
Automata-theoretic Decision of Timed

Games ?

Marco Faella a, Salvatore La Torre b, Aniello Murano a

aUniversità degli Studi di Napoli “Federico II”, 80126 Napoli
{faella, murano}@na.infn.it

bUniversità degli Studi di Salerno, 84081 Baronissi (SA)
slatorre@unisa.it

Abstract

The solution of games is a key decision problem in the context of verification of open
systems and program synthesis. Given a game graph and a specification, we wish
to determine if there exists a strategy of the protagonist that allows to select only
behaviors fulfilling the specification. In this paper, we consider timed games, where
the game graph is a timed automaton and the specification is given by formulas of
the temporal logics Ltl and Ctl. We present an automata-theoretic approach to
solve the addressed games, extending to the timed framework a successful approach
to solve discrete games. The main idea of this approach is to translate the timed
automaton A, modeling the game graph, into a tree automaton AT accepting all
trees that correspond to a strategy of the protagonist. Then, given an automaton
corresponding to the specification, we intersect it with the tree automaton AT and
check for the nonemptiness of the resulting automaton. Our approach yields a deci-
sion algorithm running in exponential time for Ctl and in double exponential time
for Ltl. The obtained algorithms are optimal in the sense that their computational
complexity matches the known lower bounds.

1 Introduction

The theory of games was originally introduced as a theoretical model for eco-
nomic studies (see for example [37]). In the years, this theory has received an
increasing interest by many researchers in both computer science and control

? A preliminary version of this paper appears in the Proceedings of the 3rd Inter-
national Workshop on Verification, Model Checking, and Abstract Interpretation,
VMCAI’02. Electronic Notes in LNCS 2294, 2002.

Preprint submitted to Elsevier Science 10 November 2011

theory. Games have been studied in the context of discrete, timed, and hy-
brid systems (see [12,26,39,44], for some research). They provide a suitable
framework for program synthesis and analysis of open systems, that is, sys-
tems whose behavior depend on the current state as well as the choices of the
environment in which they are embedded.

The notion of open system naturally arises in the compositional modelling and
design of reactive systems, that is, systems that maintain an ongoing interac-
tion with their environment [10,39]. A reactive system can be seen as divided
into many components interacting with each other, and each component can
be modeled as an open system. In automated verification, systems are often
modeled as closed systems, where a system behavior is completely determined
by the current state. The verification problem can thus be phrased as: given an
abstract model (transition system) M and a specification ϕ, we wish to deter-
mine if ϕ holds for the computations ofM (model checking). Model checking is
a very successful technology, which has been implemented in many tools [18].

The decision problem we consider in this paper is analogous to model checking.
We are given a specification and a game graph (alternating transition system),
where the transitions are determined by the moves of the two players. We wish
to determine if a player has a strategy to ensure that, independently from
the choices of the other player, the resulting computations satisfy the given
specification.

To refer to delays, time needs to be explicitly included in the model of a
reactive system. In this paper, we focus on timed games: a game graph given
by a nondeterministic timed automaton [3] along with a winning condition.
A timed automaton is a finite automaton augmented with a finite set of real-
valued clocks. Its transitions are enabled according to the current state, that
is, the current location and the current clock values. In a transition, clocks
can be instantaneously reset. The value of a clock is exactly the time elapsed
since the last time it was reset. A clock constraint (guard) is associated to
each transition with the meaning that a transition can be taken only if the
associated guard is enabled. Moreover, a clock constraint (invariant) is also
associated to each location with the meaning that the automaton can stay in
a location as long as the corresponding invariant remains true.

When interpreting a nondeterministic timed automaton as a game graph
(timed game graph), a move of a player consists of a discrete action along
with the time at which it will be issued. We capture the choices of the pro-
tagonist by the symbols associated with the transitions and nondeterminism
is used to model the possible choices of the antagonist 1 . To model the case
when the protagonist stays idle and the antagonist moves, we use a special

1 Notice that this formulation of games, which is asymmetric with respect to the
two players, is equivalent to the symmetric one.

2

symbol ξ. The case that both players stay idle is captured by letting time
elapse in a location. A play of a timed game is thus constructed in the usual
way. At the beginning, both players declare their first moves, that is, how
long they will wait idling and their next discrete actions. At the time one of
the players or both move, both of them declare their next move. This means
that, in case only a player moves, the other player is allowed to confirm his
previous declared move or to declare a new one. Technically, a play is a run of
the automaton modelling the game. A game is giving by a game graph along
with a winning condition that establishes which computations are winning for
the protagonist. Thus, the decision problem we wish to solve on a given timed
game graph is to determine if the protagonist has a strategy to ensure that all
the resulting computations satisfy the given winning condition. In this paper,
we consider winning conditions expressed as Ltl [38] and Ctl [17] formulas.

Linear winning conditions are suitable when the design target is to find a
strategy that ensures that some property holds regardless of the environment
behavior. In some domains, it is useful to consider more general conditions.
As instance, consider the problem of designing an ATM controller. There, the
controller is the protagonist of the game, while the adversary is the ATM
user. Consider the property “No matter what the user does, there is a way
for her to have the card back”. This property cannot be expressed in a linear
time language, while it is expressible in a branching-time temporal logic such
as Ctl. Indeed, if we call p the proposition “the card is returned”, then the
previous ATM requirement can be stated as “∀2∃3p”. 2

A way to solve the decision problem related to game graphs is to reduce it to
the emptiness problem for tree automata. This approach has been successfully
exploited to decide discrete games (see, for example [41]). In this paper, we
extend the automata-theoretic approach to timed games. We propose a general
framework that can be used with any class of winning conditions, that can
be translated to tree automata with decidable emptiness problem and closure
under intersection. Given a timed game (A,W), where A is a timed automaton
and W is a winning condition, we construct a tree automaton AT that accepts
all the trees corresponding to a strategy of the protagonist. We construct this
automaton exploiting the clock region relation [3]. Then, we construct another
tree automaton AW accepting all the trees satisfying the property expressed
by W . Since strategies of the protagonist correspond to trees accepted by
AT , to construct AW we only need to capture models with branching degree
bounded above by the one of AT (i.e. the maximum branching degree of AT

transitions). Thus, there exists a winning strategy of the protagonist in the
game (A,W) if and only if the intersection between the languages accepted
by AT and AW is not empty.

2 This property is violated by some ATM machines, which trap the card if the user
exceeds the maximum number of PIN trials.

3

For winning conditions given by Ltl formulas, our approach yields decision al-
gorithm running in doubly exponential time. Since Ltl games are 2Exptime-
hard [39] even for discrete game graphs our result is complete. For winning
conditions given by Ctl formulas, our approach yields decision algorithm
running in exponential time. Since reachability can be exponential in Ctl, we
have that our result is complete also for Ctl.

In literature, different formulations of games with winning conditions ex-
pressed by temporal logics have been considered. In [4], alternating temporal
logics are introduced. While linear temporal logics assume universal quantifi-
cations on all paths and branching temporal logics allow explicit existential
and universal quantifications on all paths, alternating temporal logics offer “se-
lective” quantification over those paths that are possible outcomes of games,
such as the game in which the system and the environment alternate moves.
Thus, alternating temporal logics are natural specification languages for open
systems. Depending on whether an arbitrary nesting of selective path quan-
tifiers and temporal operators is allowed, two alternating temporal logics are
defined: ATL and ATL*. It turns out that the model checking problem with
respect to ATL and ATL* formulas is solvable, respectively, in quadratic time
and exponential time [18]. In [28] the model checking of open systems (mod-
ule checking) is studied. This problem turns out to be Exptime-compete for
specification given by Ctl formulas and 2Exptime-complete for specifica-
tion given by Ctl* formulas. Recently, the module checking framework has
been fruitfully extended to pushdown systems[13,14], showing that this prob-
lem becomes 2Exptime-compete for specification given by Ctl formulas and
3Exptime-complete for specification given by Ctl* formulas. Rectangular
hybrid games with winning conditions expressed by Ltl formulas were solved
in [26]. The results from [26] subsume our results on Ltl timed games, but
the approach we follow here is different, and mainly, we are giving a system-
atic way of solving timed games for different classes of winning predicates.
Recently, timed games with specification in dense real–time, have also been
introduced. In [35] the module checking in dense real time for specification in
Tctl has been introduced. This problem has been proved to be undecidable
using a reduction from the problem of deciding whether a nondeterministic
two-counter machine has recurring computations (this problem is known to
be Σ1

1-hard [2]). In [25], a real–time game has been introduced as a natural
framework to model open systems in dense real time. It has been proved that
the problem of finding winning strategies is undecidable for specification in
Tctl, while it becomes decidable by relaxing the punctuality of the temporal
operators of the logic.

The rest of the paper is organized as follows. In Section 2, we introduce the ba-
sic definitions and the notation relatively to games and automata. In Section 3,
we introduce our model of timed game. In Section 5, we consider games whose
winning condition is given in the linear–time temporal logic Ltl. In particular,

4

we discuss the construction of a tree automaton accepting all strategies of the
protagonist in a timed game. Then, in Section 4, we study winning conditions
expressed in the branching–time temporal logic Ctl. We conclude with few
remarks in Section 6.

2 Preliminaries

In this section, we recall the basic definitions concerning words, trees, auto-
mata on infinite words and trees, and timed automata [3].

2.1 Words, trees, and automata

Let Σ be an alphabet, we denote by Σ∗ the set of all finite words over Σ,
including the empty word ε. We denote by Σi the set of all words of length
i over Σ. An ω-word over Σ is an infinite sequence of symbols over Σ. We
denote by Σω the set of all ω-words over Σ. Let w = σ0σ1 . . . be an ω-word,
we denote by w≤i the prefix of w ending at position i, that is, w≤i = σ0 . . . σi.
In the following, we always use Σ to denote a finite alphabet.

A Σ-valued graph is a tuple G = (Σ, V, E, vini , µ), where V is a set of nodes,
E ⊆ V 2 is the transition relation, vini ∈ V is the initial node, and µ : V → Σ
is the labeling function. Whenever (u, v) ∈ E, we say that v is a successor of
u. If u has a finite number of successors, the branching degree deg(u) of u is
the number of such successors. Otherwise, we say that the branching degree
of u is infinite. The branching degree of a graph is the maximum branching
degree of its nodes. For all nodes u ∈ V we set succ(G, u) to be the set of
successors of u in G, that is succ(G, u) = {v ∈ S | (u, v) ∈ E}.

For i ∈ {1, 2}, let Gi = (Σ, Vi, Ei, zi, µi) be a Σ-valued graph. A relation
R ⊆ V1 × V2 is a bisimulation if and only if, for all (u1, u2) ∈ R, the following
conditions hold:

(1) µ1(u1) = µ2(u2),
(2) for all v1 ∈ succ(G1, u1), there exists v2 ∈ succ(G2, u2) such that (v1, v2) ∈

R, and
(3) for all v2 ∈ succ(G2, u2), there exists v1 ∈ succ(G1, u1) such that (v1, v2) ∈

R.

We say that G1 and G2 are bisimilar (denoted by G1 ∼ G2), if there exists a
bisimulation R such that (z1, z2) ∈ R.

A path in G is a (possibly finite) sequence of nodes π = v0v1 . . . such that,

5

for all i ≥ 0, (vi, vi+1) ∈ E. Moreover, π is rooted if v0 = vini . Given a path
π = v0v1 . . ., we denote by µ(π) the sequence µ(v0)µ(v1) A Σ-valued ω-tree
(tree, for short) is a graph G that satisfies the following:

(1) There are no cicles: for all paths π = v0v1 . . . and for all i, j ≥ 0, if i 6= j
then vi 6= vj;

(2) Every node has exactly one predecessor: for all v ∈ V \ {vini}, there is
one (and only one) u ∈ V such that (u, v) ∈ E;

(3) Every node has (at least) one successor: for all u ∈ V there is v ∈ V such
that (u, v) ∈ E (equivalently, E is total).

If G is a tree, vini is called the root of G. A subgraph of G is a graph G′ =
(Σ, V ′, E ′, v′ini , µ

′) such that V ′ ⊆ V , v′ini is the initial node of G
′, E ′ and µ′ are

the restrictions of E and µ to V ′, respectively. Given a tree T , any subgraph
of T which is itself a tree is a subtree of T .

A transition table A over the alphabet Σ is a tuple (Σ, Q,∆, qini), where Q is
a finite set of locations, ∆ ⊆ Q×Σ×Q is the transition relation, and qini ∈ Q
is the initial location. A run of A on an ω-word σ0σ1 . . . over Σ is an infinite
sequence of locations q0q1 . . . such that q0 = qini and (qi, σi, qi+1) ∈ ∆ for all
i ≥ 0.

A tree transition table over Σ is a tuple A = (Σ, Q,∆, qini), where Q and qini
are defined as in transition tables, and ∆ ⊆ ∪k

i=1(Q × Σ × Qi), where k is
a positive integer called the branching degree of A and denoted by deg(A).
Given a tree t = (Σ, V, E, vini , µ) with a finite branching degree, a run of A
over t is a Q-labeled tree ρ = (Q, V,E, vini , ν), such that (i) ν(vini) = qini , and
(ii) for all nodes u ∈ V , there exists an ordering of succ(t, u) as (u1, . . . , un)
such that (ν(u), µ(u), ν(u1), . . . , ν(un)) ∈ ∆. A run of a tree transition table
can thus be seen as a rewriting of a tree by locations.

With a (tree) transition table A we can associate an acceptance condition. In
the literature, several acceptance conditions have been introduced and fruit-
fully investigated. Here we recall those defining Büchi and Rabin (tree) auto-
mata.

Let ρ be an infinite sequence of locations, we denote by Inf (ρ) the set of
locations occurring infinitely often in ρ. The Büchi condition is defined with
respect to a set of final states F ⊆ Q.

• A run ρ of a transition table satisfies the Büchi condition F iff Inf (ρ)∩F 6=
∅;
• A run ρ of a tree transition table satisfies the Büchi condition F iff for each
path π of ρ, Inf (π) ∩ F 6= ∅.

The Rabin condition is defined with respect to a set F = {(B1, F1), . . . , (Bk, Fk)}

6

where Bi, Fi ⊆ Q for each 1 ≤ i ≤ k.

• A run ρ of a transition table satisfies the Rabin condition F iff there is a
pair (Bi, Fi) ∈ F such that Inf (ρ) ∩Bi = ∅ and Inf (ρ) ∩ Fi 6= ∅;
• A run ρ of a tree transition table satisfies] the Rabin condition F iff for
each path π of ρ there is a pair (Bi, Fi) ∈ F such that Inf (π) ∩Bi = ∅ and
Inf (π) ∩ Fi 6= ∅.

A word w (resp., a tree t) is accepted by an automaton (resp., a tree auto-
maton) A w.r.t. an acceptance condition F if there exists a run ρ of A on w
(resp., t) that satisfies F .

In the following, we treat a (tree) transition table A also as a Büchi (tree)
automaton whose acceptance condition F is the set of all states from A. The
set of words (resp., trees) that are accepted by an automaton (resp., tree
automaton) A is denoted by L(A). The emptiness problem for an automaton A
asks whether L(A) is empty. In the following, we give some results concerning
the emptiness problem for Rabin and Büchi tree automata. Notice that our
definition of tree transition tables differs from the classical one in that our
transition tables accept unordered trees. This does not affect the complexity of
the emptiness problem, since the emptiness problem according to our definition
of L(A) is equivalent to the classical one.

Proposition 1 ([23,32]) The emptiness problem for a Rabin tree automaton
A is NP-complete. Moreover, it can be solved in deterministic time O(n2m+1 ·
m!), where n and m are the number of locations and the branching degree of
A, respectively.

Proposition 2 ([40,47]) The emptiness problem for a Büchi tree automata
A is decidable in polynomial time. In particular, it can be solved in time O(n2)
where n is the number of locations in A.

2.2 Timed Graphs

In this section, we describe the model we use to represent timed games: timed
graphs. A timed graph is a model of a real-time system [3]. A central (real-
valued) clock is used to scan time, and a finite set of clock variables (also
simply named clocks) along with timing constraints are used to check the
satisfaction of timing requirements. Each clock can be seen as a chronograph
synchronized with the central clock, that can be read or set to zero (reset).
After a reset, a clock restarts automatically. In each graph, timing constraints
are formally expressed by clock constraints. Let C be a set of clocks, the set
of clock constraints Ξ(C) contains:

7

• x ≤ y + c, x ≥ y + c, x ≤ c, and x ≥ c, where x, y ∈ C and c is a natural
number;
• ¬δ and δ1 ∧ δ2, where δ, δ1, δ2 ∈ Ξ(C).

Furthermore, let R≥0 be the set of nonnegative real numbers, a clock valuation
is a mapping ν : C −→ R≥0. If ν is a clock valuation, λ is a set of clocks and d
belongs to R≥0, we denote with [λ← 0](ν+d) the clock valuation that assigns
0 to each clock x ∈ λ and ν(x) + d to each clock x 6∈ λ.

A timed graph G is a tuple (Q,Acts , qini , C,∆, inv) where:

• Q is a finite set of locations;
• Acts is a finite alphabet of actions;
• qini ∈ Q is the initial location;
• C is a set of clock variables;
• ∆ is a finite set of edges Q× Acts × Ξ(C)× 2C ×Q;
• inv : Q −→ Ξ(C) maps each location q to its invariant inv(q).

Let |C| = n, a state of the timed graph G is a pair 〈q, ν〉, where q ∈ Q, ν ∈ Rn
≥0

and ν satisfies inv(q). The initial state is 〈qini , νini〉, where νini(x) = 0 for all
x ∈ C. The semantics of a timed graph is given by an infinite transition table
with an infinite set of states Q × Rn

≥0 and an infinite alphabet R≥0 × Acts .
In order to define transitions, we first introduce discrete steps and time steps.
A discrete step is 〈q, ν〉 σ−→ 〈q′, ν ′〉 where (q, σ, δ, λ, q′) ∈ ∆, ν satisfies δ,

ν ′ = [λ ← 0]ν, and ν ′ satisfies inv(q′). A time step is 〈q, ν〉 d−→ 〈q, ν ′〉 where
d ∈ R>0,

3 ν ′ = ν + d and ν + d′ satisfies inv(q) for all 0 ≤ d′ ≤ d. Then, a

transition (also called step) is 〈q, ν〉 d,σ−→ 〈q′, ν ′〉 where 〈q, ν〉 d−→ 〈q, ν ′′〉 and
〈q, ν ′′〉 σ−→ 〈q′, ν ′〉, for some ν ′′ ∈ Rn

≥0. A run ρ of a timed graph G from a
state 〈q0, ν0〉 is a finite sequence of states 〈q0, ν0〉〈q1, ν1〉 . . . 〈qn, νn〉, where
〈qi, νi〉

di,σi−→ 〈qi+1, νi+1〉, for all i = 1, . . . , k − 1. We set first(r) = 〈q0, ν0〉 and
last(r) = 〈qn, νn〉. An infinite run is defined in the obvious way. Given two runs
ρ1, ρ2, such that first(ρ2) = last(ρ1), we denote by ρ1 · ρ2 the run obtained by
concatenating the two runs and removing the duplicate state last(ρ1). We
denote by runsG the set of all finite runs of G. We omit the G superscript
when the timed graph is clear from the context.

Consider a timed graph G = (Q,Acts , qini , C,∆, inv). By definition, its state
space is infinite. However, it can be partitioned in a finite number of equiva-
lence classes called regions. A region is defined by a location and a clock region.
A clock region is a set of equivalent clock valuations. Let cx be the largest
constant in clock constraints involving the clock variable x. For d ∈ R≥0, let
frac(d) denote the fractional part of d, and let bdc denote its integral part.

3 Differently from other presentations, we chose to disallow zero-time steps for
technical reasons discussed later in this section.

8

The equivalence of clock valuations is formally defined as follows. Let C be
the set of clocks of G, and ν and ν ′ be two clock valuations, then ν is (region)
equivalent to ν ′ if the following conditions are met [3].

• for all x ∈ C, either ν(x) > cx and ν ′(x) > cx, or bν(x)c = bν ′(x)c;
• for all x, y ∈ C such that ν(x) < cx and ν(y) < cy, we have frac(ν(x)) ≤
frac(ν(y)) if and only if frac(ν ′(x)) ≤ frac(ν ′(y));
• for all x ∈ C such that ν(x) < cx, we have frac(ν(x)) = 0 if and only if
frac(ν ′(x)) = 0.

We denote [ν] the clock region containing the clock valuation ν. The key
property of this equivalence relation is that all the clock valuations belonging
to a clock region satisfy the same set of clock constraints from the graph G.
Consequently, we say that a clock region α satisfies a constraint δ if ν satisfies
δ, for all ν ∈ α. A region is a pair 〈q, α〉, where q is a location and α is a clock
region satisfying inv(q). By abuse of notation, we identify the pair 〈q, α〉 and
the set of states {q} × α. We use Regs to denote the set of regions of G. We
extend the notion of step from states to regions as follows. Given two regions
r and r′, and an action σ ∈ Actsξ, we write r

σ−→ r′ if there exists s ∈ r and
s′ ∈ r′ such that s

σ−→ s′.

A clock region α is punctual if either it is a singleton set or it has a clock x
with integral value (i.e., frac(x) = 0) and all clocks have value different from
zero. All other clock regions are non-punctual. The definition of punctual clock
region applies to regions in the obvious way. Intuitively, in a two-clock system,
α is punctual if it is either a point in N2 or it is a line which is parallel to an
axis and does not lie on it. This distinction will be useful in the following, and
it is motivated by the following property.

Lemma 1 Starting from a given state of the timed graph, for each punctual
region there is at most one point in that region which is reachable through
a step. Conversely, for each non-punctual region, if there is a point in that
region which is reachable through a step then there are infinitely many such
points.

Proof : Let s = 〈q, ν〉 be a state in the timed graph and r = 〈q′, α〉 a region.
Let s′ = 〈q′, ν ′〉 be a state in r which is reachable from s with a single step

s
d,σ−→ s′.

First, assume that r is punctual. If r is a singleton, the result is trivially true.
Otherwise, there is a clock x that has the same integral value i in all points
of r. Moreover, since all clocks have non-zero value in r, any step leading to r
does not contain clock resets. Hence, ν(x) + d = ν ′(x) = i. Clearly, any other
time delay d′ 6= d would lead to a different value for x, and therefore not in r.

9

Now, assume that r is non-punctual. One of the following two cases holds.

• The region r has a clock x with value zero (i.e., in all points of the region
it holds x = 0). Then, it also has at least one clock with value different
from zero (otherwise, r would be a singleton). Since zero-time steps are not
allowed, the only way to reach r is by resetting x.
• The region r has no clock with integral value (including zero).

In both cases, it is easy to see that there exists a neighbourhood of d such that

for all values d′ in the neighbourhood, s
d′,σ−→ s′′, where s′′ ∈ r and s′′ 6= s′. 2

Note that allowing zero-time steps would falsify the second part of the above
lemma. Indeed, in a two-clock timed graph, consider the non-punctual region
r = 〈q, (0 < x < 1, y = 0)〉 and any state s ∈ r. The only way to reach r from
s is by taking a zero-time step, contradicting the above lemma.

Two runs are said to be (region) equivalent if they have the same length
and they are state-wise equivalent. Formally, ρ is equivalent to ρ′ if ρ =
〈q0, ν0〉〈q1, ν1〉 . . . 〈qn, νn〉, ρ′ = 〈q0, ν ′

0〉〈q1, ν ′
1〉 . . . 〈qn, ν ′

n〉, and, for all i =
0, . . . , n, we have [νi] = [ν ′

i]. As before, we denote by [ρ] the equivalence class
containing the run ρ. A clock region α′ is said to be a successor of a clock region
α if and only if for all ν ∈ α there is a d ∈ R≥0 such that ν + d ∈ α′. A region
〈q′, α′〉 is said to be a successor of a region 〈q, α〉 (denoted 〈q, α〉 � 〈q′, α′〉) if
q′ = q, α′ is a successor of α and all clock regions between α and α′ satisfy
inv(q). Moreover, we say that 〈q, α〉 ≺ 〈q′, α′〉 if 〈q, α〉 � 〈q′, α′〉 and α 6= α′.

3 Timed Games

A timed game is a pair (G, ϕ), where G is a timed graph and ϕ is the win-
ning condition. Different classes of winning condition define different classes
of timed games. The alphabet symbols (actions) of the timed graph represents
the choices of the protagonist. The nondeterminism on the actions issued by
the protagonist is used to model the possible choices of the antagonist , in-
cluding the case in which the protagonist moves and the antagonist stays idle.
To model the case that the protagonist stays idle and the antagonist chooses
to move, we use the special action ξ. In the following, we denote by Acts
a finite set of symbols not containing the antagonist action ξ. We also set
Actsξ = Acts ∪ {ξ}, and if not differently specified, σ denotes an element of
Acts . A play of a timed game is a run of the corresponding timed graph, and
it is constructed in the following way. At the beginning, both players declare
their first move, that is, how long they will wait idling and their next discrete
moves. At the time one of the players or both move, both players are allowed
to declare their next discrete moves and the time these will be issued. That is,

10

if a player moves before the other, this latter is allowed to change its former
decision.

q3

q2
x > 1 x← 0

a

a

x 6 1
ξ

q1

q4

Fig. 1. A fragment of a timed game.

As instance, take the fragment of a 1-clock timed game shown in Figure 1.
For the sake of simplicity, the invariants on the locations are not shown and
they are supposed to hold always true. Suppose the game is in location q1,
with clock x equal to zero and the current strategy of the protagonist is to
take an a-move, after a delay of one time units. Since at time x = 1 there
are two a-moves enabled, the antagonist can choose which one is to be taken
ad accordingly the game will proceed either to location q2 or to location q3.
Moreover, note that form q1 the antagonist can also move at his own, by taking
a ξ-move before the antagonist move. Then, accordingly to the above strategy,
the game will then proceed to location q4, with x ≤ 1.

In the following, if not differently specified, we always refer to a fixed timed
graph G = (Q,Actsξ, qini , C,∆, inv). A strategy is a function F : runs −→
R>0×Acts , whose choices are allowed by the game. Formally, let ρ = s0s1 . . . sn

be a run of G and F(r) = (d, σ). Then, there is a step sn
d,σ−→ s′ in G. The

only exception to this rule occurs when there are no allowed moves for the
protagonist from the current location. In this case, the value of the strategy
can be arbitrary.

Given a strategy F , we can collect all runs that are consistent with F in an
infinite tree TF called strategy tree. Moreover, we define an auxiliary labeling
actF which labels each node of the strategy tree with the action which leads
to it. Formally, let S = Q × R|C|

≥0 , the strategy tree TF = (S, V, E, vini , µ)
is inductively defined as follows. First, vini ∈ V , µ(vini) = 〈qini , νini〉, and
actF(vini) is arbitrarily set to any element of Actsξ. Then, let π = u1u2 . . . un

be a finite rooted path in TF and let µ(un) = s; assume F(µ(π)) = (d, σ) and

consider the sets SProt = {s′ | s d,σ−→ s′} and SAnt = {s′ | s d′,ξ−→ s′, where 0 <
d′ < d} \ SProt. In words, SProt is the set of states that the game can reach if
the protagonist is allowed to take the desired move σ after the desired delay d,
while SAnt is the set of states that the game can reach if the antagonist moves
before the protagonist. Notice that there might be states that are reachable

11

both via a protagonist move and via an antagonist move. For instance, consider
again the game in Figure 1 and, in addition, suppose that (by means of resets)
state 〈q1, x = 0〉 can be reached from 〈qini , x = 0〉 both via action a taken with
some delay 0 < d < 1 or via an action ξ taken with some delay 0 < d′ < d.
However, actions are not part of the runs, so they are not visible to the players.
Thus, in either case we obtain the same run ρ = 〈qini , x = 0〉〈q1, x = 0〉. The
definition of the strategy tree mirrors this situation by removing duplicate
states among the destinations. Ambiguous states, such as 〈q1, x = 0〉 in the
example, are ascribed to the protagonist and therefore assigned to SProt.

For each state which is either in SProt or in SAnt, we add a corresponding child
to un. Formally, for x ∈ {Prot,Ant} and for each s′ ∈ Sx, un has a child v ∈ V
whose labeling is µ(v) = s′ and whose action is actF(v) = σ if x = Prot and
actF(v) = ξ otherwise. We denote succx(TF , un) the set of all such children.
We remark that the states associated to the children of un are all distinct.

By untime(TF) we denote the projection of TF on Q. Formally, untime(TF) =
(2Q, V, E, vini , µ

′), where µ′(u) = {q} if and only if µ(u) = 〈q, ν〉 for some
clock valuation ν. We set playsωF = {µ(π) | π is a rooted infinite path in TF}
as the set of infinite plays of F . Similarly, we define playsF as the set of finite
prefixes of runs in playsωF . By construction, there exists a bijection between
the elements of playsωF and the infinite paths in TF .

Although the definition allows strategies to choose among an infinite number
of moves, it is natural to partition these moves in a finite number of classes,
according to their intended destinations. We aim at declaring equivalent the
moves that lead to the same set of possible next regions. Given a state s =
〈q, ν〉 and a move m = 〈d, σ〉, we set θ(s,m) = 〈[ν + d], σ〉. Intuitively, given
two states s1 = 〈q, ν1〉 and s2 = 〈q, ν2〉 that share the same location and two
moves m1 and m2, if θ(s1,m1) = θ(s2,m2), then playing m1 from s1 has the
same effect as playing m2 from s2, in terms of possible next regions.

Given a strategy F , let [playsF] and [F] : [playsF] → 2Regs×Acts be, respec-
tively, the quotient of playsF and of F with respect to the region equiva-
lence relation, where we recall that Regs is the set of regions of G. Formally,
[playsF] = {[ρ] | ρ ∈ playsF}, and [F]([ρ]) = ⋃

ρ′∈[ρ] θ(last(ρ
′),F(ρ′)). For an

integer k ≥ 0, we say that a strategy is k-splitting if it assigns up to k different
destinations to equivalent histories. Formally, F is k-splitting iff, for all runs ρ,
|[F]([ρ])| ≤ k. We further say that a strategy is region stable if it is 1-splitting.
Region stable strategies choose equivalent moves for equivalent histories.

12

4 Branching Games

In this section, we deal with timed games whose winning condition is a formula
from a branching-time temporal logic. In particular, we focus on the well-
known logic Ctl and we say that (G, ϕ) is an Ctl game whenever ϕ is an
Ctl formula using as atomic propositions the locations of G. Intuitively, in
such a game we say that a strategy is winning if the dense tree TF satisfies ϕ.

4.1 Computation Tree Logic

Ctl was introduced by Emerson and Clarke [17] as a powerful tool for spec-
ifying and verifying concurrent programs. Given a set of atomic propositions
AP , a Ctl formula is composed of atomic propositions, the boolean connec-
tives conjunction (∧) and disjunction (∨), and the temporal operators Next
(X), Until (U), and Release (R), coupled with path quantifiers for all paths
(∀) and for some path (∃). Ctl formulas are built up in the usual way from
the above operators and connectives, according to the following grammar:

ϕ := p | ¬p |ϕ∧ϕ |ϕ∨ϕ | ∃Xϕ | ∀Xϕ | ∃(ϕUϕ) | ∀(ϕUϕ) | ∃(ϕ R ϕ) | ∀(ϕ R ϕ)

where p ∈ AP . The semantics of Ctl is defined with respect to a 2AP -valued
graph G = (2AP , V, E, vini , µ). Given a Ctl formula ϕ and a node v ∈ V , the
satisfaction relation (G, v) |= ϕ, meaning that ϕ is true in G at v, is defined
inductively as follows:

• if ϕ ∈ AP , then (G, v) |= ϕ if and only if ϕ ∈ µ(v);
• (G, v) |= ϕ1 ∧ ϕ2 if and only if (G, v) |= ϕ1 and (G, v) |= ϕ2;
• (G, v) |= ϕ1 ∨ ϕ2 if and only if (G, v) |= ϕ1 or (G, v) |= ϕ2;
• (G, v) |= ∀Xϕ if and only if (G, v′) |= ϕ for all v′ ∈ V such that (v, v′) ∈ R;
• (G, v) |= ∃(ϕ1 U ϕ2) if and only if there exists a path v0v1 . . ., with v = v0,
such that for some i ≥ 0 (G, vi) |= ϕ2, and (G, vj) |= ϕ1 for all 0 ≤ j < i;
• (G, v) |= ∀(ϕ1 U ϕ2) if and only if for all paths v0v1 . . ., with v = v0, there
exists i ≥ 0 such that (G, vi) |= ϕ2, and (G, vj) |= ϕ1 for all 0 ≤ j < i;
• (G, v) |= ∃(ϕ1 R ϕ2) if and only if there exists a path v0v1 . . ., with v = v0,
such that for all i ≥ 0, if (G, vi) 6|= ϕ2 then there exists 0 ≤ j < i such that
(G, vj) |= ϕ1;
• (G, v) |= ∀(ϕ1 R ϕ2) if and only if for all paths v0v1 . . ., with v = v0, and for
all i ≥ 0, if (G, vi) 6|= ϕ2 then there exists 0 ≤ j < i such that (G, vj) |= ϕ1.

Notice that, for technical convenience, we presented Ctl in positive normal
form, as negation can only be applied to atomic propositions. This formulation
is equivalent to more general ones where negation can be applied to arbitrary
formulas. Given a Ctl formula ϕ, it is possible to characterize all trees that

13

a
q2

q3

b
q1qini

ξ

0 < x < 1

Fig. 2. A game where splitting strategies are needed.

qini

ξ

ξ ξ

a

b
q5

q4

q3

q2

q1
ξ

Fig. 3. A game where memory is needed.

satisfy ϕ via a Büchi tree automaton, as reported in the following proposition.

Proposition 3 ([46]) Given a Ctl formula ϕ and an integer k, there exists
a Büchi tree automaton Aϕ

k accepting all ω-trees t with a branching degree k
and such that t |= ϕ. Moreover, Aϕ

k has a number of states that is exponential
in the size of ϕ.

Given aCtl game (G, ϕ), we say that a strategyF is winning if (untime(TF), vini) |=
ϕ. In the remaining of this section we show that deciding whether there exists
a winning strategy F for a Ctl game is Exptime-complete.

4.2 Splitting and Memory are Needed

By means of an example, the following can be shown.

Lemma 2 Region stable strategies are not sufficient for winning Ctl games.

Proof : Consider the game in Figure 2, whose winning condition is the Ctl
formula ∃3q2 ∧ ∃3q3. At the beginning, the antagonist must take a ξ-move
in the clock region 0 < x < 1. If the protagonist uses a region stable strategy,
then, once the game is in location q1, he can choose either action a or action
b. Clearly, he cannot win the game in this way.

On the other hand, if the protagonist is allowed to use a general strategy, he
could choose a if the antagonist played before x = 0.5 and b otherwise, thus
winning the game. 2

Notice that we are considering strategies with memory, that is strategies whose
choices depend on the history of the game. Figure 3 gives an example of a game

14

where all winning strategies need memory. Indeed, let the winning condition of
the game be (3q1∨3q4)∧(3q3∨3q5), where 3ϕ is the usual Ltl abbreviation
for true Uϕ. Once the game reaches q3, any memoryless strategy can only
choose either move a or move b. Such a strategy does not satisfy the winning
condition. On the other hand, a memoryful strategy can issue a if q3 is reached
through q2, and b otherwise. Such strategy is winning.

4.3 Solving Ctl Games

Given a Ctl game (G, ϕ), we wish to determine whether there exists a winning
strategy. The automata-theoretic approach suggests to build an automaton
accepting all possible strategies in the game. However, we show that it is suffi-
cient to consider simpler structures, namely discrete infinite trees. Therefore,
for each strategy F we define a corresponding discrete tree tF , in such a way
that F is winning if and only if tF satisfies ϕ. Intuitively, tF is the untimed
version of a suitable subtree of TF . Such subtree preserves all moves taken by
the protagonist, as well as all moves taken by the antagonist from a punctual
region. Furthermore, for each non-punctual region from which the antagonist
can move, the subtree contains only a finite selection of the antagonist moves.
In order for this subtree to faithfully represent the strategy it is derived from,
the size of this selection must be at least equal to the splitting degree of the
strategy (i.e., at least k if the strategy is k-splitting).

As we will see in the following, in order to win Ctl games we may need
strategies that have a splitting degree at least equal to the number of exis-
tential quantifiers present in the winning condition. Accordingly, we define an
automaton AG

k accepting all trees tF corresponding to k-splitting strategies.

Then, by Proposition 3 we can build an automaton Aϕ
k accepting all trees

which satisfy ϕ and have branching degree k. By taking the intersection of AG
k

and Aϕ
k , we obtain an automaton whose language is nonempty if and only if

there exists a winning strategy in the game.

As an example, consider the timed graph in Figure 1, and suppose we want
to accept all trees corresponding to 2-splitting strategies. The corresponding
fragment of the tree automaton AG

2 is depicted in Figure 4. The automaton
uses as locations the regions of the timed graph.

To see how this automaton works, suppose that the game is in the state
〈q1, x = 0〉 and the protagonist chooses to issue the action a after a delay of 0.5
time units. One can see from Figure 1 that there is only one transition labeled
with a and enabled at time x = 0.5, leading to the region 〈q3, 0 < x < 1〉.
Also, the antagonist can take a ξ-move for all delays in the interval (0, 0.5),
always leading to the region 〈q4, 0 < x < 1〉. Since we are considering 2-

15

x = 1

q4

q4

q3
q2

x = 0

q4

q4

1.5, a

1, a

q2

x = 0

x = 0

x>1
q4

0<x<1

0<x<1

0<x<1

0<x<1

0<x<1

0<x<1

0<x<1

q4 q3

q4

x>1

q4

q4

x = 1

0.5, a

q2

Fig. 4. Transitions of AG
2 from state 〈1, x = 0〉, for the timed graph G of Figure 1.

Edges that are linked by an arc belong to the same tree transition.

splitting strategies, the automaton keeps two copies for each non-punctual
region of the antagonist. Therefore, the automaton contains a transition with
three destinations: one for the region chosen by the protagonist and two copies
of the (unique) region possibly chosen by the antagonist.

Similar arguments hold when the a-move is issued by the protagonist at time
x = 1 or x > 1.

4.3.1 Strategy Samples

Given a strategy F , let its strategy tree be TF = (S, V,E, vini , µ). For an
integer k > 0, we define a class of discrete trees (called k-samples of F)
associated with F . As intermediate step, we define a pre-k-sample to be a
suitable sub-tree t of TF . Then, a k-sample is the projection of a pre-k-sample
along the Q component, that is, if u is a node of a pre-k-sample and µ(u) =
〈q, ν〉, then the label of u in the corresponding k-sample is {q}. We denote
Samplek(F) the set of all k-samples of F . To conclude the construction, we
provide the definition of a pre-sample.

For each u ∈ V , let (succProt(TF , u), succ
Ant(TF , u)) be the partition of succ(TF , u)

as given in the definition of TF . A pre-sample of F is a sub-tree t = (S, V ′, E ′, vini , µ
′)

of TF , where V ′ is defined as follows:

• For each v ∈ succProt(TF , u), we have v ∈ V ′;
• for each v ∈ succAnt(TF , u) such that [µ(v)] is punctual, we have v ∈ V ′;
• for each non-punctual region α such that there exists v ∈ succAnt(TF , u)
with µ(v) ∈ α, there exist k distinct nodes v1, . . . , vk ∈ succAnt(TF , u) such
that, for all i = 1 . . . k, µ(vi) ∈ α and vi ∈ V ′.

16

q1q1

q2 q2 x = 1.4

x = 0.4

qini x = 0

x = 0.2

x = 1.2

(a)

q1q1

q2 q3 x = 1.7

x = 0.7

qini x = 0

x = 0.2

x = 1.2

(b)

Fig. 5. Two samples obtained from the game of Figure 2 and the strategy that, from
q1, picks move (1, a) when x < 0.5 and move (1, b) otherwise.

Notice that the existence of k distinct points in the last case is ensured by
Lemma 1. Components E ′ and µ′ are simply the restrictions of E and µ to V ′.

For instance, consider again the game in Figure 2, and consider the strategy
F that, from state 〈q1, ν〉 chooses move (1, a) if ν(x) < 0.5 and move (1, b)
otherwise. Figure 5 shows two 2-samples of F .

4.3.2 The Automaton AG
k

For an integer k > 0, we now define a tree automaton AG
k , whose task is

to accept all and only the k-samples corresponding to some strategy. The
locations of AG

k are the regions of the timed automaton G, while its labels are
sets of locations of G. We set AG

k = (2Q,Regs ,∆, rini), where rini = 〈qini , [νini]〉
and ∆ ⊆ ∪i≥1Regs × 2Q × Regs i is defined as follows.

Consider r = 〈q, α〉 ∈ Regs as a location of AG
k . We distinguish the following

two cases:

(1) Suppose that there exists a region z which is a successor of r and such
that there is at least a σ-transition enabled from z, with σ ∈ Acts .

Then, let Zσ = { r′ | z σ−→ r′ } and Zξ = { r′ | z′ ξ−→ r′, r � z′ ≺
z if z is boundary, and r � z′ � z otherwise }, where a region is bound-
ary if at least one clock has integral value. Let Znp

ξ be the subset of Zξ

containing only non-punctual regions. Let Zp
ξ be the subset of Zξ contain-

ing all punctual regions except those already contained in Zσ. We remove
duplicate punctual regions from Zp

ξ in accordance with the definition of
strategy tree. Let us number the elements of these sets as follows: Zσ =
{r′1, . . . , r′m}, Z

p
ξ = {r′m+1, . . . , r

′
m+h}, and Znp

ξ = {r′m+h+1, . . . , r
′
m+h+l}.

17

The following transition belongs to ∆.

(r, {q}, r′1, . . . , r′m, r′m+1, . . . , r
′
m+h, r

′
m+h+1, . . . , r

′
m+h+1︸ ︷︷ ︸

k times

, . . . , r′m+h+l, . . . , r
′
m+h+l︸ ︷︷ ︸

k times

).

(2) On the other hand, suppose that for all successors z of r no σ-transition

is enabled in z. Let Zξ = { r′ | z′ ξ−→ r′, r � z′ }, and, let Zξ be parti-
tioned into the punctual regions {r′1, . . . , r′m}, and non-punctual regions
{r′m+1, . . . , r

′
m+h}. Then, the following transition belongs to ∆.

(r, {q}, r′1, . . . , r′m, r′m+1, . . . , r
′
m+1︸ ︷︷ ︸

k times

, . . . , r′m+h, . . . , r
′
m+h︸ ︷︷ ︸

k times

).

In the second case, the game is in a state where the protagonist is not allowed
to play anymore. This may result for two reasons: either there is no σ-move
from the current location q, or all σ-moves have expired, meaning that they
are disabled in α and will not be enabled in the future.

The branching degree of AG
k is bounded by the product of the maximum

branching degree of G, max{ cx | x ∈ C }, and k. From [3], we have that
the number of regions of G is O(|C|! 2|C|Πx∈C(2cx + 2)). Thus, the following
result holds.

Lemma 3 The size of AG
k is exponential in the size of the clock constraints

and linear in the number of locations of G.

Suppose we have a sample t that satisfies a Ctl formula ϕ. We could be
tempted to conclude that the strategy from which t is derived satisfies ϕ as
well. However, this is not the case, since samples are rather arbitrary selections
of paths from the original strategy tree. For instance, consider the 2-sample in
Figure 5(a). It satisfies the formula ∀X∀Xq2, while the strategy from which
the sample is derived does not satisfy that formula. The problem is that the
strategy has extra behaviors that are not present in the sample in Figure 5(a).
However, we could modify the strategy in such a way as to exhibit all and only
the behaviors that are present in a given sample. To this aim, we introduce
the concept of canonical strategy for a tree.

Given a tree t, we say that a strategy F is a canonical strategy for t if (i) t
is isomorphic 4 to a tree in Samplek(F) and (ii) t is bisimilar to untime(TF).
We now show that, given a tree t accepted by AG

k , there exists a canonical
strategy F for t.

Lemma 4 Given a tree t ∈ L(AG
k), there exists a canonical strategy for t.

4 Two trees are isomorphic if there is a bijection between their sets of nodes which
preserves the structure and the labeling of the trees.

18

Proof : Let AG
k = (2Q,Regs ,∆, rini). We split the proof in two parts: first,

we inductively define a strategy F and we prove that t ∈ Samplek(F). In the
second part, we show that t is bisimilar to untime(TF).

Building the strategy. Let t = (2Q, V ′, E ′, v′ini , µ̂
′) and let (Regs , V ′, E ′, v′ini , µ̄)

be an accepting run of AG
k over t. Together with F , we inductively define the

following functions:

• dir : V ′ → {1, . . . , k}; dir(v) keeps track of the splitting history along the
path from v′ini to v;
• act : V ′ → Actsξ; act(v) stores the action which leads to v;
• trans : V ′ → ∆; trans(v) keeps track of the transition of the automaton
used to consume the children of v;
• rest : V ′ → Regs ; rest(v) stores the successor region of µ̄(v) where the
protagonist takes his action (discrete step).

Suppose π = u0, . . . , un is a path in t. We proceed by induction on n. For
the root, we have dir(v′ini) = 1, while act(vini) is arbitrarily defined. Sup-
pose µ̄(un) = 〈q, α〉 and let v1, . . . , vc be the children of un in t. Then, let
trans(un) ∈ ∆ be a transition of the form (µ̄(un), {q}, µ̄(v1), . . . , µ̄(vc)). We
assume w.l.o.g. that we are in case (1) of the definition of ∆. Accordingly,
let σ ∈ Acts and z ∈ Regs be the action and the region which lead to the
addition of trans(un) to ∆. We set rest(un) = z. Also, there exist the fol-
lowing sets of regions: Zσ = {r′1, . . . , r′m}, such that nodes v1, . . . , vm corre-
spond to the protagonist destinations r′1, . . . , r

′
m; Z

p
ξ = {r′m+1, . . . , r

′
m+h}, such

that nodes vm+1, . . . , vm+h correspond to the punctual antagonist destinations
r′m+1, . . . , r

′
m+h; Z

np
ξ = {r′m+h+1, . . . , r

′
m+h+l}, such that, for all i = 1, . . . , l

and j = 1, . . . , k, vm+h+(i−1)·k+j corresponds to the j-th copy of the i-th non-
punctual destination r′m+h+i of the antagonist.

For technical convenience, let wi = vm+h+i for all i = 1, . . . , k · l. Thus,
trans(un) can be written as:

(µ̄(un), {q}, µ̄(v1), . . . , µ̄(vm),µ̄(vm+1), . . . , µ̄(vm+h),

µ̄(w1), . . . , µ̄(wk),

. . . ,

µ̄(wk·(l−1)+1), . . . , µ̄(wk·l)).

For all i = 1, . . . ,m, we set dir(vi) = 1 and act(vi) = σ. For all i = m +
1, . . . ,m + h, we set dir(vi) = 1 and act(vi) = ξ. For all i = 1, . . . , l, and
j = 1, . . . , k, we set dir(wk·(i−1)+j) = j and act(wk·(i−1)+j) = ξ.

We define the following auxiliary functions. For all ρ ∈ playsF and non-
punctual region r, let slice(ρ, r) be a partition (β1, . . . , βk) of the set of states
in r that are reachable from s = last(ρ) taking an antagonist move before

19

the intended protagonist move. Formally, let F(ρ) = (d̄, σ̄), (β1, . . . , βk) is a

partition of the set {s′ ∈ r | s d,ξ−→ s′, for some 0 < d < d̄}. Moreover, for all
i = 1, . . . , k, we set slice(ρ, r, i) = βi. For a punctual region r, or an empty
run ρ = ε, we set slice(ρ, r) = slice(ρ, r, 1) = r.

Let ρ = s0 . . . sn be a run in playsF . Since there is a bijection between playsF
and paths in TF , there is a path ū0 . . . ūn in TF corresponding to ρ. We say
that ρ is consistent with π if for all i = 0, . . . , n, it holds (i) if actF(ūi) = σ,
then act(ui) = σ and si ∈ µ̄(ui), and (ii) otherwise (i.e., if actF(ū) = ξ), then
act(ui) = ξ and si ∈ slice(ρ≤i−1, µ̄(ui), dir(ui)). We denote by Cons(π) the set
of all runs that are consistent with π. The following uniqueness property holds
and will be proved in the following: each finite run of length n is consistent
with at most one path of length n in t. Using this property, for all ρ ∈ Cons(π),
we fix F(ρ) = (d, σ), where d is a time delay such that last(ρ) + d ∈ rest(un).

To conclude the definition of F , we prove the above uniqueness property. Let
ρ = s0 . . . sn be a run in playsF . By contradiction, assume that ρ is consistent
with two distinct paths π′ = u′

0 . . . u
′
n and π′′ = u′′

0 . . . u
′′
n in t. Let b be an

index such that π′
≤b−1 = π′′

≤b−1 and u′
b 6= u′′

b . Let trans(u
′
b−1) be:

(z, {q}, z′1, . . . , z′m, z′m+1, . . . , z
′
m+h, z

′
m+h+1, . . . , z

′
m+h+1︸ ︷︷ ︸

k times

, . . . , z′m+h+l, . . . , z
′
m+h+l︸ ︷︷ ︸

k times

),

where µ̄(u′
b−1) = z and there exist i, j ∈ {1, . . . ,m+h+l} such that µ̄(u′

b) = z′i
and µ̄(u′′

b) = z′j. Recall from the definition of AG
k that nodes z′1, . . . , z

′
m corre-

spond to protagonist moves, nodes z′m+1, . . . , z
′
m+h correspond to antagonist

moves leading to punctual regions, and the remaining nodes to antagonist
moves leading to non-punctual regions.

Since ρ ∈ Cons(π′) ∩ Cons(π′′), we have in particular actF(sb) = act(u′
b) =

act(u′′
b), sb ∈ z′i ∩ z′j, and therefore z′i = z′j. If actF(sb) ∈ Acts , we obtain an

immediate contradiction with the definition ofAG
k , since there are no duplicates

among the regions corresponding to destinations of the protagonist. Otherwise,
assume actF(sb) = ξ. Then, we also have sb ∈ slice(ρ≤b−1, µ̄(u

′
b), dir(u

′
b)) ∩

slice(ρ≤b−1, µ̄(u
′′
b), dir(u

′′
b)). If both regions µ̄(u′

b) and µ̄(u′′
b) are punctual, an

argument similar to the one used in the previous case applies. Otherwise,
both regions are non-punctual. There exists a unique g ∈ {1, . . . , l} such that
µ̄(u′

b) = µ̄(u′′
b) = z′m+h+g. Moreover, since u′

b 6= u′′
b , it must be dir(u′

b) 6=
dir(u′′

b). So, we found two different slices of the same region having the state
sb in common, which is a contradiction.

This concludes the proof of the property and the definition of F . From the
definition of k-sample, it holds that t is isomorphic to a k-sample of F , which
proves the first condition in the definition of canonical strategy.

Bisimilarity. In this part, we prove that t is bisimilar to untime(TF), where F

20

is the strategy defined in the previous part of the proof. Let TF = (S, V, E, vini , µ)
and untime(TF) = (2Q, V, E, vini , µ̂). In the following, we assume w.l.o.g. that
t is a k-sample of F . Let t′ = (S, V ′, E ′, v′ini , µ

′) be the pre-sample correspond-
ing to t. Let dir be the auxiliary function used to define the canonical strategy
F .

We inductively define the candidate bisimulation R ⊆ V ′ × V as follows.
First, we have (v′ini , vini) ∈ R. Then, let (v′, v) ∈ R, π be the path in t from
v′ini to v′, and ρ be the path in TF from vini to v. While defining R, we
simultaneously prove that ρ ∈ Cons(π). We proceed by induction on |ρ|. The
thesis is obviously true for |ρ| = 1 (i.e., vini ∈ Cons(v′ini)).

Let w be a successor of v in TF due to a protagonist move (i.e., actF(w) ∈
Acts). There is a successor w′ of v′ in t that is due to the same action of
the protagonist, leading to the same region (i.e., [µ′(w′)] = [µ(w)]). We set
(w′, w) ∈ R. It follows from our choice of w′ that ρw ∈ Cons(πw′). Similarly
for the successors of v which are due to the antagonist and represent punctual
regions.

Finally, let w be a successor of v in TF due to an antagonist move leading to
a non-punctual region r (i.e., actF(w) = ξ and µ(w) ∈ r). In the construction
of F , region r is split into k slices according to function slice(ρ, r), and v′

has a child for each such slice. Nodes are linked to slices by function dir .
In particular, there is a child w′ of v′ whose slice contains µ(w). This is the
node which we associate to w in R. Formally, w′ is the child of v′ such that
µ(w) ∈ slice(ρ, r, dir(w′)), and we set (w′, w) ∈ R. It follows from our choice
of w′ that ρw ∈ Cons(πw′).

Next, we prove that R is a bisimulation between t and untime(TF). For all
(v′, v) ∈ R, let π be the path in t from v′ini to v′, and let ρ be the path in TF
from vini to v.

Condition (1) of the definition of bisimulation (i.e., µ̂′(v′) = µ̂(v)) is an im-
mediate consequence of the fact that ρ ∈ Cons(π). Condition (3) of the def-
inition of bisimulation follows directly from the construction of R, since for
every successor w of v we have explicitly exhibited a successor w′ of v′ such
that (w′, w) ∈ R.

Regarding condition (2) of the definition of bisimulation, let w′ ∈ succ(t, v′).
We show that there exists a node w ∈ succ(TF , v) such that ρw ∈ Cons(πw′).
By condition (3) of bisimulation, there exists w′′ ∈ V ′ such that (w′′, w) ∈ R.
Let π′′ be the path in t from the root to the parent of w′′, we have ρw ∈
Cons(π′′w′′). By the uniqueness property, πw′ = π′′w′′ and so (w′, w) ∈ R.

To conclude the proof, we show the existence of such w. Consider the following
cases:

21

(1) w′ is due to the protagonist, i.e. act(w′) ∈ Acts . Then, recall that rest(v′)

is a successor of the region µ̄(v′) such that rest(v′)
act(w′)−→ µ̄(w′). Since

ρ ∈ Cons(π), F(ρ) = (d, σ), where σ = act(w′) and µ(v) + d ∈ rest(v′).

In conclusion, there must be w ∈ succ(TF , v) such that µ(v)
d,σ−→ µ(w)

and µ(w) ∈ µ̄(w′). Thus, ρw ∈ Cons(πw′) by condition (i) of consistency.
(2) w′ is due to the antagonist and it corresponds to a punctual region, i.e.

act(w′) = ξ and µ̄(w′) is punctual. We proceed similarly to the previous
case.

(3) w′ is due to the antagonist and it corresponds to a non-punctual region,
i.e. act(w′) = ξ and µ̄(w′) is non-punctual. Consider the set slice(ρ, µ̄(w′), dir(w′)).
As recalled in case 1, the delay d̄ chosen by the strategy F after ρ leads

to the region rest(v′), which is the region from which the protagonist takes
the discrete step according to t. By the definition of AG

k , the region rest(v′)
is a successor of µ̄(w′). Finally, recall that slice(ρ, µ̄(w′)) is a partition of
the set

{s′ ∈ µ̄(w′) | µ(v) d,ξ−→ s′, for some 0 < d < d̄}.
Since v = last(ρ), the above set is not empty.
Let s ∈ slice(ρ, µ̄(w′), dir(w′)), there is a delay 0 < d < d̄ such that

µ(v)
d,ξ−→ s. By definition of TF , there is then a node w ∈ succ(TF , v)

such that µ(w) = s and actF(w) = ξ. By definition of consistency, we
conclude that ρw ∈ Cons(πw′).

2

We can now prove the following result.

Lemma 5 The automaton AG
k accepts all and only the k-samples of strategies.

Proof : Let F be a strategy and t ∈ Samplek(F). We prove that t ∈ L(AG
k).

Let t′ = (S, V,E, vini , µ) be the pre-sample corresponding to t, and let [t′] be
the tree (Regs , V, E, vini , µ

′), where for all v ∈ V , µ′(v) = 〈q, [ν]〉 if and only if
µ(v) = 〈q, ν〉. It is easy to show by induction that [t′] is an accepting run of
AG

k over t.

Conversely, let t ∈ L(AG
k). By Lemma 4, there exists a canonical strategy F

for t, and thus t ∈ Samplek(F). 2

4.3.3 Bounding the Splitting Degree

Lemma 6 Given a Ctl formula ϕ, let F be a winning strategy w.r.t. ϕ. There
exists t ∈ Samplek(F) such that t |= ϕ, where k is the number of existential
quantifiers in ϕ.

Proof : Let TF = (S, V, E, vini , µ). To define t = (S, V ′, E ′, vini , µ
′), it is

22

sufficient to define V ′, as E ′ and µ′ are simply the restrictions of E and µ to
V ′, respectively.

For all v ∈ V , let Sub∃(v) be the set of existential subformulas of ϕ that are
true in TF at v. Formally, Sub∃(v) = {ϕ′ ∈ Sub(ϕ) | ϕ′ = ∃θ and (TF , v) |=
ϕ′}. The following recursive definition uses a set P ⊆ Sub(ϕ)×V ∗ to remember
specific paths that are needed to satisfy certain existential subformulas of ϕ.

Given W ⊆ V and u ∈ W , we say that u is a leaf w.r.t. W if for all v ∈ W we
have (u, v) 6∈ E. For a set Σ, we let Σ∞ = Σ∗ ∪ Σω.

function AddLayer(V ′ ⊆ V, f : V ′ → 2Sub(ϕ)×V ∞
)

vars:
W : set of nodes

g : V → 2Sub(ϕ)×V ∞

main:
for each leaf u w.r.t. V ′ do

(W, g) := AddChildren(u, f(u))
V ′ := V ′ ∪W
f := f ∪ g

done
return (V ′, f)

function AddChildren(u ∈ V, P ⊆ Sub(ϕ)× V∞)
vars:

W : set of nodes

g : V → 2Sub(ϕ)×V ∞

RelNodes (relevant nodes) : set of nodes

NewP (new promises) : succ(TF , u)→ 2Sub(ϕ)×V ∞

init:
W := ∅
RelNodes := ∅
for each v ∈ succ(TF , u) do NewP(v) := ∅

main:
/* collect nodes preserving existential formulas that are true in u */

for each ∃ψ ∈ Sub∃(u) do
if ψ = Xθ then

pick a node v ∈ succ(TF , u) such that (TF , v) |= θ
RelNodes := RelNodes ∪ {v}

else if
(
ψ = θ1 Uθ2 and (TF , u) 6|= θ2

)
or

(
ψ = θ1 R θ2 and (TF , u) 6|= θ1

)
then

if (ψ, uv1v2 . . .) ∈ P then
RelNodes := RelNodes ∪ {v1}

else
pick a path π = uv1v2 . . . such that (TF , π) |= ψ
RelNodes := RelNodes ∪ {v1}
NewP(v1) := NewP(v1) ∪ {(ψ, v1v2 . . .)}

23

endif
endif

done
/* add relevant nodes */
for each v ∈ RelNodes do

W := W ∪ {v}
g(v) := NewP(v) ∪Update(v, P)

done
/* add mandatory samples */
for each v ∈ succProt(TF , u) \ RelNodes do

W := W ∪ {v}
g(v) := Update(v, P)

done
for each v ∈ succAnt(TF , u) \ RelNodes such that [µ(v)] is punctual do

W := W ∪ {v}
g(v) := Update(v, P)

done
/* add mandatory samples for open regions */
for each non-punctual region α such that there exists v ∈ succAnt(TF , u) with µ(v) ∈ α do

n := k − |{v ∈ RelNodes|µ(v) ∈ α}|
while n > 0 do

pick v in succAnt(TF , u) \W with µ(v) ∈ α
W := W ∪ {v}
g(v) := Update(v, P)
n := n− 1

done
done
return (W, g)

function Update(v ∈ V, P ⊆ Sub(ϕ)× V∞)
vars:

B : subset of Sub(ϕ)× V∞

init:
B := ∅

main:
for each (ψ, v0v1 . . .) ∈ P do

if v = v1 then B := B ∪ {(ψ, v1v2 . . .)}
done
return B

Finally, the wanted set V ′ is obtained by infinitely many iterative applications
of AddLayer on ({vini}, ∅). 2

24

4.3.4 The Automata-theoretic Solution

To solve branching games, we build an automaton A∩ accepting the intersec-
tion of L(Aϕ

k) and L(AG
k), and then check for its emptiness. However, AG

k may
have a different branching degree than Aϕ

k . Let h be the maximum branching
degree among Aϕ

k and AG
k . Before taking the intersection, we augment each

transition of each automaton to have degree exactly h, by repeating existing
destinations, in all possible permutations.

Lemma 7 Given a Ctl game (G, ϕ), there exists a winning strategy if and
only if L(A∩) is nonempty.

Proof : Assume t ∈ L(A∩) = L(AG
k)∩L(A

ϕ
k). By Lemma 5, there is a strategy

F such that t is a k-sample of F , and by Proposition 3, t |= ϕ. Thus, by
Lemma 4, there is a strategy F ′ such that TF ′ |= ϕ and thus F ′ is a winning
strategy.

Conversely, suppose that F is a winning strategy and TF is the associated
strategy tree. Assuming that ϕ contains k existential quantifiers, by Lemma 6,
there exists a k-sample t of F that satisfies ϕ. By Lemma 5, t is accepted by
AG

k , and by Proposition 3, it is also accepted by Aϕ
k . Therefore, L(A∩) is

nonempty. 2

By taking the intersection of Aϕ
k and AG

k , we obtain a Büchi tree automaton A∩

whose number of states is the product of the number of states of the original
automata. By Lemma 7 and the fact that the emptiness problem for Büchi
automata is decidable in polynomial time (Proposition 2), the following holds.

Theorem 1 Given a Ctl game (G, ϕ), the problem of deciding the existence
of a winning strategy in (G, ϕ) is solvable in exponential time.

We conclude this section by briefly discussing about lifting the results we
have achieved here for Ctl directly to game logics, such as Atl, as well as to
different game frameworks, such as the module checking approach.

4.4 A comparison with ATL

Alternating-time Temporal Logic [5] (Atl) is a well-known formalism for spec-
ifying properties of multi-agent systems. When interpreted on one-agent sys-
tems, Atl closely resembles Ctl: its team quantifiers correspond to the path
quantifiers of Ctl. Since Atl model-checking is in PTIME [5], one may won-
der whether the timed games with Ctl objectives studied in this paper may
be more efficiently solved by converting the objective into Atl and then ex-
ecuting an Atl model checking algorithm on the region graph corresponding

25

to the game. Two obstacles prevent this course of actions: first, due to The-
orem ??, the region graph may not be sufficient to find winning strategies;
second, and more importantly, our semantics for Ctl does not match the
standard semantics for Atl. Consider the Ctl goal ∃ϕ1 ∧ ∃ϕ2, where ϕ1 and
ϕ2 are path formulas, and compare it with the apparently similar Atl formula
�1, 2� ϕ1 ∧ �1, 2�ϕ2, where �1, 2� is the team quantifier which puts
the protagonist and the environment in the same team. According to our se-
mantics, the Ctl goal is satisfied by the game if the protagonist has a strategy
whose tree contains a path satisfying ϕ1 and another path satisfying ϕ2. On
the other hand, the above Atl formula is satisfied if the team has one strategy
that satisfies ϕ1 and another strategy that satisfies ϕ2. In other words, in order
to satisfy the Atl formula, the protagonist may use two different strategies
for ϕ1 and ϕ2, respectively.

4.5 A comparison with module checking

In [28,29], Kupferman, Vardi, and Wolper studied the model checking problem
for open finite-state systems. In their framework, the open finite-state system
is described by a labeled state-transition graph called a module, whose set of
states is partitioned into a set of system states (where the system makes a
transition) and a set of environment states (where the environment makes a
transition). Given a module M describing the system to be verified, and a
temporal logic formula ϕ specifying the desired behavior of the system, the
problem of model checking a module, called module checking, asks whether
for all possible environments M satisfies ϕ. In particular, it might be that
the environment does not enable all the external nondeterministic choices.
Module checking thus involves not only checking that the full computation
tree 〈TM , VM〉 obtained by unwindingM (which corresponds to the interaction
of M with a maximal environment) satisfies the specification ϕ, but also that
every tree obtained from it by pruning children of environment nodes (this
corresponds to the different choices of different environments) satisfy ϕ. In
other words, module checking can be seen as a two-player turn-based game
where one of the two players (the system) has a deterministic (full) strategy. It
is shown in [28,29,36,20] that for formulas in branching time temporal logics,
module checking open finite-state systems is exponentially harder than model
checking closed finite-state systems. Recently, the module checking problem
has been extended to infinite state-systems and, in particular, to pushdown
systems[14,9,8], showing that this problem for Ctl is 2Exptime-complete in
the perfect information setting and undecidable in the imperfect one.

A natural question that arises is whether the techniques introduced above
can be lifted to the real-time module checking framework w.r.t. to Ctl goals.
Clearly, this can be done easily once the given problem is reduced to one on

26

discrete trees. To be convinced that this can be indeed the case, first observe
that in real-time module checking the model is a timed module [35], i.e, an
open real-time labeled state-transition graph. Also, observe that the unwinding
of this module is a dense tree. Now, as we have done above, consider the
unwinding of the region graph of such a model, which is a discrete tree. It is
not hard to prove that the former and the latter are equivalent with respect
to Ctl goals. At this point, we can continue as in the discrete case and get
the solution to of our problem.

5 Linear Games

In this section, we deal with timed games whose winning condition is an Ltl
formula. We say that (G, ϕ) is an Ltl game whenever ϕ is an Ltl formula
using as atomic propositions the locations of G. Intuitively, in such a game
we say that a strategy for the protagonist is winning if every run which is
consistent with the strategy satisfies the formula.

5.1 Linear Temporal Logic

Linear Temporal Logic (Ltl) was introduced by Pnueli to specify and verify
properties of reactive systems [38]. Given a set of atomic propositions AP , an
Ltl formula is composed of atomic propositions, the boolean connectives con-
junction (∧) and negation (¬), and the temporal operators Next (X) and Until
(U). Ltl formulas are built up in the usual way from the above operators
and connectives, according to the following grammar:

ϕ := p | ¬ϕ |ϕ ∧ ϕ |Xϕ |ϕUϕ

where p is an atomic proposition. We denote by |ϕ| the length of formula
ϕ. The semantics of Ltl formulas is given with respect to an infinite word
w = σ0σ1 . . . σn . . . over the alphabet Σ = 2AP . The satisfaction relation w |= ϕ
is defined in the standard way:

• if ϕ is an atomic proposition, then w |= ϕ if and only if ϕ ∈ σ0;
• w |= ¬ϕ if and only if w |= ϕ does not hold;
• w |= ϕ1 ∧ ϕ2 if and only if w |= ϕ1 and w |= ϕ2;
• w |= Xϕ if and only if w≥1 |= ϕ;
• w |= ϕ1 Uϕ2 if and only if there exists i ≥ 0 such that w≥i |= ϕ2 and
w≥j |= ϕ1 for all j such that 0 ≤ j < i.

Given a tree t, we also say that t |= ϕ if, for all paths π of t, we have that
π |= ϕ. For every Ltl formula ϕ, it is possible to construct a nondeterministic

27

Büchi automaton on ω-words accepting all ω-words models of ϕ [46]. We will
refer to such an automaton as a generator of models of ϕ. Since we need to
construct a tree automaton, it is necessary to have a deterministic generator.
In fact, given a positive integer k and a deterministic Büchi automaton on
ω-words A = (Σ, Q,∆, qini , F), we can easily obtain a tree automaton A′

accepting all trees t with branching degree bounded above by k and such
that every path of t is a word accepted by A. The tree automaton has the
form A′ = (Σ, Q,∆′, qini , F), where ∆′ contains all and only the transition
(q, σ, q1, . . . , ql), where (q, σ, qi) ∈ ∆, for all i = 1, . . . , l and l ≤ k. Clearly,
such a construction does not work for nondeterministic automata.

Given an Ltl formula ϕ, we can build a deterministic generator Aϕ
k for ϕ

in the following way: we start with a nondeterministic Büchi generator with
2O(|ϕ|) states [34,47]; a Büchi automaton with n states can be converted into
a deterministic Rabin automaton with 2O(n logn) states and n accepting pairs
[42]. Thus, we obtain a deterministic Rabin generator for ϕ with a doubly
exponential number of states and exponentially many accepting pairs. Notice
that, in general, for a given formula ϕ, a deterministic Büchi generator may
not exist but, when it exists, it may require a doubly exponential number of
states in the length of the formula (see [31]), and thus the above construction
is asymptotically optimal.

Proposition 4 Given an Ltl formula ϕ and an integer k, there exists a
deterministic Rabin tree automaton Aϕ

k , accepting all ω-trees t with branching
degree k and such that t |= ϕ. Moreover, Aϕ

k has a doubly exponential number
of states and exponentially many accepting pairs.

We now define when a strategy is winning with respect to an Ltl win-
ning condition. Given a timed graph G and a (possibly infinite) run ρ =
〈qini , νini〉〈q1, ν1〉 . . . 〈qn, νn〉 in G, we define Untime(ρ) = {qini}{q1} . . . {qn},
that is, the sequence of locations traversed by the run, with each location
wrapped in a singleton set. Given an Ltl game (G, ϕ) and a strategy F , we
say that F is winning if, for all ρ ∈ playsωF , Untime(ρ) |= ϕ.

5.2 Solving Ltl Games

The following result greatly simplifies the treatment of linear games compared
to the Ctl games of Section 4.

Proposition 5 ([19]) Region stable strategies are sufficient for winning Ltl
games.

By Proposition 4, let Aϕ
k the Rabin tree automaton corresponding accepting

all trees satisfying ϕ whose branching degree is at most deg(AT
1). Since Rabin

28

tree automata are closed under intersection [43], we can build a Rabin tree
automaton A∩ accepting the intersection of the languages accepted by AT

1 and
Aϕ

k . In particular, since by [43] the size of A∩ is polynomial in the size of AT
1

and Aϕ
k , and the size of Aϕ

k is doubly exponential in ϕ, the size of A∩ is doubly
exponential in the size of ϕ. By Lemma 3, the size of A∩ is singly exponential
in the size of G. Moreover, the number of pairs in the accepting condition of
A∩ is exponential in the size of ϕ.

Lemma 8 Given an Ltl game (G, ϕ), there exists a winning strategy for the
protagonist if and only if L(A∩) is nonempty.

Proof : Let t ∈ L(A∩). Since t ∈ L(AT
1), by Lemma 4 there exists a canonical

strategy F for t. By Proposition 4, t |= ϕ. Therefore, untime(TF) |= ϕ, and
so F is a winning strategy.

Conversely, let F be a winning strategy (i.e., untime(TF) |= ϕ). Since the
winning condition is an Ltl formula, all samples of F also satisfy ϕ. Therefore,
L(A∩) is not empty. 2

By the previous lemma, Proposition 1, and the fact that Ltl games are
2Exptime-hard [39], the following theorem holds.

Theorem 2 Given an Ltl game (G, ϕ), the problem of deciding the existence
of a winning strategy for the protagonist is 2Exptime-complete.

6 Conclusions

We presented an automata-theoretic approach to solve timed games. Our so-
lution relies on the construction of a tree automaton accepting all the ω-trees
corresponding to a strategy of the protagonist in the timed game. This ap-
proach can be used with any class of winning conditions admitting a direct
translation to a class of tree automata with decidable emptiness problem and
closure under intersection. We have analyzed in more detail the cases of win-
ning conditions expressed by temporal logic formulas. We can solve timed
Büchi games, timed Rabin games and Ctl games in exponential time. Since
timed reachability games are known to be Exptime-hard even if the antag-
onist is allowed to move only when the protagonist does [33], this results are
also complete. We have also applied our approach to solving Ltl games. The
obtained procedure takes doubly exponential time, and since Ltl games are
2Exptime-hard [39], our result is tight. Combining our construction with the
results on Ltl generators from [7], we can prove an upper bound smaller than
2Exptime for meaningful subclasses of Ltl timed games.

29

References

[1] R. Alur, L. de Alfaro, T. Henzinger, and F. Mang. Automating
modular verification. In CONCUR’99: Concurrency Theory, Tenth Int.
Conference, LNCS 1664, pages 82–97, 1999.

[2] R. Alur, C. Courcoubetis, and D.L. Dill. Model-checking in dense real-
time. Information and Computation, 104(1):2 – 34, 1993.

[3] R. Alur and D.L. Dill. A theory of timed automata. Theoretical Computer
Science, 126:183 – 235, 1994.

[4] R. Alur, T.A. Henzinger, and O. Kupferman. Alternating-time temporal
logic. In Proc. of the 38th IEEE Symposium on Foundations of Computer
Science, pages 100 – 109, 1997.

[5] R. Alur, T.A. Henzinger, and O. Kupferman. Alternating-Time Temporal
Logic. In Journal of the ACM Vol. 49(5), pages 672–713.

[6] R. Alur, T. Henzinger, F. Mang, S. Qadeer, S. Rajamani, and S. Tasiran.
MOCHA: Modularity in model checking. In Proc. of the Tenth Int.
Conference on Computer Aided Verification, LNCS 1427, pages 521 –
525. Springer-Verlag, 1998.

[7] R. Alur and S. La Torre. Deterministic generators and games for ltl
fragments. In Proc. of the 16th IEEE Symposium on Logic in Computer
Science, LICS’01, pages 291–300, 2001.

[8] B. Aminof, A. Legay,
A. Murano, O. Serre, and Moshe Y. Vardi. Pushdown module checking
with imperfect information. Under review to International Journal
http://people.na.infn.it/ murano/pubblicazioni/Module-extended.pdf

[9] Benjamin Aminof, A. Murano, and Moshe Y. Vardi. Pushdown module
checking with imperfect information. In 18th International Conference
on Concurrency Theory, (CONCUR’07), LNCS 4703, pages 461–476,
2007.

[10] M. Abadi, L. Lamport, and P. Wolper. Realizable and unrealizable
specifications of reactive systems. In Proc. of the 16th Intern. Colloquium
on Automata, Languages and Programming, ICALP’89, LNCS 372, pages
1–17, 1989.

[11] E. Asarin and O. Maler. As soon as possible: Time optimal control for
timed automata. In Proc. of the 2nd International Workshop on Hybrid
Systems: Computation and Control, LNCS 1569, pages 19 – 30. Springer-
Verlag, 1999.

[12] E. Asarin, O. Maler, A. Pnueli, and J. Sifakis. Controller synthesis for
timed automata. In Proc. IFAC Symposium on System Structure and
Control, pages 469 – 474. Elsevier, 1998.

30

[13] Laura Bozzelli, A. Murano, and Adriano Peron. Pushdown module
checking. In 12th International Conference on Logic for Programming,
Artificial Intelligence, and Reasoning (LPAR’05), pages 504–518, 2005

[14] Laura Bozzelli, A. Murano, and Adriano Peron. Pushdown module
checking. Formal Methods in System Design (FMSD 2010), 36(1):65–
95, 2010.

[15] J.R. Büchi and L.H. Landweber. Solving sequential conditions by finite-
state stategies. Trans. Amer. Math. Soc., 138:295 – 311, 1969.

[16] A. Church. Logic, arithmetic, and automata. In Proc. of the International
Congress of Mathematics, pages 23–35, 1962.

[17] E.A. Emerson and E.M. Clarke. Using branching-time temporal logic to
synthesize synchronization skeletons. Science of Computer Programming,
2:241 – 266, 1982.

[18] E. M. Clarke and R. P. Kurshan. Computer-aided verification. IEEE
Spectrum, v. 33, 6: 61–67, 1996

[19] L. de Alfaro, M. Faella, T. Henzinger, R. Majumdar and M. Stoelinga.
The element of surprise in timed games. In Proc. of the 14th International
Conference on Concurrency Theory, LNCS, 2003.

[20] Alessandro Ferrante, A. Murano, and Mimmo Parente. Enriched µ-
calculi module checking. Logical Methods in Computer Science (LMCS
2008), 4(3:1):1–21, 2008.

[21] E.A. Emerson, Temporal and Modal Logic. In Handbook of Theoretical
Computer Science, J. van Leeuwen, Elsevier Science, pages 995–1072,
1990.

[22] E. Allen Emerson and Joseph Y. Halpern. “Sometimes” and “Not Never”
Revisited: On Branching versus Linear Time Temporal Logic. JACM,
33(1): 151–178, 1986.

[23] E.A. Emerson and C.S. Jutla. The complexity of tree automata and logics
of programs. In Proc. of the 29th IEEE-CS Symposium on Foundations
of Computer Science, pages 328 – 337, 1988.

[24] E. Allen Emerson and A.P. Sistla. Deciding full Branching Time Logic.
Information and Control, 61(3): 175–201, 1984.

[25] M. Faella, S. La Torre and A. Murano. Dense Real-Time Games. Proc. of
the Seventeenth Annual IEEE Symposium on Logic in Computer Science
(LICS02), pages 167–176, 2002.

[26] T.A. Henzinger, B. Horowitz, and R. Majumdar. Rectangular hybrid
games. In Proc. of the 10th International Conference on Concurrency
Theory, CONCUR’99, LNCS 1664, pages 320 – 335, 1999.

31

[27] T. Henzinger and P. Kopke. Discrete-time control for rectangular hybrid
automata. Theoretical Computer Science, 221(1–2):369–392, 1999

[28] O. Kupferman and M.Y. Vardi. Module checking. In Computer Aided
Verification, Proc. Eighth Int. Workshop, LNCS 1102, pages 75 – 86.
Springer-Verlag, 1996.

[29] O. Kupferman and M.Y. Vardi. Module checking. Information and
Computation 164, 2, 322–344.

[30] O. Kupferman and M.Y. Vardi. Module checking revisited. In Proc.
of the 9th Intern. Conference on Computer Aided Verification, CAV’97,
LNCS 1254, pages 36 –47, June 1997.

[31] O. Kupferman and M.Y. Vardi. Freedom, weakness, and determinism:
From linear-time to branching-time. In Proc. of the 13th IEEE
Symposium on Logic in Computer Science, pages 81 – 92, June 1998.

[32] O. Kupferman and M.Y. Vardi. Weak alternating automata and tree
automata emptiness. In Proc. 30th ACM Symposium on Theory of
Computing, Dallas, pages 224–233, 1998.

[33] S. La Torre and M. Napoli. Finite Automata on Timed ω-Trees. To
appear in Theoretical Computer Science.

[34] O. Lichtenstein and A. Pnueli. Checking that finite-state concurrent
programs satisfy their linear specification. In Proc. of the 12th ACM
Symposium on Principles of Programming Languages, pages 97 – 107,
1985.

[35] Aniello Murano. Tecision Problems on Tree Automata and Synthesis
of Open Timed Systems. PhD thesis, Universitá degli Studi di Salerno,
February 2003. Supervisori: M. Napoli, M.Y.Vardi and S. La Torre.

[36] A. Murano, Margherita Napoli, and Mimmo Parente. Program
complexity in hierarchical module checking. In 15th International
Conference on Logic for Programming Artificial Intelligence and
Reasoning, (LPAR’08), LNCS 5330, pages 318–332, 2008.

[37] J. Von Neumann and O. Morgenstern. Theory of Games and Economic
Behavior. Princeton University Press, 1944.

[38] A. Pnueli. The temporal logic of programs. In Proc. of the 18th IEEE
Symposium on Foundations of Computer Science, pages 46 – 77, 1977.

[39] A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Proc.
of the 16th ACM Symposium on Principles of Programming Languages,
pages 179 – 190, 1989.

[40] M.O. Rabin. Decidability of second-order theories and automata on
infinite trees. Trans. Amer. Math. Soc., 141:1 – 35, 1969.

32

[41] M.O. Rabin. Automata on infinite objects and Church’s problem. Trans.
Amer. Math. Soc., 1972.

[42] S. Safra. On the complexity of ω-automata. In Proc. of the 29th IEEE
Symposium on Foundations of Computer Science, pages 319 – 327, 1988.

[43] W. Thomas. Automata on infinite objects. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, volume B, pages 133 – 191.
Elsevier Science Publishers, 1990.

[44] W. Thomas. On the synthesis of strategies in infinite games. In Ernst W.
Mayr and Claude Puech, editors, 12th Annual Symposium on Theoretical
Aspects of Computer Science, STACS’95, LNCS 900, pages 1 – 13.
Springer-Verlag, 1995.

[45] M.Y. Vardi. Verification of concurrent programs: the automata-theoretic
framework. In Proc. of the Second IEEE Symposium on Logic in
Computer Science (LICS87), pages 167 – 176, 1987.

[46] M.Y. Vardi and P. Wolper. Automata-theoretic techniques for modal
logics of programs. Journal of Computer and System Sciences, 32:182 –
211, 1986.

[47] M.Y. Vardi and P. Wolper. Reasoning about infinite computations.
Information and Computation, 115:1 – 37, 1994.

33

