VHE gamma-ray astrophysics from ground: MAGIC and CTA

Alessandro De Angelis
INFN-U. Udine/LIP-IST Lisboa

• VHE gamma rays
• The detection: Cherenkov Telescopes
• Some results
• What’s next

Gran Sasso, September 2013
How are VHE (above 30 GeV) gamma rays produced?

- Radiation from accelerated charged particles
 - Interaction with photon fields & clouds
 - Hadronic and leptonic mechanisms

- But also (unobserved up to now)
 - Top-down mechanisms
 - New particles? Dark matter?
How do gamma rays reach us?

\[\gamma_{\text{VHE}} \gamma_{\text{bck}} \rightarrow e^+e^- \]

\[
\sigma(\beta) \sim 1.25 \cdot 10^{-27} (1 - \beta^2) \cdot \left[2\beta(\beta^2 - 2) + (3 - \beta^4) \ln \left(\frac{1 + \beta}{1 - \beta} \right) \right] \text{cm}^2
\]

Max for:

\[
\epsilon \gtrsim \frac{2m_e^2 c^4}{E} \gtrsim \left(\frac{500 \text{GeV}}{E} \right) \text{eV}
\]

\[
\Phi_{\text{obs}}(E, z) \equiv \Phi_{\text{em}}(E) \times e^{-\tau(E, z)}
\]
Gamma rays interact with the atmosphere

=> GeV (HE) detection requires satellites; TeV (VHE) can be done at ground
Detectors

- Satellites (AGILE, Fermi)
 - Silicon tracker (+calorimeter)

- Cherenkov telescopes (HESS, MAGIC, VERITAS)

- Extensive Air Shower det. (ARGO): RPC, scintillators

HEP detectors!
Why detection at ground?

- High energies
 - Only way to build sensitive >TeV instruments
 - Maximum flux < 1 photon/h/m² above 200 GeV
- High statistics / short timescales
 - Large collection areas O(km²)
- Precision (IACTs)
 - Superior angular resolution
- Limitations?
 - IACTs
 - Smaller duty cycle
 - Smaller field of view
 - Ground particle detectors
 - Modest resolution and background rejection power
 - Complementary approaches
The Cherenkov technique

Incoming γ-ray

$\theta_c \sim 1^\circ$
e Threshold @ sl: 21 MeV
Maximun of a 1 TeV shower
~ 8 Km asl
~ 200 photons/m2 in the visible
Angular spread $\sim 0.5^\circ$

$\gamma + p \rightarrow e^+ e^-$
$\gamma^* + e^- \rightarrow \gamma$

Image intensity ➔ Shower energy
Image orientation ➔ Shower direction
Image shape ➔ Primary particle
Signal duration: ~ 3ns
Highlight in γ-ray astrophysics (MAGIC, HESS, VERITAS)

• Thanks mostly to Cherenkov telescopes, imaging of VHE (> 30 GeV) galactic sources and discovery of many new galactic and extragalactic sources: ~ 150 (and >200 papers) in the last 9 years
 – And also a better knowledge of the diffuse gammas and electrons

• A comparable success in HE (the Fermi realm); a 10x increase in the number of sources

• A new tool for cosmic-ray physics and fundamental physics
TeV Impact

Highlights from HESS, MAGIC, VERITAS & MILAGRO

- Starbursts: Nature 462, 770 (2009), Science 326,1080 (2009)

(J. Hinton)
VERITAS: 4 telescopes (~12m) in Arizona operational since 2006

<table>
<thead>
<tr>
<th>Instr.</th>
<th>Tels.</th>
<th>Tel. A (m²)</th>
<th>FoV (°)</th>
<th>Tot A (m²)</th>
<th>Thresh. (TeV)</th>
<th>PSF (°)</th>
<th>Sens. (% Crab)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H.E.S.S.</td>
<td>4</td>
<td>107</td>
<td>5</td>
<td>428</td>
<td>0.1</td>
<td>0.06</td>
<td>0.7</td>
</tr>
<tr>
<td>MAGIC</td>
<td>2</td>
<td>236</td>
<td>3.5</td>
<td>472</td>
<td>0.05 (0.03)</td>
<td>0.06</td>
<td>0.8</td>
</tr>
<tr>
<td>VERITAS</td>
<td>4</td>
<td>106</td>
<td>4</td>
<td>424</td>
<td>0.1</td>
<td>0.07</td>
<td>0.7</td>
</tr>
</tbody>
</table>

H.E.S.S.: 4 telescopes (~12m) in Namibia operational since 2003
HESS 2: 5th telescope (27-28m) will be commissioned in a few months
HESS

HESS-1: 4×12m tels
HESS-2: +28m tel.

Completed mid-2012
MAGIC at La Palma

(2 x 17 m diameter telescopes)

Fast movement, low threshold (~30 GeV), works under (moderate) moonlight

Commissioned as stereo since 2010, was mono since 2004, refurbished in 2013
The Main Telescopes of the “Roque de los Muchachos” European Northern Observatory

ORM is located on the Canary island of La Palma, at a height of 2200-2400 m a.s.l.
~170 Collaborating Astro-Physicists from 9 Countries

- **Bulgaria**: Sofia
- **Croatia**: Consortium (Zagreb, +...)
- **Finland**: Consortium (Tuorla, +...)
- **Germany**: DESY Zeuthen, U. Dortmund, MPI Munich, U. Würzburg
- **Japan**: Consortium (Kyoto, +...)
- **Italy**: INFN & U. Padova, INFN Pisa & U. Siena, INFN Como/Milano Bicocca, INFN Udine/Trieste & U. Udine, INAF (Consortium: Rome, +...)
- **Poland**: Lodz
- **Switzerland**: ETH Zurich
Main technological novelties of MAGIC

• Active mirror control
• Light weight (60 tons), fast repositioning to catch transients (GRBs etc.)
• PMTs with low gain, to enhance duty cycle
• 2 GB sampling
• Smart triggers for low energy
• Daily monitoring of mirror performance thanks to a CCD camera
• ...

Alessandro De Angelis
Main physics results and perspectives
(MAGIC: ~1 refereed paper/month)

- Cosmic Rays
- Photon propagation
 - Transparency of the Universe;
 - Energy of the vacuum;
 - Tests of Lorentz Invariance;
 - Cosmology
- Search for “WIMP” Dark Matter
Sources of CR up to the knee
Cherenkov telescopes & gamma satellites

- Evidence that SNR are sources of CR up to ~1000 TeV (almost the knee) came from morphology studies of RX J1713-3946 (H.E.S.S. 2004)
- Striking evidence from the morphology of SNR IC443 (MAGIC + Fermi/Agile 2010)
Molecular clouds close to IC 443, W51, RX J1713.7-3946

- VHE γ-ray excess compatible with cloud
- Differential energy spectrum prefers π^0 production
Supernova Remnants

- The Big News – Fermi/AGILE π^0 bump – but what about IACT results?
- Young SNRs:
 - Resolved shells in TeV
 - Acceleration to a few hundred TeV
 - But where are the Pevatrons? (see later)
- The middle aged SNRs
 - Interactions with nearby molecular clouds
 - As seen in GeV
 - In TeV: resolved emission +++
- In general
 - Impact of time-dependent acceleration, environment and particle escape, is being explored for the first time

(J. Hinton)
Evolutionary sequence ???:
100s of years, kys, 10s of kys
Active Galaxies

- Continued diversification of the “Zoo”
 - NGC 1275, IC 310, AP Librae, 4C +21.35, ...
 (cf Cen A, M 87, BL Lac, Mrk 421, 3C 279)
 - TeV emission seems to be “normal” for AGN
 - But beaming needed for detection of all but the closest objects with current instruments

- Expansion of the known universe at VHE
 - Now six VHE emitters known beyond z=0.4
 - and 12 with z>0.2, EBL tightly constrained

- Gamma-ray evidence for hadron acceleration in AGN jets still missing...
 - Multi-zone synchrotron + IC models quite successful (increasingly realistic - but many free parameters...)
 - Extremely fast variability is a challenge for all models

(J. Hinton)
How do gamma rays reach us?

\[\gamma_{\text{VHE}} \gamma_{\text{bck}} \rightarrow e^+ e^- \]

\[\epsilon > \epsilon_{\text{thr}}(E, \varphi) \equiv \frac{2m_e^2 c^4}{E(1 - \cos \varphi)} \]

\[\sigma_{\gamma\gamma}(E, \epsilon, \varphi) = \frac{2\pi\alpha^2}{3m_e^2} W(\beta) \approx 1.25 \cdot 10^{-25} W(\beta) \text{ cm}^2, \]

\[W(\beta) = (1 - \beta^2) \left[2\beta (\beta^2 - 2) + (3 - \beta^4) \ln \left(\frac{1 + \beta}{1 - \beta} \right) \right] \]

Maximum \(\sigma_{\gamma\gamma}^{\text{max}} \approx 1.70 \cdot 10^{-25} \text{ cm}^2 \) for \(\beta \approx 0.70 \). For an isotropic background, it is maximized for

\[\epsilon(E) \approx \left(\frac{900 \text{ GeV}}{E} \right) \text{ eV} \]

(Costamante 2012)
\[\Phi_{\text{obs}}(E, z) \equiv \Phi_{\text{em}}(E) \times e^{-\tau(E, z)} \]

\(\tau = 1 \) (GRH)

\(e^{-\tau} = 0.01 \)

Cen A

GC

50 GeV

100 GeV

500 GeV

\(\tau - \Phi \equiv \Phi \)
Extragalactic Sources

~50 Sources

...

1ES 1011+496 z=0.21 MAGIC 2007
1ES 0414+009 z=0.29 HESS/Fermi 2009
S5 0716+71 z=0.31±0.08 MAGIC 2009
1ES 0502+675 z=0.34 VERITAS 2009
PKS 1510-089 z=0.36 HESS 2009
4C +21.43 z=0.43 MAGIC 2010
3C 66A z=0.44 VERITAS 2009
3C 279 z=0.54 MAGIC 2008
Are our AGN observations consistent with theory (1) ?

MAGIC 3C 279 (z=0.54)
PKS 1424+240 (z>0.6)
Are our AGN observations consistent with theory (2)?

Measured spectra affected by attenuation in the EBL:

Selection bias? New physics?

(observed spectral index vs. redshift)

(DA, Galanti, Roncadelli; PRD 2011)
Attempts to quantify the problem overall

- Analysis of AGN
 - For each data point, a corresponding lower limit on the optical depth τ is calculated using a minimum EBL model
 - Nonparametric test of consistency
 - Disagreement with data: overall significance of 4.2σ

\Rightarrow Understand experimentally the outliers

(Horns, Meyer 2011)
A reminder: EBL rather well constrained, and extrapolation from Fermi is possible.
If there is a problem

Explanations from the standard ones
- very hard emission mechanisms with intrinsic slope < 1.5 (Stecker 2008)
- Very low EBL, plus observational bias, plus a couple of “wrong” outliers
to almost standard
- γ-ray fluxes enhanced by relatively nearby production by interactions of primary cosmic rays or ν from the same source
to possible evidence for new physics
- Oscillation to a light “axion”? (DA, Roncadelli & MAnsuitti [DARMA], PRD2007, PLB2008)
- Axion emission (Simet+., PRD2008)
- A combination of the above (Sanchez Conde et al. PRD 2009)
Axions and ALPs

- The “strong CP problem”: CP violating terms exist in the QCD Lagrangian, but CP appears to be conserved in strong interactions
- Peccei and Quinn (1977) propose a solution: clean it up by an extra field in the Lagrangian
 - Called the “axion” from the name of a cleaning product
 - Pseudoscalar, neutral, stable on cosmological scales, feeble interaction, couples to the photon
 - Can make light shine through a wall
 - The minimal (standard) axion coupling $g \propto m$; however, one can have an “ALP” in which $g = 1/M$ is free from m

$$m \frac{1}{1 \text{ eV}} \approx \frac{1}{M/6 \times 10^6 \text{ GeV}}$$
The photon-axion mixing mechanism

\[L_{\gamma\gamma} = g_{\gamma\gamma} (\vec{E} \cdot \vec{B}) a \]

- Magnetic field $1 \text{nG} < B < 1 \text{aG}$ (AGN halos). Cells of $\sim 1 \text{Mpc}$

\[
P_{\gamma \to a} \approx NP_1
\]

\[
P_1 \approx \frac{g_{\gamma\gamma}^2 B_T^2 s^2}{4} \approx 2 \times 10^{-3} \left(\frac{B_T}{1 \text{nG}} \frac{s}{1 \text{Mpc}} \frac{g_{\gamma\gamma}}{10^{-10} \text{GeV}^{-1}} \right)^2
\]

- $m_a < 0.02 \text{ eV}$ (direct searches)
- $g < 10^{-10} \text{ GeV}^{-1}$ from astrophysical bounds
If $B \sim 0.1–1 \text{ nG}$, $\lambda \sim 1-10 \text{ Mpc}$, observations can be explained.

Note: if conversion “a la Simet-Hooper-Serpico”, => the effect could be directional

• Could also be something else:
 Whatever (light and almost sterile) particle feebly coupling to the photon
 – Paraphoton
 • Shadow photon
 – New millicharged particles
Intergalactic magnetic fields: indications from DARMA
Preferred values for m, g
Is Lorentz invariance exact?

• For longtime violating Lorentz invariance/Lorentz transformations/Einstein relativity was a heresy
 – Is there an aether? (Dirac 1951)
 – Many preprints, often unpublished (=refused) in the ’90s

• Then the discussion was open
 – Trans-GZK events? (AGASA collaboration 1997-8)
 – LIV => high energy threshold phenomena: photon decay, vacuum Cherenkov, GZK cutoff (Coleman & Glashow 1997-8)
 – GRB and photon dispersion (Amelino-Camelia et al. 1997)
 – Framework for the violation (Colladay & Kostelecky 1998)
 – LIV and gamma-ray horizon (Kifune 1999)
 – ...
LIV? New form of relativity?

• Von Ignatowsky 1911: \{relativity, homogeneity/isotropy, linearity, reciprocity\} => Lorentz transformations with “some” invariant c (Galilei relativity is the limit c \(\rightarrow \infty\))

• CMB is the aether: give away isotropy?

• QG motivation: give away linearity? (A new relativity with 2 invariants: “c” and \(E_p\))

• In any case, let’s sketch an effective theory...
 – Let’s take a purely phenomenological point of view and encode the general form of Lorentz invariance violation (LIV) as a perturbation of the Hamiltonian (Amelino-Camelia+)
A heuristic approach: modified dispersion relations (perturbation of the Hamiltonian)

- We expect the Planck mass to be the scale of the effect

\[E_P = \sqrt{\frac{hc}{G}} \cong 1.2 \times 10^{19} \, \text{GeV} \]

\[H^2 = m^2 + p^2 \rightarrow H^2 = m^2 + p^2 \left(1 + \frac{E}{E_P} + \ldots \right) \]

\[H \overset{p \gg}{\rightarrow} p \left(1 + \frac{m^2}{2p^2} + \frac{\xi}{2E_P} \frac{p}{E} + \ldots \right) \]

\[v = \frac{\partial H}{\partial p} \cong 1 - \frac{m^2}{2p^2} + \frac{\xi}{2} \frac{p}{E_P} \Rightarrow v = 1 + \frac{\xi}{E_P} \]

\[\Delta t_\gamma \cong T \Delta E \frac{\xi}{E_P} \]

=> effect of dispersion relations at cosmological distances can be important at energies well below Planck scale:
Variability
Rapid variability

HESS PKS 2155
- $z = 0.116$
- July 2006
- Peak flux $\sim 15 \times$ Crab
- $\sim 50 \times$ average
- Doubling times $1-3 \text{ min}$
- $R_{\text{BH}}/c \sim 1...2 \cdot 10^4 \text{ s}$

MAGIC, Mkn 501
- Doubling time $\sim 2 \text{ min}$

astro-ph/0702008
arXiv:0708.2889

arXiv:0706.0797
2nd order? Cherenkov rules!

\[
(\Delta t)_{obs} = \frac{3}{2} \left(\frac{\Delta E}{E_{s2}} \right)^2 H_0^{-1} \int_0^z dz' \frac{(1 + z')^2}{\sqrt{\Omega_M (1 + z')^3 + \Omega_\Lambda}}
\]

\[E_{s2} > 6 \times 10^{10} \text{ GeV} \ (\sim 10^{-9} M_p) \ (\text{HESS, MAGIC})\]

A no-loss situation:
if propagation is standard, cosmology with AGN
The Dark Matter Problem

Measure rotation curves for galaxies:

For large r, we expect:

\[\frac{GM}{r^2} = \frac{v^2(r)}{r} \implies v(r) \sim \frac{1}{\sqrt{r}} \]

we see: flat or rising rotation curves

Hypothesized solution: the visible galaxy is embedded in a much larger halo of Dark Matter (neutral; weakly interacting; mix of particles and antiparticles - in SUSY Majorana)

Famous Bullet Cluster

(B. Atwood)
Which signatures for gamma detectors?

- Self-annihilating WIMPs, if Majorana (as the neutralino in SUSY), can produce:
 - Photon lines ($\gamma\gamma, \gamma Z$)
 - Photon excess at $E < m$ from hadronization
- Excess of antimatter (annihilation/decay)
- Excess of electrons, if unstable

\[
\Phi \propto \sigma \frac{\langle v \rangle}{m^2} \int_{\text{los}} \rho^2 \, dl
\]

Look to the closest point with $M \ll L$ from astrophysics

from particle physics
Uncertainties

- Largest uncertainty: density
- Density distribution is well known in the halo, where you do not expect most of the signal, while cusps are more uncertain

\[
\text{NFW: } \rho_{\text{NFW}}(r) = \rho_s \frac{r_s}{r} \left(1 + \frac{r}{r_s}\right)^{-2}
\]

\[
\text{Einasto: } \rho_{\text{Ein}}(r) = \rho_s \exp \left\{ -\frac{2}{\alpha} \left[\left(\frac{r}{r_s}\right)^\alpha - 1 \right] \right\}
\]

\[
\text{Moore: } \rho_{\text{Moore}}(r) = \rho_s \left(\frac{r_s}{r} \right)^{1.16} \left(1 + \frac{r}{r_s}\right)^{-1.84}
\]

=> Results are difficult to compare
Many Places to Seek DM!

Satellites
Low background and good source id, but low statistics, astrophysical background

Galactic Center
Good statistics but source confusion/diffuse background

Milky Way Halo
Large statistics but diffuse background

Spectral Features
Lines, endpoint Bremsstrahlung,…
No astrophysical uncertainties, good source Id, but low sensitivity because of expected small BR

Extra-galactic
Large statistics, but astrophysics, galactic diffuse backgrounds

Plus data-driven searches
Results

- No excess from GC
- No excess from DSph
- No sensitivity for halo

- Possible data-driven searches: no sensitivity to confirm nor disprove recent claims of an excess ~ 130 GeV
Cosmic e^+ and e^-: the ATIC & PAMELA anomalies

Flux of e^+ plus e^-: no peaks; a possible excess might have astrophysical explanations
Ratio e^+/e^-: needs more time, will be done

Alessandro De Angelis
DM: interplay with accelerators

- LHC may find candidates but cannot prove that they are the observed Dark Matter, nor localize it
- *Direct searches (nuclear recoil)* may recognize *local halo WIMPs* but cannot prove the nature and composition of Dark Matter in the sky

- LHC reach limited to some 200-600 GeV; IACT sensitivity starts at some ~200 GeV (should improve)
A wish list for the future

- Galactic sources & CR
- AGN & gamma prop.
- New particles, new phenomena
 - dark matter and astroparticle physics

- extend E range beyond 50 TeV
- better angular resolution
- larger FOV
- monitor many objects simult.
- extend E range under 50 GeV
- 10x sources
- better flux sensitivity
- lower threshold
The Cherenkov Telescope Array

- A huge improvement in all aspects of performance
 - A factor \sim10 in sensitivity, much wider energy coverage, much better resolution, field-of-view, full sky, ...
- A user facility / proposal-driven observatory
 - With two sites with a total of >100 telescopes
- A 27 nation \sim€200M project
 - Including everyone from HESS, MAGIC and VERITAS

Prototypes: 2013-15
First Science: \sim2016
Completion: \sim2019
The CTA concept (a possible design)

2 arrays: north+south → all-sky coverage

low energy section
$E_{\text{thresh}} \sim 10$ GeV
4 $\varnothing \sim 23$ m telescopes

core array
100 GeV-10 TeV
$\sim 25 \varnothing \sim 12$ m telescopes

high energy section
$\sim 40 \varnothing = 6-7$ m tel.
on 10 km² area

Alessandro De Angelis
CTA MST Prototype

dummy camera
Design: 23 m Large Telescopes
optimized for the range below 200 GeV

27.8 m focal length
4.5° field of view
0.1° pixels

400 m² dish area
1.5 m sandwich mirror facets

On (GRB) target in < 20 s

Carbon-fibre structure

INFN working on cluster for a possible camera & electronics
Design: Small 4-6 m Telescopes
cover the range above few TeV across 10 km²

Under study:
dual-mirror optics with compact photo sensor arrays
single-mirror optics
PMT-based and silicon-based sensors
Not yet conclusive which solution is most cost-effective
INAF prototype ready soon, INFN working on camera & electronics
Sites: Candidates

- Arizona (2)
- SPM - Mexico
- Argentina (2)
- Tenerife
- Aar/HESS Namibia
- Chile - Armazones

Additional lower priority candidates
LHAASO

Gamma-ray surveys & Cosmic ray studies

90k m² Water Cherenkov dets
1 km² Surface EAS detector array
3 INFN groups (Pd, Si, Ud) already in CTA since 2008, via national University funding

~40 INFN scientists working to INFN CTA-RD since September 2012

January 2013: proposal of a “premiale” INAF + INFN; SiPM (industrial partnership with FBK) + electronics (CAEN, SITAEL); approved in September 2013

- ~1.5 MEUR for INFN: 2/3 for SiPM, 1/3 electronics
- Sensor ~ few mm for the SST camera (~1000 for a 60 cm detector), where granularity could be the issue
- 1” for LST, where sensitivity might be the issue
- Camera for SST; cluster of 7 counters for LST

Prototypes for a new mirror technology

Atmospheric monitoring

Simulation & science; computing
Far universe
Pulsars
Fundamental physics

Cosmic rays
at the knee

10^{-14}

10^{-12}

10^{-11}

E [GeV]

10

100

1000

10^4

10^5

E*F(>E) [TeV/cm^2s]

Agile, Fermi, Argo, Hawk: 1 year
Magic, Hess, Veritas, CTA: 50h

10% Crab
1% Crab

Fermi
Argo
Hawc
Hess/Veritas
Crab
Magic-II
Agile

(A. De Angelis 2012)
CTA: Expectations for Galactic plane survey

H.E.S.S.

CTA, for same exposure

expect ~1000 detected sources
Summary

• Thanks mostly to Cherenkov telescopes (plus EAS VHE gamma instruments, and MWL observations with Fermi/Agile and low energy instruments), new insight on Cosmic Rays:
 – SNR as galactic sources established
 • Astronomy with charged CR is difficult
 • Astronomy with neutrinos will be difficult (see also the 2 PeV neutrinos from IceCube)
 • VHE photons can be the pathfinder
 – Mechanism of emission from AGN still to be understood

• Still no detection of DM
 – The information from no detection is not as good as for accelerators

• A few clouds might hide new physics
 – Photon propagation

• Rich fundamental science and astronomy/astrophysics
 – HEA is exploring regions beyond the reach of accelerators in the search for DM & new physics
 – “Simple” extensions of present detectors are in progress: CTA, ...
4-6 June 2014 in Lisboa:
10 th SciNeGHE conference
(Science with the New Generation of High Energy Gamma-ray Experiments)