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What do we know of gravitational physics?

As far as we know, gravity - the weakest among fundamental interactions - 
is described by one of the most beautiful and elegant theories ever conceived: 

General Relativity 

GR passed several observational tests with flying colours:

  Solar system tests   

    Started when GR was first formulated, one century ago (perihelion   
    precession, light deflection, gravitational redshift), solar system tests

 became more and more accurate, up to the measurent of Shapiro delay
 from Cassini spacecraft in 2002

..............................................................
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3II Facoltà di Ingegneria, Università di Bologna, Via Fontanelle 40, I-47100, Forlı̀,
Italy
.............................................................................................................................................................................

According to general relativity, photons are deflected and delayed
by the curvature of space-time produced by any mass1–3. The
bending and delay are proportional to g 1 1, where the par-
ameter g is unity in general relativity but zero in the newtonian
model of gravity. The quantity g 2 1 measures the degree to
which gravity is not a purely geometric effect and is affected by
other fields; such fields may have strongly influenced the early
Universe, but would have now weakened so as to produce tiny—
but still detectable—effects. Several experiments have confirmed
to an accuracy of,0.1% the predictions for the deflection4,5 and
delay6 of photons produced by the Sun. Here we report a
measurement of the frequency shift of radio photons to and
from the Cassini spacecraft as they passed near the Sun. Our
result, g 5 1 1 (2.1 6 2.3) 3 1025, agrees with the predictions
of standard general relativity with a sensitivity that approaches
the level at which, theoretically, deviations are expected in some
cosmological models7,8.
Testing theories of gravity in the Solar System and with binary

pulsars has been pursued for a long time1,2, yet general relativity has
survived whereas most of its alternatives have been disproved. In
particular, the other main test—the anomalous advance of the
pericentre of an orbiting body, such as Mercury around the Sun—
has been found in agreement with Einstein’s prediction, with a
similar accuracy ,0.1%. In the past 20 yr there has been no
appreciable improvement. With the Cassini mission, this barrier
has now been largely overcome as far as g is concerned, but no
violations of general relativity have been detected.
The increase Dt produced by the gravitational field of the Sun

(withmassMS and radiusRS) in the time taken for light to travel the

round trip between the ground antenna and the spacecraft, at
distances r1 and r2 respectively from the Sun, is1:

Dt ¼ 2ð1þ gÞGMS

c3
ln

4r1r2
b2

! "
ð1Þ

where G is the gravitational constant, b (,, r1, r2) the impact
parameter and c the velocity of light. The motion of the spacecraft
and Earth produces a change in b and Dt, equivalent to a change in
distance, and hence a change in relative radial velocity. The
corresponding fractional frequency (y gr ¼ Dn/n) shift for a two-
way radio signal is9:

ygr ¼
dDt

dt
¼22ð1þ gÞGMS

c3b

db

dt
¼2ð1£ 1025sÞð1þ gÞ1

b

db
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For a spacecraft much farther away from the Sun than the Earth,
db/dt is not very different from the Earth’s velocity vE ¼ 30 km s21.
In the Cassini solar conjunction the peak value of ygr is 6 £ 10210.
The Cassini experiment, exploiting the new observable ygr (refs 9,
10), was carried out between 6 June to 7 July 2002, when the
spacecraft was on its way to Saturn, around the time of a solar
conjunction (Fig. 1). The gravitational signal and the tracking
passes that provided useful data are shown in Fig. 2.

The main reason why the Doppler method has not been applied
before is the overwhelming noise contribution due to the solar
corona. The Cassini mission has overcome this hindrance with: (1)
high-frequency carrier waves in the Ka-band, in addition to the
X-band for standard operation; and (2) a multi-frequency link in
which three different phases are measured at the ground station11,12.
Two carriers at 7,175MHz (X-band) and 34,316MHz (Ka-band)
are transmitted from the ground; whereas, in addition to the
downlink carriers at 8,425MHz and 32,028MHz locked on board
to the X and the Ka signals respectively, a nearby Ka-band downlink
carrier coherent with the X-band uplink is also transmitted back.
This novel radio configuration uses dedicated and advanced instru-
mentation, both on board the spacecraft and at the ground antenna,
and allows a full cancellation of the solar plasma noise (see
Supplementary Fig. S1 for details)13–15. The resulting measurement
errors are four orders of magnitude smaller than the relativistic
signal in equation (2).

The new ground station DSS25 at the NASADeep Space Network
complex in Goldstone, California, has performed admirably, par-

Figure 1 Geometry of the 2002 Cassini solar conjunction. The graph shows Cassini’s
motion in the sky relative to the Sun, as a function of days from the 2002 solar

conjunction; coordinates are in solar radii. The conjunction—at which the spacecraft (at a

geocentric distance of 8.43 AU), the Sun and the Earth were almost aligned, in this order—
occurred on 21 June 2002, with a minimum impact parameter b min ¼ 1.6 R S, and no

occultation.

Figure 2 The gravitational signal. The two-way relativistic frequency shift y gr due to the
Sun and the available 18 passages, each lasting about 8 h, is shown. Unfortunately, no

data could be acquired for three days just before conjunction owing to a failure of the

ground transmitter; moreover, the tracking data acquired near closest approach were

particularly noisy. A much larger plasma noise was detected in some passes after

conjunction, and it was fully removed by the multi-link technique. Remarkably, during this

time period, SOHO observations revealed large coronal mass ejections traversing the

radio beam.
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  Binary pulsar tests

– 14 –

Fig. 2.— Orbital decay caused by the loss of energy by gravitational radiation. The parabola

depicts the expected shift of periastron time relative to an unchanging orbit, according to

general relativity. Data points represent our measurements, with error bars mostly too small

to see.

Weisberg et al.,  2010

Binary pulsar PSR 1913+16:   inspiral, and increase of orbital period, 
due to energy loss through gravitational wave emission

Indirect proof of the existence of GWs!
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  Binary pulsar tests
Double binary pulsar J0737-3039: the most relativistic binary system we know

Animation: John Rowe

Tabella 3.2: I parametri post-kepleriani misurati relativi al sistema binario PSR J0737-3039, e i
relativi valori predetti dalla teoria. I numeri tra parentesi rappresentano l’incertezza sull’ultima
cifra. La precessione geodetica ΩSO è stata misurata per la pulsar B. Dati tratti da Kramer e
Wex [12].

Parametro PK Osservato Teorico Rapporto

ω̇ (deg/yr−1) 16.89947(68) - -
Ṫ 1.252(17) 1.24787(13) 1.003(14)

γ (ms) 0.3856(26) 0.38418(22) 1.0038(68)
s 0.99974(-39,+16) 0.99987(-48,+13) 0.99987(50)

r (µs) 6.21(33) 6.153(26) 1.009(55)
ΩSO,B (deg/yr) 4.77(+0.66,-0.65) 5.0734(7) 0.94(13)

Nel caso del sistema binario PSR J0737-3039, oltre ai tre parametri ω̇, γ e Ṫ ,
già descritti nella sezione precedente, sono stati misurati anche:

• il range r e la shape s, relativi allo Shapiro delay, ovvero al ritardo dei segnali
elettromagnetici dovuto alla curvatura dello spaziotempo;

• la precessione geodetica ΩSO, la quale deriva dal fatto che, a causa della
curvatura dello spaziotempo, il vettore momento angolare della pulsar precede
intorno al vettore momento angolare totale del sistema;

per un totale di sei parametri PK.
Essi possono essere formuati nel seguente modo:

ω̇ = 3T 2/3
⊙

�
T

2π

�−5/3 1

1− e2
(mp +mc)

2/3

γ = T 2/3
⊙

�
T

2π
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e
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⊙
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2π

�5/3 1
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mc(4mp + 3mc)

2(mp +mc)4/3

(3.5)

dove tutte le masse sono espresse in unità di massa solare, T⊙ = GM⊙/c3 ed f(e)
è definito nella (2.13). I valori sperimentalmente misurati sono riportati nella
Tabella 3.2.

32

Post-Keplerian parameters

Figura 3.4: Il diagramma “massa-massa” (Kramer e Wex, [12]). In esso sono illustrati i vincoli

che le due masse devono rispettare in accordo con la teoria della Relatività Generale. Oltre

ai parametri PK è anche rappresentato il rapporto tra le masse (R = mA/mB = xB/xA). La

regione arancione rappresenta una soluzione non fisica per le due masse perchè sin i ≥ 1, dove

i è l’inclinazione dell’obita rispetto la linea di vista. I vincoli dovuti ai parametri PK sono

rappresentati da coppie di linee. Essi sono dovuti a: avanzamento del periastro ω̇; la misura del

redshift gravitazionale e della dilatazione temporale γ; la misura del parametro di Shapiro r; del

parametro di Shapiro s; la misura del decadimento orbitale Ṫ ; la misura della precessione della

pulsar B, ΩSO.

L’inserto è un ingrandimento della piccola regione in cui si intersecano le varie curve. Le regioni

permesse sono quelle tra le coppie di linee parallele. Si può vedere che vi è una regione permessa

compatibile con tutti i vincoli, delineata nel grafico da una linea blu spessa.

Ognuna delle (3.5) può essere rappresentata come una curva in un diagramma

“massa-massa” che mostra la massa della pulsar A verso la massa della pulsar

B, Figura 3.4. La curva, per ogni parametro PK, viene tracciata utilizzando il

valore osservato del relativo parametro (Tabella 3.2). L’incertezza nella misura è

rappresentata nel grafico con una separazione della rispettiva curva, essa include il

68% dell’errore.

Come si può vedere, tutte le linee si intersecano in un unico punto. Si ha quindi

un’unica soluzione per le due masse. La grandezza dell’area di intersezione indica

la precisione del test. In totale, con sei parametri PK ed il rapporto tra le masse si

33

Kramer  & Wex, ’09

GR prediction of orbital period derivative 
satisfied within  few parts in a thousand

(Periastron precession of 17o/year!)
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  Observational data from the early universe
In recent years,  several breakthroughs in cosmology!

Different kinds of observations (supernovae, cosmic microwave background)
allowed us to better understand the early stages of our Universe...

... and to understand the behaviour of gravity at those times and conditions!

Few weeks ago,  a study of the polarization in the CMB confirmed
one of the predictions of the inflationary model of the early universe.

In addition, this result has shown the primordial GW background: 
another indirect proof of the existence of GWs, 

in a regime completely different from that of compact binaries!

The BICEP2 Collaboration, 2014
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  Test of the inverse-square law at short range

F (r) =
Gm1m2

r2

�
1 + α

�
1 +

r

λ
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e−r/λ
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... etc. etc. etc. ...

!"#$%&'()*+'%+$,--+.$/)0)12$&'$345$!"#$%&'()*+'%+$,--+.$/)0)12$&'$345$
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E. Adelberger, Univ. Washington

  Test of the weak equivalence principle

The Confrontation between General Relativity and Experiment 9

the wire and g were not quite parallel because of the centripetal acceleration on the apparatus due
to the Earth’s rotation; the apparatus was rotated about the direction of the wire. In the Dicke
and Braginsky experiments, g was that of the Sun, and the rotation of the Earth provided the
modulation of the torque at a period of 24 hr (TEGP 2.4 (a) [281]). Beginning in the late 1980s,
numerous experiments were carried out primarily to search for a “fifth force” (see Section 2.3.1),
but their null results also constituted tests of WEP. In the “free-fall Galileo experiment” performed
at the University of Colorado, the relative free-fall acceleration of two bodies made of uranium and
copper was measured using a laser interferometric technique. The “Eöt-Wash” experiments car-
ried out at the University of Washington used a sophisticated torsion balance tray to compare the
accelerations of various materials toward local topography on Earth, movable laboratory masses,
the Sun and the galaxy [249, 19], and have reached levels of 3 × 10−13 [2]. The resulting upper
limits on η are summarized in Figure 1 (TEGP 14.1 [281]; for a bibliography of experiments up to
1991, see [107]).
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Figure 1: Selected tests of the weak equivalence principle, showing bounds on η, which measures
fractional difference in acceleration of different materials or bodies. The free-fall and Eöt-Wash
experiments were originally performed to search for a fifth force (green region, representing many
experiments). The blue band shows evolving bounds on η for gravitating bodies from lunar laser
ranging (LLR).

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2006-3

C. Will, 
Living Review of Relativity

  Test of Lorentz’s invariance

12 Clifford M. Will
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Figure 2: Selected tests of local Lorentz invariance showing the bounds on the parameter δ, which

measures the degree of violation of Lorentz invariance in electromagnetism. The Michelson–Morley,

Joos, Brillet–Hall and cavity experiments test the isotropy of the round-trip speed of light. The

centrifuge, two-photon absorption (TPA) and JPL experiments test the isotropy of light speed

using one-way propagation. The most precise experiments test isotropy of atomic energy levels.

The limits assume a speed of Earth of 370 km s−1
relative to the mean rest frame of the universe.

Living Reviews in Relativity

http://www.livingreviews.org/lrr-2006-3
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However,  we need to probe the strong-field regime of gravity

Why?
1) There is no fundamental reason to believe in GR

   Weak Equivalence Principle (WEP) has been tested up to ~10-12, let’s assume it.   
WEP does not require that gravity dynamics is given by Einstein-Hilbert’s action        

S =
c4

16πG

�
d4x

√
−g(R− 2Λ)

•  If we require (together with WEP) that the gravitational theory reproduces     
   Newtonian gravity in an appropriate limit, and that the action only 
   depends on the metric and on the curvature scalar,  many other actions  
   are possible, such  as those of the so-called f(R) theories 

S =
c4

16πG

�
d4x

√
−gf(R)
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However,  we need to probe the strong-field regime of gravity

Why?
1) There is no fundamental reason to believe in GR

•  Other fields may be included in the gravitational action
                 (as suggested by String/M theory).

    This is the case, for instance, of scalar-tensor theories:

natural and simple generalizations of GR including additional degrees of freedom. In these theories,
which include for instance Brans-Dicke gravity [107], the metric tensor is non-minimally coupled
with one or more scalar fields. In the case of a single scalar field (which can be generalized to
multi-scalar-tensor theories [212]), the action can be written as

S =
1

16πG

�
d4x

√
−g [F (φ)R− 8πGZ(φ)gµν∂µφ∂νφ− U(φ)] + Sm(ψm, gµν) (5)

where R is the Ricci scalar associated to the metric gµν , F,Z, U are arbitrary functions of the scalar
field φ, and Sm is the action describing the dynamics of the other fields (which we call “matter
fields”, ψm).

Scalar-tensor theories can be obtained as low-energy limits of SMTs [291]; this provides a moti-
vation in studying these theories on the grounds of fundamental physics. An additional motivation
comes from the recently proposed “axiverse” scenario [44, 45], in which ultra-light axion fields
(pseudo-scalar fields, behaving under many respects as scalar fields) arise from the dimensional
reduction of SMT, and play a role in cosmological models.

Scalar-tensor theories are also appealing alternatives to GR because they predict new phe-
nomena, which are not allowed in GR. In these theories, the GW emission in compact binary
coalescences has a dipolar (� = 1) component, which is absent in GR; if the scalar field has a (even
if extremely small) mass, superradiant instabilities occur [159, 502, 662], which can determine the
formation of floating orbits in extreme mass ratio inspirals [139, 689], and these orbits affect the
emitted GW signal; last but not least, under certain conditions NSs can undergo a phase transition,
acquiring a nontrivial scalar field profile (spontaneous scalarization) [212, 213]. A detection of one
of these phenomena would be a smoking gun of scalar-tensor gravity.

These theories, whose well posedness has been proved [557, 558], are a perfect arena for NR. Re-
covering some of the above smoking-gun effects is extremely challenging, as the required timescales
are typically very large when compared to any other timescales in the problem.

Other examples for which NR will be instrumental include theories in which the Einstein-Hilbert
action is modified by including terms quadratic in the curvature (such as R2, RµνRµν , RµναβRµναβ ,
�µναβRµνρσRαβ

ρσ), possibly coupled with scalar fields. In particular, Einstein-Dilaton-Gauss-
Bonnet gravity and Dynamical Chern-Simons gravity [500, 29] can arise from SMT compactifi-
cations, and Dynamical Chern-Simons gravity also arises in Loop Quantum Gravity.

3.2 Fundamental and mathematical issues

3.2.1 Cosmic Censorship

Spacetime singularities signal the breakdown of the geometric description of the spacetime, and
can be diagnosed by either the blow-up of observer-invariant quantities or by the impossibility
to continue timelike or null geodesics past the singular point. For example, the Schwarzschild
geometry has a curvature invariant RabcdRabcd = 48G2M2/(c4r6) in Schwarzschild coordinates,
which diverges at r = 0, where tidal forces are also infinite. Every timelike or null curve crossing
the horizon necessarily hits the origin in finite proper time or affine parameter and therefore
the theory breaks down at these points: it fails to predict the future development of an object
which reaches the singular point. Thus, the classical theory of GR, from which spacetimes with
singularities are obtained, is unable to describe these singular points and contains its own demise.
Adding to this classical breakdown, it is likely that quantum effects take over in regions where
the curvature radius becomes comparable with the scale of quantum processes, much in the same
way as quantum electrodynamics is necessary in regions where EM fields are large enough (as
characterized by the invariant E2 − B2) that pair creation occurs. Thus, a quantum theory of
gravity might be needed close to singularities.
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•  We could live in more than four spacetime dimensions 
   (again, as predicted by SMT), some of which could be 
    much larger than the Planck length (large extra dimensions)
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superconductors are a promising approach to understanding strongly correlated electron systems.

In particular, non-equilibrium processes of strongly correlated systems, such as superconductors,

are notoriously difficult and this holographic method offers a novel tool to tackle this longstanding

problem. In the gauge/gravity approach, the technical problem is to solve the classical dynamics

of strong gravitational systems in the dual five-dimensional spacetime. Using the AdS/CFT dictio-

nary, one then extracts the dynamics of the phase transition for the boundary theory and obtains

the time dependence of the superconducting order parameter and the relaxation time scale of the

boundary theory.

3.3.2 Theories with lower fundamental Planck scale

As discussed in Section 3.2.4, higher-dimensional theories have been suggested since the early days

of GR as a means to achieve unification of fundamental interactions. The extra dimensions have

traditionally been envisaged as compact and very small (∼ Planck length), in order to be compatible

with high energy experiments. Around the turn of the millennium, however, a new set of scenarios

emerged wherein the extra dimensions are only probed by the gravitational interaction, because a

confining mechanism ties the standard model interactions to a 3 + 1-dimensional subspace (which

is called the “brane”, while the higher-dimensional space is called the “bulk”). These models -

also called “braneworld scenario” - can be considered SMT inspired, since the main ideas behind

them are provided by SMT: not only the existence of extra dimensions, but also the existence

of subspaces, namely Dirichlet-branes, on which a well defined mechanism exists to confine the

standard model fields.

Our poor knowledge of the gravitational interaction at very short scales (below the millimeter at

the time of these proposals) allows large [40, 41, 244] or infinitely large extra dimensions [537, 536].

Indeed these are compatible with high energy phenomenology. Besides being viable, these models

(or at least some of them) have the conceptual appeal of providing an explanation for the “hierarchy

problem” of particle physics: the large hierarchy between the electroweak scale (∼ 250 GeV) and

the Planck scale (∼ 1019 GeV), or in other words, why the gravitational interaction seems so

feeble as compared to the other fundamental interactions. The reason would be that whereas

nuclear and electromagnetic interactions propagate in 3+1 dimensions, gravity propagates in D
dimensions, thus being diluted. As a byproduct, the real fundamental Planck scale becomes much

smaller than the traditional, i.e. apparent, Planck scale. An estimate is obtained considering

the D-dimensional gravitational action and integrating the compact dimensions by assuming the

metric is independent of them:

S ∝ 1

GD

�
dDx

�
Dg DR =

VD−4

GD

�
d4x

�
4g 4R ; (8)

thus the four-dimensional Newton’s constant is related to the D-dimensional one by the volume of

the compact dimensions G4 = GD/VD−4.

In geometrized units c = � = 1 (different from the units G = c = 1 used in the rest of this

paper), the mass-energy Planck scale in four dimensions E(4)
Planck is related to Newton’s constant

by G4 = (E(4)
Planck)

−2, since
�
d4x

�
4g 4R has the dimension of inverse length squared; similar

dimensional arguments in Eq. (8) show that in D dimensions GD = (E(D)
Planck)

−(D−2). Therefore,

the D-dimensional Planck energy E(D)
Planck is related to the four-dimensional one as

E(D)
Planck

E(4)
Planck

=

�
1

(E(4)
Planck)

D−4VD−4

� 1
D−2

=

�
(L(4)

Planck)
D−4

VD−4

� 1
D−2

, (9)

where we have defined the four-dimensional Planck length as L(4)
Planck = 1/E(4)

Planck. For instance, for

D = 10 and taking the six extra dimensions of the order of the Fermi, Eq. (9) shows that the true

21

   Weak Equivalence Principle (WEP) has been tested up to ~10-12, let’s assume it.   
WEP does not require that gravity dynamics is given by Einstein-Hilbert’s action        

S =
c4

16πG

�
d4x

√
−g(R− 2Λ)
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2)  GR can not be the ultimate theory of gravitational interaction

•  All attempts to unify GR with the quantum world have failed.
        At the Planck scale (E~1019 GeV, or l~10-35 m) neither GR nor 
        Quantum Field Theory can tell us what’s going on!

Note that all of these problems occur in the (very) strong field regime!

•  General Relativity contains its own pathologies: 
        it necessarily predicts the presence of singularities, as the outcome of
        gravitational collapse, which can be reached by an observer in a finite
        amount of proper time. 

       It has been conjectured that singularities have to be hidden behind horizons   
    (cosmic censorship) but it is only a conjecture and would not really solve the problem 

       Near singularities, weird phenomena can occur (causality violations, etc.).
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Quoting S. Chandrasekhar, fundamental science does not only
“seek to analyze the ultimate constitution of matter and the basic concepts 

of space and time”, it is also “concerned with the rational ordering of
the multifarious aspects of natural phenomena in terms of the basic concepts”.

3) Last but not least: even if GR is the correct theory of gravity,
   the phenomenology of its strong field regime is far from being understood

GR is a strongly non-linear theory

CHAPTER 8. THE EINSTEIN EQUATIONS 96

A comparison of this equation with eq. (8.23) shows that if we require that the relativistic
field equations reduce to the newtonian equations in the weak field limit it must be

C1 = 1. (8.48)

In conclusion, the Einstein’s field equations are 2

Gµν =
8πG

c4
Tµν , (8.49)

where

Gµν =
(
Rµν −

1

2
gµνR

)
, (8.50)

and it is called The Einstein tensor. An alternative form is

Rµν =
8πG

c4

(
Tµν −

1

2
gµνT

)
. (8.51)

In vacuum Tµν = 0 and the Einstein equations reduce to

Rµν = 0. (8.52)

Therefore, in vacuum the Ricci tensor vanishes, but the Riemann tensor does not, unless the
gravitational field vanishes or is constant and uniform. We may still add to eqs. (8.49) the
following term (

Rµν −
1

2
gµνR− λgµν

)
=

8πG

c4
Tµν . (8.53)

where λ is a constant. This term satisfies the conditions 1,2,3 and 4, but not the condition
5. This means that it must be very small in such a way that in the weak field limit the
equations reduce to the newtonian equations.

8.3 Gauge invariance of the Einstein equations

Since there are 10 independent components of Gµν , Einstein’s equations provide 10 equations
for the 10 independent components of gµν . However these equations are not independent,
because, as we have seen, the Bianchi identities imply the “conservation law” Gµν

;ν =
0, which provides 4 relations that the Einstein tensor must satisfy. Thus the number of
independent equations reduces to six.

Do we have six equations and 10 unknown functions? Why do we have these four degrees
of freedom? The reason is the following. Be gµν a solution of the equations. If we make
a coordinate transformation xµ′ = xµ′(xα) the ‘transformed’ tensor g′µν = gµ′ν′ is again

2Although we call these equations the Einstein equations, they were derived independently (and in a more
elegant form) by D. Hilbert in the same year. However Einstein showed the implications of these equations
in the theory of the solar system, and in particular that the precession of the perihelion of Mercury has a
relativistic origin. This led to the theory’s acceptance and since then the equations have been called the
Einstein equations.
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8.2 The Einstein’s field equations

Let us first see which derivatives and of which order do we expect in Gµν . A comparison
with the Laplace equation shows that Gµν must have the dimensions of a second derivative.
In fact, suppose that it contains terms of this type

∂3gµν
∂x3

µ

,
∂2gµν
∂x2

µ

· ∂gµν
∂xν

,
∂gµν
∂xν

, (8.20)

then, in order to be dimensionally homogeneous each term should be multiplied by a constant
having the dimensions of a suitable power of a lenght

∂3gµν
∂x3

µ

· l, ∂2gµν
∂x2

µ

∂gµν
∂xν

· l, ∂gµν
∂xν

· 1
l
. (8.21)

In this case, a gravitational field acting on small or on very large scale would be described by
equations where some of the terms would be negligible with respect to some others. This is
unacceptable, because we want a set of equations that are valid at any scale, and consequently
the only terms we can accept in Gµν are those containing the second derivatives of gµν in
a linear form and products of first derivatives. Let us summarize the assumptions that we
need to make on Gµν :

1) it must be a tensor
2) it must be linear in the second derivatives, and it must contain products of first

derivatives of gµν .
3) Since Tµν is symmetric, Gµν also must be symmetric.
4) Since Tµν satisfies the “conservation law” T µν

;µ = 0 , Gµν must satisfy the same
conservation law.

Gµν
;ν = 0. (8.22)

5) In the weak field limit it must reduce to (compare with eq. (8.18)

G00 ∼ −∇2g00. (8.23)

In this last assumption the Principle of Equivalence and the weak field limit explicitely
appear.

In the preceeding section we have shown that there exists a tensor which is linear in the
second derivatives of gµν and non linear in the first derivatives. It is the Riemann tensor,
given in eq. (6.34), and it contains the information on the gravitational field. However we
cannot use it directely in the field equations we are looking for, since it has four indices (it

is a

(
1
3

)

tensor) while we need a

(
2
0

)

(or

(
0
2

)

) tensor. In addition, the covariant

divergence of the stress-energy tensor vanishes, and so must be also for the tensor we shall
put on the left-hand side of eq. (8.19).

By contracting the Riemann tensor with the metric we can construct a

(
0
2

)

tensor,

i.e. the Ricci tensor:
Rµν = gκαRκµαν = Rα

µαν , (8.24)
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We now subtract from this expression the same expression with κ and ν interchanged

∂3xτ ′

∂xκ∂xµ∂xν
− ∂3xτ ′

∂xν∂xµ∂xκ
= 0 = (6.9)

∂xτ ′

∂xλ

[(
∂

∂xκ
Γλ

µν

)

+ Γλ
κηΓ

η
µν

]

−∂xρ′

∂xµ

∂xσ′

∂xν

∂xη′

∂xκ

[(
∂

∂xη′Γ
τ ′
ρ′σ′

)

− Γτ ′
λ′σ′Γ

λ′
η′ρ′ − Γτ ′

ρ′λ′Γ
λ′
η′σ′

]

−∂xσ′

∂xλ
Γτ ′

ρ′σ′

[

Γλ
κµ
∂xρ′

∂xν
+ Γλ

κν
∂xρ′

∂xµ
+ Γλ

µν
∂xρ′

∂xκ

]

−

∂xτ ′

∂xλ

[(
∂

∂xν
Γλ

µκ

)

+ Γλ
νηΓ

η
µκ

]

+
∂xρ′

∂xµ

∂xσ′

∂xκ

∂xη′

∂xν

[(
∂

∂xη′Γ
τ ′
ρ′σ′

)

− Γτ ′
λ′σ′Γ

λ′
η′ρ′ − Γτ ′

ρ′λ′Γ
λ′
η′σ′

]

+
∂xσ′

∂xλ
Γτ ′

ρ′σ′

[

Γλ
νµ
∂xρ′

∂xκ
+ Γλ

νκ
∂xρ′

∂xµ
+ Γλ

µκ
∂xρ′

∂xν

]

collecting all terms we find

∂xτ ′

∂xλ

[
∂

∂xκ
Γλ

µν −
∂

∂xν
Γλ

µκ + Γλ
κηΓ

η
µν − Γλ

νηΓ
η
µκ

]

(6.10)

−∂xρ′

∂xµ

∂xσ′

∂xν

∂xη′

∂xκ

[
∂

∂xη′Γ
τ ′
ρ′σ′ −

∂

∂xσ′Γ
τ ′
ρ′η′ + Γτ ′

λ′η′Γ
λ′
σ′ρ′ − Γτ ′

λ′σ′Γ
λ′
η′ρ′

]

= 0.

If we now define the following 1

Rλ
µνκ = −

[
∂

∂xκ
Γλ

µν −
∂

∂xν
Γλ

µκ + Γλ
κηΓ

η
µν − Γλ

νηΓ
η
µκ

]

, (6.11)

we can write eq. (6.10) as the transformation law for the tensor

Rσ′
α′β′γ′ =

∂xσ′

∂xλ

∂xµ

∂xα′
∂xν

∂xβ′
∂xκ

∂xγ′R
λ
µνκ. (6.12)

The tensor (6.11) is The Curvature Tensor, also called The Riemann Tensor, and it
can be shown that it is the only tensor that can be constructed by using the metric, its first
and second derivatives, and which is linear in the second derivatives.

This way of defining the Riemann tensor is the “old-fashioned way”: it is based on the
transformation properties of the affine connections. The idea underlying this derivation is
that the information about the curvature of the space must be contained in the second
derivative of the metric, and therefore in the first derivative of the Γα

µν . But since we
want to find a tensor out of them, we must eliminate in eq. (6.1) the part which does not
transform as a tensor, and we do this in eq. (6.9).

1The - sign does not agree with the definition given in Weinberg, but it does agree with the definition
given in many other textbooks. As we shall see in the next section it is irrelevant. What is important is to
write the Einstein equations with the right signs!
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5.5 The relation between the affine connections and
the metric tensor

From eq. (5.22) it follows that

gαβ;µ = gαβ,µ − Γν
αµgνβ − Γν

βµgαν = 0,

therefore
gαβ,µ = Γν

αµgνβ + Γν
βµgαν . (5.26)

Let us now consider the following equations

gαµ,β = Γν
αβgνµ + Γν

µβgαν ,

−gβµ,α = −Γν
βαgνµ − Γν

µαgβν ,

It follows that

gαβ,µ + gαµ,β − gβµ,α = (Γν
αµ − Γν

µα)gνβ +

+ (Γν
βµ + Γν

µβ)gαν + (Γν
αβ − Γν

βα)gνµ,

where we have used gαβ = gβα.
Since Γα

βγ are symmetric in β and γ, it follows that

gαβ,µ + gαµ,β − gβµ,α = 2Γν
βµgαν .

If we multiply by gαγ and remember that since gαγ is the inverse of gαγ

gαγgαν = δγν ,

we finally find

Γγ
βµ =

1

2
gαγ(gαβ,µ + gαµ,β − gβµ,α) (5.27)

This expression is extremely useful, since it allows to compute the affine connec-
tion in terms of the components of the metric.

Are the Γα
βγ components of a tensor?

They are not, and it is easy to see why. In a locally inertial frame the Γα
βγ vanish, but in

any other frame they don’t. If it would be a tensor they should vanish in any frame.
In the first chapter we defined the Christoffel symbols as

Γα
µν =

∂xα

∂ξλ
∂2ξλ

∂xµ∂xν
. (5.28)

This definition was a consequence of the equivalence principle. We did the following: We
considered a free particle in a locally inertial frame {ξα}:

d2ξα

dτ 2
= 0. (5.29)

but we only have tested its linear regime, where gravity is weak
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Since the metric g0µν ≡ ηµν is constant, Γλ
µν(g0) = 0 and the right-hand side of eq. (13.11)

simply reduces to

∂Γα
µν

∂xα
− ∂Γα

µα

∂xν
+O(h2) (13.14)

=
1

2

{

−!Fhµν +

[
∂2

∂xλ∂xµ
hλ
ν +

∂2

∂xλ∂xν
hλ
µ −

∂2

∂xµ∂xν
hλ
λ

]}

+O(h2).

The operator !F is the D’Alambertian in flat spacetime

!F = ηαβ
∂

∂xα

∂

∂xβ
= − ∂2

c2∂t2
+∇2. (13.15)

Einstein’s equations (13.5) for hµν finally become
{

!Fhµν −
[

∂2

∂xλ∂xµ
hλ
ν +

∂2

∂xλ∂xν
hλ
µ −

∂2

∂xµ∂xν
hλ
λ

]}

= −16πG

c4

(
T pert
µν − 1

2
ηµνT

pert λ
λ

)
.

(13.16)
As already discussed in chapter 8, the solution of eqs. (13.16) is not uniquely determined.
If we make a coordinate transformation, the transformed metric tensor is still a solution: it
describes the same physical situation seen from a different frame. But since we are working
in the weak field limit, we are entitled to make only those transformations which preserve
the condition |h′

µν | << 1 (note that in this Section we denote the transformed tensor
as h′

µν rather than as hµ′ν′, since this simplifies the discussion of infinitesimal coordinate
transformations).

If we make an infinitesimal coordinate transformation

xµ′ = xµ + εµ(x), (13.17)

(the prime refers to the coordinate xµ, not to the index µ) where εµ is an arbitrary vector
such that ∂εµ

∂xν is of the same order of hµν , then

∂xα′

∂xµ
= δαµ +

∂εα

∂xµ
. (13.18)

Since

gµν = g′αβ
∂xα′

∂xµ

∂xβ′

∂xν
=

(
ηαβ + h′

αβ

)(

δαµ +
∂εα

∂xµ

)(

δβν +
∂εβ

∂xν

)

= ηµν + h′
µν + εν,µ + εµ,ν +O(h2) , (13.19)

and gµν = ηµν + hµν , then (up to O(h2))

h′
µν = hµν −

∂εµ
∂xν

− ∂εν
∂xµ

. (13.20)

In order to simplify eq. (13.16) it appears convenient to choose a coordinate system in which
the harmonic gauge condition is satisfied, i.e.

gµνΓλ
µν = 0. (13.21)

How do behave strongly gravitating objects such as black holes and neutron stars? 
 How do supernovae explode? Which is the power of gamma-ray bursts?

What happens when the nonlinearities of gravity set in?
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 Up to now, we have tested only the weak regime of gravity

Binary pulsar tests involve masses MNS ∼ M⊙ and distances similar to R⊙
therefore they generally test the same regime as solar system test

(with the exception of some particular strong field phenomena predicted by
specific theories, which can show up in the motion of binary pulsars)

The strongest gravitational field probed in the solar system is that at the surface of 
sun (light deflection), for which gravitational redshift and spacetime curvature are

GM⊙
R⊙c2

∼ 10−6 GM⊙
R3

⊙c
2
∼ 10−28 cm−2

The most accurate test in solar system is probably that of the post-Newtonian 
parameter γ from Cassini spacecraft, with an accuracy of ~10-5.

• How do gravity behave when the gravitational redshift and the curvature are much 
larger, such as near the surface of neutron stars, near the horizon of black holes?

• Do completely unexpected phenomena occur in this still untested regime?

• Is General Relativity the correct theory of gravity?

These are - in my opinion - the main open questions in gravitational theory
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GW detectors!

 Up to now, we have tested only the weak regime of gravity

• How do gravity behave when the gravitational redshift and the curvature are much 
larger, such as near the surface of neutron star,  near the horizon of black holes?

• Do completely unexpected phenomena occur in this still untested regime?

• Is General Relativity the correct theory of gravity?

These are - in my opinion - the main open questions in gravitational theory
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Figure 2: Tests of general relativity placed on an appropriate parameter space. The long-dashed line
represents the event horizon of Schwarzschild black holes.

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2008-9

D. Psaltis, Living Review of Relativity

Parameter space
for GR deviations
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Luckily, after many decades of weak field gravity observations, 
we are finally close to start looking at the strong field regime 

of the gravitational interaction!

We are going to open a new window on one of the fundamental interactions!
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It is impossible to overestimate the importance of the upcoming
gravitational wave detectors! (See previous talks...)
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Understanding the phenomenology of the gravitational interaction
in the strong field regime

would shed light into other branches of physics as well:

  Nuclear physics

Which is the behaviour of matter at 
supranuclear densities, 
typical of the inner core of neutron stars? 
Are there hyperons? Deconfined quarks?

Our poor understanding of the 
neutron star equation of state 
reflects our ignorance of 
non-perturbative QCD

D. Page

  Astrophysics

•  Which is the engine of gamma-ray bursts?
•  Why do supernovae explode?
•  etc. etc...

Chandra X-Ray Observatory

CXC

SN 2006gy
Nasa
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Deviations of GR can be studied either top-down or bottom-up:

Understanding the nature of the gravitational interaction

   In a top-down approach, one starts from a particular theory,
      possibly with some motivation/inspiration from some more fundamental
      theories of framework (such as String/M theory),
      and looks for phenomenological consequencies of these theories
      to be compared with present and future observations/experiments.

•   Modified quadratic gravity (Dynamical Chern-Simons, Einstein-Dilaton-Gauss-Bonnet)

Gravitational-Wave Tests of GR with Ground-Based Detectors and Pulsar-Timing Arrays 19

Given these modifications to the dispersion relation, one would expect the generation of gravita-
tional waves to also be greatly affected in such theories, but again, lacking a particular healthy
action to consider, this topic remains today mostly unexplored.

From the structure of the above phenomenological modifications, it is clear that GR can be
recovered in the mg → 0 limit, avoiding the vDVZ issue altogether by construction. Such phe-
nomenological modifications have been constrained by several types of experiments and observa-
tions. Using the modification to Newton’s third law and precise observations of the motion of
the inner planets of the solar system together with Kepler’s third law, [437] found a bound of
λg > 2.8 × 1012 km. Such a constraint is purely static, as it does not sample the radiative sector
of the theory. Dynamical constraints, however, do exist: through observations of the decay of the
orbital period of binary pulsars, [174] found a bound of λg > 1.6× 1010 km;4 by investigating the
stability of Schwarzschild and Kerr black holes, [88] placed the constraint λg > 2.4 × 1013 km in
Fierz–Pauli theory [169]. New constraints that use gravitational waves have been proposed, includ-
ing measuring a difference in time of arrival of electromagnetic and gravitational waves [126, 266],
as well as direct observation of gravitational waves emitted by binary pulsars (see Section 5).

Although massive gravity theories unavoidably lead to a modification to the graviton dispersion
relation, the converse is not necessarily true. A modification of the dispersion relation is usually
accompanied by a modification to either the Lorentz group or its action in real or momentum space.
Such Lorentz-violating effects are commonly found in quantum gravitational theories, including
loop quantum gravity [78] and string theory [107, 403], as well as other effective models [58, 59].
In doubly-special relativity [26, 300, 27, 28], the graviton dispersion relation is modified at high
energies by modifying the law of transformation of inertial observers. Modified graviton dispersion
relations have also been shown to arise in generic extra-dimensional models [381], in Hořava–Lifshitz
theory [233, 234, 412, 76] and in theories with non-commutative geometries [186, 187, 188]. None of
these theories necessarily requires a massive graviton, but rather the modification to the dispersion
relation is introduced due to Lorentz-violating effects.

One might be concerned that the mass of the graviton and subsequent modifications to the gravi-
ton dispersion relation should be suppressed by the Planck scale. However, Collins, et al. [111, 110]
have suggested that Lorentz violations in perturbative quantum field theories could be dramati-
cally enhanced when one regularizes and renormalizes them. This is because terms that vanish
upon renormalization due to Lorentz invariance do not vanish in Lorentz-violating theories, thus
leading to an enhancement [185]. Whether such an enhancement is truly present cannot currently
be ascertained.

2.3.3 Modified quadratic gravity

Modified quadratic gravity is a family of models first discussed in the context of black holes and
gravitational waves in [473, 447]. The 4-dimensional action is given by

S ≡
�

d4x
√
−g

�
κR+ α1f1(ϑ)R

2 + α2f2(ϑ)RµνR
µν + α3f3(ϑ)RµνδσR

µνδσ

+ α4f4(ϑ)Rµνδσ
∗Rµνδσ − β

2
[∇µϑ∇µϑ+ 2V (ϑ)] + Lmat

�
. (25)

The quantity ∗Rµ
νδσ = (1/2)�δσαβRµ

ναβ is the dual to the Riemann tensor. The quantity Lmat

is the external matter Lagrangian, while fi(·) are functionals of the field ϑ, with (αi,β) coupling
constants and κ = (16πG)−1. Clearly, the two terms second to last in Eq. (25) represent a canonical
kinetic energy term and a potential. At this stage, one might be tempted to set β = 1 or the αi = 1
via a rescaling of the scalar field functional, but we shall not do so here.

4 The model considered by [174] is not phenomenological, but it contains a ghost mode.
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Given these modifications to the dispersion relation, one would expect the generation of gravita-
tional waves to also be greatly affected in such theories, but again, lacking a particular healthy
action to consider, this topic remains today mostly unexplored.

From the structure of the above phenomenological modifications, it is clear that GR can be
recovered in the mg → 0 limit, avoiding the vDVZ issue altogether by construction. Such phe-
nomenological modifications have been constrained by several types of experiments and observa-
tions. Using the modification to Newton’s third law and precise observations of the motion of
the inner planets of the solar system together with Kepler’s third law, [437] found a bound of
λg > 2.8 × 1012 km. Such a constraint is purely static, as it does not sample the radiative sector
of the theory. Dynamical constraints, however, do exist: through observations of the decay of the
orbital period of binary pulsars, [174] found a bound of λg > 1.6× 1010 km;4 by investigating the
stability of Schwarzschild and Kerr black holes, [88] placed the constraint λg > 2.4 × 1013 km in
Fierz–Pauli theory [169]. New constraints that use gravitational waves have been proposed, includ-
ing measuring a difference in time of arrival of electromagnetic and gravitational waves [126, 266],
as well as direct observation of gravitational waves emitted by binary pulsars (see Section 5).

Although massive gravity theories unavoidably lead to a modification to the graviton dispersion
relation, the converse is not necessarily true. A modification of the dispersion relation is usually
accompanied by a modification to either the Lorentz group or its action in real or momentum space.
Such Lorentz-violating effects are commonly found in quantum gravitational theories, including
loop quantum gravity [78] and string theory [107, 403], as well as other effective models [58, 59].
In doubly-special relativity [26, 300, 27, 28], the graviton dispersion relation is modified at high
energies by modifying the law of transformation of inertial observers. Modified graviton dispersion
relations have also been shown to arise in generic extra-dimensional models [381], in Hořava–Lifshitz
theory [233, 234, 412, 76] and in theories with non-commutative geometries [186, 187, 188]. None of
these theories necessarily requires a massive graviton, but rather the modification to the dispersion
relation is introduced due to Lorentz-violating effects.

One might be concerned that the mass of the graviton and subsequent modifications to the gravi-
ton dispersion relation should be suppressed by the Planck scale. However, Collins, et al. [111, 110]
have suggested that Lorentz violations in perturbative quantum field theories could be dramati-
cally enhanced when one regularizes and renormalizes them. This is because terms that vanish
upon renormalization due to Lorentz invariance do not vanish in Lorentz-violating theories, thus
leading to an enhancement [185]. Whether such an enhancement is truly present cannot currently
be ascertained.

2.3.3 Modified quadratic gravity

Modified quadratic gravity is a family of models first discussed in the context of black holes and
gravitational waves in [473, 447]. The 4-dimensional action is given by

S ≡
�

d4x
√
−g

�
κR+ α1f1(ϑ)R

2 + α2f2(ϑ)RµνR
µν + α3f3(ϑ)RµνδσR

µνδσ

+ α4f4(ϑ)Rµνδσ
∗Rµνδσ − β

2
[∇µϑ∇µϑ+ 2V (ϑ)] + Lmat

�
. (25)

The quantity ∗Rµ
νδσ = (1/2)�δσαβRµ

ναβ is the dual to the Riemann tensor. The quantity Lmat

is the external matter Lagrangian, while fi(·) are functionals of the field ϑ, with (αi,β) coupling
constants and κ = (16πG)−1. Clearly, the two terms second to last in Eq. (25) represent a canonical
kinetic energy term and a potential. At this stage, one might be tempted to set β = 1 or the αi = 1
via a rescaling of the scalar field functional, but we shall not do so here.

4 The model considered by [174] is not phenomenological, but it contains a ghost mode.
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•  Scalar-tensor theories

natural and simple generalizations of GR including additional degrees of freedom. In these theories,
which include for instance Brans-Dicke gravity [107], the metric tensor is non-minimally coupled
with one or more scalar fields. In the case of a single scalar field (which can be generalized to
multi-scalar-tensor theories [212]), the action can be written as

S =
1

16πG

�
d4x

√
−g [F (φ)R− 8πGZ(φ)gµν∂µφ∂νφ− U(φ)] + Sm(ψm, gµν) (5)

where R is the Ricci scalar associated to the metric gµν , F,Z, U are arbitrary functions of the scalar
field φ, and Sm is the action describing the dynamics of the other fields (which we call “matter
fields”, ψm).

Scalar-tensor theories can be obtained as low-energy limits of SMTs [291]; this provides a moti-
vation in studying these theories on the grounds of fundamental physics. An additional motivation
comes from the recently proposed “axiverse” scenario [44, 45], in which ultra-light axion fields
(pseudo-scalar fields, behaving under many respects as scalar fields) arise from the dimensional
reduction of SMT, and play a role in cosmological models.

Scalar-tensor theories are also appealing alternatives to GR because they predict new phe-
nomena, which are not allowed in GR. In these theories, the GW emission in compact binary
coalescences has a dipolar (� = 1) component, which is absent in GR; if the scalar field has a (even
if extremely small) mass, superradiant instabilities occur [159, 502, 662], which can determine the
formation of floating orbits in extreme mass ratio inspirals [139, 689], and these orbits affect the
emitted GW signal; last but not least, under certain conditions NSs can undergo a phase transition,
acquiring a nontrivial scalar field profile (spontaneous scalarization) [212, 213]. A detection of one
of these phenomena would be a smoking gun of scalar-tensor gravity.

These theories, whose well posedness has been proved [557, 558], are a perfect arena for NR. Re-
covering some of the above smoking-gun effects is extremely challenging, as the required timescales
are typically very large when compared to any other timescales in the problem.

Other examples for which NR will be instrumental include theories in which the Einstein-Hilbert
action is modified by including terms quadratic in the curvature (such as R2, RµνRµν , RµναβRµναβ ,
�µναβRµνρσRαβ

ρσ), possibly coupled with scalar fields. In particular, Einstein-Dilaton-Gauss-
Bonnet gravity and Dynamical Chern-Simons gravity [500, 29] can arise from SMT compactifi-
cations, and Dynamical Chern-Simons gravity also arises in Loop Quantum Gravity.

3.2 Fundamental and mathematical issues

3.2.1 Cosmic Censorship

Spacetime singularities signal the breakdown of the geometric description of the spacetime, and
can be diagnosed by either the blow-up of observer-invariant quantities or by the impossibility
to continue timelike or null geodesics past the singular point. For example, the Schwarzschild
geometry has a curvature invariant RabcdRabcd = 48G2M2/(c4r6) in Schwarzschild coordinates,
which diverges at r = 0, where tidal forces are also infinite. Every timelike or null curve crossing
the horizon necessarily hits the origin in finite proper time or affine parameter and therefore
the theory breaks down at these points: it fails to predict the future development of an object
which reaches the singular point. Thus, the classical theory of GR, from which spacetimes with
singularities are obtained, is unable to describe these singular points and contains its own demise.
Adding to this classical breakdown, it is likely that quantum effects take over in regions where
the curvature radius becomes comparable with the scale of quantum processes, much in the same
way as quantum electrodynamics is necessary in regions where EM fields are large enough (as
characterized by the invariant E2 − B2) that pair creation occurs. Thus, a quantum theory of
gravity might be needed close to singularities.

16

Some of the theories currently studied:
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• Lorentz violating gravity (Einstein-Aether theory, bigravity, Horava gravity, MOND)

• Non-commutative geometry 

• f(R) theories

• time dependent G

• etc. etc....

NR Workshop, Madeira 2011 Greg Landsberg, Constraints on TeV Gravity

• But: what if there is no other scale, and 
SM model is correct up to MPl?

– Give up naturalness: inevitably leads to 
anthropic reasoning

– Radically new approach – Arkani-
Hamed, Dimopoulos, Dvali (ADD, 
1998): maybe the fundamental Planck 
scale is only ! 1 TeV?!! 

• Gravity is made strong at a TeV scale 
due to existence of large (r ~ 1mm – 
1fm) extra spatial dimensions:

–SM particles are confined to a 3D “brane”
–Gravity is the only force that permeates 
“bulk” space

• What about Newton’s law?

• Ruled out for infinite ED, but does not 
apply for compact ones:

• Gravity is fundamentally strong force, 
but we do not feel that as it is diluted 
by the large volume of the bulk space
                            = 1/MD

2;  MD ! 1 TeV

• More precisely, from Gauss’s law:

• Amazing as it is, but as of 1998 no one 
has tested Newton’s law to distances 
less than ! 1mm! (Even now it’s been 
tested to only 0.16mm!)

• Thus, the fundamental Planck scale 
could be as low as 1 TeV for n > 1

5

1998: Large Extra Dimensions
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8× 1012m, n = 1
0.7mm, n = 2
3nm, n = 3
6× 10−12m, n = 4

Sunday, September 4, 11

NR Workshop, Madeira 2011 Greg Landsberg, Constraints on TeV Gravity 6

Randall-Sundrum Model

G

Planck brane

AdS

• Randall-Sundrum (RS) model [PRL 83, 
3370 (1999); PRL 83, 4690 (1999)]
–One + brane – no low energy effects
–Two + and – branes – TeV Kaluza-Klein 
modes of graviton
–Low energy effects on SM brane are 
given by !"; for kr ~ 10, !" ~ 1 TeV and 
the hierarchy problem is solved naturally
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–One + brane – no low energy effects
–Two + and – branes – TeV Kaluza-Klein 
modes of graviton
–Low energy effects on SM brane are 
given by "#; for kr ~ 10, "# ~ 1 TeV and 
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r

Planck brane 
(! = 0)

SM brane
(! = #)

AdS5

!

k – AdS curvature

Reduced Planck mass:

Anti-deSitter space-time metric:

ds2 = e−2kr|φ|ηµνdxµdxν − r2dφ2

Λπ = MPle
−krπ

MPl ≡MPl/
√

8π
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• Theories with large extra dimensions
   Inspired by SMT. 
    We live in a four-dimensional subspace (brane) of a higher-dimensional space (bulk). 
   Standard model fields live on the brane, but gravity propagates in the bulk.
   Since gravity tested up to fractions of millimiter, extra dimensions can be “large”.
   Some of these models help in explaining the hierarchy problem (“why gravity is so weak?”)

Predictions on LHC, but no hint up to now...

Gravitational-Wave Tests of GR with Ground-Based Detectors and Pulsar-Timing Arrays 17

Damour and Esposito-Farèse [129, 130] proposed a different type of scalar-tensor theory, one

that can be defined by the action in Eq. (15) but with the conformal factor A(ϕ) = eαϕ+βϕ2/2 or
the coupling function ω(φ) = −3/2−2πG/(β log φ), where α and β are constants. When β = 0 one
recovers standard Brans–Dicke theory. When β � −4, non-perturbative effects that develop if the
gravitational energy is large enough can force neutron stars to spontaneously acquire a non-trivial
scalar field profile, to spontaneously scalarize. Through this process, a neutron-star binary that
initially had no scalar hair in its early inspiral would acquire it before merger, when the binding
energy exceeded some threshold [51]. Binary pulsar observations have constrained this theory in
the (α,β) space; very roughly speaking β > −4 and α < 10−2 [131, 132, 177]

As for Property (4), scalar tensor theories are not built with the aim of introducing strong-field
corrections to GR.3 Instead, they naturally lead to modifications of Einstein’s theory in the weak-
field, modifications that dominate in scenarios with sufficiently weak gravitational interactions.
Although this might seem strange, it is natural if one considers, for example, one of the key
modifications introduced by scalar-tensor theories: the emission of dipolar gravitational radiation.
Such dipolar emission dominates over the general relativistic quadrupolar emission for systems in
the weak to intermediate field regime, such as in binary pulsars or in the very early inspiral of
compact binaries. Therefore, one would expect scalar-tensor theories to be best constrained by
experiments or observations of weakly-gravitating systems, as it has recently been explicitly shown
in [465].

2.3.2 Massive graviton theories and Lorentz violation

Massive graviton theories are those in which the gravitational interaction is propagated by a massive
gauge boson, i.e., a graviton with mass mg �= 0 or Compton wavelength λg ≡ h/(mgc) < ∞.
Einstein’s theory predicts massless gravitons and thus gravitational propagation at light speed,
but if this were not the case, then a certain delay would develop between electromagnetic and
gravitational signals emitted simultaneously at the source. Fierz and Pauli [169] were the first to
write down an action for a free massive graviton, and ever since then, much work has gone into
the construction of such models. For a detailed review, see, e.g., [232].

Gravitational theories with massive gravitons are somewhat well-motivated from a fundamental
physics perspective, and thus, one can say they possess Property (2). Indeed, in loop quantum
cosmology [42, 77], the cosmological extension to loop quantum gravity, the graviton dispersion
relation acquires holonomy corrections during loop quantization that endow the graviton with a
mass [78] mg = ∆−1/2γ−1(ρ/ρc), with γ the Barbero–Immirzi parameter, ∆ the area operator,
and ρ and ρc the total and critical energy density respectively. In string-theory–inspired effective
theories, such as Dvali’s compact, extra-dimensional theory [157], such massive modes also arise.

Massive graviton modes also occur in many other modified gravity models. In Rosen’s bimetric
theory [365], for example, photons and gravitons follow null geodesics of different metrics [438, 435].
In Visser’s massive graviton theory [424], the graviton is given a mass at the level of the action
through an effective perturbative description of gravity, at the cost of introducing a non-dynamical
background metric, i.e., a prior geometry. A recent re-incarnation of this model goes by the name
of bigravity, where again two metric tensors are introduced [349, 346, 219, 220]. In Bekenstein’s
Tensor-Vector-Scalar (TeVeS) theory [54], the existence of a scalar and a vector field lead to
subluminal gravitational-wave propagation.

Massive graviton theories have a theoretical issue, the van Dam–Veltman–Zakharov (vDVZ)
discontinuity [418, 475], which is associated with Property 1.a, i.e., a GR limit. The problem is that
certain predictions of massive graviton theories do not reduce to those of GR in the mg → 0 limit.

3 The process of spontaneous scalarization in a particular type of scalar-tensor theory [129, 130] does introduce
strong-field modifications because it induces non-perturbative corrections that can affect the structure of neutron
stars. This subclass of scalar-tensor theories would satisfy Property (4).

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2013-9

•  Massive graviton theories  (Galileons, bigravity)

What if the graviton has a mass?  Huge work to face theoretical issues (ghosts, GR as a limit)
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Understanding the nature of the gravitational interaction

   In a bottom-up approach, one starts from some observables,
      looking to violations of fundamental symmetries of properties of GR.
      Once a deviation is detected, one tries to understand its origin.

For instance, violations of:

• the “no-hair theorem” of black holes, stating that stationary BHs
   only depend on mass, angular momentum (and possibly electric charge)

• inverse-square law at short distances

• inverse-square law at large distances

• parity symmetry in the gravitational field

• polarization of the gravitational waves (transverse traceless)

• weak equivalence principle

•  Lorentz symmetry
                                            <=  speed of GWs, dispersion relation
•  masslessness of the graviton 
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Understanding the nature of the gravitational interaction

       GR deviations in a bottom-up approach can also be studied
       introducing appropriate parametrizations,

depending on the phenomenology under consideration

•  Parametrized post-Newtonian (PPN) approach:
   deviations of post-Newtonian (e.g., expanded in v/c around Newtonian gravity)
   spacetime metric of n-bodies are expressed in terms of a set of parameters.
   Suitable to describe and perform solar-systems tests of GR.

•  Parametrized post-Einsteinian (PPE) approach:
    deviation of the gravitational waveform emitted by the coalescence of 
    a compact binary system is expressed in terms of a set of parameters.
    Suitable for GR tests with ground-based gravitational wave detectors.

•  Quadrupole expansion of black hole metric:
    deviation from the Kerr solution describing rotating black holes, and affecting 
    the gravitational waveform from extreme mass-ratio inspirals,
    is expressed through a multipolar expansion.
    Suitable for GR tests with space-based gravitational wave detectors.
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Conclusions

  All experiments and observations of gravity confirm that this interaction
     is well described by General Relativity, maybe the most beautiful and
     elegant theory ever conceived - which will celebrate its centenaty in 2015 

  However, gravity has only been probed in the weak field regime,
     in which GR behaves as a linear theory.  

  Most of the main open questions in gravitational physics, in my opinon, 
     involve the strong field regime of gravity:
•  Which is the phenomenology of gravity in this regime? 
•  Do completely unexpected phenomena occur?
•  Which is the nature of gravity in this regime? Is it well described by GR?

  Gravitational wave detectors will soon allow us to probe 
     - for the first time - the strong field regime of gravity, 
    opening a new window on the Universe and on the gravitational interaction. 
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