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Abstract
In this paper a Neural Networks based approach is presented to identify
the noise in the VIRGO context. VIRGO is an experiment to detect
Gravitational Waves by means of a Laser Interferometer. Preliminary
results appear to be very promising for data analysis of realistic Interfer-
ometer outputs.

1 Introduction

Neural Networks (NN’s) have become in the last years a very effective instru-
ment for solving many difficult problems in the field of Signal Processing due
to their properties like non-linear dynamics, adaptability, self-organization and
high speed computational capability (see for example [4] and the papers therein
quoted).

Aim of this paper is to show the feasibility of the use of NN’s to solve difficult
problems of signal processing regarding the so called VIRGO project. Gravita-
tional Waves (GW’s) are travelling perturbations of the space-time predicted
by the theory of General Relativity, emitted when massive systems are acceler-
ated. Up to now, there is only an indirect evidence of their existence, obtained
by the observations of the binary pulsar system PSR 1913+16. Moreover, the
direct detection of GW’s is not only a relevant test of General Relativity, but
the start of a new picture of the Universe. In fact, GW’s carry complementary
information with respect to electromagnetic and optical waves, since the GW’s
are practically not absorbed by the matter.

The aim of the Virgo experiment is the direct detection of gravitational
waves and, in joint operation with other similar detectors, to perform gravita-
tional waves astronomical observations. In particular, the VIRGO project is



designed for broadband detection from 10Hz to 10kHz. The principle of the
detector is shown in figure 1.

A 3 km arm-length Michelson interferometer with suspended mirrors (test
masses) is used. The phase difference ∆φ between the two arms is amplified
using Fabry-Perot cavities of Finesse 50 in each arm. Aiming for detection sen-
sitivity of 3.10E − 23 1

Hz at 100Hz, VIRGO is a very delicate experimental
challenge because of the competition between various sources of noise and the
very small expected signal. In fact, the interferometer will be tuned on the dark
fringe, and then the signal to noise ratio will be mainly limited, in the above
defined range of sensitivity, by residual seismic noise, thermal noise of the sus-
pensions photon counting noise (shot noise). In figure 2 the overall sensitivity
of the apparatus is shown. In this figure it is easy to see the contribution of
the different noise sources to the global noise.

In this context we use a Multi-Layer Perceptron (MLP) NN with the back-
propagation learning algorithm to model and identify the noise in the system,
because we experimentally found that FIR NN’s and Elman NN’s did not work
in a satisfying manner.

Both the FIR [11] and Elman [12] models proved to be very sensible to
overfitting and were not stable. Furthermore the Elman network required a
great number of hidden units, while the FIR network required a great number
of delay terms. Instead, the MLP proved succesfull and easy to train because
we used the Bayesian learning paradigm.

2 Neural networks for time-domain system
identification

NN’s are massively parallel, distributed processing systems. They are composed
of a large number of processing elements (called nodes, units or neurons) which
operate in parallel. Scalars (called weights) are associated to the connections
between units and determine the strength of the connections themselves. Com-
putational capability is due to the connections between the units and to their
collective behaviour. Furthermore, information representation is distributed,
i.e. no single unit is charged with specific information. NN’s are well-known
for their universal approximation capability [1].

System identification consists in finding the input-output mapping of a dy-
namic system. A discrete-time Multi-Input Multi-Output (MIMO) system (or a
continuous-time sampled-data system) can be described with a set of non-linear
difference equations of the form (input-state-output representation):{

z(n + 1) = F (z(n),u(n))
y(n) = G(z(n)) (1)

where z ∈ RL is the state vector of the system, u ∈ RM is the input vector and
y ∈ RN is the output vector. Since we can not always access the state vector
of the system, therefore we can use an input-output representation of the form:

y(n) = F [y(n− 1),y(n− 2), . . . ,y(n− ny),



u(n− nd),..., u(n− nu − nd + 1)] (2)

where nu and ny are the maximum lags of the input and output vectors, re-
spectively, and nd is the pure time-delay (or dead-time) in the system. This
is called an ARX model (autoregressive with exogenous inputs,) and it can be
shown that a wide class of discrete-time systems can be put in this form [2].
To build a model of the form (2), we must therefore obtain an estimation of
the functional F [·], which generally is nonlinear.

Given a set of input-output pairs, a neural network can be built [4] which
approximates the desired functional F [·]. Such a network has nyN+(nu−nd)M
inputs and N outputs (see figure 3).

A difficulty in this approach arises from the fact that generally we do not
have information about the model order (i.e. the maximum lags to take into
account) unless we have some insight into the system physics. Furthermore, the
system is non-linear. Recently [3] a method has been proposed for determining
the so-called embedding dimension of nonlinear dynamical systems, when the
input-output pairs are affected by very low noise. Furthermore, the lags can
be determined by evaluating the average mutual information (AMI)[8]. Such
methodologies, although not always successful, can be nevertheless used as a
starting point in model design.

3 Virgo

In the VIRGO data analysis, the most difficult problem is the gravitational
signal extraction from the noise due to the intrinsic weakness of the gravita-
tional waves, to the very poor signal-to-noise ratio and to their not well known
expected templates. Furthermore, the Virgo detector is not yet operational,
and the noise sources analyzed are purely theoretical models (often stationary
noises), not based on experimental data. Therefore, we expect a great differ-
ence between the theoretical noise models and the experimental ones. As a
consequence, it is very important to study and to test algorithms for signal
extraction that are not only very good in signal extraction from the theoretical
noise, but also very adaptable to the real operational conditions of Virgo.

For this reason, we decided the following strategy for the study, the defini-
tion and the tests of algorithms for gravitational data analysis. The strategy
consists of the following independent research lines.

The first line starts from the definition of the expected theoretical noise
models. Then a signal is added to the Virgo noise generated and the algorithm
is used for the extraction of the signal of known and unknown shape from this
noise at different levels of signal-to-noise ratio. This will allow us to make a
number of data analysis controlled experiments to characterize the algorithms.

The second line starts from the real measured environmental noise (acoustic,
electromagnetic, ...) and tries to identify the noise added to a theoretical signal.
In this way we can test the same algorithms in a real case when the noise is
not under control.



Using this strategy, at the end, when in a couple of years Virgo will be
ready for the first test of data analysis, the procedure will be moved to the
real system, being sure to find small differences from theory and reality after
having acquired a large experience in the field.

4 A neural network-based model of the Virgo
system

As we have seen in the introduction, the Virgo interferometer can be char-
acterized by a sensitivity curve, which expresses the capability of the system
to filter undesired influences from the environment, and which could spoil the
detection of gravitational waves (such a noise is generally called seismic noise).
The sensitivity curve has the following expression:
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where:
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where the different masses of close and far mirrors are taken into account:

• f
(c)
i = i · 327Hz

• f
(f)
i = i · 308.6Hz

• Cc = 3.22 · 10−40

• Cf = 2.82 · 10−40

• φ2
i = 10−7



Note that we used a simplified curve for our simulations, in which we ne-
glected the resonances (see figure 4).

Samples of the sensitivity curve {Si}i can be obtained by evaluating the
expression (3) at a set of frequencies {fi}i, fi ∈ [10, 10000]. The samples of
the sensitivity curve allow us to obtain the system transfer function (in the
frequency domain), N(j2πf), such that:

|N(jω)|2 = S(jω) (5)

¿From this, by means of an inverse Discrete Fourier Transform, samples of the
system transfer function (in the time domain) can be obtained. Our aim is to
build a model of the system transfer function (5).

Assuming that the interferometer input noise is a zero mean Gaussian pro-
cess, by feeding it to the system (i.e. filtering it through the system transfer
function) we obtain a coloured noise. The so obtained white noise-colored noise
pairs can then be used to train an MLP, as shown in figure 3.

4.1 Experimental Results

The first step in building an ARX model is the model order determination.
To determine suitable lags which describe the system dynamics, we used the
AMI criterion [8]. This can be seen as a generalization of the autocorrelation
function, used to determine lags in linear systems. A strong property of the
AMI statistic is that it takes into account the non-linearities in the system.
Usually, the lag is chosen as the first minimum of the AMI function. The result
is reported in figure 5, in which the first minimum is at 1. To find how many
samples are necessary to unfold the (unknown) state-space of the model (the
so called embedding dimension [8]) we used the method of [3], the Lipschitz
decomposition. The result of the search is reported in figure 6.

From the figure we can see that, starting from lag three, the order index
decreases very slowly, and so we can derive that the width of the input window
is at least three. In order to test the NN’s capability in solving the problem,
we chose a width of 5, both for input and output (i.e. ny = nu = 5). In this
way, we obtained a NN with a simple structure. Furthermore, some preliminary
experiments showed that the system dead-time is nd = 0; this gives the best
description of the system dynamics.

Another fundamental issue is the NN complexity, i.e. the number of units
in the hidden layers of the NN. Usually the determination of the network com-
plexity is critical because of the risks of overfitting. Since the NN was trained
following a Bayesian framework, then overfitting was of no concern; so we di-
rected our search for a model with the minimum possible complexity. In our
case, we found a hidden layer with 6 tanh units is optimal.

The Bayesian learning framework (see [10] and [9]) allows the use of a dis-
tribution of NN’s, that is, the model is a realization of a random vector whose
components are the NN weights. The so obtained NN is the most probable given
the data used to train it. This approach avoids the bias of the cross-validatory
techniques commonly used in practice to reduce model overfitting [6]. To allow



for a smooth mapping which does not produce overfitting, several regulariza-
tion parameters (also called hyperparameters) embedded in the error criterion
have been used:

• one for each set of connections out of each input node,

• one for the set of connections from hidden to output units,

• one for each of the bias connections,

• one for the data-contribution to the error criterion.

Usually, the hyperparameters of the first three kinds are called alphas, while
the last is called a beta.

The approach followed in the application of the Bayesian framework is the
“exact integration” scheme, where we sample from the analytical form of the
distribution of the network weights. This can be done if we assume an analytic
form for the prior hyperparameters distribution, in particular a distribution
uniform on a logarithmic scale:

p(ln αi) =
1
αi

.

This distribution is non-informative, i.e. it embodies our complete lack of
knowledge about the values the hyperparameters should take.

The chosen model was trained using a sequence of little less than a million of
patterns (we sampled the system at 4096Hz for 240s) normalized to zero mean
and unity variance with a whitening process. Note that the input-output pairs
were processed through discrete integrators to obtain pattern-target pairs, as
shown in figure 3. The NN was then tested on a 120s long sequence.

The NN was trained for 370 epochs, with the hyperparameters being up-
dated every 15 epochs. A close look at the α hyperparameters shows that all
the inputs are relevant for the model (they are of the same magnitude; note
that this further confirms the pre-processing analysis). The β hyperparameter
shows that the data contribution to the error is very small (as we would expect,
since the data are synthetic).

The simulations were made using the MATLAB c© language, the Netlab
Toolbox [7] and other software designed by us.

In figure 7, the PSDs of the target and the predicted time series are shown;
in the lower part of the figure is reported the PSDs of the prediction residuals.

In figure 8, the PSD of a 100Hz sine wine added to the noise is shown, with
the signal extracted by the network. As can be seen, the network recognizes
the frequency of the sine wave with the maximum precision allowed by the
residuals.

5 Conclusion

In this paper we have shown some preliminary tests on the use of NN’s for
signal processing in the VIRGO Project. Some observations can be elicited



from the experimental results:

• In evaluating the Power Spectral Densities (PSDs), we made the hypoth-
esis that the system is sampled at 4096Hz. It is only a work hypothesis,
but it shows how the network reproduces the system dynamics up to
2048Hz. Note that the PSDs are nearly the same also if we were near
the Nyquist frequency.

• The PSD of the residuals shows a nearly-white spectrum, which is index
of the model goodness (see [5]).

The next steps in the research are:

- to increase the system model order and to test if there are significant differ-
ences in prediction;

- to test the models with a greater number of samples to obtain a better esti-
mate of the system dynamics;

- to model the noise inside the system model to improve the system perfor-
mance and to allow a multi-step ahead prediction (i.e. an output-error
model)
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Figure 1: Scheme of the Virgo interferometer.



Figure 2: Sensitivity curve of the Virgo interferometer.
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Figure 3: A neural network ARX model.
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Figure 4: The simplified sensitivity curve used for the experiments.

Figure 5: Average mutual information.



Figure 6: Determination of the embedding dimension.

10
1

10
2

10
3

10
4

10
−3

10
−2

10
−1

10
0

10
1

10
2

Frequency [Hz]

no
rm

al
iz

ed
 h

(f
) 

[1
/s

qr
t(

H
z)

]

PSDs

Figure 7: Results of the training.
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Figure 8: Example of signal extraction.


