VHE gamma-ray astrophysics from ground: MAGIC and CTA

Alessandro De Angelis INFN-U.Udine/LIP-IST Lisboa

- VHE gamma rays
- The detection: Cherenkov Telescopes
- Some results

How are VHE (above 30 GeV) gamma rays produced?

- Radiation from accelerated charged particles
 - Interaction with photon fields & clouds
 - Hadronic and leptonic mechanisms
- But also (unobserved up to now)
 - Top-down mechanisms
 - New particles? Dark matter?

How do gamma rays reach us?

$$\gamma_{\text{VHE}}\gamma_{\text{bck}} \rightarrow e^+e^-$$

$$\sigma(\beta) \sim 1.25 \cdot 10^{-25} (1 - \beta^2) \cdot \left[2\beta(\beta^2 - 2) + (3 - \beta^4) \ln\left(\frac{1 + \beta}{1 - \beta}\right) \right] \text{cm}^2$$

Max for:

$$\epsilon \simeq rac{2m_e^2c^4}{E} \simeq \left(rac{500\,{
m GeV}}{E}
ight){
m eV}$$

3

Gamma rays interact with the atmosphere

=> GeV (HE) detection requires satellites; TeV (VHE) can be done at ground

Detectors

Precision Si-strip Tracker (TKR)
18 XY tracking planes

Single-sided silicon strip detectors 228 μm

pitch, 8.8 10⁵ channels Measure the photon direction

- Satellites (AGILE, Fermi)
 - Silicon tracker (+calorimeter)

- Cherenkov telescopes (HESS, MAGIC, VERITAS)
- Extensive Air Shower det.
 (ARGO): RPC, scintillators

HEP detectors!

Why detection at ground?

- High energies
 - Only way to build sensitive >TeV instruments
 - Maximum flux < 1 photon/h/m² above 200 GeV
- High statistics /short timescales
 - Large collection areas O(km²)
- Precision (IACTs)
 - Superior angular resolution
- Limitations?
 - IACTs
 - Smaller duty cycle
 - Smaller field of view
 - Ground particle detectors
 - Modest resolution and background rejection power
 - Complementary approaches

Signal duration: ~ 3ns

Highlight in γ-ray astrophysics (MAGIC, HESS, VERITAS)

- Thanks mostly to Cherenkov telescopes, imaging of VHE (> 30 GeV) galactic sources and discovery of many new galactic and extragalactic sources: ~ 150 (and >200 papers) in the last 9 years
 - And also a better knowledge of the diffuse gammas and electrons
- A comparable success in HE (the Fermi realm); a 10x increase in the number of sources
- A new tool for cosmic-ray physics and fundamental physics

TeV Impact

Highlights from HESS, MAGIC, VERITAS & MILAGRO

- Microquasars: Science 309, 746 (2005), Science 312, 1771 (2006)
- Pulsars: Science 322, 1221 (2008), Science 334, 69 (2011)
- Supernova Remnants: Nature 432, 75 (2004)
- The Galactic Centre: Nature 439, 695 (2006)
- Surveys: Science 307, 1839 (2005), PRL 95, 251103 (2005)
- Starbursts: Nature 462, 770 (2009), Science 326,1080 (2009)
- AGN: Science 314,1424 (2006), Science 325, 444 (2009)
- EBL: Nature 440, 1018 (2006), Science 320, 752 (2008)
- Dark Matter: PRL 96, 221102 (2006), PRL 106, 161301 (2011)
- Lorentz Invariance: PRL 101, 170402 (2008)
- Cosmic Ray Electrons: PRL 101, 261104 (2009)

(J. Hinton)

Instr.	Tels. #	Tel. A (m^2)	FoV (°)	$Tot A$ (m^2)	Thresh. (TeV)	PSF (°)	Sens. (%Crab)
MAGIC	2	236	3.5	472	0.05(0.03)	0.06	0.8
VERITAS	4	106	4	424	0.1	0.07	0.7

H.E.S.S.: 4 telescopes (~12m) in Namibia operational since 2003

MAGIC at La Palma

The Main Telescopes of the "Roque de los Muchachos" European Northern Observatory

~170 Collaborating Astro-Physicists from 9 Countries

Bulgaria Sofia

Croatia Consortium (Zagreb, +...)

Finland Consortium (Tuorla, +...)

Germany DESY Zeuthen, U. Dortmund,

MPI Munich, U. Würzburg

Japan Consortium (Kyoto, +...)

Italy INFN & U. Padova, INFN Pisa & U.

Siena, INFN Como/Milano Bicocca,

INFN Udine/Trieste & U. Udine,

INAF (Consortium: Rome, +...)

Poland Lodz

Spain U. Barcelona, UAB Barcelona,

IEEC-CSIC Barcelona, IFAE

Barcelona, IAA Granada, IAC

Tenerife, U. Complutense

Madrid, CIEMAT Madrid

Switzerland ETH Zurich

Main technological novelties of MAGIC

- Active mirror control
- Light weight (60 tons), fast repositioning to catch transients (GRBs etc.)
- PMTs with low gain, to enhance duty cycle
- 2 GB sampling
- Smart triggers for low energy
- Daily monitoring of mirror performance thanks to a CCD camera

•

Main physics results and perspectives (MAGIC: ~1 refereed paper/month)

- Cosmic Rays
- Photon propagation
 Transparency of the Universe;
 Energy of the vacuum;
 Tests of Lorentz Invariance;
 Cosmology
- Search for "WIMP" Dark Matter

Sources of CR up to the knee

Cherenkov telescopes & gamma satellites

- Evidence that SNR are sources of CR up to ~1000 TeV (almost the knee) came from morphology studies of RX J1713-3946 (H.E.S.S. 2004)
- Striking evidence from the morphology of SNR IC443 (MAGIC + Fermi/Agile 2010)

L - 189.0 [deg]

Molecular clouds close to IC 443, W51, RX J1713.7-3946

- VHE γ-ray excess compatible with cloud
- Differential energy spectrum prefers $\boldsymbol{\pi}^0$ production

Supernova Remnants

- The Big News Fermi/AGILE π⁰ bump but what about IACT results?
- Young SNRs:
 - Resolved shells in TeV
 - Acceleration to a few hundred TeV
 - > But where are the Pevatrons? (see later)
- The middle aged SNRs
 - Interactions with nearby molecular clouds
 - As seen in GeV
 - In TeV: resolved emission +++
- In general
 - Impact of time-dependent acceleration, environment and particle escape, is being explored for the first time

Active Galaxies

Continued diversification of the "Zoo"

NGC 1275, IC 310, AP Librae, 4C +21.35, ...
 (cf Cen A, M 87, BL Lac, Mrk 421, 3C 279)

TeV emission seems to be "normal" for AGN

> But beaming needed for detection of all but the closest objects with current instruments

Expansion of the known universe at VHE

Now six VHE emitters known beyond z=0.4

> and 12 with z>0.2, EBL tightly constrained

Gamma-ray evidence for hadron acceleration in AGN jets still missing...

 Multi-zone synchrotron + IC models quite successful (increasingly realistic - but many free parameters...)

Extremely fast variability is a challenge for all models

(J. Hinton)

How do gamma rays reach us?

$$\gamma_{VHE}\gamma_{bck} \rightarrow e^+e^-$$

$$\epsilon > \epsilon_{\rm thr}(E, \varphi) \equiv \frac{2 \, m_e^2 \, c^4}{E \, (1 - \cos \varphi)}$$

$$\sigma_{\gamma\gamma}(E,\epsilon,\varphi) = \frac{2\pi\alpha^2}{3m_e^2}W(\beta) \simeq 1.25 \cdot 10^{-25} W(\beta) \,\mathrm{cm}^2 ,$$

$$W(\beta) = \left(1 - \beta^2\right) \left[2\beta \left(\beta^2 - 2\right) + \left(3 - \beta^4\right) \ln \left(\frac{1 + \beta}{1 - \beta}\right)\right]^{\frac{1}{26}}$$

$$\lim_{\alpha \to \infty} \frac{1}{2} = 1.70 \cdot 10^{-25} \, \text{cm}^2 \, \text{for } \beta \simeq 0.70.$$
an isotropic background, it is maximized for

Maximum $\sigma_{\gamma\gamma}^{\text{max}} \simeq 1.70 \cdot 10^{-25} \,\text{cm}^2 \,\text{for } \beta \simeq 0.70.$ For an isotropic background, it is maximized for

$$\epsilon(E) \simeq \left(\frac{900 \,\mathrm{GeV}}{E}\right) \,\mathrm{eV}$$

Extragalactic Sources

Are our AGN observations consistent with theory (1)?

Are our AGN observations consistent with theory (2)?

Measured spectra affected by attenuation in the EBL:

28

Attempts to quantify the problem overall

- Analysis of AGN
 - For each data point, a corresponding lower limit on the optical depth τ is calculated using a minimum EBL model
 - Nonparametric test of consistency
 - Disagreement with data: overall significance of 4.2 σ
 - => <u>Understand experimentally the outliers</u>

(Horns, Meyer 2011)

A reminder: EBL rather well constrained, and extrapolation from Fermi is possible

Alessandro De Angelis

If there is a problem

Explanations from the standard ones

- very hard emission mechanisms with intrinsic slope < 1.5 (Stecker 2008)
- Very low EBL, plus observational bias, plus a couple of "wrong" outliers

to almost standard

γ-ray fluxes enhanced by relatively nearby production by interactions of primary cosmic rays or v from the same source

to possible evidence for new physics

- Oscillation to a light "axion"? (DA, Roncadelli & MAnsutti [DARMA], PRD2007, PLB2008)
- Axion emission (Simet+, PRD2008)
- A combination of the above (Sanchez Conde et al. PRD 2009)

Axions and ALPs

- The "strong CP problem": CP violating terms exist in the QCD Lagrangian, but CP appears to be conserved in strong interactions
- Peccei and Quinn (1977) propose a solution: clean it up by an extra field in the Lagrangian
 - Called the "axion" from the name of a cleaning product
 - Pseudoscalar, neutral, stable on cosmological scales, feeble interaction, couples to the photon
 - Can make light shine through a wall
 - The minimal (standard) axion coupling $g \propto m$; however, one can have an "ALP" in which g = 1/M is free from m

The photon-axion mixing mechanism

$$L_{a\gamma\gamma} = g_{a\gamma} \left(\vec{E} \cdot \vec{B} \right) a$$

$$V \sim V \Rightarrow a \sim V$$

Propagation: Raffelt-Stodolsky 1987; Csaki-Kaloper-Terning 2002; DA Roncadelli MAnsutti 2007; Simet Hooper Serpico 2008

Magnetic field 1 nG < B < 1aG (AGN halos). Cells of ~ 1 Mpc

- m_a < 0.02 eV (direct searches)
- $g < 10^{-10} \,\text{GeV}^{-1}$ from astrophysical bounds

If B \sim 0.1–1 nG, λ \sim 1-10 Mpc, observations can be explained

Could also be something else:
 Whatever (light and almost

sterile) particle feebly coupling to the photon

Exercise 2

Paraphoton

Shadow photon

New millicharged particles³⁴

Note: if conversion "a la Simet-Hooper-Serpico", => the effect could be directional

Intergalactic magnetic fields: indications from DARMA

Preferred values for m, g

Is Lorentz invariance exact?

- For longtime violating Lorentz invariance/Lorentz transformations/Einstein relativity was a heresy
 - Is there an aether? (Dirac 1951)
 - Many preprints, often unpublished (=refused) in the '90s
- Then the discussion was open
 - Trans-GZK events? (AGASA collaboration 1997-8)
 - LIV => high energy threshold phenomena: photon decay,
 vacuum Cherenkov, GZK cutoff (Coleman & Glashow 1997-8)
 - GRB and photon dispersion (Amelino-Camelia et al. 1997)
 - Framework for the violation (Colladay & Kostelecky 1998)
 - LIV and gamma-ray horizon (Kifune 1999)

— ...

LIV? New form of relativity?

- Von Ignatowsky 1911: {relativity, omogeneity/isotropy, linearity, reciprocity} => Lorentz transformations with "some" invariant c (Galilei relativity is the limit $c \rightarrow \infty$)
- CMB is the aether: give away isotropy?
- QG motivation: give away linearity? (A new relativity with 2 invariants: "c" and E_P)
- In any case, let's sketch an effective theory...
 - Let's take a purely phenomenological point of view and encode the general form of Lorentz invariance violation (LIV) as a perturbation of the Hamiltonian (Amelino-Camelia+)

A heuristic approach: modified dispersion relations (perturbation of the Hamiltonian)

We expect the Planck mass to be the scale of the effect

$$\begin{split} E_P &= \sqrt{hc/G} \cong 1.2 \times 10^{19} \text{GeV} \\ H^2 &= m^2 + p^2 \rightarrow H^2 = m^2 + p^2 \bigg(1 + \xi \frac{E}{E_P} + \ldots \bigg) \\ H &\xrightarrow{p>>} p \bigg(1 + \frac{m^2}{2p^2} + \xi \frac{p}{2E_P} + \ldots \bigg) \\ v &= \frac{\partial H}{\partial p} \cong 1 - \frac{m^2}{2p^2} + \xi \frac{p}{E_P} \Rightarrow v_\gamma \cong 1 + \xi \frac{E}{E_P} \end{split}$$

=> effect of dispersion relations at cosmological distances can be important at energies well below Planck scale:

$$\Delta t_{\gamma} \cong T\Delta E \frac{\xi}{E_P}$$

Variability

Rapid variability

2nd order? Cherenkov rules!

$$(\Delta t)_{obs} \cong \frac{3}{2} \left(\frac{\Delta E}{E_{s2}}\right)^2 H_0^{-1} \int_0^z dz' \frac{(1+z')^2}{\sqrt{\Omega_M (1+z')^3 + \Omega_\Lambda}}$$

$$E_{s2} > 6 \ 10^{10} \,\text{GeV} \ (\sim 10^{-9} \,\text{M}_{\tiny P}) \ (\text{HESS, MAGIC})$$

A no-loss situation: if propagation is standard, cosmology with AGN

The Dark Matter Problem

Measure rotation curves for galaxies:

For large r, we expect:

$$G\frac{M}{r^2} = \frac{v^2(r)}{r} \implies v(r) \sim \frac{1}{\sqrt{r}}$$

Begelman/
NGC3198

150

Mayarro

halo

disk

NFW: \(\chi^2 = 0.60 \)
0 5 10 15 20

r [kpc/h]

we see: flat or rising rotation curves

Hypothesized solution: the visible galaxy is embedded in a much larger halo of Dark Matter (neutral; weakly interacting; mix of particles and antiparticles - in SUSY Majorana)

Famous Bullet Cluster

Which signatures for gamma detectors?

- Self-annihilating WIMPs, if Majorana (as the neutralino in SUSY), can produce:
 - Photon lines $(\gamma\gamma, \gamma Z)$
 - Photon excess at E < m</p> from hadronization
- Excess of antimatter (annihilation/decay)
- Excess of electrons, if unstable

Look to the closest point with M << L

Uncertainties

- Largest uncertainty: density
- Density distribution is well known in the halo, where you do not expect most of the signal, while cusps are more uncertain

NFW:
$$\rho_{\rm NFW}(r) = \rho_s \frac{r_s}{r} \left(1 + \frac{r}{r_s} \right)^{-2}$$

Einasto: $\rho_{\rm Ein}(r) = \rho_s \exp \left\{ -\frac{2}{\alpha} \left[\left(\frac{r}{r_s} \right)^{\alpha} - 1 \right] \right\}$
Moore: $\rho_{\rm Moo}(r) = \rho_s \left(\frac{r_s}{r} \right)^{1.16} \left(1 + \frac{r}{r_s} \right)^{-1.84}$

ρ_{DM} [GeV/cm³]

Alessandro De Angelis

=> Results are difficult to compare

300 Orbital speed (km/s) Keplerian orbits 100 60,000 Distance from galactic center (ly) Angle from the GC [degrees] 5' 10' 30' 10 20 50 100200450 10" 30" 1" 10^{4} Moore 10^{3} NFW Einasto **EinastoB** 10^{2} 10 Iso Burker 10^{-1} 10^{-2} 10^{-2} 10^{-1} 10^{-3} 10 10^{2} r [kpc]

Many Places to Seek DM!

Galactic Center

Satellites

Low background and good source id,

Good statistics but source confusion/diffuse background

Lines, endpoint Bremsstrahlung,...

No astrophysical uncertainties, good source Id, but low sensitivity because of expected small BR

Extra-galactic

Large statistics, but astrophysics, galactic diffuse backgrounds

Plus data-driven searches

Results

- No excess from GC
- No excess from DSph
- No sensitivity for halo

 Possible data-driven searches: no sensitivity to confirm nor disprove recent claims of an excess ~130 GeV

Cosmic e⁺ and e⁻: the ATIC & PAMELA anomalies

Flux of e+ plus e-: no peaks; a possible excess might have astrophysical explanations Ratio e+/e-: needs more time, will be done

DM: interplay with accelerators

- LHC may find candidates but cannot prove that they are the observed Dark Matter, nor localize it
- Direct searches (nuclear recoil) may recognize local halo WIMPs but cannot prove the nature and composition of Dark Matter in the sky
- LHC reach limited to some 200-600 GeV; IACT sensitivity starts at some ~200 GeV (should improve)

A wish list for the future

Galactic sources & CR

Time - MJD53944.0 [min]

AGN & gamma prop
aGN & gamma prop
monitor many objects simult.
extend E range under 50 GeV
10x sources

- New particles, new phenomena
 - dark matter and astroparticle physics

The Cherenkov Telescope Array

- A huge improvement in all aspects of performance
 - ▶ A factor ~10 in sensitivity, much wider energy coverage, much better resolution, field-of-view, full sky, ...
- A user facility / proposal-driven observatory
 - ▶ With two sites with a total of >100 telescopes
- A 27 nation ~€200M project

Including everyone from HESS, MAGIC and VERITAS

The CTA concept (a possible design)

Design: 23 m Large Telescopes

optimized for the range below 200 GeV

Design: Small 4-6 m Telescopes secondary mirror

hexagonal panels

cover the range above few TeV across 10 km²

PMT camera option

Under study:

dual-mirror optics with compact photo sensor arrays single-mirror optics

PMT-based and silicon-based sensors

→ Not yet conclusive which solution is most cost-effective

INAF prototype ready soon, INFN working on camera & electronics

Alessandro De Angelis

The INFN participation to CTA

- 3 INFN groups (Pd, Si, Ud) already in CTA since 2008, via national University funding
- ~40 INFN scientists working to INFN CTA-RD since September 2012
- January 2013: proposal of a "premiale" INAF + INFN; SiPM (industrial partnership with FBK) + electronics (CAEN, SITAEL); approved in September 2013
 - ~1.5 MEUR for INFN: 2/3 for SiPM, 1/3 electronics
 - Sensor ~ few mm for the SST camera (~1000 for a 60 cm detector), where granularity could be the issue
 - 1" for LST, where sensitivity might be the issue
 - Camera for SST; cluster of 7 counters for LST
- Prototypes for a new mirror technology
- Atmospheric monitoring
- Simulation & science; computing

CTA: Expectations for Galactic plane survey

H.E.S.S.

CTA, for same exposure

expect ~1000 detected sources

Summary

- Thanks mostly to Cherenkov telescopes (plus EAS VHE gamma instruments, and MWL observations with Fermi/Agile and low energy instruments), new insight on Cosmic Rays:
 - SNR as galactic sources established
 - Astronomy with charged CR is difficult
 - Astronomy with neutrinos will be difficult (see also the 2 PeV neutrinos from IceCube)
 - VHE photons can be the pathfinder
 - Mechanism of emission from AGN still to be understood
- Still no detection of DM
 - The information from no detection is not as good as for accelerators
- A few clouds might hide new physics
 - Photon propagation
- Rich fundamental science and astronomy/astrophysics
 - HEA is exploring regions beyond the reach of accelerators in the search for DM & new physics
 - "Simple" extensions of present detectors are in progress: CTA, ...

4-6 June 2014 in Lisboa: 10 th SciNeGHE conference

(Science with the New Generation of High Energy Gamma-ray Experiments)

