

The R&D of Microchannel-Plate-Based Large Area Photomultiplier (MCP-PMT) at IHEP

Sen Qian

Institute of High energy Physics, Chinese Academy of Science qians@ihep.ac.cn

On Behalf of the Workgroup

The 4th Asian Forum for Accelerators and Detectors 25 - 26 February, 2013, BINP, Novosibirsk, Russia

▶1. The Design of the new MCP-PMT;

▶2. The Research project;

>3. The Challenge and Progress of the MCP-PMT;

▶4. The Prototypes and Summary;

Outline

▶1. The Design of the new MCP-PMT;

- >1.1 The relationship between the PMT and neutrino detection ;
- >1.2 The Big demanding of PMT for DayaBay II;
- >1.3 The Conventional PMT and the High QE PC;
- >1.4 The R&D of the new type of PMT in the world;
- >1.5 The new design of a large area PMT in IHEP

Large Area ; High QE (double photocathode) ; Low background

> 1.1 The relationship between the PMT and neutrino detection

> 1.2 The requirements of the PMT for the neutrino detection

	KamLAND	Daya Bay II	
Detector	~1 kt Liquid Scintillator	≻10 kt Liquid Scintillator	
Energy Resolution	<mark>6%/</mark> √E	<mark>3%/</mark> √E	
Light yield	250 p.e./MeV	1200 p.e./MeV	

More photons, how and how many?

* 5.0 \rightarrow (3.0 – 2.5)% / \sqrt{E}

- ➢ Highly transparent LS: Attenuation length/D: 15m/16m → 30m/34m ×0.9
- ➢ High light yield LS: KamLAND: 1.5g/I PPO → 5g/I PPO

Light Yield: $30\% \rightarrow 45\%$; × 1.5

- ➢ Photocathode coverage : KamLAND: 34% → ~ 80% × 2.3
- High Quantum Efficiency (or Photon Detection Efficiency) "PMT":

 20" SBA PMT QE: $25\% \rightarrow 35\%$ × 1.4

 or New PMT QE: $25\% \rightarrow 40\%$ × 1.6

Both: $25\% \rightarrow 50\%$ × 2.0

▶1.3 The Conventional PMT

Photon Detection Efficiency (PE)= QE_{Trans} * CE = 20% * 70% = 14%

High QE PMTs: SBA (35%) and UBA (43%)

are only available in small format (< 5" diameter ?)

Can we improve the Quantum Efficiency of Photocathode or

Photon Detection Efficiency for the large area 20" PMT ?

?? 20" UBA/SBA photocathode PMT from Hamamatzu ? QE: 20% \rightarrow 40%

?? 20" New large area PMT ? Quantum Efficiency > 40% ?

or Photon Detection Efficiency: $14\% \rightarrow 30\%$

> 1.4 The R&D of the new type of PMT

LAPPD project – ANL, Chicago

Comparison of Dimension between 10-inch and 12-inch PMT

12" PMT with SBA photocathode--Hamamatzu

▶1.5 The new design of a large area PMT

Collection Efficiency (CE) of MCP : 70%;

PD = $QE_{Trans}*CE + TR_{Photo}QE_{Ref}*CE = 30\%*70\% + 40\%*30\%*70\% = 30\%$ Photon Detection Efficiency: 15% \rightarrow 30% ; \times ~2 at least !

Outline

▶2. The Research project;

- >2.1 Project team and Collaborators;
- >2.2 The Technical Workshop & Collaboration Meeting;
- >2.4 The R&D plan of MCP-PMT (schedule);
- >2.5 The R&D plan of MCP-PMT (method);

>2.1 Project team and Collaborators

effort by Yifang Wang;

Microchannel-Plate-Based Large Area Photomultiplier Collaboration (MLAPC)

>2.2 The Technical Workshop & Collaboration Meeting

Technical Workshop

KM-- 20110911 PMT

XA-- 20120227 Vacuum Equipment

NJ-- 20120620 MCP

BJ-- 20121020 Photocathode

Collaboration

Meeting

BJ-- 20111118

HK-- 20121212

>2.3 The R&D plan of MCP-PMT (schedule)

> 2.4 The R&D plan of MCP-PMT (method)

Outline

>3. The Challenge of the Research Project ;

- >3.1 The Photomultiplier Design;
- >3.2 The Low radioactive background glass;
- >3.3 The Low cost MCP;
- >3.4 The Base with Pre-Amplifier;

3.1 The Photomultiplier Design

Photomultiplier Design

Simulate the possibility of the 20" spherical MCP-PMT

--Electron Multiplier: small size MCP(ϕ =18(33)mm) \rightarrow Dynode chain ; --photocathode area: transmission+ reflection, nearly 4π effective area ; --Could the small Electron Multiplier MCP collect all the photoelectron?

--Yes! Nearly all the photoelectrons could be collected by the small MCP!

- Simulate the properties of MCP-PMT (8", 12", 20") with spherical and ellipse shell;
- Simulate the performance of different size MCP without the geomagnetic field (GM);
- Simulate the performance affected by the geomagnetic field;

The Photo current = Trans PC current + Ref PC current = 2 * Trans PC current

Situation: LED Source (duty factor =1%, f=1kHz, Voltage=3.5V, Pluse signal)

> 3.2 The Low radioactive background glass

Large (8", 20");
Superb water-resistance characteristics;
Low radioactive background glass;

radioactive background test of different PMT glass (unit: ppb)

Glass	DM-308	DM-305	CN-2# Glass	CN-2# Material
Sample Mass	211.0g	131.1g	335.2g	280.9g
Test Time	311023	424110	315394	359618
²³⁸ U	21.50±0.10	42.40±0.14	14.96±0.08	<0.1
²³² Th	18.50 ± 0.32	6.43±0.23	4.78±0.16	<0.2
⁴⁰ K	2.50±0.01	41.01±0.03	3.11±0.01	<0.01

Low background gamma spectrometer in IHEP

> 3.3 The Low cost MCP

Could supply us the MCP with low cost.

> 3.4 The Base with Pre-Amplifier

The electron multiplier consists of two conventional MCP, ~ 10⁵ gains (in our group) Current-sensitive preamplifier

Electronics

Equivalent noise charge	< 2000 electron		
Unity-Gain bandwidth	300 MHz		
Rise time	1~2 ns		
Amplification	20×~ 50×		
Output impedance	50 Ω		
Signal polarity	negative		

Outline

▶4. The Status of the Prototypes ;

- ≻4.1 The performance of 5" MCP-PMT;
- >4.2 The performance of 8" MCP-PMT;

4.1 Performance of the 5"MCP-PMT prototype

> The photoelectron spectrum of a prototype: 5" IHEP-MCP-PMT

>MPE vs the luminance of the LED light

**--adjust the working voltage of the LED to adjust the luminance of the LED light.

> 4.2 Performance of the 8" MCP-PMT prototype

8" ellipse

8" spherical

Test Situation:

LED Trigger =1.766 (0.001%);

High Voltage:

Photocathode: 2100V

MCP1: 775V

MCP2: 875V

Anode: 150V

Fast Amplifier: X10

Summary

>1. A new type of MCP-PMT is designed for the next generation neutrino exp.

- ✓ Large ares: ~ 20";
- ✓ High photon detection efficiency: ~30%, al least \times 2 than normal PMT;
- ✓ Low coat: ~ low cost MCPs;

2. The R&D process is composing with 3 steps.

- (1) 5"(8") prototype with transmission photocathode;
- 2 5"(8") prototype with transmission and reflection photocathode;
- 3 20" prototype with transmission and reflection photocathode;

>3. The R&D work is divided into 7 Parts to product the prototype to detect SPE:

①Photocathode; ②MCP; ③Glass; ④Photomultiplier;

⑤vacuum equipment; ⑥Electronic; ⑦Test system;

There are lots of work to do!

We need any help from other institute and company!

Thank! 谢谢!

Thanks for your attention! Any comment and suggestion are welcomed!

> 2.5 The performance of the MCP-PMT

Characteristics	unit	R3809U-50 (Hamamatsu)	R5912 (Hamamatsu)	MCP-PMT-8 (IHEP)	R3600 (Hamamatsu)	MCP-PMT-20 (IHEP)
size	inch	2	8	8	20	20
Spectral Response	nm	160~850	300~650	300~650	300~650	300~650
Photocathode Material		Multialkali	Bialkali	Bialkali	Bialkali	Bialkali
Electron Multiplier		МСР	Dynode	MCP	Dynode	MCP
Gain		2×10^{5}	$\geq 1 \times 10^7$	≥1×10 ⁵	$\geq 1 \times 10^7$	≥1×10 ⁵
Photocathode mode		transmission	transmission	reflection + transmission	transmission	reflection + transmission
Cathode Sensitivity	uA/lm	150	70	70	60	70 ~100
Quantum Efficiency (400nm)	%	-	22	20~40??	20	20~40??
Electron Multiplier Collection efficiency	%	~ 60%	~ 60%	~ 70%	~ 60%	~ 60%
Efficiency of detecting photoelectron	%		< 13	> 20	<12	> 20
Anode Dark Current	nA	100	≤700	≤100	≤1000	≤100
Anode Pulse Rise Time	ns	0.150	3.8	≤ 5	10	≤10
Transit Time Spread (TTS)	ns	≪0.025	2.4	≤1	5.5	≤2
Anti-Magnetic characteristics		Good	normal	normal	normal	normal
Glass			Low-Potassium Glass	Low-Potassium Glass CN-2#	HARIO-32	Low-Potassium Glass- CN-2#