekick.name, sidekick.age, sidekick.height_in_cm);

printf("He is often seen with %s.\n", hero.name);

return 0;
}

When compiled and executed this will display:

34

Chapter 6. Structured Data Types

John Little is 31 years old and stands 237cm tall in his socks
He is often seen with Robin Hood.

6.9. Unions

C also supports types that can have dynamic types, a variable that can be andint at one point, adouble
later and anunsigned long longafter that. These data types are declared just like astruct except they
use theunion keyword. Their behavior is completely different to astruct.

35

Chapter 7. Run-time Memory Allocation

Requesting memory at run-time

7.1. Why you need this

Often when you write a program you don’t actually know how much data is will have to store or process.
In previous examples we’ve read in some text from the user. We’ve used large character arrays to store
this data but what happens if the user enters more text than we can handle? your program crashes.
Disaster. At run-time an application can make a request for more memory.

7.2. Dynamic Memory Functions

Glibc provides functions for requesting extra memory,malloc() is the fist one we will show you. You
must have a pointer to start with.

7.3. Run-time Memory Summary

Forgetting tofree() memory when your finished with it is one of the worst programming mistakes you
can make. Is losing pointers a common problem? pointer falls out of scope?

36

Chapter 8. Strings and File I/O

Reading and writing to files

8.1. Introduction

Place Holder

37

Chapter 9. Storage Classes

Changing the behavior of variables

9.1. What are Storage Classes?

You will have noticed that variables in functions lose their values every time the function exists, this is
done for reasons of efficiency, the operating system doesn’t know if you will need the data again so it
releases the memory allocated to your program back to the system.

9.2. auto

By default, variables in C use theauto storage class. This is so called because the variables are
automatically created when needed and deleted when they fall out of scope.

You can specify a variable to have theauto storage class by prefixing the variables declaration with the
auto keyword but this has no effect, the keyword was introduced into the language for symmetry with
the other storage specifiers.

9.3. static

static variables are variables that don’t get deleted when they fall out of scope, they are permanent and
retain their value between calls to the function. Here’s an example:

Example 9-1. list_squares.c

#include <stdio.h >

int get_next_square(void);

int
main()
{

int i;

for(i = 0; i < 10; i++)
printf("%6d\n", get_next_square());

printf("and %6d\n", get_next_square());

return 0;
}

38

Chapter 9. Storage Classes

int
get_next_square()
{

static int count = 1;

count += 1;

return count * count;
}

This will list the squares of the numbers from zero to ten. Zero to nine are printed by the loop and the
square of ten is printed afterwards just to show it still has it’s value.

9.4. extern

When you declare a variable asextern your program doesn’t actually reserve any memory for it,extern
means that the variable already exitsexternalto the function or file.

If you want to make a variable available to every file in a project you declare it globally in one file, that
is, not inside a function, and add anextern declaration of that variable to a header file that is included in
all the other files.

9.5. register

Theregister storage class is used as a hint to the compiler that a variable is heavily used and access to it
should be optimised if possible. Variables are usually stored in normal memory (RAM) and passed back
and forth to the computers processor as needed, the speed the data is sent at is pretty fast but can be
improved on. Almost all computer processors containcpu registers, these are memory slots on the actual
processor, storing data there gets rid of the overhead of retrieving the data from normal memory. This
memory is quite small compared to normal memory though so only a few variables can be stored there.
GCC will always make use of registers by deciding what variables it thinks will be accessed often, this
works well but will never be perfect because GCC doesn’t know the purpose of your program. By using
theregister keyword you can tell GCC what needs to be optimised.

One problem with placing a variable into a cpu register is that you can’t get a pointer to it, pointers can
only point to normal memory. Because of this restriction GCC will ignore theregister keyword on
variables whos address is taken at any point in the program.

The resulting program will contain a request, on creation of the variable that it be placed in a cpu
register, the operating system may ignore or honour this request.

39

Chapter 9. Storage Classes

9.6. the restrict type qualifier

This is something to do with pointers, I think it tells the compiler that a specific pointer is the only
pointer to a section of memory, the compiler can optimise code better with this knowledge. I think.

9.7. typedef

typedef isn’t much like the others, it’s used to give a variable type a new name. There are two main
reasons for doing this. The most common is to give a name to a struct you have defined so that you can
use your new data type without having to always precede it with the struct keyword.

The second use for typedef is for compatibility. Say you want to store a 32-bit number. If you useint you
are not guaranteed that it will be 32-bit on every machine. To get around this you can use preprocessor
directives to selectively typedef a new type to the right size.

Example 9-2. battleships.c

#include <stdio.h >

/* type, position coordinates and armament */
struct _ship
{

int type;
int x;
int y;
int missiles;

};

typedef struct _ship ship;

int
main()
{

ship battle_ship_1;
ship battle_ship_2 = {1, 60, 66, 8};

battle_ship_1.type = 63;
battle_ship_1.x = 54;
battle_ship_1.y = 98;
battle_ship_1.missiles = 12;

/* More code to actually use this data would go here */

return 0;
}

40

Chapter 10. The C Preprocessor

When & how to use them

10.1. What is the C Prepressor

The C Preprocessor is a simple macro-expander that is run on source code files before passing them to
the compiler. Lines that begin with the hash symbol’#’ are directives to the C preprocessor.

When you create a macro you assign a name to a C expression. You can then use this name in your code
just as you would have used the expression. The preprocessor replaces all occurences of that name with
the expression.

10.2. What is it used for?

Macros are snippets of code that get processed before compilation. This is done by theC preprocessor,
#definestatements are macros. Take a look at this piece of code:

Example 10-1. box_of_stars.c

#define SIZE_OF_SQUARE 4

int
main()
{

int i, j;

for(i = 0; i < SIZE_OF_SQUARE; i++)
{

for(j = 0; j < SIZE_OF_SQUARE; j++)
{

printf("*"); // print an asterisk for each column
}

printf("\n"); // and a newline at the end of each row
}

}

The output of this code will be a box:

41

Chapter 10. The C Preprocessor

The C preprocessor simply replaces the macroSIZE_OF_BOX with the value “4”. This very useful for
two reasons:

• firstly the size of the box can be changed by just editing one line. This isn’t a huge advantage in the
above example as there are just two uses ofSIZE_OF_BOX but in larger programs this make life
much easier and removes the possibility of forgetting to change one of the values.

• Secondly it makes the code more readable, meaningful names can be given to values such as#define
PI 3.142857143.

10.3. Some sample macros

Some of the small function in glibc are implemented as macros,getc() is one

10.4. Caveats for macros

Macroscanbe miss-used and it’s hard to catch the bugs because the macro no longer exists when the
code gets to the compiler. The most error is the macro argument with side effect. Take the this small
example:

Example 10-2. max_macro.c

#define MAX(a, b) (a > b ? a : b)

int
main()
{

int cows = 10, sheep = 12;

printf("we have %d of our most common animal\n", MAX(cows, sheep));

return 0;
}

We compile and execute this code and get:

ciaran@pooh:~/book$./a.out
we have 12 of our most common animal
ciaran@pooh:~/book$

Yup, everything looks good. Try this next example:

42

Chapter 10. The C Preprocessor

Example 10-3. max_macro_problem.c

#define MAX(a, b) (a > b ? a : b)

int
main()
{

int cows = 10, sheep = 12;

printf("We have %d of our most common animal\n", MAX(cows, sheep));

printf("Hang on, we just bought another one.\n");
printf("Now we have %d.\n", MAX(cows, ++sheep));

return 0;
}

Can you see what’s going to happen?

ciaran@pooh:~/book$./a.out
We have 12 of our most common animal
Hang on, we just bought another one.
Now we have 14.
ciaran@pooh:~/book$

When the text substitution occurs there will be two instances of++sheep. Another more sinister way for
this bug may manifest itself is when you pass use a function as an argument to a macro. If the function
modifies a global or static variable then this modification may occur multiple times. These bugs can be
veryhard to find, the code is perfectly valid so the compiler has nothing to complain about, the bug will
only be noticed at run time and wont occur every time the macro is called, only when it is called with an
argument that has a side effect.

10.5. Are macros necessary?

The preprocessor was commonly used to make up for small deficiencies of the language, however, as the
language has evolved these defiances have be all but done away. It’s still good to know how to use and
understand preprocessor macros, they are very common. Macros have been part of the language for
longer than their replacements and people have gotten used to them.

10.6. Replacing Simple Macros

If you are thinking that aconst int global variable could replace a simple#defineyou are right.const
variables have some advantages, one small advantage is that you can get their address when you need to
pass around a pointer to their value, in this way they are more flexible than macros. If you don’t take the
address of theconstvariable then GCC can optimise it to a level similar to a#define.

43

Chapter 10. The C Preprocessor

10.7. Replacing Complex Macros

Complex macros, that is functions implemented as macros, can be replaced byinline functions.

44

Chapter 11. Variable Length Arguments

The VA_ARGS macros etc.

11.1. What are Variable Length Arguments?

Variable length argument lists are something you have already come across, think ofprintf() , how would
you write the prototype for this function when you don’t know how many arguments will be passed to it.

45

Chapter 12. Tricks with Functions

pointers to functions

12.1. What are Virtual Functions?

Another use of thevoid data type is for making pointers to functions. This is a fairly advanced
programming technique but a very useful one once you become comfortable with it.

Here is an example of a function pointer:

Example 12-1. virtual_function.c

int
main()
{

/* oh, crap, better go write one... */

return 0;
}

12.2. Nesting functions

GCC permits functions to be defined within other functions. Functions defined like this are known as
nested functions and obey the same scoping rules as variables. When the parent function exits, the child
function falls out of scope and is unavailable.

12.3. The Benefits of Nested Functions

Probably the main reason for nested functions being allowed by GCC for flexibilities sake although small
performance increases can be gained by using them correctly. Nested functions obeyLexical scoping,
they have access to the variables of the function that contains them.

For this reason, they can accomplish tasks that would usually require functions taking pointers as
arguments. There is a slight performance loss when pointers are used because a variable that has a
pointer cannot be stored in a machine register. Pointers never point to machine registers so how would
the pointer work?

46

Chapter 12. Tricks with Functions

12.4. Declaring and Defining Nested Functions

If you are defining a function at the

Example 12-2. simple nested function

#include <stdio.h >

int
main()
{

int swap (int *a, int *b)
{

int c;

c = *a;
*a = *b;
*b = c;

return 0;
}

int first = 12, second = 34;

printf("f is %d and s is %d\n", first, second);

swap(&first, &second);

printf("f is %d and s is %d\n", first, second);

return 0;
}

You don’t have to declare nested functions like you do normal functions however you can if you like.
The only reason for doing so would be for the sake of readability, you might like the function definition
to appear near where it is used. It’s up to you, but if you do decide to declare you nested function you
must explicitly declare it asauto.

12.5. Scope

Nested functions have local scope, declaring a nested function asextern is will cause an error.static and
inline are both valid however the meaning ofstatic escapes me.

47

Chapter 13. Taking Command Line Arguments

13.1. How does C handle command line arguments?

A program starts by the operating systemcalling a programsmain() function. Every one of your
programs so far have definedmain() as a function taking no arguments but this is not always the case.
main() is the only function in C that can be defined in multiple ways. It can take no arguments, two
arguments or three arguments. The two and three argument forms allow it to receive arguments from the
shell. The three argument form is not particularly useful and is never necessary, we’ll cover it briefly at
the end of this chapter.

The two argument form takes anint and an array of strings. When definingmain() you can give these
arguments any name but it is convention to call themargc andargv[] . The first argument holds a count
of how many elements there are in the array of strings passed as the second argument. The array is
always null terminated soargv[argc] == NULL .

Here’s a short program demonstrating the use of

Example 13-1. list_args.c

int
main(int argc, char *argv[])
{

int i;

for(i = 0; i < argc; i++)
printf("argv[%d] == %s\n", i, argv[i]);

return 0;
}

to be passed tomain() via two arguments: anint and a*char[] (an array of strings). Theint is usually
calledargc which is short for “argument count”, as the name suggests, it stores the number of arguments
passed tomain(). The second argument, usually calledargv is an array of strings.

13.2. Argp

C’s method of getting command line arguments is pretty simple but when your program has a lot of
options it can get complex. To solve this, Glibc provides a series of functions to perform command tasks

48

Chapter 13. Taking Command Line Arguments

for you. The “argp_*” functions perform much of the work for you and they do it in a standard way
which makes you program more familiar to users. Here’s an short program using argp:

Example 13-2. simple_argp.c

/* put a tiny argp program here */

When you run this program you will see...

13.3. Using More of the Argp Functionality

Here’s a longer program, it uses four global variables to store information about your program:

Example 13-3. better_argp.c

#include <stdlib.h >

#include <argp.h >

const char *argp_program_version = "simple_argp 0.1";
const char *argp_program_bug_address =

" <some_email_address@you_care_about.com >";

static char doc[] =
"short program to show the use of argp\nThis program does little";

static char args_doc[] = "ARG1 ARG2";

/* initialise an argp_option struct with the options we except */
static struct argp_option options[] =
{

{"verbose", ’v’, 0, 0, "Produce verbose output" },
{"output", ’o’, "FILE", 0, "Output to FILE" },
{ 0 }

};

/* Used by ‘main’ to communicate with ‘parse_opt’. */
struct arguments
{

char *args[2]; /* ARG1 & ARG2 */
int silent, verbose;
char *output_file;

};

/* Parse a single option. */
static error_t
parse_opt (int key, char *arg, struct argp_state *state)
{

/* Get the INPUT argument from ‘argp_parse’, which we
know is a pointer to our arguments structure. */

49

Chapter 13. Taking Command Line Arguments

struct arguments *arguments = state- >input;

switch (key)
{
case ’q’: case ’s’:

arguments- >silent = 1;
break;

case ’v’:
arguments- >verbose = 1;
break;

case ’o’:
arguments- >output_file = arg;
break;

case ARGP_KEY_ARG:
if (state- >arg_num >= 2)

/* Too many arguments. */
argp_usage (state);

arguments- >args[state- >arg_num] = arg;

break;

case ARGP_KEY_END:
if (state- >arg_num < 2)

/* Not enough arguments. */
argp_usage (state);

break;

default:
return ARGP_ERR_UNKNOWN;

}
return 0;

}

/* Our argp parser. */
static struct argp argp = { options, parse_opt, args_doc, doc };

int main (int argc, char **argv)
{

struct arguments arguments;

/* Default values. */
arguments.silent = 0;
arguments.verbose = 0;
arguments.output_file = "-";

/* Parse our arguments; every option seen by ‘parse_opt’ will
be reflected in ‘arguments’. */

argp_parse (&argp, argc, argv, 0, 0, &arguments);

printf ("ARG1 = %s\nARG2 = %s\nOUTPUT_FILE = %s\n"
"VERBOSE = %s\nSILENT = %s\n",

50

Chapter 13. Taking Command Line Arguments

arguments.args[0], arguments.args[1],
arguments.output_file,
arguments.verbose ? "yes" : "no",
arguments.silent ? "yes" : "no");

exit (0);
}

This is pretty simple. no?

13.4. Environment Variables

BLAH, talk about how to use the three argument form and the other way of getting at environment
variables, show a toy example.

51

Chapter 14. Using and Writing Libraries

Reusable compiled code

14.1. What are Libraries?

Libraries are like programs except they don’t contain amain() function for execution to begin at. The
functions in libraries can be used in other applications by linking the application to the library.

14.2. Using Libraries

To link with a library you must use the-l} sitch followed by the library name. Glibc’s math library is
called libm.so, you don’t need thelib} r .so}arts to to use this library you add the switch-lm} o your
compilation line.

14.3. Stages of Compilation

Compiling a program involves many tools, GCC takes care of this by calling other programs to handle
each stage of the process. The three main stages arepreprocessing, compilationandlinking. In C code,
lines that begin with thehashsymbol “#” are commands for the preprocessor, GCC includes a
preprocessor called CPP (C Preprocessor).#defineand#includeare by far the most common
preprocessor commands The compilation process is broken down into many smaller stages. One of these
stages is confusingly calledcompilation. Compilation is the process of converting source code toobject
code. If you invoke GCC with “-c” it will When programs become large it can take time to compile
them, by splitting a program into smaller files you can re-compile only the files that you have changed.
First you must tell gcc to only compile the source files. This

14.4. Writing a library

Writing a library is similar to writing a program. The first obvious difference is that there is nomain().
Libraries are very handy for functions you use regularly or functions you think others may find useful.

14.5. Dynamic or Static

Libraries can be linked in adynamicor staticway. A staticly linked library gets compiled into your
application. Dynamic linking is a newer method that allows an application to link with a library at
run-time, this has many advantages. For a start, the library can be updated without having to recompile
the application and vice versa.

52

Chapter 15. Writing Good Code

Considerations for important projects

15.1. Readability

This is one of the most important qualities of good code, luckily, it is an art that becomes natural with
practice. One of the biggest detractors from readability is “clever” code. Scrunching multiple operations
into one line or statement may have seemed like an achievement but when someone else tries to read it it
will slow them down if they have to unravel these operations in there head.

53

Chapter 16. Speed

Easy optimisations: Low hanging fruit

C is well know as the fastest high-level language available

16.1. About Optimising

There are two times you will optimise your code: while you’re writing it and after it’s performance
disappoints you.

As a rule, it is said that ninety percent of your an applications running time is taken up by ten percent of
it’s code. There is little point in optimising a function that is rarely called.

16.2. What are function attributes?

Function attributes are a GNU extension to the C language. They allow you to give GCC more
information about a function. This information can be used for many purposes including optimisation
and stricter checking.

16.3. Function Attribute Syntax

Function attributes are specified as part of a function declaration. After the closing parenthesis of the
functions arguments the keyword__attribute__ followed by the desired attributes in a set of double
parenthesis. Here’s a function with thepureattribute.

int my_func(int first, int second) __attribute__ ((pure));

Functions can have multiple attributes, to do this, separate the attributes with commas inside the double
parenthesis.

16.4. What are pure and const?

A pure function is one which do not affect anything outside of it’s own scope. This means it may read
global variables or variables to which it was passed a pointer but it may not write to such variables. It
should not read fromvolatile variables or external resources (such as files).

54

Chapter 16. Speed

const is a stricter version ofpure, it tells GCC that a function will not read any data other that of
variables that are passed to it. Data cannot be read by dereferencing a pointer passed to aconstfunction.

The only effect apure or constfunction can have on your program is it’s return value. Having such a
function returnvoid would make it pointless.

GCC can use this information to performcommon subexpression elimination(!). This means it may call
the function fewer times than it was told to as it knows the outcome will be the same each time. For
example: if you had a function which converted Celsius to Fahrenheit, and it was placed in a loop
calculating the same value each time, GCC would could replace this function call with the value
returned. GCC knows this is safe if the conversion function isconst.

55

Appendix A. GNU Free Documentation License

Version 1.2, November 2002

Copyright (C) 2000,2001,2002 Free Software Foundation, Inc.

Free Software Foundation, Inc.
59 Temple Place, Suite 330,
Boston,
MA
02111-1307
USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is
not allowed.

A.1. 0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful document
“free” in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with
or without modifying it, either commercially or noncommercially. Secondarily, this License preserves for
the author and publisher a way to get credit for their work, while not being considered responsible for
modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document must
themselves be free in the same sense. It complements the GNU General Public License, which is a
copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software
needs free documentation: a free program should come with manuals providing the same freedoms that
the software does. But this License is not limited to software manuals; it can be used for any textual
work, regardless of subject matter or whether it is published as a printed book. We recommend this
License principally for works whose purpose is instruction or reference.

A.2. 1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by the
copyright holder saying it can be distributed under the terms of this License. Such a notice grants a

56

Appendix A. GNU Free Documentation License

world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated
herein. The “Document”, below, refers to any such manual or work. Any member of the public is a
licensee, and is addressed as “you”. You accept the license if you copy, modify or distribute the work in a
way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or a portion of it,
either copied verbatim, or with modifications and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document that deals
exclusively with the relationship of the publishers or authors of the Document to the Document’s overall
subject (or to related matters) and contains nothing that could fall directly within that overall subject.
(Thus, if the Document is in part a textbook of mathematics, a Secondary Section may not explain any
mathematics.) The relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being those of
Invariant Sections, in the notice that says that the Document is released under this License. If a section
does not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The
Document may contain zero Invariant Sections. If the Document does not identify any Invariant Sections
then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover
Texts, in the notice that says that the Document is released under this License. A Front-Cover Text may
be at most 5 words, and a Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented in a format whose
specification is available to the general public, that is suitable for revising the document
straightforwardly with generic text editors or (for images composed of pixels) generic paint programs or
(for drawings) some widely available drawing editor, and that is suitable for input to text formatters or
for automatic translation to a variety of formats suitable for input to text formatters. A copy made in an
otherwise Transparent file format whose markup, or absence of markup, has been arranged to thwart or
discourage subsequent modification by readers is not Transparent. An image format is not Transparent if
used for any substantial amount of text. A copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input
format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming
simple HTML, PostScript or PDF designed for human modification. Examples of transparent image
formats include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read and
edited only by proprietary word processors, SGML or XML for which the DTD and/or processing tools
are not generally available, and the machine-generated HTML, PostScript or PDF produced by some
word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages as are needed
to hold, legibly, the material this License requires to appear in the title page. For works in formats which

57

Appendix A. GNU Free Documentation License

do not have any title page as such, “Title Page” means the text near the most prominent appearance of the
work’s title, preceding the beginning of the body of the text.

A section “Entitled XYZ” means a named subunit of the Document whose title either is precisely XYZ
or contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ
stands for a specific section name mentioned below, such as “Acknowledgements”, “Dedications”,
“Endorsements”, or “History”.) To “Preserve the Title” of such a section when you modify the
Document means that it remains a section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License
applies to the Document. These Warranty Disclaimers are considered to be included by reference in this
License, but only as regards disclaiming warranties: any other implication that these Warranty
Disclaimers may have is void and has no effect on the meaning of this License.

A.3. 2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially,
provided that this License, the copyright notices, and the license notice saying this License applies to the
Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this
License. You may not use technical measures to obstruct or control the reading or further copying of the
copies you make or distribute. However, you may accept compensation in exchange for copies. If you
distribute a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

A.4. 3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Document,
numbering more than 100, and the Document’s license notice requires Cover Texts, you must enclose the
copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front
cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as
the publisher of these copies. The front cover must present the full title with all words of the title equally
prominent and visible. You may add other material on the covers in addition. Copying with changes
limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can
be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed
(as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either
include a machine-readable Transparent copy along with each Opaque copy, or state in or with each
Opaque copy a computer-network location from which the general network-using public has access to

58

Appendix A. GNU Free Documentation License

download using public-standard network protocols a complete Transparent copy of the Document, free
of added material. If you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible
at the stated location until at least one year after the last time you distribute an Opaque copy (directly or
through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing
any large number of copies, to give them a chance to provide you with an updated version of the
Document.

A.5. 4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and
3 above, provided that you release the Modified Version under precisely this License, with the Modified
Version filling the role of the Document, thus licensing distribution and modification of the Modified
Version to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from
those of previous versions (which should, if there were any, be listed in the History section of the
Document). You may use the same title as a previous version if the original publisher of that version
gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the
modifications in the Modified Version, together with at least five of the principal authors of the
Document (all of its principal authors, if it has fewer than five), unless they release you from this
requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.
D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.
F. Include, immediately after the copyright notices, a license notice giving the public permission to use

the Modified Version under the terms of this License, in the form shown in the Addendum below.
G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in

the Document’s license notice.
H. Include an unaltered copy of this License.
I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating at least the

title, year, new authors, and publisher of the Modified Version as given on the Title Page. If there is
no section Entitled “History” in the Document, create one stating the title, year, authors, and
publisher of the Document as given on its Title Page, then add an item describing the Modified
Version as stated in the previous sentence.

J.Preserve the network location, if any, given in the Document for public access to a Transparent copy
of the Document, and likewise the network locations given in the Document for previous versions it
was based on. These may be placed in the “History” section. You may omit a network location for a
work that was published at least four years before the Document itself, or if the original publisher of
the version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title of the section,
and preserve in the section all the substance and tone of each of the contributor acknowledgements
and/or dedications given therein.

59

Appendix A. GNU Free Documentation License

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section
numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included in the Modified
Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title with any
Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary
Sections and contain no material copied from the Document, you may at your option designate some or
all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the
Modified Version’s license notice. These titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorsements of your
Modified Version by various parties--for example, statements of peer review or that the text has been
approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a
Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any
one entity. If the Document already includes a cover text for the same cover, previously added by you or
by arrangement made by the same entity you are acting on behalf of, you may not add another; but you
may replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their
names for publicity for or to assert or imply endorsement of any Modified Version.

A.6. 5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms
defined in section 4 above for modified versions, provided that you include in the combination all of the
Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of
your combined work in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections
may be replaced with a single copy. If there are multiple Invariant Sections with the same name but
different contents, make the title of each such section unique by adding at the end of it, in parentheses,
the name of the original author or publisher of that section if known, or else a unique number. Make the
same adjustment to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the various original documents,
forming one section Entitled “History”; likewise combine any sections Entitled “Acknowledgements”,

60

Appendix A. GNU Free Documentation License

and any sections Entitled “Dedications”. You must delete all sections Entitled “Endorsements”.

A.7. 6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License,
and replace the individual copies of this License in the various documents with a single copy that is
included in the collection, provided that you follow the rules of this License for verbatim copying of each
of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this
License, provided you insert a copy of this License into the extracted document, and follow this License
in all other respects regarding verbatim copying of that document.

A.8. 7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or
works, in or on a volume of a storage or distribution medium, is called an “aggregate” if the copyright
resulting from the compilation is not used to limit the legal rights of the compilation’s users beyond what
the individual works permit. When the Document is included an aggregate, this License does not apply to
the other works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the
Document is less than one half of the entire aggregate, the Document’s Cover Texts may be placed on
covers that bracket the Document within the aggregate, or the electronic equivalent of covers if the
Document is in electronic form. Otherwise they must appear on printed covers that bracket the whole
aggregate.

A.9. 8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document
under the terms of section 4. Replacing Invariant Sections with translations requires special permission
from their copyright holders, but you may include translations of some or all Invariant Sections in
addition to the original versions of these Invariant Sections. You may include a translation of this
License, and all the license notices in the Document, and any Warrany Disclaimers, provided that you
also include the original English version of this License and the original versions of those notices and
disclaimers. In case of a disagreement between the translation and the original version of this License or
a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”, the
requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual title.

61

Appendix A. GNU Free Documentation License

A.10. 9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under
this License. Any other attempt to copy, modify, sublicense or distribute the Document is void, and will
automatically terminate your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so long as such parties remain
in full compliance.

A.11. 10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation
License from time to time. Such new versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a
particular numbered version of this License “or any later version” applies to it, you have the option of
following the terms and conditions either of that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not as a draft) by the Free Software
Foundation.

A.12. ADDENDUM (How to use this License for your documents)

To use this License in a document you have written, include a copy of the License in the document and
put the following copyright and license notices just after the title page:

Copyright © YEAR YOUR NAME.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no
Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the
section entitled “GNU Free Documentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace The “with...Texts.” line
with this:

with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being LIST, and with the
Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those
two alternatives to suit the situation.

62

Appendix A. GNU Free Documentation License

If your document contains nontrivial examples of program code, we recommend releasing these
examples in parallel under your choice of free software license, such as the GNU General Public
License, to permit their use in free software.

63

