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Quantum Theory of Gravity
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The fundamental interaction that has not been quantized as yet
is Gravitation

A deeper understanding of the quantum version

\
Find a unified theory

The real structure of nature



Quantum Theory of Gravity

There exist many approaches to a quantum theory of gravity

nowadays no less than 16 !

Either field-theoretical or of sharply different nature.
Characteristic scale of the theory: Planck scale

hG ~1.62 x 10733cm,

Ip=1/"G~
tp =2 = /¢ ~ 5.40 x 10~*s,
mp = = = \/1E = 1.22 x 10"°GeV



How can we find a way?

Very difficult to test the effects in
laboratory

4

Possible relevant effects at cosmological
scale

4

Cosmic Microwave Background
Radiation (CMB)



CMB measurement history
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Wheeler—-DeWitt Equation

Einstein—Hilbert action
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Arnowitt—Deser—Misner formalism
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Wheeler-DeWitt equation
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Hamiltonian formalism

H = /d3x (N + Nix')
This formalism enables us to use the Dirac quantization method

hio = hij wihy = b
¢
Wheeler-DeWitt equation (WDW)

Lﬁwz{—#cw —vf@R}Mmy_o
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Friedmann—Lemaitre—Robertson-Walker (FLRW)
Universe

Considering a spatially flat, homogeneus and isotropic
Universe, one can describe it by a FLRW metric

ds? = dr? — a*(7)d;dx dx/.

The Wheeler—-DeWitt equation, if one assumes an inflationary
field ¢, becomes

1 62 82 6o .2 12
Rﬁ_@+e m¢ ¢(a,¢):0 a=Ina



Slow-Roll Condition
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We can get a simpler form of the WDW equation if we assume
the slow-roll condition for the inflationary field ¢

82'¢ 6 2 42
W<<e mgbzb m(b—)mpH

Thus the equation becomes
2
1 0 (e

2
m—’%ﬁ—i-e mpH| ¢(a,¢) =0



Born—Oppenheimer Approximation and

Inhomogeneous Fluctuations

We now consider the fluctuations of an inhomogeneous inflaton
field on top of its homogeneous part

¢ — o(t) + 6p(x, t)  do(x, t) Zf (t)elm>

The smallness of the fluctuations’ self-interaction and the
Born—Oppenheimer (BO) approximation enable us to
factorize the wave functional

vl d, {fi}721) = ol @) [ [ dul 6, )

k=1



Hamiltonian Factorization

Thus the WDW equation can be rewritten

?{04_§£:}b1 ¢(a:¢a{ﬂ}?il)::0

k=1

e_30‘ 1 82 6 2,2
Ho = 5 {nﬁééﬁx2 +e arnpfi:

e—3a

”“:2[
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a2 + Wn(a)fnz]

W, (a) = k%e*™ + m2e®™



The Jeffreys—Wentzel-Kramers—Brillouin Method
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Identify the quantum gravitational contributions to the terms of
the expansion of the WDW in powers of m%
(Effective Theory)

On writing every single mode in the form

bl £) = €5 S(a, £) = mBSo + mbSy + mp2Sy + ...



m% Order

We note that at the zeroth stage of the JWKB approximation
one obtains the usual evolution equation for matter
Schwinger—-Tomonaga

igtwﬁo) CH O GO = (a)elSeh)

Where we have defined the JWKB time

0 3005 0
ot ¢ Oa da



m%, Order

To second order we obtain the first quantum-gravitational
corrections to the matter wave functional

(1) 3a 2 (0)

Oy 1) e (Hi) ©) , Yy’ OHy 1 9V(a) (0) (1)
— =Hg - — + —_— = ——— ——Hg
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Gaussian Hypothesis
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By making a Gaussian ansatz

WO (e, F) = NP0

we obtain a coupled system of non-linear differential equations

—3a
NO(t) = <i=—NO(£)20(t)

QO () = i [—(QO(£)% + Wi(t)



On defining

2

V9 —4p? h:H—

K3

X
3
[ay

V:§

we get the solution

1 1
2 = b GV + 50©)

=i Voo + 2 (CLYu(E)B+20) — 26 yin(€) + H(E)3 +20)



Massless Case

We find that the solution of the equation considering p < 1
coincides, in the limit 4 — 0, i.e. v — % with the solution of
the complete equation

i Cicos€ —siné

he [(CL+ &) cosé + (G — 1) sin¢]

i (Gdy-4)
h¢ [(cl +6)J 1+ (GuE - 1)4
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Massless Case

This solution can be re-expressed substuting C; = (el? so that

3 *
0y K 1AB
) = e e

where
A=p+ic B=v+1id

p =2(¢cosfcosé —sing) o =2(sinf3cosé&
v =2( [cos B(cos& + Esin) — (sin€ — Ecos§)]
d = 2(sin B[cos & + sin €]



Power Spectrum

We define the power spectrum

(0) K 2
P (k) = 22 Mk(tenter”

where
4o4(t)
3 Qb(t) t=texit

and we have set

6k ( tenter) —

1

on(t) = (Pl 2 [10w) = 2ReQy (1)



Power Spectrum
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In light of the definition of o one has

Hed
V2d¢

At m% order we have for the general solution Q)

6(8)] = (ReQ,.(€)) 2
Sl ]

| 2| Ve
k tois k3 V/sin B\/C2 + 4m cos 3 + 42



Power Spectrum

At m% order if we consider the (Bunch—Davies Vacuum)
boundary condition

1

Q(O)( ) h§2

we obtain at the £(teyt) = 27 time

2\f7T

T3

/{E 47T2—|—]_




Power Spectrum: Quantum Corrections
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At m% order, making the same Gaussian ansatz, we can write
the wave functional in the form

O(e,8) = (VOO + o5V P0) o0 -5 (900 + 25900 2]
P

P

and inserting it into the m%, order equation

&) , 5 (1)
.d © , M i (o0, %) 2
d _ ! e B >
Idt log (Nk + m/2> 3 Q7+ m% i
1 s, 1 oo 3 ((qo)*_2
2° {Qk oz | v (Qk) A

2
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Power Spectrum: Quantum Corrections
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The equation for Qg(l) is

90(0) = 2 #90(0) [2(0) - s (A2 - ws)|

if we substitute the massless expression for QS(O) with the
Bunch-Davies boundary condition

dol 2 4y 3,
T

(26 1)
(€—i)?




Power Spectrum: Quantum Corrections

One can factorize the correction contributions

50| = o] IC.d

3
_ E+1H | 1y 2 (€ +1) d o] H
= (1+ S real9)  (1- S e Saio] 1
In order to evalute this quantity we have to find the function
Q,(.gl), that is, for the massless form of Q,(.io), and considering the

boundary condition Q,(.gl)(O) =0

—3¢%€ 1 4 Ei(1,2)e? | 31+ 6i€ + 4Ei(L, 2i€ + 2)e¥S+? — 462 — 4i€?

MWy —
2:(8) = 8 (1 +i€)? 8 (1 +i€)?

o0 ,—tz
Ei(a,z) = / eta dt ac€Rand Re(z) >0
1



Power Spectrum: Quantum Corrections

At toir — € = 27 time

3
54.37 H2\ 2 7.98 H?
Ck5<1_32> <1+32>
K mP K mP

and for what concerns the power spectrum

8954 H* 1 _ (H*\]*
PUK) = PO(Kk) C; ~ PO (k) [” o om T (m*)}



The C,.. Behavior at Various Scales
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Equation in the z Variable

Remarkably, by passing to the new variable
z=1+i¢

the m3 order equation can be written

qa
U (i)W 3 (70,202 L
p4 k y4

z2 73



Graphical studies

Anisco"tﬂjpies Such a solution can be studied graphically by introducing the
complex polar representation for z = pe'? and defining the
functions

7,(6) = Re [0 (pe")] g,(0) = T [V (e")]

fo(0) g,(0)




Observability of the Corrections

We note that the uncorrected power spetrum is proportional to
H4
o)

PO (k)

texit

this corresponds, apart from a dimensionless constant, to the
standard power spectrum of scalar cosmological perturbations

Ok) = & 2

€T

where we have introduced the first slow-roll parameter

H 47TG‘¢ texit
H2 — H?



Quantum Corrections
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The quantum correction takes the approximate form

1 H\*
Ci= 1+5$VDW(/<)+k60<<m> )

where 05w (k) could take the values

179.09 / H \?2 B 24768 [/ H \?



Spectral Index

The basic equations in the theory of the spectral index ns and
its running oy are

dlog Ps 1 dlog Ps 1
1:= N — ~ 21 — 4e — 30
dlogk =~ H dt 1~ 4 = owpw

ng —

dn 2 =2 +
s = 3 Iogsk ~ 2(5en — 4e” — =) + 90w pw

where we have defined the slow-roll parameters

TR T T W de g



Observability bounds

cMB Reinserting a reference wave number wich can either correspond
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to kmin ~ 1.4 x 1074 Mpc_1 largest observable scale or
to ko = 0.002 Mpc~! pivot scale

we find the corrections for kK — kio

0w (ko) | S 2.9 x107%, [dqypw(ko)| < 4.0 x 107°

k

kmin

and for k —

03w (ko)| < 9.8 x 1071, |6ypw(ko)| < 1.4 x 10712
the resulting upper bounds for H are
H <1.67 x 1072 mp ~ 4.43 x 10'" GeV
H <1.42 x 1072 mp ~ 3.76 x 10'7 GeV



Conclusions

* Exact form of the functions Q,(io), Q,(il) and éﬁf’).

Enhancement/Suppression of quantum gravitational
corrections, hard to discriminate on observational ground.

* Unobservable corrections to CMB anisotropy spectrum;
nevertheless, their size is bigger than QG corrections in
laboratory situations.

* Other choices of vacuum besides Bunch—Davies allowed by
the general integral of our non linear equation?



Conclusions
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* Calculation of an upper limit for H in an inflationary model.

* Gauge-invariant Mukhanov variables instead of a scalar
field.

* More complicated quantum state (instead of ground state)
to see how the results depend on this choice.

* We have found a way of dealing with unitarity violating
terms.
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