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1. PHYSICAL MOTIVATIONS

1.1 Unification of guiding principles (quantum physics and general

relativity)

1.2 Unified picture of theoretical physics of fundamental interac-

tions

1.3 Cosmological singularities

1.4 Physics at the Planck scale
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2. LAGRANGIAN ROAD

2.1 Manifestly covariant:

2.1a Background field method, to maintain manifest covariance in QFT de-

spite the introduction of special gauges to secure well-defined propagators.

2.1b Ghost fields in the quantization of Yang–Mills and Einstein theory.

2.1c Applications: scattering of a graviton by a material particle; gravita-

tional radiation from accelerating masses; emission of gravitons and infrared

problem.

2.2 Lorentzian and Euclidean functional integrals

2.2a Space-time (M, g), space of field histories and

ψσ(fσ) =
∫

K
(
fσ, σ; f0, σ0

)
ψ0(f0) µ(f0),

KL

(
f2, σ2; f1, σ1

)
=

∫

CL

e
i
h̄ I(f) µ(f),

KE

(
f2, σ2; f1, σ1

)
=

∫

CR

e−
IE(f)

h̄ µE(f) = Z[boundary data].
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2.3 Higher-derivative theories (they are perturbatively renormalizable,

but lead to negative-norm states and loss of unitarity)

2.4 Supergravity

2.5 Strings and brane world

5



3. DEEPER LOOK AT EUCLIDEAN QUANTUM GRAVITY

3.1 Gravitational instantons: complete non-singular Riemannian 4-

geometries (M, g) with positive-definite 4-metric g solving the Riemannian

Einstein equations (here Λ = 0 or Λ 6= 0)

Rab − 1
2
gabR + Λgab = 0 =⇒ Rab = Λgab.

3.1a Asymptotically Euclidean: only flat E4.

3.1b Asymptotically locally Euclidean: the boundary at infinity has topol-

ogy S3/Γ, with Γ a discrete sub-group of SO(4) (Eguchi–Hanson; multi-

instantons).

3.1c Asymptotically flat: the 4-metric tends to the flat metric in 3 direc-

tions, but is periodic in the Euclidean-time variable (Schwarzschild).

3.1d Asymptotically locally flat: unlike 3.1b, the S3 is distorted and ex-

pands with increasing radius in only 2 directions rather than 3 (2-parameter

Taub-NUT metrics; multi-Taub-NUT instantons).

3.1e Compact: here Λ 6= 0, and one deals with S4;CP 2; S2×S2; S2 bundle

over S2; K3 surface.
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3.2 Partition functions and geometrical aspects of thermodynam-

ics

Z = Tr e−βH =
∫

d[φ]eiI[φ]

is a functional integral over all fields periodic with period β in imaginary

time.

Now for pure gravity (Schwarzschild) we write g = g0 + γ and we find

log Z ∼ iI[g0] + log
∫

d[γ]eiI2[γ] + higher order terms,

and hence (κ being the surface gravity)

W = thermodynamic potential

= −T log Z ∼ −iTI[g0] = −i
κ

2π

iπ
κ

M = M − TS

which implies

M

2
= TS =

κ

8π
A =⇒ S =

A

4
,

from a tree-level calculation of Z.
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3.3 Conformal anomalies and gauge theories on manifolds with

boundary

If regularization breaks the invariance under conformal rescalings of the

underlying classical theory, the resulting energy-momentum tensor acquires

a non-vanishing trace, expressible in purely geometric terms via space-time

methods, or through invariance theory and heat-equation methods.

3.3a Conformal anomaly in 4-D for massless spin-1/2 fields (local or spectral

boundary conditions on the 4-ball).

3.3b Conformal anomaly for Euclidean Maxwell theory with boundary con-

ditions on the potential and ghost fields.

3.3c Mixed boundary conditions in Euclidean quantum gravity at 1-loop

level. Self-adjointness in the fully diffeomorphism-invariant case.

3.3d Simple supergravity on manifolds with boundary (lack of 1-loop finite-

ness already at this stage).

3.3e New invariants in the 1-loop divergences on manifolds with boundary,

when tangential derivatives occur in the boundary operator.
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3.3f Symbol techniques for the ellipticity of gauge theories on manifolds

with boundary (their boundary-value problem at 1 loop).

3.3g Lack of strong ellipticity in Euclidean quantum gravity at 1 loop in

the fully diffeomorphism-invariant case.

3.4 Euclidean version of the AdS/CFT correspondence

Basic idea: large N limits of certain conformal field theories in p dimen-

sions can be described in terms of supergravity on the product of (p + 1)-

dimensional AdS space with a compact manifold. Thus, correlation func-

tions in conformal field theory are given by the dependence of the super-

gravity action on the asymptotic behaviour at infinity (Maldacena, Witten).

3.4.1 Geometrical Framework

Bp+1 :
∑p

i=0 y2
i < 1 open unit ball in Rp+1

AdSp+1 : Bp+1 with line element

ds2 = 4
(
1− |y|2

)−2
p∑

i=0

dy2
i .
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Compactified Bp+1: Bp+1=closed unit ball:
∑p

i=0 y2
i ≤ 1.

∂Bp+1 = Sp :
∑p

i=0 y2
i = 1. The p-sphere is the Euclidean version

of conformally compactified Minkowski space-time. The metric on Bp+1 is

singular at |y| = 1, and to obtain a metric which can be extended on Bp+1

one can take a function f on Bp+1, positive on Bp+1, e.g. f = 1 − |y|2.
One then performs the conformal rescaling ds̃2 = f2ds2, where f has a

first-order zero at |y| = 1. The conformally rescaled metric restricts to a

metric on Sp, and the use of few is equally good, with w real-valued on

Bp+1.

For the Euclidean AdSp+1, the metric is invariant under SO(1, p + 1),

while its Sp boundary has only conformal structure, preserved by the action

of SO(1, p + 1).

3.4.2 AdS/CFT for Gravity

ZCFT (h)=partition function of CFT formulated on a S4 with conformal

structure h

AdS/CFT: ZCFT (h) = ZS(h)=supergravity partition function, obtained by

integrating over metrics with a double pole near the boundary and inducing,

on the boundary, the given conformal structure h.
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Classical SUGRA: one first finds a solution g of the field equations with

pre-assigned boundary behaviour, and then one takes ZS(h) = e−IS(g).

In other words, given the supergravity partition function ZS , which

is a functional of boundary values of massless fields, this is interpreted as

the generating functional of CFT correlation functions, for operators whose

sources are the assigned boundary values.

3.4.3 A Simpler Example

Let us consider a massive non-minimally coupled scalar field on AdS with

action functional

I = −1
2

∫
dp+1x

√
g

[
gµνφ,µφ,ν + (m2 + ξR)φ2

]
.

This engenders two sets of modes:

Regular modes : φR ∼ L4+(ξ),

Irregular modes : φI ∼ L4−(ξ),

where L is a measure of the distance to the boundary (taken to be small),

and

4±(ξ) ≡ p

2
± ν(ξ),
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having defined

ν(ξ) ≡
√

p2

4
+ m2 + ξR.

The irregular mode φI is normalizable only if

0 ≤ ν(ξ) < 1.

Moreover, the energy for φI is conserved, positive, finite only when

ξ =
1
2

4−(ξ)
[1 + 24− (ξ)]

.

Although there are two possible quantizations in the bulk, the AdS/CFT

prescription in the (original) form:

ZAdS [φ0] = ZCFT [φ0] =
〈

exp
(∫

∂Ω

dpx Oφ0

)〉
,

only reproduces the conformal dimension 4+(ξ).

How to account for the missing conformal dimension 4−(ξ)? (Kle-

banov and Witten 1999, Minces and Rivelles 2000, 2001).
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4. QUANTUM COSMOLOGY

In the eighties, there has been a “renaissance” of quantum cosmology thanks

to the Hartle–Hawking and Vilenkin proposals. According to the former,

the quantum state of the universe is a functional integral over all Rie-

mannian metrics on compact 4-manifolds having the Riemannian geometry

(Σ, h) as their only boundary (the initial 3-surface shrinks to a point, hence

the name “no-boundary proposal”; see Figures). Although this approach

has deep roots in Riemannian geometry and quantum field theory, it is only

a proposal, not derivable from first principles.

4.1 From ellipticity to surface states in quantum cosmology?

However, as far as 1-loop theory is concerned, boundary conditions on met-

ric perturbations can be entirely derived from first principles (i.e. BRST

rules for the functional integral and full invariance under infinitesimal dif-

feomorphisms on metric perturbations). Regrettably, for pure gravity in

the de Donder gauge, this leads to lack of strong ellipticity if one wants to

achieve an operator of Laplace type on metric perturbations.
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A possible way out is provided by the use of non-local boundary con-

ditions on metric perturbations. Instead of giving technical details, let

us describe some key features of non-local boundary conditions in a sim-

pler example, motivated by the Schröder analysis of Laplace operators and

Bose–Einstein condensation.

Let us consider a function q ∈ L1(R) ∩ L2(R), with the associated

qR(x) ≡ 1
2πR

∞∑

l=−∞
eilx/R

∫ ∞

−∞
e−ily/Rq(y)dy.

The function qR is, by construction, periodic with period 2πR, and tends

to q as R tends to ∞. On considering the region

BR ≡
{
x, y : x2 + y2 ≤ R2

}
,

one studies the Laplacian acting on square-integrable functions on BR, with

non-local boundary conditions given by

[u;N ]∂BR
+

∮

∂BR

qR(s− s′)u(R cos(s′/R), R sin(s′/R))ds′ = 0.

In polar coordinates, the resulting boundary-value problem reads as

−
(

∂2

∂r2
+

1
r

∂

∂r
+

1
r2

∂2

∂ϕ2

)
u = Eu,
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∂u

∂r
(R,ϕ) + R

∫ π

−π

qR(R(ϕ− θ)) u(R, θ)dθ = 0.

For example, when the eigenvalue E is positive, the corresponding eigen-

function is

ul,E(r, ϕ) = Jl(r
√

E)eilϕ.

On denoting by q̃ the Fourier transform of q one finds therefore, by virtue

of the boundary conditions, an equation leading implicitly to the evaluation

of positive eigenvalues, i.e.

[√
EJ ′l (R

√
E) + Jl(R

√
E)q̃(l/R)

]
= 0.

The solutions which decay exponentially with increasing distance from the

boundary (at least if this distance is << R) are the surface states, whereas

the solutions which remain non-negligible are called bulk states.

Our programme: given the Laplacian acting on symmetric rank-2 ten-

sor fields on a portion of En bounded by Sn−1, one can build the associated

non-local boundary-value problem leading to surface states. In Euclidean

quantum gravity at 1 loop, this engenders from first principles (i.e. elliptic-

ity and gauge invariance) a universe which starts in a quantum state and

then becomes classical (such a transition is otherwise unclear).

Problem: this cannot hold verbatim, since a non-local boundary ope-

rator for gravity leads to a pseudo-differential operator on metric perturba-

tions.
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4.2 Variable cosmological constant in the RG-approach

Main idea of the Renormalization Group (RG) approach: to “integrate out”

all fluctuations with momenta larger than some cutoff k, and to take them

into account by means of a modified dynamics for the remaining fluctuation

modes with momenta smaller than k. This modified dynamics is governed

by a scale-dependent effective action Γk, the k-dependence of which is de-

scribed by a functional differential equation, the exact Renormalization

Group equation.

Flow equations can also be used for a complete quantization of fun-

damental theories. If the latter has the classical action I one imposes the

initial condition Γκ = I at the ultraviolet (UV) cut-off scale κ, uses the

exact RG equation to compute Γk for all k < κ, and then sends k → 0 and

κ →∞. The defining property of a fundamental theory is that the “contin-

uum limit” κ →∞ actually exists after the renormalization of finitely many

parameters in the action; only a finite number of generalized couplings in

Γ0 is un-determined and has to be found on observational ground. This

occurs for perturbatively renormalizable theories but, interestingly, there

are also perturbatively non-renormalizable theories which admit a κ → ∞
limit. The “continuum” limit of these non-perturbatively renormalizable

theories is taken at a non-Gaussian fixed point of the RG flow. It replaces
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the Gaussian fixed point which, at least implicitly, underlies the construc-

tion of perturbatively renormalizable theories. Knowledge of the fixed-point

structure is therefore crucial if one wants to understand whether a given

model is really a fundamental theory.

Recently, Lauscher and Reuter have constructed a new exact RG equa-

tion for the effective average action of Euclidean quantum gravity. They

have found both a Gaussian and a non-Gaussian fixed point. If the non-

Gaussian fixed point occurs in the exact theory, quantum general relativity

is likely to be renormalizable at non-perturbative level. A strong evidence

has been found in favour of 4-dimensional Einstein gravity being asymptot-

ically safe (i.e. non-perturbatively renormalizable).

Even more recently, Bonanno, myself and Rubano have applied the

Arnowitt–Deser–Misner (ADM) formalism and the Dirac–Bergmann theory

of constrained Hamiltonian systems to such a class of gravitational models,

where both G and Λ are variable. A modified action functional has been

built which reduces to the Einstein–Hilbert action when G is constant, and

leads to a power-law growth of the scale factor for pure gravity and for

a massless φ4 theory in a Universe with Robertson–Walker symmetry, in

agreement with the recently developed fixed-point cosmology, where

G(t) = g?ξ
−2t2, Λ(t) = λ?ξ

2t−2.
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Interestingly, the renormalization-group flow at the fixed point is found to

be compatible with a Lagrangian description of the running parameters G

and Λ.
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