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Abstract

The solution of games is a key decision problem in the context of verification of
open systems and program synthesis. Given a game graph and a specification,
we wish to determine if there exists a strategy of the protagonist that allows
to select only behaviors fulfilling the specification. In this paper, we consider
timed games, where the game graph is a timed automaton and the specifica-
tion is given by formulas of the temporal logics Ltl and Ctl. We present
an automata-theoretic approach to solve the addressed games, extending to the
timed framework a successful approach to solve discrete games. The main idea of
this approach is to translate the timed automaton A, modeling the game graph,
into a tree automaton AT accepting all trees that correspond to a strategy of
the protagonist. Then, given an automaton corresponding to the specification,
we intersect it with the tree automaton AT and check for the nonemptiness
of the resulting automaton. Our approach yields a decision algorithm running
in exponential time for Ctl and in double exponential time for Ltl. The ob-
tained algorithms are optimal in the sense that their computational complexity
matches the known lower bounds.

Keywords: timed games, tree automata, temporal logic

1. Introduction

The theory of games was originally introduced as a theoretical model for
economic studies (see for example [39]). In the years, this theory has received an
increasing interest by many researchers in computer science. In particular, it has
been deeply studied in the context of discrete, timed, and hybrid systems (see
[12, 13, 14, 15, 18, 28, 32, 41, 46, 47]). Games provide a suitable framework for
program synthesis and for the analysis of open systems, that is, systems whose
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behavior depend on the current state as well as the choices of the environment
in which they are embedded.

The notion of open system naturally arises in the compositional modelling
and design of reactive systems, that is, systems that maintain an ongoing inter-
action with their environment [10, 41]. A reactive system can be seen as divided
into many components interacting with each other, and each component can be
modeled as an open system. In automated verification, systems are often mod-
eled as closed systems, where a system behavior is completely determined by the
current state. The verification problem can thus be phrased as: given an ab-
stract model (transition system) M and a specification ϕ, we wish to determine
if ϕ holds for the computations of M (model checking).

The decision problem we consider in this paper is analogous to model check-
ing. We are given a specification and a game graph (alternating transition
system), where the transitions are determined by the moves of the two players.
We wish to determine if a player has a strategy to ensure that, independently
from the choices of the other player, the resulting computations satisfy the given
specification.

To refer to delays, time needs to be explicitly included in the model of a
reactive system. In this paper, we focus on timed games: a game graph given
by a nondeterministic timed automaton [2] along with a winning condition. A
timed automaton is a finite automaton augmented with a finite set of real-valued
clocks. Its transitions are enabled according to the current state, that is, the
current location and the current clock values. In a transition, clocks can be
instantaneously reset. The value of a clock is exactly the time elapsed since the
last time it was reset. A clock constraint (guard) is associated to each transition
with the meaning that a transition can be taken only if the associated guard
is enabled. Moreover, a clock constraint (invariant) is also associated to each
location with the meaning that the automaton can stay in a location as long as
the corresponding invariant remains true.

When interpreting a nondeterministic timed automaton as a game graph
(timed game graph), a move of a player consists of a discrete action along with
the time at which it will be issued. We capture the choices of the protagonist
by the symbols associated with the transitions and nondeterminism is used
to model the possible choices of the antagonist1. To model the case when the
protagonist stays idle and the antagonist moves, we use a special symbol ξ. The
case that both players stay idle is captured by letting time elapse in a location.
A play of a timed game is thus constructed in the usual way. At the beginning,
both players declare their first moves, that is, how long they will wait idling and
their next discrete actions. At the time one of the players or both move, both of
them declare their next move. This means that, in case only a player moves, the
other player is allowed to confirm his previous declared move or to declare a new
one. Technically, a play is a run of the automaton modelling the game. A game

1Notice that this formulation of games, which is asymmetric with respect to the two players,
is equivalent to the symmetric one.
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is given by a game graph along with a winning condition that establishes which
computations are winning for the protagonist. Thus, the decision problem we
wish to solve is to determine if the protagonist has a strategy to ensure that all
the resulting computations satisfy the given winning condition. In this paper,
we consider linear- and branching-time winning conditions expressed as Ltl [40]
and Ctl [19] formulas, respectively.

Linear winning conditions are suitable when the design target is to find a
strategy that ensures that some property holds regardless of the environment
behavior. In some domains, it is useful to consider more general conditions.
For instance, consider the problem of designing an ATM controller. There,
the controller is the protagonist of the game, while the adversary is the ATM
user. Consider the property “No matter what the user does, there is a way for
her to have the card back”. This property cannot be expressed in a linear time
language, while it is expressible in a branching-time temporal logic such as Ctl.
Indeed, if we call p the proposition “the card is returned”, then the previous
requirement can be stated as “∀2∃3p”. 2

A way to solve the decision problem related to game graphs is to reduce it to
the emptiness problem for tree automata. This approach has been successfully
exploited to decide discrete games (see, for example [43]). In this paper, we
extend the automata-theoretic approach to timed games. We propose a general
framework that can be used with any class of winning conditions, that can
be translated to tree automata with decidable emptiness problem and closure
under intersection. Given a timed game (A,W ), where A is a timed automaton
and W is a winning condition, we construct a tree automaton AT that accepts
all the trees corresponding to a strategy of the protagonist. We construct this
automaton exploiting the clock region relation [2]. Then, we construct another
tree automaton AW accepting all the trees satisfying the property W . Since
strategies of the protagonist correspond to trees accepted by AT , to construct
AW we only need to capture models with branching degree bounded above by
that of AT (i.e. the maximum branching degree over the AT transitions). Thus,
there exists a winning strategy of the protagonist in the game (A,W ) if and
only if the intersection between the languages accepted by AT and AW is not
empty.

For winning conditions given by Ltl formulas, our approach yields a decision
algorithm running in doubly exponential time. Since Ltl games are 2Exptime-
hard [41] already for discrete game graphs, our result is complete. For winning
conditions given by Ctl formulas, our approach yields a decision algorithm
running in exponential time. Since reachability games for Timed Automata are
already Exptime-hard [12, 29], we have that our result is complete also for Ctl.

In the literature, different formulations of games with winning conditions
expressed by temporal logics have been considered. In [4], the alternating-time
temporal logic ATL is introduced and the related model checking problem (for

2This property is violated by some ATM machines, which trap the card if the user exceeds
the maximum number of PIN trials.
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discrete systems) is shown to be solvable in quadratic time. Recent research has
focused on extending ATL to incorporate more powerful strategic constructs,
but often this results in a much more complex model checking problem that
becomes even non-elementary in some cases (see for example [4, 20, 21, 36, 37]).
In module checking [30], a system interacts with its environment, and while the
system is forced to consider all possible successors, the environment can select
a non-empty subset of the them. The module checking problem for finite-state
systems has been deeply investigated and turns out to be Exptime-compete
for specification given as Ctl formulas. This framework has been extended to
pushdown systems in [17, 9]. In the setting of pushdown systems, also modular
strategies with respect to several winning conditions, and in particular Ltl
specifications, have been considered [6, 7]. Games with winning conditions
expressed as parametric Ltl [3] have been recently studied [51]. Rectangular
hybrid games with winning conditions expressed by Ltl formulas were solved
in [28]. The results from [28] subsume our results on Ltl timed games, but
the approach we follow here is different, and mainly, we are giving a systematic
way of solving timed games for different classes of winning predicates. Other
research on timed games has concerned: timed games with Tctl [1, 33] winning
conditions [27]; optimal time control synthesis for timed automata [11]; optimal
cost control synthesis [32] for weighted timed automata [8].

The rest of the paper is organized as follows. In Section 2, we introduce
the basic definitions and the notation relatively to games and automata. In
Section 3, we introduce our model of timed game. In Section 4, we introduce
winning conditions expressed in the branching–time temporal logic Ctl. Then,
in Section 5, we solve Ctl timed games. In particular, we discuss the construc-
tion of a tree automaton accepting all strategies of the protagonist in a timed
game. In Section 6, we introduce and study timed games whose winning con-
dition is given in the linear–time temporal logic Ltl. Finally, in Section 7, we
provide some concluding remarks. In particular, we discuss a comparison with
ATL and module checking.

2. Preliminaries

In this section, we recall the basic definitions concerning words, trees, and
automata on infinite words and trees.

Words. Let Σ be an alphabet, we denote by Σ∗ the set of all finite words over
Σ, including the empty word ε. We denote by Σi the set of all words of length i
over Σ. An ω-word over Σ is an infinite sequence of symbols over Σ. We denote
by Σω the set of all ω-words over Σ. Let w = σ0σ1 . . . be an ω-word, we denote
by w≤i the prefix of w ending at position i, that is, w≤i = σ0 . . . σi. In the
following, we fix a finite alphabet Σ.

Trees. An ω-tree T (a tree, for short) is (vini , V, E) such that V is a set of nodes,
vini ∈ V is the root, and E ⊆ V × V is a set of edges such that:

1. vini has no predecessors, i.e, (u, vini) 6∈ E for all u ∈ V ;
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2. every other node has exactly one predecessor, i.e., for each v ∈ V \ {vini}
there is exactly one u ∈ V such that (u, v) ∈ E;

3. every node is reachable from the root through a finite sequence of edges,
i.e., for each v ∈ V there is a sequence of nodes v0 . . . vm such that v0 =
vini , vm = v and (vi, vi+1) ∈ E for i = 0, . . . ,m (a path from vini to v);

4. every node has at least a successor, i.e., for each u ∈ V there is v ∈ V
such that (u, v) ∈ E.

In the following, we fix a tree T = (vini , V, E).
For all nodes u ∈ V we set succ(T , u) to be the set of successors of u in T ,

that is succ(T , u) = {v ∈ V | (u, v) ∈ E}. If a node u has a finite number of
successors, the branching degree deg(u) of u is the number of such successors.
Otherwise, we say that the branching degree of u is infinite. The branching
degree of a tree is the maximum branching degree over all its nodes.

A path in T is a (possibly finite) sequence of nodes π = v0v1 . . . such that,
for all i ≥ 0, (vi, vi+1) ∈ E. Moreover, π is rooted if v0 = vini .

For a tree T , the subtree of T rooted at a node u ∈ V is the tree (u, V ′, E′)
where V ′ ⊆ V is the set of all the nodes that are reachable from u and E′ is
E ∩ (V ′ × V ′).

A Σ-valued tree T is (µ, T ) where µ : V → Σ is the labeling function. All of
the above definitions naturally extend to Σ-valued trees, and thus we omit to
state them. In addition, for a path π = v0v1 . . ., we denote by µ(π) the sequence
µ(v0)µ(v1) . . ..

Automata. A transition table A over the alphabet Σ is a tuple (Σ, S,∆, sini),
where Q is a finite set of states, ∆ ⊆ S × Σ × S is the transition relation, and
sini ∈ S is the initial state. A run of A on an ω-word σ0σ1 . . . over Σ is an
infinite sequence of states s0s1 . . . such that s0 = sini and (si, σi, si+1) ∈ ∆ for
all i ≥ 0.

A tree transition table over Σ is a tuple A = (Σ, S,∆, sini), where S and
sini are defined as for transition tables, and ∆ ⊆ ∪ki=1(S × Σ × Si), where k
is a positive integer called the branching degree of A and denoted by deg(A).
Given a Σ-valued tree T = (µ, T ) with a finite branching degree, a run of A
over T is an S-labeled tree ρ = (ν, T ), such that (i) ν(vini) = sini , and (ii) for
all nodes u ∈ V , there exists an ordering of succ(T , u) as (u1, . . . , un) such that
(ν(u), µ(u), ν(u1), . . . , ν(un)) ∈ ∆. A run of a tree transition table can thus be
seen as a rewriting of a tree by states.

An automaton is a (tree) transition table A paired with an acceptance condi-
tion. In the literature, several acceptance conditions have been introduced and
fruitfully investigated. Here we recall those defining Büchi and Rabin (tree)
automata.

Let ρ be an infinite sequence of states, we denote by Inf (ρ) the set of states
occurring infinitely often in ρ. The Büchi condition is defined with respect to a
set of final states F ⊆ Q.

• A run ρ of a transition table satisfies the Büchi condition F iff Inf (ρ)∩F 6=
∅.
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• A run ρ of a tree transition table satisfies the Büchi condition F iff for
each rooted path π of ρ, Inf (π) ∩ F 6= ∅.

The Rabin condition is defined with respect to a set F = {(B1, F1), . . ., (Bk, Fk)}
where Bi, Fi ⊆ Q for each 1 ≤ i ≤ k.

• A run ρ of a transition table satisfies the Rabin condition F iff there is a
pair (Bi, Fi) ∈ F such that Inf (ρ) ∩Bi = ∅ and Inf (ρ) ∩ Fi 6= ∅.

• A run ρ of a tree transition table satisfies the Rabin condition F iff for
each path π of ρ there is a pair (Bi, Fi) ∈ F such that Inf (π) ∩ Bi = ∅
and Inf (π) ∩ Fi 6= ∅.

A word w (resp., a tree t) is accepted by an automaton (resp., a tree auto-
maton) A w.r.t. an acceptance condition F if there exists a run ρ of A on w
(resp., t) that satisfies F . The set of words (resp., trees) that are accepted by an
automaton (resp., tree automaton) A is denoted by L(A). In these regards, we
treat a (tree) transition table A as a Büchi (tree) automaton whose acceptance
condition F is the set of all states from A, and thus any run is an accepting one.

The emptiness problem for an automaton A asks whether L(A) is empty. In
the following, we give some results concerning the emptiness problem for Rabin
and Büchi tree automata. Notice that our definition of tree transition tables
differs from the classical one in that our transition tables accept unordered
trees. This does not affect the complexity of the emptiness problem, since
the emptiness problem according to our definition of L(A) is equivalent to the
classical one.

Proposition 1 ([25, 31]). The emptiness problem for a Rabin tree automaton
A is NP-complete. Moreover, it can be solved in deterministic time O(n2m+1 ·
m!), where n and m denote respectively the number of states and the branching
degree of A.

Proposition 2 ([42, 50]). The emptiness problem for a Büchi tree automata
A is decidable in polynomial time. In particular, it can be solved in time O(n2)
where n denotes the number of states in A.

3. Timed Games

3.1. Timed Graphs

In this section, we describe the model we use to represent timed games: timed
graphs. A timed graph is a model of a real-time system [2]. A central (real-
valued) clock is used to scan time, and a finite set of clock variables (also simply
named clocks) along with timing constraints are used to check the satisfaction of
timing requirements. Each clock can be seen as a chronograph synchronized with
the central clock, that can be read or set to zero (reset). After a reset, a clock
restarts automatically. In each graph, timing constraints are formally expressed
by clock constraints. Let C be a set of clocks, the set of clock constraints Ξ(C)
is inductively defined as the minimal set containing:
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• x ≤ y + c, x ≥ y + c, x ≤ c, and x ≥ c, where x, y ∈ C and c is a natural
number;

• δ1 ∧ δ2, where δ1, δ2 ∈ Ξ(C).

Furthermore, let R≥0 be the set of nonnegative real numbers, a clock valuation
is a mapping ν : C −→ R≥0. If ν is a clock valuation, λ is a set of clocks and d
belongs to R≥0, we denote with [λ← 0](ν + d) the clock valuation that assigns
0 to each clock x ∈ λ and ν(x) + d to each clock x 6∈ λ.

A timed graph G is a tuple (Q,Acts, qini , C,∆, inv) where:

• Q is a finite set of locations;

• Acts is a finite alphabet of actions;

• qini ∈ Q is the initial location;

• C is a set of clock variables;

• ∆ is a finite set of edges Q×Acts × Ξ(C)× 2C ×Q;

• inv : Q −→ Ξ(C) maps each location q to its invariant inv(q).

Let |C| = n, a state of the timed graph G is a pair 〈q, ν〉, where q ∈ Q and
ν is a clock valuation satisfying inv(q). We denote by S the set of all states.
The initial state is 〈qini , νini〉, where νini(x) = 0 for all x ∈ C. The semantics
of a timed graph is given by a transition table with the infinite set of states
S and the infinite alphabet R≥0 × Acts. In order to define the transitions,
we first introduce the concepts of discrete and time step. A discrete step is
〈q, ν〉 σ−→ 〈q′, ν′〉 where (q, σ, δ, λ, q′) ∈ ∆, ν satisfies δ, ν′ = [λ ← 0]ν, and ν′

satisfies inv(q′). A time step is 〈q, ν〉 d−→ 〈q, ν′〉 where d ∈ R>0,3 ν′ = ν + d
and ν + d′ satisfies inv(q) for all 0 ≤ d′ < d. Then, a transition (also called

step) is 〈q, ν〉 d,σ−→ 〈q′, ν′〉 where 〈q, ν〉 d−→ 〈q, ν′′〉 and 〈q, ν′′〉 σ−→ 〈q′, ν′〉, for
some ν′′ ∈ Rn≥0. A run ρ of a timed graph G from a state 〈q0, ν0〉 is a finite

sequence of states 〈q0, ν0〉〈q1, ν1〉 . . . 〈qn, νn〉, where 〈qi, νi〉
di,σi−→ 〈qi+1, νi+1〉,

for all i = 0, . . . , n − 1. We set first(r) = 〈q0, ν0〉 and last(r) = 〈qn, νn〉. An
infinite run is defined in the obvious way. Given two runs ρ1, ρ2, such that
first(ρ2) = last(ρ1), we denote by ρ1 · ρ2 the run obtained by concatenating the
two runs and removing the duplicate state last(ρ1). We denote by runsG the
set of all finite runs of G. We omit the G superscript when the timed graph is
clear from the context.

Consider a timed graph G = (Q,Acts, qini , C,∆, inv). By definition, its
state space is infinite. However, it can be partitioned into a finite number
of equivalence classes called regions. A region is defined by a location and a
clock region, which is a set of equivalent clock valuations. We denote with cx

3Notice that we disallow zero-time steps which are not needed in our game formulation.
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the largest constant in clock constraints involving the clock variable x, and for
d ∈ R≥0, with frac(d) the fractional part of d and with bdc its integral part.
The equivalence of clock valuations is formally defined as follows. Two clock
valuations ν and ν′ are (region) equivalent if the following conditions are met [2]:

• for all x ∈ C, either ν(x) > cx and ν′(x) > cx, or bν(x)c = bν′(x)c;

• for all x, y ∈ C such that ν(x) < cx and ν(y) < cy, we have frac(ν(x)) ≤
frac(ν(y)) if and only if frac(ν′(x)) ≤ frac(ν′(y));

• for all x ∈ C such that ν(x) < cx, we have frac(ν(x)) = 0 if and only if
frac(ν′(x)) = 0.

A clock region is an equivalence class of the above equivalence relation. We
denote by [ν] the clock region containing the clock valuation ν. The key property
of this equivalence relation is that all the clock valuations belonging to a clock
region satisfy the same set of clock constraints from the graph G. Consequently,
we say that a clock region α satisfies a constraint δ if ν satisfies δ, for all ν ∈ α.

A region is a pair 〈q, α〉, where q is a location and α is a clock region satisfying
inv(q). By abuse of notation, we identify the pair 〈q, α〉 and the set of states
{q}×α. A region r′ = 〈q, α′〉 is a time-successor of a region r = 〈q, α〉, denoted
r � r′, if for each ν ∈ α there is a d ∈ R≥0 such that ν + d ∈ α′. We use Regs
to denote the set of regions of G and extend the notion of step from states to
regions as follows. Given two regions r and r′, and an action σ ∈ Acts, we write

r
σ−→ r′ if there exist s ∈ r, s′ ∈ r′ and d > 0 such that s

d,σ−→ s′. Also, for a run
ρ = 〈q0, ν0〉〈q1, ν1〉 . . ., with [ρ] we denote the sequence 〈q0, [ν0]〉〈q1, [ν1]〉 . . ..

3.2. Timed Games

A timed game is a pair (G, ϕ), where G is a timed graph and ϕ is the winning
condition. Different classes of winning condition define different classes of timed
games.

Intuitively, a play of a timed game is constructed as follows. At the begin-
ning, both players declare their first move, that is, how long they will wait idling
and their next discrete moves. At the time one of the players or both move,
both players are allowed to declare their next discrete moves and the time these
will be issued. That is, if a player moves before the other, the latter is allowed
to change the previously declared move.

We use the alphabet symbols (actions) of the timed graph to represent the
choices of the protagonist. The nondeterminism on the actions issued by the
protagonist is used to model the possible choices of the antagonist , including
the case in which the protagonist moves and the antagonist stays idle. To model
the case that the protagonist stays idle and the antagonist chooses to move, we
use a special action ξ. In the following, we denote with Acts a finite set of
symbols not containing the antagonist action ξ. We also set Actsξ = Acts ∪{ξ},
and if not differently specified, σ denotes an element of Acts.

A play of a timed game is modeled as a run of the corresponding timed
graph.
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Figure 1: A fragment of a timed game.

As instance, consider the fragment of a 1-clock timed game shown in Figure 1.
For the sake of simplicity, the invariants on the locations are not shown and they
are supposed to hold always true. Suppose that the game is in location q1, with
clock x equal to zero and the current strategy of the protagonist is to take an a-
move, after a delay of one time unit. Since at time x = 1 there are two a-moves
which are enabled, the antagonist can choose which one is to be taken and the
game will proceed either to location q2 or to location q3. Moreover, from q1 the
antagonist can also move on his own, by taking a ξ-move before the move of
the protagonist. In that case, according to the above strategy, the game will
proceed to location q4, with x ≤ 1.

In the following, if not differently specified, we always refer to a fixed timed
graph G = (Q,Actsξ, qini , C,∆, inv). Without loss of generality, we assume that
a move of the protagonist is always defined in each state s of G, i.e., for each s

there is always at least a step of the form s
d,σ−→ s′ with σ ∈ Acts.

A strategy is a function F : runs −→ R>0 ×Acts that assigns to each run a
move of the protagonist which is allowed by the underlying timed graph, that

is for each run ρ = s0s1 . . . sn of G, if F(ρ) = (d, σ) then there is a step sn
d,σ−→ s

in G.
A play ρ = s0s1 . . . sn . . . is consistent with a strategy F if for each n ≥ 0,

denoting F(ρ≤n) = (dn, σn), either sn
dn,σn−→ sn+1 or sn

d′,ξ−→ sn+1 with d′ < dn.
The set of all infinite plays which are consistent with F is denoted with playsωF ,
and the set of their finite prefixes with playsF .

For a given a strategy F , we can collect all runs that are consistent with it in
an infinite tree TF called the strategy tree of F . Moreover, we define an auxiliary
labeling actF which labels each node of TF with the action of the step taken to
reach the corresponding state from the state labeling the parent node (in other
words, this exposes on each path the actions taken in the corresponding play).

Formally, the strategy tree TF is an S-labeled tree (µ, TF ), where TF =
(vini , V, E), inductively defined as follows. For the root vini , we define µ(vini) =
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〈qini , νini〉 and actF (vini) is arbitrarily set to any element of Actsξ.
Now, let π = u0u1 . . . un be a finite rooted path in TF , µ(un) = s and

F(µ(π)) = (d, σ). Consider the sets SProt = {s′ | s d,σ−→ s′} and SAnt = {s′ |
s
d′,ξ−→ s′, where 0 < d′ < d} \ SProt. For each state which is either in SProt or

in SAnt, we add a corresponding child of un in TF , that is, for x ∈ {Prot,Ant}
and s′ ∈ Sx, we add a child v ∈ V of un with labeling µ(v) = s′, and action
actF (v) = σ, if x = Prot, and actF (v) = ξ, otherwise. We denote succx(TF , un)
the set of all children corresponding to Sx states.

We remark that from the definition of SProt and SAnt, the states associated
to the children of un are all distinct. Also, SProt is the set of states that can be
reached if the protagonist is allowed to take the desired move σ after the desired
delay d, while SAnt is the set of states that can be reached if the antagonist moves
before the protagonist and that are not in SProt. Observe that there can be states
that are reached both via a protagonist move and via an antagonist move. For
instance, consider again the game in Figure 1 and, in addition, suppose that
(by means of resets) state 〈q1, x = 0〉 can be reached from 〈qini , x = 0〉 both
via action a taken with some delay 0 < d < 1 or via an action ξ taken with
some delay 0 < d′ < d. However, actions are not part of the runs, so they
are not visible to the players. Thus, in either case we obtain the same run
ρ = 〈qini , x = 0〉〈q1, x = 0〉. The definition of the strategy tree mirrors this
situation by removing duplicate states among the destinations. Ambiguous
states, such as 〈q1, x = 0〉 in the example, are ascribed to the protagonist and
therefore assigned to SProt.

By untime(TF ) we denote the tree obtained from TF by projecting out the
time valuation from the states labeling it. Formally, untime(TF ) = (µ′, TF ),
where µ′(u) = {q} if and only if µ(u) = 〈q, ν〉 for some clock valuation ν.
By construction, playsωF = {µ(π) | π is a rooted infinite path in TF} and there
exists a bijection between the elements of playsωF and the infinite paths in TF .

Although the definition allows strategies to choose among an infinite number
of moves, it is natural to partition these moves in a finite number of classes,
according to their intended destinations. We aim at declaring equivalent the
moves that lead to the same set of possible next regions. Given a state s = 〈q, ν〉
and a move m = 〈d, σ〉, we set θ(s,m) = 〈[ν+d], σ〉. Intuitively, given two states
s1 = 〈q, ν1〉 and s2 = 〈q, ν2〉 that share the same location and two moves m1

and m2, if θ(s1,m1) = θ(s2,m2), then playing m1 from s1 has the same effect
as playing m2 from s2, in terms of possible next regions.

Given a strategy F , let [playsF ] and [F ] : [playsF ] → 2Regs×Acts be re-
spectively the quotient of playsF and of F with respect to the region equiva-
lence relation, where we recall that Regs is the set of regions of G. Formally,
[playsF ] = {[ρ] | ρ ∈ playsF}, and [F ]([ρ]) =

⋃
ρ′∈[ρ] θ(last(ρ′),F(ρ′)).

For an integer k ≥ 0, we say that a strategy is k-splitting if it assigns up to
k different destinations to equivalent histories. Formally, F is k-splitting iff, for
all runs ρ, |[F ]([ρ])| ≤ k. We further say that a strategy is region stable if it
is 1-splitting. Region stable strategies choose equivalent moves after equivalent
histories.
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3.3. Counting the number of region-equivalent successors in a strategy tree

In a strategy tree, the number of successors of a node that are labeled with
states from a given region r, if any, depends only on the features of r and the
transitions of the timed graph. We define the function split that assigns a value
to any two regions r, r′ and a symbol σ. We will prove that indeed this function
exactly gives the number of states of r′ that are reachable from any state in r
in a single step over σ. We start giving some additional notation.

A clock constraint is punctual if it is of the form x = c, for a natural number
c > 0. A guard is punctual if it contains a punctual clock constraint (among
its conjuncts). Given a timed graph, an edge is punctual if it has a punctual
guard.

A clock region α is a point if it contains just one clock valuation assigning
to all clocks an integral value (i.e., for all clocks x, frac(x) = 0). Intuitively,
in a two-clock system, α is a point if it belongs to N0 × N0. A clock region α
is punctual if it is a point or it has a punctual clock constraint. Intuitively, in
a two-clock system, α is punctual if either it belongs to N0 × N0 or it is a line
that is parallel to an axis and does not lie on it. A clock region is a boundary
region if it has a clock constraint of the form x = c for c ≥ 0 (i.e. it is either
punctual or has a clock constraint of the form x = 0). An open clock region is
any clock region that is not boundary. The definitions of point and punctual
clock regions apply to regions in the obvious way.

Definition 1. Let G be a timed graph, r, r′ be two regions of G and σ ∈ Actsξ.
If r′ is not reachable from r through a transition over σ, then split(r, σ, r′) = 0.
Otherwise, one of the following cases holds:

1. if r′ is punctual, then split(r, σ, r′) = 1;

2. if r′ open, then split(r, σ, r′) =∞;

3. otherwise (i.e., r′ is a non-punctual boundary region) we distinguish be-
tween the following two sub-cases:

(a) if there exists an edge in G that is not punctual and can move from
r to r′ in one transition over σ, then split(r, σ, r′) =∞;

(b) otherwise (i.e., all edges in G moving from r to r′ over σ are punc-
tual), let e1, . . . , el be all the edges in G that can be taken from r to
r′ over σ. For each 1 ≤ i ≤ l, let gi be the guard of ei, xi = ci be
one of the punctual clock constraints in gi and X be the set of all
such clocks xi. Then, split(r, σ, r′) equals to the number of clocks in
X having different fractional parts in the clock valuations of r (i.e.,
|{frac(ν(x)) | x ∈ X}| for any state 〈q, ν〉 of r).

The last case is clearly the most complex one and deserves some further
explanation. First, from each guard gi we pick an arbitrary punctual clock
constraint xi = ci. Notice that if gi contains any other punctual clock constraint,
say y = d, it holds that xi and y have the same fractional part in r, otherwise ei
could not be enabled in a time-successor of r. Therefore, it is enough to insert
either xi or y into X.
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Second, we pick an arbitrary state 〈q, ν〉 ∈ r. Recall that a clock region
fixes an ordering between the fractional parts of all clocks x whose value is less
than cx. In particular, the equivalence relation distinguishes between the case
frac(x) < frac(y) and frac(x) = frac(y), for all clocks x, y. Hence, the number
of clocks having different fractional parts is the same for all 〈q, ν〉 ∈ r.

qini q1

ξ

y = 2 x, y ← 0

ξ

x = 2 x, y ← 0

ξ

x ≤ 2 x, y ← 0

Figure 2: A game showing different cases in the evaluation of the function split (see Exam-
ple 1).

Let us consider some examples where one can retrieve the bounds we have
introduced in the definition above.

Example 1. Consider the 3-clock timed graph in Figure 2, including the dashed
edge. Let r = 〈qini , α〉 where α is such that x, y, z ∈ (0, 1) and frac(x) <
frac(y) < frac(z), and r′ = 〈q1, α′〉 where α′ is such that x = y = 0 and
z ∈ (1, 2). Notice that r′ is not punctual but it does have integral-valued clocks,
ruling out cases 1 and 2 of the definition of split. The dashed edge, with guard
x ≤ 2, is not punctual, thus we are in case 3(a) of the definition and thus
split(r, ξ, r′) = ∞. Indeed, from any state in r there are infinitely many delays
for which the dashed edge can be taken, all leading to different states in r′, each
with a different value of the clock z.

Next, assume that the dashed edge is removed from the graph. Now, all the
remaining edges from r to r′ are punctual, so we end up in case 3(b) of the
definition of split. The set of clocks that are subject to a punctual constraint
is X = {x, y}. Since x and y have different fractional part in r, we obtain
split(r, ξ, r′) = 2. Indeed, from any state in r there exist a delay which enables
the edge with guard x = 2 and another delay which enables the edge with guard
y = 2. These delays lead to two states in r′ which differ in the value of the clock
z.

Finally, consider the region r′′ = 〈qini , α′′〉, where α′′ is the clock region
such that x, y, z ∈ (0, 1) and frac(x) = frac(y) < frac(z). When evaluating
split(r′′, ξ, r′), we fall in case 3(b) again, and as before we have X = {x, y},
but this time x and y have the same fractional part in r′′. Hence, we obtain
split(r′′, ξ, r′) = 1. Indeed, from any state in r there exists a unique delay which
enables both edges, leading to a unique state in r′.

The following result states the main property of the split function.
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Lemma 1. Starting from a given state of a region r of a timed graph G, for
each region r′ of G, it holds that the maximal number of different states of r′

which are reachable through a single step over a symbol σ ∈ Actsξ is equal to
split(r, σ, r′).

Proof : Let s = 〈q, ν〉, r = 〈q, α〉 and r′ = 〈q′, α′〉. We recall that a state

s′ in r′ is reachable from s in one step over σ if there exists a step s
d,σ−→ s′,

for a given delay d. Note that the number of different states s′ of r′ that can
be reached from s in one step over σ does not depend on the particular state
s we pick in r, therefore let denote this number with ]r,σ,r′ . We show that
]r,σ,r′ = split(r, σ, r′) by case inspection.

First observe that in G if the region r′ is not reachable from r over σ, clearly
]r,σ,r′ = 0, which matches the definition of split(r, σ, r′) in this case. In all the
remaining cases, there is always at least a state of r′ which is reachable in one

step over σ, and denote with ν′ ∈ α′ a clock valuation such that s
d,σ−→ 〈q′, ν′〉

for some d > 0. We distinguish among the following cases.

• r′ is a point. Thus, it contains only the state 〈q′, ν′〉 and for all clocks
x, frac(ν′(x)) = 0 must hold (i.e., ν′ assigns an integer to x). Therefore,
]r,σ,r′ = 1 and thus ]r,σ,r′ = split(r, σ, r′) holds.

• r′ is punctual but not a point. In this case, ν′ evaluates x to an integer
c > 0 and hence x cannot be reset in any transition from r to r′. Thus,
starting from a state s in ν there is only one possible delay d for the step
from s to a state in r′, namely d = c − ν(x). Indeed, any other delay
d′ 6= d would lead to a point with x 6= c and thus outside r′. So, there is
only one reachable state in r′ from any state of r. Therefore, also in this
case we have ]r,σ,r′ = 1 and thus ]r,σ,r′ = split(r, σ, r′) holds.

• r′ is an open region. Let x be the clock with the greatest fractional part
according to ν′, i.e., frac(ν′(x)) ≥ frac(ν′(y)), for all clocks y in G. Clearly,
0 < frac(ν′(x)) < 1. Now, consider the set of states H = {s′′ | 〈q′, ν′ + d〉,
with d ∈ R and 0 < d < 1 − frac(ν(x))}. The set H is infinite and
contained in r′, and all the states it contains are reachable from s with a
different delay. Therefore, ]r,σ,r′ =∞ which equals split(r, σ, r′).

• r′ is a non-punctual boundary region (i.e., it is not a point and for all the
clock constraints of the form x = c, c is 0) and there exists a non punctual
edge of G that can be taken to get from s to a state in r′ in one step. This
case is very similar to the previous one, except that s has a clock that
has been reset while moving from q to q′ (recall that the delay d must be
greater than 0). This means that by taking the set H from the previous
case and setting to 0 all clocks y such that ν′(y) = 0, we obtain a set of
states H ′ that is still infinite (because at least one clock is not zero in r′)
and is contained in r′. Thus, also in this case ]r,σ,r′ = ∞ which equals
split(r, σ, r′).
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• r′ is a non-punctual boundary region and all the edges of G that can be
taken to get from r to r′ (in one step over σ) are punctual. As r′ is not
punctual, for all clocks x either ν′(x) = 0 or frac(ν′(x)) 6= 0 depending
on whether x is reset or not on the transition. In particular, ν′ evaluates
at least one clock x to zero and at least one clock z to a positive value.
Moreover, since the guards are punctual, all the clocks x such that x = c
is a conjunct of the guard must be reset on the transition.

Let e1, . . . , el be the punctual edges in G that allow moving from s to any
state in r′ over σ. For each 1 ≤ i ≤ l, let gi the guard in ei and xi be such
that xi = ci is a clock constraint in gi. By taking the one such edge ej ,
for the punctual clock constraint xj = cj in gj , there is only one possible
delay, namely dj = cj − ν(xj), to trigger the transition and thus only
one state in r′ can be reached through ej . If we use any other edge et,
with t 6= j, and frac(ν(xj)) 6= frac(ν(xt)), a simple calculation shows that
dt 6= dj . In general, let X be the set of the punctual clocks xi in gi and
k = |{frac(ν(x)) | x ∈ X}|. We can take k different delays to move from s
to a state in r′ taking a transition over σ, which lead to k different states
(since the clock z is not reset by any edge e1, . . . , el). Therefore, ]r,σ,r′ is
exactly k, and also in this case ]r,σ,r′ = split(r, σ, r′), which concludes the
proof.

2

4. Branching-time Timed Games

4.1. Computation Tree Logic

Ctl was introduced by Emerson and Clarke [19] as a powerful tool for
specifying and verifying concurrent programs. Given a set of atomic propositions
AP , a Ctl formula is composed of atomic propositions, the boolean connectives
conjunction (∧) and disjunction (∨), and the temporal operators Next (X),
Until ( U), and Release (R), coupled with path quantifiers for all paths (∀) and
for some path (∃). Ctl formulas are built up in the usual way from the above
operators and connectives, according to the following grammar:

ϕ := p | ¬p |ϕ ∧ ϕ |ϕ ∨ ϕ | ∃Xϕ | ∀Xϕ | ∃(ϕUϕ) | ∀(ϕUϕ) | ∃(ϕ R ϕ) | ∀(ϕ R ϕ)

where p ∈ AP . The semantics of Ctl is defined with respect to a 2AP -valued
tree T = (µ, (vini , V, E)). Given a Ctl formula ϕ and a node v ∈ V , the
satisfaction relation (T, v) |= ϕ, meaning that ϕ is true in G at v, is defined
inductively as follows (p ∈ AP ):

• (T, v) |= p if and only if p ∈ µ(v);

• (T, v) |= ¬p if and only if (T, v) 6|= p;

• (T, v) |= ϕ1 ∧ ϕ2 if and only if (T, v) |= ϕ1 and (T, v) |= ϕ2;
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• (T, v) |= ϕ1 ∨ ϕ2 if and only if (T, v) |= ϕ1 or (T, v) |= ϕ2;

• (T, v) |= ∃Xϕ if and only if there exists a v′ ∈ V such that (v, v′) ∈ E and
(T, v′) |= ϕ;

• (T, v) |= ∀Xϕ if and only if (T, v′) |= ϕ for all v′ ∈ V such that (v, v′) ∈ E;

• (T, v) |= ∃(ϕ1 U ϕ2) if and only if there exists an infinite path v0v1 . . .,
with v = v0, such that for some i ≥ 0 (T, vi) |= ϕ2, and (T, vj) |= ϕ1 for
all 0 ≤ j < i;

• (T, v) |= ∀(ϕ1 U ϕ2) if and only if for all infinite paths v0v1 . . ., with v = v0,
there exists i ≥ 0 such that (T, vi) |= ϕ2, and (T, vj) |= ϕ1 for all 0 ≤ j < i;

• (T, v) |= ∃(ϕ1 R ϕ2) if and only if there exists an infinite path v0v1 . . .,
with v = v0, such that for all i ≥ 0, if (T, vi) 6|= ϕ2 then there exists
0 ≤ j < i such that (T, vj) |= ϕ1;

• (T, v) |= ∀(ϕ1 R ϕ2) if and only if for all infinite paths v0v1 . . ., with
v = v0, and for all i ≥ 0, if (T, vi) 6|= ϕ2 then there exists 0 ≤ j < i such
that (T, vj) |= ϕ1.

The usual abbreviation 3ϕ stands for true Uϕ. To denote that T is a model
of ϕ, i.e. (T, vini) |= ϕ, we also write T |= ϕ. It is known that, given a branching
degree k, it is possible to characterize all the trees of degree k that satisfy a Ctl
formula by a Büchi tree automaton, as reported in the following proposition.

Proposition 3 ([49]). Given a Ctl formula ϕ and an integer k, there exists
a Büchi tree automaton Aϕk accepting all ω-trees T with a branching degree k
and such that T |= ϕ. Moreover, Aϕk has a number of states that is exponential
in the size of ϕ.

CTL Timed Games. A Ctl timed game (Ctl game, for short) is a timed
game (G, ϕ) where the winning condition is expressed by a Ctl formula ϕ
which uses as atomic propositions the locations of G. We say that a strategy F
is winning in a Ctl game (G, ϕ) if untime(TF ) |= ϕ.

Decision problem: Given a Ctl game (G, ϕ), we wish to determine whether
there exists a winning strategy.

We will address this decision problem in Section 5. In the rest of this section
we will show some properties of the winning strategies for Ctl games.

4.2. Splitting and Memory Requirements in Branching-time Timed Games

The ability of strategies to be splitting is a key argument in branching games.
Indeed, we show in the following lemma that splitting strategies are needed for
winning Ctl games.

Lemma 2. Region stable strategies are not sufficient for winning Ctl games.
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a
q2

q3

b
q1qini

ξ

0 < x < 1

Figure 3: A game where region stable strategies are not sufficient to win.

qini

ξ

ξ ξ

a

b
q5

q4

q3

q2

q1
ξ

x← 0

x← 0

Figure 4: A game where memory is needed.

Proof : Consider the game in Figure 3, whose winning condition is the Ctl
formula ∃3q2 ∧ ∃3q3. At the beginning, the antagonist must take a ξ-move in
the clock region 0 < x < 1. If the protagonist uses a region stable strategy,
then, once the game is in location q1, he can choose either action a or action b.
Clearly, he cannot win the game in this way.

On the other hand, if the protagonist is allowed to use a general strategy,
he could choose a if the antagonist played before x = 0.5 and b otherwise, thus
winning the game. 2

Another crucial property is that in Ctl games it is not sufficient for a player
to use memoryless strategies in order to win. A strategy is memoryless if it only
depends on the last state of each play.

Lemma 3. Memory is needed to win Ctl games.

Proof : Figure 4 gives an example of a timed game where all winning strate-
gies need memory. The timed graph has only the clock x that is reset on the
transitions that lead to q3. Consider the winning condition ∃3q4 ∧ ∃3q5. Once
the game reaches q3, the value of x is always 0 and thus any memoryless strategy
can only choose either move a or move b, independently of the play. Clearly,
either moves will not suffice to satisfy the winning condition. In fact, along
all plays which are consistent with the resulting memoryless strategy will lead
either all to q4 or all to q5. On the other hand, a winning strategy exists. For
example, one can issue a if q3 is reached through q2, and b otherwise. 2

5. Solving CTL Timed Games

In this section, we present our solution to Ctl timed games, i.e., an algo-
rithm to determine whether there exists a winning strategy of the protagonist,
given a Ctl timed game.
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We follow the automata-theoretic approach. In particular, we build an au-
tomaton that accepts a tree if and only if there is a winning strategy of the
protagonist in the game. From Proposition 3, we can build an automaton ac-
cepting all the trees (with a given branching degree) that satisfy a given Ctl
formula, thus we just need to capture with trees of bounded branching degree
all the possible strategies.

The tree counterpart of strategies in timed games, i.e., the strategy trees,
have a continuous branching degree. The crucial step in our approach is to show
that indeed for each strategy F of a Ctl timed game, we define a corresponding
discrete tree tF of bounded branching-degree, in such a way that F is winning
if and only if tF satisfies ϕ.

Intuitively, tF is the untimed version of a suitable subtree of the strategy tree
TF which “samples”paths which are meaningful for the fulfillment of the winning
condition. In particular, such discrete tree preserves all the moves taken by the
protagonist, as well as all the moves taken by the antagonist from a punctual
region. Furthermore, for each non-punctual region from which the antagonist
can move, the subtree contains only a bounded number of the antagonist moves.

In order for this subtree to faithfully represent the strategy it is derived
from, the size of this selection must be at least equal to the splitting degree
of the strategy (i.e., at least k if the strategy is k-splitting). Moreover, as we
see in the following, in order to win Ctl games we may need strategies that
have a splitting degree at least equal to the number of existential quantifiers
in the formula. Accordingly, we define an automaton AGk accepting all trees tF
corresponding to k-splitting strategies.

x = 1

q4

q4

q3
q2

x = 0

q4

q4

a (3)

q1

x = 0

x = 0

x>1
q4

0<x<1

0<x<1

0<x<1

0<x<1

0<x<1

0<x<1

0<x<1
q4 q3

q4

x>1
q4

q4
x = 1

a (1)

q2

a (2)

Figure 5: Transitions of AG2 from state 〈1, x = 0〉, for the timed graph G of Figure 1. Edges
that are linked by an arc belong to the same tree transition.
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As an example, consider the timed graph in Figure 1, and suppose we want
to accept all trees corresponding to 2-splitting strategies. A fragment of the
corresponding tree automaton AG2 is depicted in Figure 5. The automaton uses
as locations the regions of the timed graph.

To see how this automaton works, suppose that the game is in the state
〈q1, x = 0〉 and the protagonist chooses to issue the action a after a delay of 0.5
time units. One can see from Figure 1 that there is only one transition labeled
with a and enabled at time x = 0.5, leading to the region 〈q3, 0 < x < 1〉.
Also, the antagonist can take a ξ-move for all delays in the interval (0, 0.5),
always leading to the region 〈q4, 0 < x < 1〉. Since we are considering 2-
splitting strategies, the automaton keeps two copies for each non-punctual region
of the antagonist. Therefore, the automaton contains a transition with three
destinations (case (1) in Figure 5): one for the region chosen by the protagonist
and two copies of the (unique) region possibly chosen by the antagonist.

Similar arguments hold when the a-move is issued by the protagonist at time
x = 1 (case (2) in Figure 5) or x > 1 (case (3) in Figure 5).

5.1. Strategy Samples

Consider a strategy F and let TF = (µ, TF ), where TF = (vini , V, E), be the
corresponding strategy tree. For an integer k > 0, we define a class of discrete
trees (called k-samples of F) associated with F . As an intermediate step, we
define a pre-k-sample to be a suitable subtree of TF . A k-sample is then the
projection of a pre-k-sample along the Q component, that is, if u is a node
of a pre-k-sample and µ(u) = 〈q, ν〉, then the label of u in the corresponding
k-sample is {q}. We denote Samplek(F) the set of all k-samples of F . We now
provide the definition of a pre-k-sample.

For each u ∈ V , let (succProt(TF , u), succAnt(TF , u)) be the partition of
succ(TF , u) as given in the definition of TF . For k > 0, a pre-k-sample of
F is a tree T = (µ′, T ) with T = (vini , V

′, E′) where µ′ is the restriction of µ
to V ′, E′ = E ∩ (V ′)2 and V ′ is a minimal subset of V such that:

• vini ∈ V ′;

• For each u ∈ V ′:

– for each v ∈ succProt(TF , u), we have v ∈ V ′;
– for each region r such that there exists v ∈ succAnt(TF , u) with µ(v) ∈
r, let k′ = min{k, split([µ(u)], ξ, r)}; there exist k′ distinct nodes
v1, . . . , vk′ ∈ succAnt(TF , u) such that, for all i = 1 . . . k′, µ(vi) ∈ r
and vi ∈ V ′.

Notice that the existence of such k′ distinct nodes in succAnt(TF , u) is ensured
by Lemma 1.

For instance, consider again the game in Figure 3, and consider the strategy
F that, from state 〈q1, ν〉 chooses move (1, a) if ν(x) < 0.5 and move (1, b)
otherwise. Figure 6 shows two 2-samples of F .

18



q1q1

q2 q2 x = 1.4

x = 0.4

qini x = 0

x = 0.2

x = 1.2

(a)

q1q1

q2 q3 x = 1.7

x = 0.7

qini x = 0

x = 0.2

x = 1.2

(b)

Figure 6: Two samples obtained from the game of Figure 3 and the strategy that, from q1,
picks move (1, a) when x < 0.5 and move (1, b) otherwise.

5.2. The Automaton AGk
For an integer k > 0, we now define the tree automaton AGk , whose task is

to accept all and only the k-samples corresponding to some strategy in G. The
locations of AGk are the regions of the timed graph G, while its labels are the
locations of G. We set AGk = (2Q,Regs,∆, rini), where rini = 〈qini , [νini ]〉 and

∆ ⊆ ∪i≥1Regs × 2Q × Regsi is the set of all the tuples defined as follows.
Consider a AGk location r = 〈q, α〉 ∈ Regs. There exists a region z which is

a time-successor of r and such that there is at least a σ-transition enabled from
z, with σ ∈ Acts (recall our assumption that in any state at least a move of the

protagonist is enabled). For any such σ ∈ Acts, let Regsz,σ = { r′ | z σ−→ r′ }
and Regsr,z,ξ = { r′ | z′ ξ−→ r′ and r � z′ � z }. We number the elements of
these sets such that Regsz,σ = {r′1, . . . , r′m} and Regsr,z,ξ = {r′m+1, . . . , r

′
m+h},

and for all i = m + 1, . . . ,m + h, let ki = min{k, split(r, ξ, r′i)}. Then, the
following transition belongs to ∆:

(r, {q}, r′1, . . . , r′m, r′m+1, . . . , r
′
m+1︸ ︷︷ ︸

km+1 times

, . . . , r′m+h, . . . , r
′
m+h︸ ︷︷ ︸

km+h times

).

In the following, we refer to r′1, . . . , r
′
m as the Regsz,σ part of the above

transition. Analogously, what follows on the right is referred to as the Regsr,z,ξ
part.

Note that the branching degree of AGk is linear in the product of the maximum
branching degree of G, max{ cx | x ∈ C }, and k. From [2], we have that the
number of regions of G is O(|C|! 2|C|Πx∈C(2cx + 2)). Thus, the following result
holds.

Lemma 4. The size of AGk is exponential in the size of the clock constraints
and linear in the number of locations of G.
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Suppose we have a sample T that satisfies a Ctl formula ϕ. We could be
tempted to conclude that the strategy from which T is derived satisfies ϕ as
well. However, this is not the case, since samples are rather arbitrary selections
of paths from the original strategy tree. For instance, consider the 2-sample in
Figure 6(a). It satisfies the formula ∀X∀Xq2, while the strategy from which the
sample is derived does not. The problem is that the strategy has extra behaviors
that are not present in the sample in Figure 6(a). However, we could modify the
strategy in such a way as to exhibit all and only the behaviors that are present
in a given sample. To this aim, we introduce the concept of canonical strategy
for a sample, but first we recall the notions of bisimilarity and isomorphism on
trees.

For i ∈ {1, 2}, let Ti = (µi, (root i, Vi, Ei)) be a Σ-valued tree. T1 and T2 are
isomorphic if they are equal modulo a renaming of their vertices. A relation
R ⊆ V1 × V2 is a bisimulation if and only if, for all (u1, u2) ∈ R, the following
conditions hold:

1. µ1(u1) = µ2(u2),
2. for all v1 ∈ succ(T1, u1), there exists v2 ∈ succ(T2, u2) such that (v1, v2) ∈
R, and

3. for all v2 ∈ succ(T2, u2), there exists v1 ∈ succ(T1, u1) such that (v1, v2) ∈
R.

We say that T1 and T2 are bisimilar if there exists a bisimulation R such that
(root1, root2) ∈ R.

Given a tree T , we say that a strategy F is a canonical strategy for T if (i)
T is isomorphic to a tree in Samplek(F) and (ii) T is bisimilar to untime(TF ).

We now show that, given a tree T accepted by AGk , there exists a canonical
strategy F for T .

Lemma 5. There exists a canonical strategy for each T ∈ L(AGk ).

Proof : Let AGk = (2Q,Regs,∆, rini) and T ∈ L(AGk ). We first introduce
some notation, then we inductively construct a strategy F using a notion of
consistency. This notion of consistency is also the key to show that indeed such
F is canonical, which concludes the proof.

Preliminary notation. Fix T = (µQ, T ) with T = (v′ini , V
′, E′) and an accepting

run (µR, T ) of AGk on T . From the definition of run and the construction of AGk ,
we derive the following notation.

Recall that for each u ∈ V ′, (µR(u), {q}, µR(v1), . . . , µR(vc)) ∈ ∆ where
µR(u) = 〈q, α〉 and succ(T, u) = {v1, . . . , vc}. Now, let σu, zu,Regsuσ and Regsuξ
be respectively the action σ ∈ Acts, the region z, and the sets of regions Regsz,σ
and Regsr,z,ξ used in the definition of the above AGk transition.

For each u ∈ V ′, we set succ(T, u, σ) = {v ∈ succ(T, u) | v corresponds
to a position in the Regsuσ part of the transition from u}, and for r ∈ Regsuξ ,
succ(T, u, ξ, r) = {v ∈ succ(T, u) | v corresponds to a position in the Regsuξ
part of the transition from u which assigns r}. Thus, the sets succ(T, u, σ) and
succ(T, u, ξ, r) for r ∈ Regsuξ form a partition of succ(T, u).
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Strategy F and consistency. We start giving a labeling µS of T that assigns to
each node a state of G such that the sequence of labels of each path of T is a
run of G. Then, we introduce a partition of the regions r among each nonempty
set of nodes succ(T, u, ξ, r). All this is used to define inductively a notion of
consistency for the plays of G with respect to a path in T and the strategy F .

From the definition of run and the construction of AGk , we can define the
labeling function µS of T such that for each u ∈ V ′:

• µS(u) ∈ µR(u);

• there exists a delay d > 0 such that for each v ∈ succ(T, u, σu), µS(u)
d,σu

−→
µS(v); we denote such d as du in the following;

• for each v ∈ succ(T, u) \ succ(T, u, σu), there exists a delay d′ with 0 <

d′ < du such that µS(u)
d′,ξ−→ µS(v).

From the definition of region, it is simple to verify that for each path π =
u1 . . . un . . . of T , the sequence µS(π) = µS(u1) . . . µS(un) . . . is a play of G.
Indeed, the tree (µS , T ) is a pre-k-sample of the strategy tree for the strategy
F we are going to construct.

Now, we define a partition of the regions r among each nonempty set of
nodes succ(T, u, ξ, r). In particular, for each u ∈ V ′, we split a region r ∈ Regsuσ
among slice(v1, r), . . . , slice(vh, r) such that {v1, . . . , vh} = succ(T, u, ξ, r) and
µS(vi) ∈ slice(vi, r) for i = 1, . . . , h.

The consistency notion for the plays of G and the strategy F are given
together inductively on the length of the plays. Denote with ρ = s0 . . . sn a play
of G and with π = u0 . . . un a path of T .

If n = 0, ρ is consistent with π if s0 ∈ µR(u0). Moreover, we define F(ρ) =
(du0 , σu0) (by definition there is only one initial state in G and the sole initial
state of AGk is the region containing just that state).

Let n > 0, and suppose that ρ′ = s0 . . . sn−1 is consistent with u0 . . . un−1
and let F(ρ′) = (d, σun−1).

• If sn−1
d,σun−1

−−−−−→ sn, then ρ is consistent with π if un ∈ succ(T, un−1, σ
un−1)

and sn ∈ µR(un). Otherwise (i.e., sn−1
d′,ξ−→ sn with d′ < d), ρ is consistent

with π if un ∈ succ(T, un−1, ξ, µR(un)) and sn ∈ slice(un, µR(un)).

• if ρ is consistent with π, we let F(ρ) = (d, σun) where sn = 〈q, ν〉 and
〈q, ν + d〉 ∈ zun (recall that zun is the region from which the σ steps are
taken, relatively to the AGk transition from un in the run (µR, T )).

We complete the definition of F by arbitrarily assigning a move for all the
plays of G that are not consistent with any path of T .

Observe that the strategy is well-defined. In fact, since the definition is by
disjoint cases, for each play ρ of G, we assign exactly one move. Moreover, the
following claim holds:
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Claim 1. Each play of G which is consistent with F is also consistent with a
path of T .
Proof : By contradiction let ρ = s0 . . . sn be the shortest play of G that is

consistent with F but is not consistent with any path of T . By hypothesis, since
ρ′ = s0 . . . sn−1 is consistent with F , there is a path u0 . . . un−1 of T that is con-
sistent with it. From the definition of F , F(ρ′) = (d, σ) for some delay d > 0 and

σ = σun−1 . Thus, since ρ is consistent with F , either sn−1
d,σ−→ sn or sn−1

d′,ξ−→ sn
with d′ < d must hold. In the first case, there is a un ∈ succ(T, un−1, σ) such
that sn ∈ µR(un), and thus ρ is consistent with u0 . . . un−1un which contradicts
the hypothesis. In the second case, there is a un ∈ succ(T, un−1, ξ, r) such that
µR(un) = r and sn ∈ slice(un, r). Thus also in this case we get a contradiction,
and the claim is shown. 2

We extend the notion of consistency by saying that a path ρ of the strategy
tree TF is consistent with a path π of T if the play defined by ρ (i.e., defined
by the sequence of the labels on ρ) is consistent with π. From the above claim,
we get that each path ρ of TF is consistent with a path π of T and from the
definition of consistency this path π is unique.

F is canonical. From the definition of F , we get that (µS , T ) is isomorphic
to a tree T ′ contained in TF . Also, T ′ is a pre-k-sample of F . Thus, from the
definition of k-sample, we can obtain from T ′ a k-sample of F that is isomorphic
to T , which proves the first condition in the definition of canonical strategy.

Let TF = (µ, TF ) where TF = (vini , V, E) and untime(TF ) = (µ̂, TF ). Define
a relation R as the set of all pairs (v, v′) ∈ V × V ′ such that the unique path
from the root to v is consistent with the unique path of T from the root to v′.
Since (vini , v

′
ini) ∈ R, the following claim shows that F is canonical.

Claim 2. R is a bisimulation.
Proof : For all (v, v′) ∈ R, let ρ(v) be the path in TF from vini to v and π(v′)

be the path in T from v′ini to v′. From the definition of R, ρ(v) is consistent
with π(v′), and thus from the definition of untime(TF ) we get that µQ(v′) =
µ̂(v), which shows part 1 of the definition of bisimulation. Also, since (µS , T )
is isomorphic to a tree contained in TF , we get that the pairs (u, u′) of the
nodes that are matched by the isomorphism are also in R, and thus for each
u′ ∈ succ(T, v′) we can pick exactly the u ∈ succ(untime(TF ), v) matched by
the isomorphism to show part 3 of the definition of bisimulation. Now, consider
a node u ∈ succ(untime(TF ), v). By the notion of consistency, we have that
the path of T which is consistent to ρ(u) is given by π(v′) followed by a node
u′ ∈ succ(T, v′) and therefore also (u, u′) ∈ R, which concludes the proof of the
claim. 2
This concludes the proof of Lemma 5. 2

We can now prove the following result.

Lemma 6. The automaton AGk accepts all and only the k-samples of strategies.

Proof : Let F be a strategy and T ∈ Samplek(F). We prove that T ∈ L(AGk ).
Let T ′ = (µ, T ), with T = (vini , V, E), be the pre-sample corresponding to T ,
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and let [T ′] be the tree (µ′, T ), where for all v ∈ V , µ′(v) = 〈q, [ν]〉 if and only
if µ(v) = 〈q, ν〉. It is easy to show by induction that [T ′] is an accepting run of
AGk over T .

Conversely, let T ∈ L(AGk ). By Lemma 5, there exists a canonical strategy
F for T , and thus T ∈ Samplek(F). 2

5.3. Bounding the Splitting Degree

Lemma 7. Given a Ctl formula ϕ, let F be a winning strategy w.r.t. ϕ. There
exists T ∈ Samplek(F) such that T |= ϕ, where k is the number of existential
quantifiers in ϕ.

Proof : We essentially prove that if a tree TF satisfies a CTL formula ϕ,
there exists a subtree of TF that also satisfies ϕ and whose branching degree is
bounded by the number k of existential quantifiers in ϕ. Moreover, the subtree
can be defined in such a way that it is a k-sample of F .

Let TF = (µ, (vini , V, E)). To define T = (µ′, (vini , V
′, E′)), it is sufficient to

define its set of nodes V ′, as E′ and µ′ are simply the restrictions of E and µ
to V ′, respectively.

For all v ∈ V , let Sub∃(v) be the set of existential subformulas of ϕ that are
true in TF at v. Formally, Sub∃(v) = {ϕ′ ∈ Sub(ϕ) | ϕ′ = ∃θ and (TF , v) |= ϕ′}.
For each node v ∈ V , one can identify the existential subformulas of ϕ that are
true at v and select a witness path for each such formula. Witness paths may be
finite, if associated to formulas of the type ∃θ1 Uθ2, or infinite, due to formulas
of the type ∃θ1 R θ2. Since we need at most k witnesses for all existential
subformulas of ϕ, the subtree needs to contain at most k children of v in order
to preserve the witnesses. However, this observation is not sufficient to bound
the branching degree of the whole subtree, because v may lie on one or more
witness paths that have been chosen by its ancestors, thus requiring more than
k children. To address this concern, we notice that a witness u0u1 . . . for an
existential formula ψ at a node u0 is also a witness for the same formula at all
nodes ui belonging to the witness.

The extraction of the subtree argument is formalized by the recursive func-
tion AddLayer, provided in the following. Precisely, the wanted set V ′ is ob-
tained as the least fixpoint of the AddLayer function (starting from ({vini}, ∅)).

Function AddLayer, together with the supporting functions AddChildren
and Update, maintains a labeling which assigns to each node u ∈ V ′ a set
W ⊆ Sub(ϕ)×V∞ (for Witnesses), where V∞ = V ∗∪V ω. If a pair (ψ, u0u1 . . .)
belongs to W , it means that the path u0u1 . . . was chosen as a witness for ψ at
u0. The extra steps taken by the function AddChildren guarantee that the
resulting subtree is a k-sample of F . Given U ⊆ V and u ∈ U , we say that u is
a leaf w.r.t. U if for all v ∈ U we have (u, v) 6∈ E. 2

function AddLayer(V ′ ⊆ V ; f : V ′ → 2Sub(ϕ)×V∞)
vars:

U : set of nodes

g : V → 2Sub(ϕ)×V∞

main:
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for each leaf u w.r.t. V ′ do
(U, g) := AddChildren(u, f(u))
V ′ := V ′ ∪ U
f := f ∪ g

done
return (V ′, f)

function AddChildren(u ∈ V ;W ⊆ Sub(ϕ)× V∞)
vars:

U : set of nodes

g : V → 2Sub(ϕ)×V∞

RelNodes (relevant nodes) : set of nodes

NewW (new witnesses) : succ(TF , u)→ 2Sub(ϕ)×V∞

init:
U := ∅
RelNodes := ∅
for each v ∈ succ(TF , u) do NewW (v) := ∅

main:
/* collect nodes preserving existential formulas that are true in u */

for each ∃ψ ∈ Sub∃(u) do
if ψ = Xθ then

pick a node v ∈ succ(TF , u) such that (TF , v) |= θ
RelNodes := RelNodes ∪ {v}

else if
(
ψ = θ1 Uθ2 and (TF , u) 6|= θ2

)
or

(
ψ = θ1 R θ2 and (TF , u) 6|= θ1

)
then

if (ψ, uv1v2 . . .) ∈W then
RelNodes := RelNodes ∪ {v1}

else
pick a path π = uv1v2 . . . such that (TF , π) |= ψ
RelNodes := RelNodes ∪ {v1}
NewW (v1) := NewW (v1) ∪ {(ψ, v1v2 . . .)}

endif
endif

done
/* add relevant nodes */
for each v ∈ RelNodes do

U := U ∪ {v}
g(v) := NewW (v) ∪Update(v,W )

done
/* protagonist moves */
for each v ∈ succProt(TF , u) \ RelNodes do

U := U ∪ {v}
g(v) := Update(v,W )

done
/* antagonist moves */
for each region r such that there exists v ∈ succAnt(TF , u) with µ(v) ∈ r do

n := min{k, split([µ(u)], ξ, r)} − |{v ∈ U | µ(v) ∈ r}|
while n > 0 do

pick v in succAnt(TF , u) \ U with µ(v) ∈ r
U := U ∪ {v}
g(v) := Update(v,W )
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n := n− 1
done

done
return (U, g)

function Update(v ∈ V,W ⊆ Sub(ϕ)× V∞)
vars:

B : subset of Sub(ϕ)× V∞
init:

B := ∅
main:

for each (ψ, v0v1 . . .) ∈W do
if v = v1 then B := B ∪ {(ψ, v1v2 . . .)}

done
return B

5.4. The Automata-theoretic Solution
To solve branching games, we build an automaton A∩ accepting the intersec-

tion of L(Aϕk ) and L(AGk ), and then check for its emptiness. Since the transitions
of AGk and Aϕk may differ on their branching degree, we augment them in a stan-
dard way such that they are uniformed on their maximum branching degree.

Lemma 8. Given a Ctl game (G, ϕ), there exists a winning strategy if and
only if L(A∩) is nonempty.

Proof : Assume T ∈ L(A∩) = L(AGk ) ∩ L(Aϕk ). By Lemma 6, there is a
strategy F such that T is a k-sample of F , and by Proposition 3, T |= ϕ. Thus,
by Lemma 5, there is a strategy F ′ such that TF ′ |= ϕ and thus F ′ is a winning
strategy.

Conversely, suppose that F is a winning strategy and TF is the associated
strategy tree. Assuming that ϕ contains k existential quantifiers, by Lemma 7,
there exists a k-sample T of F that satisfies ϕ. By Lemma 6, T is accepted
by AGk , and by Proposition 3, it is also accepted by Aϕk . Therefore, L(A∩) is
nonempty. 2

By taking the intersection of Aϕk and AGk , we obtain a Büchi tree automaton
A∩ whose number of states is the product of the number of states of the original
automata. By Lemma 8 and the fact that the emptiness problem for Büchi
automata is decidable in polynomial time (Proposition 2), the following holds.

Theorem 1. Given a Ctl game (G, ϕ), the problem of deciding the existence
of a winning strategy in (G, ϕ) is solvable in exponential time.

6. Linear-time Timed Games

In this section, we deal with timed games whose winning condition is an Ltl
formula. We say that (G, ϕ) is an Ltl game whenever ϕ is an Ltl formula using
as atomic propositions the locations of G. Intuitively, in such a game we say
that a strategy for the protagonist is winning if every run which is consistent
with the strategy satisfies the formula.

25



6.1. Linear Temporal Logic

Linear Temporal Logic (Ltl) was introduced by Pnueli to specify and verify
properties of reactive systems [40]. Given a set of atomic propositions AP ,
an Ltl formula is composed of atomic propositions, the boolean connectives
conjunction (∧) and negation (¬), and the temporal operators Next (X) and
Until ( U). Ltl formulas are built up in the usual way from the above operators
and connectives, according to the following grammar:

ϕ := p | ¬ϕ |ϕ ∧ ϕ |Xϕ |ϕUϕ

where p is an atomic proposition. We denote by |ϕ| the length of formula
ϕ. The semantics of Ltl formulas is given with respect to an infinite word
w = σ0σ1 . . . σn . . . over the alphabet Σ = 2AP . The satisfaction relation w |= ϕ
is defined in the standard way:

• if ϕ is an atomic proposition, then w |= ϕ if and only if ϕ ∈ σ0;

• w |= ¬ϕ if and only if w |= ϕ does not hold;

• w |= ϕ1 ∧ ϕ2 if and only if w |= ϕ1 and w |= ϕ2;

• w |= Xϕ if and only if w≥1 |= ϕ;

• w |= ϕ1 Uϕ2 if and only if there exists i ≥ 0 such that w≥i |= ϕ2 and
w≥j |= ϕ1 for all j such that 0 ≤ j < i.

Given a tree t, we also say that t |= ϕ if, for all paths π of t, we have that
π |= ϕ. For every Ltl formula ϕ, it is possible to construct a nondeterministic
Büchi automaton on ω-words accepting all ω-words models of ϕ [49]. We will
refer to such an automaton as a generator of models of ϕ. Since we need to
construct a tree automaton, it is necessary to have a deterministic generator. In
fact, given a positive integer k and a deterministic Büchi automaton on ω-words
A = (Σ, Q,∆, qini , F ), we can easily obtain a tree automaton A′ accepting all
trees t with branching degree bounded above by k and such that every path of t is
a word accepted by A. The tree automaton has the form A′ = (Σ, Q,∆′, qini , F ),
where ∆′ contains all and only the transition (q, σ, q1, . . . , ql), where (q, σ, qi) ∈
∆, for all i = 1, . . . , l and l ≤ k. Clearly, such a construction does not work for
nondeterministic automata.

Given an Ltl formula ϕ, we can build a deterministic generator Aϕk for ϕ
in the following way: we start with a nondeterministic Büchi generator with
2O(|ϕ|) states [35, 50]; a Büchi automaton with n states can be converted into
a deterministic Rabin automaton with 2O(n logn) states and n accepting pairs
[44]. Thus, we obtain a deterministic Rabin generator for ϕ with a doubly
exponential number of states and exponentially many accepting pairs.

Proposition 4. Given an Ltl formula ϕ and an integer k, there exists a deter-
ministic Rabin tree automaton Aϕk , accepting all ω-trees t with branching degree
k and such that t |= ϕ. Moreover, Aϕk has a doubly exponential number of states
and exponentially many accepting pairs.
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We now define when a strategy is winning with respect to an Ltl win-
ning condition. Given a timed graph G and a (possibly infinite) run ρ =
〈qini , νini〉〈q1, ν1〉 . . . 〈qn, νn〉 in G, we define Untime(ρ) = {qini}{q1} . . . {qn},
that is, the sequence of locations traversed by the run, with each location
wrapped in a singleton set. Given an Ltl game (G, ϕ) and a strategy F , we say
that F is winning if, for all ρ ∈ playsωF , Untime(ρ) |= ϕ.

6.2. Solving Ltl Games

The following result greatly simplifies the treatment of linear games com-
pared to the Ctl games of Section 5.

Proposition 5 ([22]). Region stable strategies are sufficient for winning Ltl
games.

By Proposition 4, let Aϕk the Rabin tree automaton corresponding accepting
all trees satisfying ϕ whose branching degree is at most deg(AT1 ). Since Rabin
tree automata are closed under intersection [45], we can build a Rabin tree
automaton A∩ accepting the intersection of the languages accepted by AT1 and
Aϕk . In particular, since by [45] the size of A∩ is polynomial in the size of AT1
and Aϕk , and the size of Aϕk is doubly exponential in ϕ, the size of A∩ is doubly
exponential in the size of ϕ. By Lemma 4, the size of A∩ is singly exponential
in the size of G. Moreover, the number of pairs in the accepting condition of A∩

is exponential in the size of ϕ.

Lemma 9. Given an Ltl game (G, ϕ), there exists a winning strategy for the
protagonist if and only if L(A∩) is nonempty.

Proof : Let T ∈ L(A∩). Since T ∈ L(AT1 ), by Lemma 5 there exists a canonical
strategy F for T . By Proposition 4, t |= ϕ. Therefore, untime(TF ) |= ϕ, and so
F is a winning strategy.

Conversely, let F be a winning strategy (i.e., untime(TF ) |= ϕ). Since the
winning condition is an Ltl formula, all samples of F also satisfy ϕ. Therefore,
L(A∩) is not empty. 2

By the previous lemma, Proposition 1, and the fact that Ltl games are
2Exptime-hard [41], the following theorem holds.

Theorem 2. Given an Ltl game (G, ϕ), the problem of deciding the existence
of a winning strategy for the protagonist is 2Exptime-complete.

7. Discussion

7.1. A Comparison with ATL

Alternating-time Temporal Logic [4] (Atl) is a well-known formalism for
specifying properties of multi-agent systems. Since Atl model-checking is in
PTIME [4], one may wonder whether the timed games with Ctl objectives
studied in this paper may be solved by simply converting the objective into

27



Atl and then executing an Atl model checking algorithm on the region graph
corresponding to the game. Two obstacles prevent this course of actions: first,
due to Lemma 3, the region graph may not be sufficient to find winning strate-
gies; second, and more importantly, not all Ctl objectives, which in this pa-
per are applied to the tree of a strategy, can be expressed by an Atl formula
on the region graph. Consider the Ctl goal ∃ϕ1 ∧ ∃ϕ2, where ϕ1 and ϕ2

are path formulas, and compare it with the apparently similar Atl formula
� 1, 2� ϕ1 ∧ � 1, 2�ϕ2, where � 1, 2� is the team quantifier which puts
the protagonist and the antagonist in the same team. According to our seman-
tics, the game is won by the protagonist if she has a strategy whose tree contains
a path satisfying ϕ1 and another path satisfying ϕ2. On the other hand, the
above Atl formula is satisfied if the team has one strategy that satisfies ϕ1

and another strategy that satisfies ϕ2. In other words, in order to satisfy the
Atl formula, the protagonist may use two different strategies for ϕ1 and ϕ2,
respectively.

7.2. A Comparison with Module Checking

In [30], Kupferman, Vardi, and Wolper studied the model checking problem
for open finite-state systems. In their framework, the open finite-state system
is described by a labeled state-transition graph called a module, whose set of
states is partitioned into a set of system states (where the system makes a
transition) and a set of environment states (where the environment makes a
transition). Given a module M describing the system to be verified, and a
temporal logic formula ϕ specifying the desired behavior of the system, the
problem of model checking a module, called module checking, asks whether for
all possible environments M satisfies ϕ. In particular, it might be that the
environment does not enable all the external nondeterministic choices. Module
checking thus involves not only checking that the full computation tree 〈TM , VM 〉
obtained by unwinding M (which corresponds to the interaction of M with a
maximal environment) satisfies the specification ϕ, but also that every tree
obtained from it by pruning children of environment nodes (this corresponds
to the different choices of different environments) satisfy ϕ. In other words,
module checking can be seen as a two-player turn-based game where one of
the two players (the system) has a deterministic (full) strategy. It is shown in
[30, 38, 24] that for formulas in branching time temporal logics, module checking
open finite-state systems is exponentially harder than model checking closed
finite-state systems. Recently, the module checking problem has been extended
to infinite state-systems and, in particular, to pushdown systems [17, 9], showing
that this problem for Ctl is 2Exptime-complete in the perfect information
setting and undecidable in the imperfect one.

7.3. Conclusions and future work

We presented an automata-theoretic approach to solve timed games. Our
solution relies on the construction of a tree automaton accepting all the ω-trees
corresponding to a strategy of the protagonist in the timed game. This approach
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can be used with any class of winning conditions admitting an effective transla-
tion to a class of tree automata with decidable emptiness problem and closure
under intersection. We have analyzed in more detail the cases of winning con-
ditions expressed by temporal logic formulas. We can solve timed Büchi games,
timed Rabin games and Ctl games in exponential time. Since timed reacha-
bility games are known to be Exptime-hard even if the antagonist is allowed
to move only when the protagonist does [34], these results are also complete.
We have also applied our approach to solving Ltl games. The obtained proce-
dure takes doubly exponential time, and since Ltl games are 2Exptime-hard
[41], our result is tight. Combining our construction with the results on Ltl
generators from [5], we can prove an upper bound smaller than 2Exptime for
meaningful subclasses of Ltl timed games.

Recent work has extended to timed automata the results on model-checking
against quantitative specifications with parametric constants [23, 16]. The use of
parametric constants has been advocated by many authors as a useful tool that
allow designers to start the analysis of the system without specifying the actual
constants, and thus delay the delicate task of determining the value of such con-
stants to a later time when more will be known about the system. In the discrete
time setting the games with parametric winning conditions have been consid-
ered [51]. As a future direction, we seek the extension of the automata-theoretic
approach also to timed games with such parametric winning conditions.
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