

INFN Sezione di Napoli PLANCK 2013, May 21st

CMB Anisotropies

D. Bini, G. Esposito C. Kiefer, M. Krämei

An Enhanced CMB Power Spectrum from Quantum Gravity

D. Bini, G. Esposito, C. Kiefer, M. Krämer, F. Pessina

Quantum Theory of Gravity

CMB Anisotropies

D. Bini, G. Esposito C. Kiefer, M. Krämer

The fundamental interaction that has not been quantized as yet is **Gravitation**

A deeper understanding of the quantum version

Find a unified theory

The real structure of nature

Quantum Theory of Gravity

CMB Anisotropies

D. Bini,
G. Esposito
C. Kiefer,
M. Krämer

There exist many approaches to a quantum theory of gravity

nowadays no less than 16!

Either field-theoretical or of sharply different nature. Characteristic scale of the theory: **Planck scale**

$$I_P=\sqrt{rac{\hbar G}{c^3}}pprox 1.62 imes 10^{-33} {
m cm},$$
 $t_P=rac{I_P}{c}=\sqrt{rac{\hbar G}{c^5}}pprox 5.40 imes 10^{-44} {
m s},$ $m_P=rac{\hbar}{I_Pc}=\sqrt{rac{\hbar c}{G}}pprox 1.22 imes 10^{19} {
m GeV}$

How can we find a way?

CMB Anisotropies

G. Esposito
C. Kiefer,
M. Krämer
F. Pessina

Very difficult to test the effects in laboratory

 \Downarrow

Possible relevant effects at cosmological scale

 \Downarrow

Cosmic Microwave Background Radiation (CMB)

CMB measurement history

СМВ

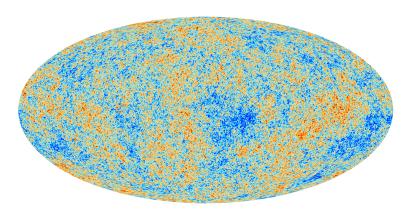
1965 Penzias and Anisotropies Wilson 1992 COBE 2003 WMAP

CMB measurement history

CMB Anisotropies

D. Bini, G. Esposito C. Kiefer, M. Krämer

Planck 2013



Wheeler-DeWitt Equation

CMB Anisotropies

G. Esposito C. Kiefer, M. Krämer

Einstein-Hilbert action

$$S = \frac{1}{16\pi} \int_{M} \mathsf{d}^4 x \sqrt{-g}^{(4)} R$$

 \Downarrow

Arnowitt-Deser-Misner formalism

$$\sqrt{-g}^{(4)}R = N\sqrt{h}\left(^{(3)}R + K_{ij}K^{ij} - K^2\right) + 2\partial_t(\sqrt{h}K)$$
$$-2\partial_i\left[\sqrt{h}(N^iK - g^{ij(3)}\nabla_jN)\right]$$

$$K_{ij} = \frac{1}{2N} \left({}^{(3)}\nabla_i N_j + {}^{(3)}\nabla_j N_i - \frac{\partial h_{ij}}{\partial t} \right)$$

Wheeler-DeWitt equation

CMB Anisotropies

D. Bini,
G. Esposito
C. Kiefer,
M. Krämer

Hamiltonian formalism

$$H = \int d^3x \left(N \mathscr{H}_t + N_i \chi^i \right)$$

This formalism enables us to use the Dirac quantization method

$$\hat{h}_{ij}\psi=h_{ij}\psi$$
 $\hat{\pi}^{jk}\psi=rac{\hbar}{\mathrm{i}}rac{\delta\psi}{\delta h_{jk}}$

Wheeler-DeWitt equation (WDW)

$$\hat{\mathscr{H}}_t\psi = \left\{-\hbar^2 G_{ijkl} \frac{\delta^2}{\delta h_{ij}\delta h_{kl}} - \sqrt{h}^{(3)}R\right\}\psi[h_{ij}] = 0$$

Friedmann–Lemaitre–Robertson–Walker (FLRW) Universe

CMB Anisotropies

D. Bini,
G. Esposito
C. Kiefer,
M. Krämer
F. Pessina

Considering a **spatially flat**, **homogeneus** and **isotropic**Universe, one can describe it by a FLRW metric

$$ds^2 = d\tau^2 - a^2(\tau)\delta_{ij}dx^idx^j.$$

The Wheeler–DeWitt equation, if one assumes an **inflationary field** ϕ , becomes

$$\left[\frac{1}{m_P^2}\frac{\partial^2}{\partial\alpha^2} - \frac{\partial^2}{\partial\phi^2} + e^{6\alpha}m^2\phi^2\right]\psi(\alpha,\phi) = 0 \quad \alpha = \ln a$$

Slow-Roll Condition

CMB Anisotropies

D. Bini, G. Esposito, C. Kiefer, M. Krämer, We can get a simpler form of the WDW equation if we assume the **slow-roll condition** for the inflationary field ϕ

$$\frac{\partial^2 \psi}{\partial \phi^2} \ll e^{6\alpha} m^2 \phi^2 \psi \quad m\phi \to m_P H$$

Thus the equation becomes

$$\left[\frac{1}{m_P^2}\frac{\partial^2}{\partial\alpha^2} + \mathrm{e}^{6\alpha}m_P^2H^2\right]\psi(\alpha,\phi) = 0$$

Born-Oppenheimer Approximation and Inhomogeneous Fluctuations

CMB Anisotropies

G. Esposito
C. Kiefer,
M. Krämer

We now consider the fluctuations of an inhomogeneous inflaton field on top of its homogeneous part

$$\phi \to \phi(t) + \delta \phi(\mathbf{x}, t) \quad \delta \phi(\mathbf{x}, t) = \sum_{\kappa} f_{\kappa}(t) e^{i\kappa \cdot \mathbf{x}}$$

The smallness of the fluctuations' self-interaction and the **Born-Oppenheimer (BO)** approximation enable us to factorize the wave functional

$$\psi(\alpha, \phi, \{f_{\kappa}\}_{\kappa=1}^{\infty}) = \psi_0(\alpha, \phi) \prod_{\kappa=1}^{\infty} \tilde{\psi}_{\kappa}(\alpha, \phi, f_{\kappa})$$

Hamiltonian Factorization

CMB Anisotropies

D. Bini, G. Esposito C. Kiefer, M. Krämer

Thus the WDW equation can be rewritten

$$\left[\mathcal{H}_0 + \sum_{\kappa=1}^{\infty} \mathcal{H}_{\kappa}\right] \psi(\alpha, \phi, \{f_{\kappa}\}_{\kappa=1}^{\infty}) = 0$$

$$\mathcal{H}_0 = \frac{\mathrm{e}^{-3\alpha}}{2} \left[\frac{1}{m_P^2} \frac{\partial^2}{\partial \alpha^2} + \mathrm{e}^{6\alpha} m_P^2 H^2 \right]$$

$$\mathcal{H}_{\kappa} = rac{\mathsf{e}^{-3lpha}}{2} \left[-rac{\partial^2}{\partial f_{\kappa}^2} + W_{\kappa}(lpha) f_{\kappa}^2
ight]$$

$$W_{\kappa}(\alpha) = \kappa^2 e^{4\alpha} + m^2 e^{6\alpha}$$

The Jeffreys-Wentzel-Kramers-Brillouin Method

CMB Anisotropies

D. Bini,
G. Esposite
C. Kiefer,
M. Kräme

Identify the quantum gravitational contributions to the terms of the expansion of the WDW in powers of m_P^2 (Effective Theory)

On writing every single mode in the form

$$\psi_{\kappa}(\alpha, f_{\kappa}) = e^{\mathsf{i}S(\alpha, f_{\kappa})} \quad S(\alpha, f_{\kappa}) = m_P^2 S_0 + m_P^0 S_1 + m_P^{-2} S_2 + \dots$$

CMB Anisotropies

D. Bini,
G. Esposito
C. Kiefer,
M. Krämer,
F. Pessina

We note that at the zeroth stage of the JWKB approximation one obtains the usual evolution equation for matter

Schwinger-Tomonaga

$$i\frac{\partial}{\partial t}\psi_{\kappa}^{(0)} = \mathcal{H}_{\kappa}\psi_{\kappa}^{(0)} \quad \psi_{\kappa}^{(0)} \equiv \gamma(\alpha)e^{iS_{1}(\alpha,f_{\kappa})}$$

Where we have defined the JWKB time

$$\frac{\partial}{\partial t} \equiv -e^{-3\alpha} \frac{\partial S_0}{\partial \alpha} \frac{\partial}{\partial \alpha}$$

m_P^2 Order

CMB Anisotropies

D. Bini,
G. Esposito
C. Kiefer,
M. Krämer

To second order we obtain the first quantum-gravitational corrections to the matter wave functional

$$\mathrm{i} \frac{\partial \psi_\kappa^{(1)}}{\partial t} = \mathcal{H}_\kappa \psi_\kappa^{(1)} - \frac{\mathrm{e}^{3\alpha}}{2 m_P^2 \psi_\kappa^{(0)}} \left[\frac{(\mathcal{H}_\kappa)^2}{V(\alpha)} \psi_\kappa^{(0)} + \mathrm{i} \left(\frac{\psi_\kappa^{(0)}}{V(\alpha)} \frac{\partial \mathcal{H}_\kappa}{\partial t} - \frac{1}{V^2(\alpha)} \frac{\partial V(\alpha)}{\partial t} \mathcal{H}_\kappa \psi_\kappa^{(0)} \right) \right] \psi_\kappa^{(1)}$$

$$\psi_{\kappa}^{(1)}(\alpha, f_{\kappa}) \equiv \psi_{\kappa}^{(0)}(\alpha, f_{\kappa}) e^{i\frac{\eta_{2}(\alpha, f_{\kappa})}{m_{P}^{2}}}$$

Gaussian Hypothesis

CMB Anisotropies

G. Esposito
C. Kiefer,
M. Krämer

By making a Gaussian ansatz

$$\psi_{\kappa}^{(0)}(t,f_{\kappa}) = \mathcal{N}_{\kappa}^{(0)} e^{-\frac{1}{2}\Omega_{\kappa}^{(0)}f_{\kappa}^2}$$

we obtain a coupled system of non-linear differential equations

$$\dot{\mathcal{N}}_{\kappa}^{(0)}(t)=-\mathrm{i}rac{\mathsf{e}^{-3lpha}}{2}\mathcal{N}_{\kappa}^{(0)}(t)\Omega_{\kappa}^{(0)}(t)$$

$$\dot{\Omega}_{\kappa}^{(0)}(t)=\mathsf{i}\mathsf{e}^{-3lpha}\left[-(\Omega_{\kappa}^{(0)}(t))^2+W_{\kappa}(t)
ight]$$

$\Omega_{\kappa}^{(0)}$ Solution

CMB Anisotropies

D. Bini, G. Esposito C. Kiefer, M. Krämer

On defining

$$\xi = \frac{\kappa}{Ha(t)}$$
 $\mu = \frac{m}{H}$ $\nu = \frac{1}{2}\sqrt{9 - 4\mu^2}$ $h = \frac{H^2}{\kappa^3}$

we get the solution

$$\Omega_{\kappa}^{(0)}(\xi) = \frac{1}{h\xi^2} \frac{1}{(C_1 Y_{\nu}(\xi) + J_{\nu}(\xi))}$$

$$\times \left[-iC_1 Y_{\nu+1}(\xi) + \frac{i}{2\xi} \left(C_1 Y_{\nu}(\xi)(3+2\nu) - 2\xi J_{\nu+1}(\xi) + J_{\nu}(\xi)(3+2\nu) \right) \right]$$

Massless Case

CMB Anisotropies

D. Bini,
G. Esposito,
C. Kiefer,
M. Krämer,

We find that the solution of the equation considering $\mu \ll 1$ coincides, in the limit $\mu \to 0$, i.e. $\nu \to \frac{3}{2}$, with the solution of the complete equation

$$\Omega_{\kappa}^{(0)}(\xi) = rac{\mathrm{i}}{h\xi} rac{C_1 \cos \xi - \sin \xi}{[(C_1 + \xi) \cos \xi + (C_1 \xi - 1) \sin \xi]}$$

$$= rac{\mathrm{i}}{h\xi} rac{\left(C_1 J_{-rac{1}{2}} - J_{rac{1}{2}}
ight)}{\left[(C_1 + \xi) J_{-rac{1}{2}} + (C_1 \xi - 1) J_{rac{1}{2}}
ight]}$$

Massless Case

CMB Anisotropies

D. Bini,
G. Esposito
C. Kiefer,
M. Krämer

This solution can be re-expressed substuting $\mathcal{C}_1=\zeta \mathrm{e}^{\mathrm{i}\beta}$ so that

$$\Omega_k^{(0)}(\xi) = \frac{k^3}{H^2} \frac{\mathrm{i}}{\xi} \frac{AB^*}{|B|^2}$$

where

$$A = \rho + i\sigma \quad B = \gamma + i\delta$$

$$\rho = 2(\zeta \cos \beta \cos \xi - \sin \xi) \quad \sigma = 2\zeta \sin \beta \cos \xi$$

$$\gamma = 2\zeta \left[\cos \beta (\cos \xi + \xi \sin \xi) - (\sin \xi - \xi \cos \xi)\right]$$

$$\delta = 2\zeta \sin \beta \left[\cos \xi + \sin \xi\right]$$

Power Spectrum

CMB Anisotropies

D. Bini, G. Esposito C. Kiefer, M. Krämer

We define the **power spectrum**

$$\mathcal{P}^{(0)}(k) := rac{k^3}{2\pi^2} \left| \delta_k(t_{ ext{enter}})
ight|^2$$

where

$$\delta_k(t_{
m enter}) = \left. rac{4}{3} rac{\dot{\sigma}_k(t)}{\dot{\phi}(t)}
ight|_{t=t_{
m exit}}$$

and we have set

$$\sigma_{\kappa}^2(t) \equiv \langle \psi_{\kappa} | f_{\kappa}^2 | \psi_{\kappa}
angle = rac{1}{2 \Re \mathrm{e} \Omega_{\kappa}(t)}$$

Power Spectrum

CMB Anisotropies

D. Bini,
G. Esposito,
C. Kiefer,
M. Krämer,

In light of the definition of σ_{κ} one has

$$|\dot{\sigma}_{\kappa}(t)| = \left|rac{H\xi}{\sqrt{2}}rac{\mathsf{d}}{\mathsf{d}\xi}\left[(\Re \mathsf{e}\Omega_{\kappa}(\xi))^{-rac{1}{2}}
ight]
ight|$$

At m_P^0 order we have for the general solution $\Omega_\kappa^{(0)}$

$$\left|\dot{\sigma}_{k}^{(0)}(t)\right|_{t_{\text{exit}}} = \frac{2\sqrt{2}\pi^{2}H^{2}}{k^{\frac{3}{2}}} \left| \frac{\sqrt{\zeta}(\zeta + 2\pi\cos\beta)}{\sqrt{\sin\beta}\sqrt{\zeta^{2} + 4\pi\cos\beta + 4\pi^{2}}} \right|$$

Power Spectrum

CMB Anisotropies

G. Esposito
C. Kiefer,
M. Krämer

At m_P^0 order if we consider the (Bunch–Davies Vacuum) boundary condition

$$\Omega_{\kappa}^{(0)}(\infty) = \frac{1}{h\xi^2}$$

we obtain at the $\xi(t_{\text{exit}}) = 2\pi$ time

$$\left|\dot{\sigma}_{\kappa}^{(0)}\right| = \frac{H^2}{\kappa^{\frac{3}{2}}} \frac{2\sqrt{2}\pi^2}{\sqrt{4\pi^2 + 1}}$$

CMB Anisotropies

D. Bini, G. Esposito C. Kiefer, M. Krämer At m_P^2 order, making the same Gaussian ansatz, we can write the wave functional in the form

$$\psi_{\kappa}^{(1)}(t,f_{\kappa}) = \left(\mathcal{N}_{\kappa}^{(0)}(t) + \frac{1}{m_{P}^{2}}\mathcal{N}_{\kappa}^{(1)}(t)\right) \exp\left[-\frac{1}{2}\left(\Omega_{\kappa}^{(0)}(t) + \frac{1}{m_{P}^{2}}\Omega_{\kappa}^{(1)}(t)\right)f_{\kappa}^{2}\right]$$

and inserting it into the m_P^2 order equation

$$\begin{split} & \mathrm{i} \frac{\mathrm{d}}{\mathrm{d}t} \log \left(N_k^{(0)} + \frac{N_1^{(1)}}{m_P^2} \right) - \frac{\mathrm{i}}{2} \left(\dot{\Omega}_k^{(0)} + \frac{\dot{\Omega}_k^{(1)}}{m_P^2} \right) f_k^2 = \\ & \frac{1}{2} \mathrm{e}^{-3\alpha} \left\{ \Omega_k^{(0)} + \frac{1}{m_P^2} \left[\Omega_k^{(1)} - \frac{3}{4V} \left(\left(\Omega_k^{(0)} \right)^2 - \frac{2}{3} W_k \right) \right] + \\ & \left[W_k - \left(\Omega_k^{(0)} + \frac{\Omega_k^{(1)}}{m_P^2} \right)^2 - \frac{3\Omega_k^{(0)} (W_k - (\Omega_k^{(0)})^2)}{2V m_P^2} \right] f_k^2 + O(f_k^4) \right\} \end{split}$$

CMB Anisotropies

The equation for $\Omega_k^{(1)}$ is

$$\dot{\Omega}_{\kappa}^{(1)}(t) = -2\mathrm{i}\mathrm{e}^{-3lpha}\Omega_{\kappa}^{(0)}(t)\left[\Omega_{\kappa}^{(1)}(t) - rac{3}{4V(t)}\left((\Omega_{\kappa}^{(0)}(t))^2 - W_{\kappa}
ight)
ight]$$

if we substitute the massless expression for $\Omega_k^{(0)}$ with the Bunch-Davies boundary condition

$$\frac{d\Omega_k^{(1)}}{d\xi} = \frac{2i\xi}{(\xi - i)}\Omega_k^{(1)} + \frac{3}{2}\xi^3 \frac{(2\xi - i)}{(\xi - i)^3}$$

CMB Anisotropies

G. Esposit C. Kiefer M. Kräme F. Pessina One can factorize the correction contributions

$$\left|\dot{\sigma}_{\kappa}^{(1)}(t)\right| = \left|\sigma_{\kappa}^{(0)}\right| \left|C_{\kappa}\right|$$

$$C_{k}(\xi) \equiv \left(1 + \frac{\xi^{2} + 1}{\kappa^{3}} \frac{H^{2}}{m_{P}^{2}} \Re \Omega_{\kappa}^{(1)}(\xi)\right)^{-\frac{3}{2}} \left(1 - \frac{(\xi^{2} + 1)^{2}}{2\xi\kappa^{3}} \Re \left[\frac{d}{d\xi} \Omega_{\kappa}^{(1)}(\xi)\right] \frac{H^{2}}{m_{P}^{2}}\right)$$

In order to evalute this quantity we have to find the function $\Omega_\kappa^{(1)}$, that is, for the **massless form** of $\Omega_\kappa^{(0)}$, and considering the boundary condition $\Omega_\kappa^{(1)}(0)=0$

$$\Omega_{\kappa}^{(1)}(\xi) = \frac{-3\mathsf{e}^{2\mathsf{i}\xi}}{8} \frac{1 + \mathsf{Ei}(1,2)\mathsf{e}^2}{(1+\mathsf{i}\xi)^2} + \frac{3}{8} \frac{1 + \mathsf{6i}\xi + 4\mathsf{Ei}(1,2\mathsf{i}\xi + 2)\mathsf{e}^{2\mathsf{i}\xi + 2} - 4\xi^2 - 4\mathsf{i}\xi^3}{(1+\mathsf{i}\xi)^2}$$

$$\mathsf{Ei}(a,z) \equiv \int_1^\infty rac{\mathsf{e}^{-tz}}{t^a} \mathsf{d}t \quad a \in \mathbb{R} \; \mathsf{and} \; \Re \mathsf{e}(z) > 0$$

CMB Anisotropies

D. Bini, G. Esposito, C. Kiefer, M. Krämer,

At
$$t_{ ext{exit}}
ightarrow \xi = 2\pi$$
 time

$$C_k \equiv \left(1 - \frac{54.37}{\kappa^3} \frac{H^2}{m_P^2}\right)^{-\frac{3}{2}} \left(1 + \frac{7.98}{\kappa^3} \frac{H^2}{m_P^2}\right)$$

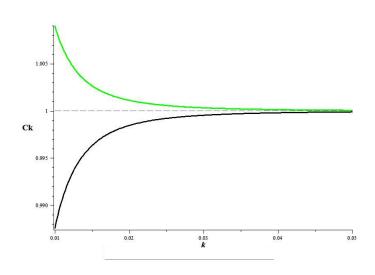
and for what concerns the power spectrum

$$\mathcal{P}^{(1)}(k) = \mathcal{P}^{(0)}(k) C_k^2 \sim \mathcal{P}^{(0)}(k) \left[1 + \frac{89.54}{k^3} \frac{H^2}{m_P^2} + \frac{1}{k^6} O\left(\frac{H^4}{m_P^4}\right) \right]^2$$

The C_{κ} Behavior at Various Scales

CMB Anisotropies

D. Bini, G. Esposito C. Kiefer, M. Kräme



Equation in the z Variable

CMB Anisotropies

G. Esposito C. Kiefer, M. Krämer Remarkably, by passing to the new variable

$$z = 1 + i\xi$$

the m_P^2 order equation can be written

$$\frac{\mathrm{d}\Omega_k^{(1)}}{\mathrm{d}z} = 2\left(1 - \frac{1}{z}\right)\Omega_k^{(1)} + \frac{3}{2}\left(7 - 2z - \frac{9}{z} + \frac{5}{z^2} - \frac{1}{z^3}\right)$$

that leads to the solution

$$\Omega_k^{(1)}(z) = P_1 \frac{e^{2z}}{z^2} + \frac{3}{8z^2} \left[4z^3 - 8z^2 + 10z - 5 + 4e^{2z} \text{Ei}(1, 2z) \right]$$

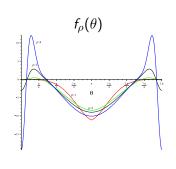
Graphical studies

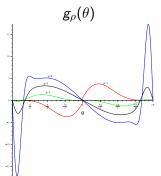
CMB Anisotropies

D. Bini,
G. Esposito
C. Kiefer,
M. Krämer

Such a solution can be studied graphically by introducing the complex polar representation for $z=\rho \mathrm{e}^{\mathrm{i}\theta}$ and defining the functions

$$f_{
ho}(heta) = \operatorname{Re}\left[\Omega_k^{(1)}(
ho \mathrm{e}^{\mathrm{i} heta})
ight] \ \ g_{
ho}(heta) = \operatorname{Im}\left[\Omega_k^{(1)}(
ho \mathrm{e}^{\mathrm{i} heta})
ight]$$





Observability of the Corrections

CMB Anisotropies

D. Bini, G. Esposito C. Kiefer, M. Krämer We note that the uncorrected power spetrum is proportional to

$$\mathcal{P}^{(0)}(k) \propto rac{H^4}{\left|\dot{\phi}(t)
ight|^2_{t_{
m exit}}}$$

this corresponds, apart from a dimensionless constant, to the standard power spectrum of scalar cosmological perturbations

$$\mathcal{P}_s^{(0)}(k) = \frac{G}{\epsilon \pi} H^2$$

where we have introduced the first slow-roll parameter

$$\epsilon = -\frac{\dot{H}}{H^2} = \frac{4\pi G \left|\dot{\phi}\right|_{t_{\text{exit}}}^2}{H^2}$$

Quantum Corrections

CMB Anisotropies

D. Bini,
G. Esposito
C. Kiefer,
M. Krämer,

The quantum correction takes the approximate form

$$C_k^2 = 1 + \delta_{\text{WDW}}^{\pm}(k) + \frac{1}{k^6} \mathcal{O}\left(\left(\frac{H}{m_{\text{P}}}\right)^4\right)$$

where $\delta_{\mathrm{WDW}}^{\pm}(k)$ could take the values

$$\delta_{
m WDW}^+(k) = rac{179.09}{k^3} \left(rac{H}{m_{
m P}}
ight)^2 \qquad \delta_{
m WDW}^-(k) = -rac{247.68}{k^3} \left(rac{H}{m_{
m P}}
ight)^2$$

Spectral Index

CMB Anisotropies

D. Bini,
G. Esposito
C. Kiefer,
M. Krämer

The basic equations in the theory of the spectral index n_s and its running α_s are

$$n_s - 1 := \frac{\mathsf{d} \log \mathcal{P}_s}{\mathsf{d} \log k} \approx \frac{1}{H} \frac{\mathsf{d} \log \mathcal{P}_s}{\mathsf{d} t} \approx 2\eta - 4\epsilon - 3\delta_{\mathrm{WDW}}^{\pm}$$

$$\alpha_s := \frac{\mathsf{d} \, n_s}{\mathsf{d} \log k} \approx 2(5\epsilon \eta - 4\epsilon^2 - \Xi^2) + 9\delta_{\mathrm{WDW}}^{\pm}$$

where we have defined the slow-roll parameters

$$\eta := -\frac{\ddot{\phi}}{H\dot{\phi}} \quad \Xi^2 := \frac{1}{H^2} \frac{\mathsf{d}}{\mathsf{d}t} \frac{\ddot{\phi}}{\dot{\phi}}.$$

Observability bounds

CMB Anisotropies

D. Bini,
G. Esposito
C. Kiefer,
M. Krämer
F. Pessina

Reinserting a reference wave number wich can either correspond

to
$$k_{min} \approx 1.4 \times 10^{-4}~{
m Mpc}^{-1}$$
 largest observable scale or to $k_0 = 0.002~{
m Mpc}^{-1}$ pivot scale

we find the corrections for $k o rac{k}{k_0}$

$$\left|\delta_{\mathrm{WDW}}^{+}(k_0)\right| \lesssim 2.9 \times 10^{-9}, \ \left|\delta_{\mathrm{WDW}}^{-}(k_0)\right| \lesssim 4.0 \times 10^{-9}$$
 and for $k \to \frac{k}{k_{-}}$

$$\left| \delta_{
m WDW}^+(k_0) \right| \lesssim 9.8 imes 10^{-13}, \ \left| \delta_{
m WDW}^-(k_0) \right| \lesssim 1.4 imes 10^{-12}$$

the resulting upper bounds for H are

$$H \lesssim 1.67 \times 10^{-2} \, m_{\rm P} \approx 4.43 \times 10^{17} \, {\rm GeV}$$

$$H \le 1.42 \times 10^{-2} \, m_{\rm P} \approx 3.76 \times 10^{17} \, {\rm GeV}$$

Conclusions

CMB Anisotropies

D. Bini, G. Esposit C. Kiefer M. Kräme F. Pessina

- * Exact form of the functions $\Omega_{\kappa}^{(0)}$, $\Omega_{\kappa}^{(1)}$ and $\dot{\sigma}_{\kappa}^{(0)}$. Enhancement/Suppression of quantum gravitational corrections, hard to discriminate on observational ground.
- * Unobservable corrections to CMB anisotropy spectrum; nevertheless, their size is bigger than QG corrections in laboratory situations.
- * Other choices of vacuum besides Bunch–Davies allowed by the general integral of our non linear equation?

Conclusions

CMB Anisotropies

D. Bini, G. Esposito C. Kiefer, M. Krämer F. Pessina

- \star Calculation of an upper limit for H in an inflationary model.
- * Gauge-invariant Mukhanov variables instead of a scalar field.
- ★ More complicated quantum state (instead of ground state) to see how the results depend on this choice.
- * We have found a way of dealing with unitarity violating terms.

Bibliography

CMB Anisotropies

D. Bini, G. Esposito C. Kiefer, M. Krämer F. Pessina

- A. Yu. Kamenshchik, A. Tronconi, G. Venturi, Inflation and Quantum Gravity in a Born-Oppenheimer Context
- D. Bini, G. Esposito, C. Kiefer, M. Kramer, F. Pessina, Phys. Rev. D87, 104008 (2013)
- M. Krämer, arXiv:1303.1544 [gr-qc]
- G. Calcagni, arXiv:1209.0473v1 [gr-qc]
- C. Kiefer, M. Krämer, Int. J. Mod. Phys. D 21, 1241001 (2012)
- C. Kiefer, M. Krämer, Phys. Rev. Lett. 108, 021301 (2012)
- C. Bertoni, F. Finelli, G. Venturi, Class. Quantum Grav. 13, 2375 (1996)
- C. Kiefer, T. P. Singh, Phys. Rev. D44, 1067 (1991)