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ABSTRACT
In game theory, as well as in the semantics of game logics, a strat-
egy can be represented by any function from states of the game
to the agent’s actions. That makes sense from the mathematical
point of view, but not necessarily in the context of human behav-
ior. This is because humans are quite bad at executing complex
plans, and also rather unlikely to come up with such plans in the
first place. In this paper, we adopt the view of bounded rational-
ity, and look only at "simple" strategies in specifications of agents’
abilities. We formally define what "simple" means, and propose
a variant of alternating-time temporal logic that takes only such
strategies into account. We also study the model checking problem
for the resulting semantics of ability.

1. INTRODUCTION
Logics for strategic reasoning provide powerful tools to reason

about multi-agent systems [7, 42, 40, 30, 21, 34]. The logics allow
to express properties of agents’ behavior and its dynamics, driven
by their individual and collective goals. An important factor here is
interaction between the agents, which can be cooperative as well as
adversarial. Specifications in agent logics can be then used as input
to model checking [22, 38], which makes it possible to verify the
correct behavior of a multi-agent system using recently developed
practical automatic tools [33, 19, 20].

A fundamental contribution in this field is Alternating-Time Tem-
poral Logic (ATL∗) and its fragment ATL [7]. ATL∗ formulas are
usually interpreted over concurrent game structures (CGS) which
are labeled state-transition systems that model synchronous inter-
action among agents. For example, given a CGS modeling a system
with k agents and a shared resource, the ATL formula 〈〈A〉〉Fgrant
expresses the fact that the set of agents A can ensure that, regard-
less of the actions of the other agents, an access to the resource will
be eventually granted. The specification holds if agents inA have a
collective strategy whose every execution path satisfies Fgrant. As
in game theory, strategies are understood as conditional plans, and
play a central role in reasoning about purposeful agents.

Formally, strategies in ATL∗ (as well as in other logics of strate-
gic reasoning, such as Strategy Logic [21, 34]) are defined as func-
tions from sequences of system states (i.e., possible histories of the
game) to actions. A simpler notion of positional a.k.a. memoryless
strategies is formally defined by functions from states to actions.
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That makes sense from a mathematical point of view, and also in
case we think of strategic ability of a machine (robot, computer pro-
gram). We claim, however, that the approach is not very realistic
for reasoning about human behavior. This is because humans are
very bad at handling combinatorially complex objects. A human
strategy should be relatively simple and “intuitive” or “natural” in
order for the person to understand it, memorize it, and execute it.
This applies even more if the human agent has to come up with the
strategy on its own.

In this paper, we adopt the view of bounded rationality, and look
only at strategies whose complexity does not exceed a given bound.
In this way we put a limit on the resources needed to represent and
use the strategy. More precisely, we introduce NatATL∗, a logic
that extends ATL∗ by replacing the strategic operator 〈〈A〉〉ϕ with
a bounded version 〈〈A〉〉≤kϕ, where k ∈ N denotes the complex-
ity bound. To measure the complexity of strategies, we assume
that they are represented by lists of guarded actions. For memo-
ryless strategies, guards are boolean propositional formulas. For
strategies with recall, guards are given as regular expressions over
boolean propositional formulas. As technical results, we study
the problem of model checking NatATL for both memoryless and
memoryfull strategies. The complexity ranges from ∆P

2 to ∆P
3 in

the general case, and from P to ∆P
2 for small complexity bounds.

Related Works. ATL∗ has been the subject of intensive research
within multi-agent systems and AI. Works that are closest in spirit
to our proposal concern modeling, specification, and reasoning about
strategies of bounded agents. The papers that studied explicit rep-
resentation of strategies are also relevant.

In the former group, [2] investigates strategic properties of agents
with bounded memory, while [5, 6, 15, 16] extend temporal and
strategic logics to handle agents with bounded resources. Issues
related to bounded rationality are also investigated in [10, 28, 25].

The latter category is much richer and includes extensions of
ATL∗ with explicit reasoning about actions and strategies [41, 1,
44, 27], and logics that combine features of temporal and dynamic
logic [26, 35]. A variant of STIT logic that enables reasoning about
strategies and their performance in the object language [24]. Also,
plans in agent-oriented programming are in fact rule-based descrip-
tions of strategies. In particular, reasoning about agent programs
using strategic logics was investigated in [12, 3, 4, 23, 45].

None of those works considers directly the subject of this pa-
per, i.e., logic-based reasoning about agents’ abilities in scenarios
where natural representation and reasonable complexity of strate-
gies is essential.

2. A LOGIC FOR NATURAL ABILITY
In this section we introduce all ingredients to define NatATL, a

logic for reasoning about natural strategic ability.



EXAMPLE 1 (MOTIVATING EXAMPLES). The main applica-
tion domain that we have in mind is reasoning about usability. Con-
sider, e.g., a ticket vending machine at a railway station. Intuitively,
it is not enough that a customer has a strategy to successfully buy
the right ticket. If the strategy is too complex, most people will be
unable to follow it, and the machine will be practically useless.

Another application area is gaming, where one could define the
game level by the complexity of the smallest winning strategy.

In both cases, we need to understand what it means for a strat-
egy to be “simple” or “complex”, and to relate our definition of
strategic ability to this complexity measure.

We begin by presenting the syntax of NatATL. Then, we recall
how to model multi-agent systems by means of concurrent game
structures. Further, we show how to define natural memoryless
strategies based on guarded actions. Finally, we propose the formal
semantics of NatATL formulas.

2.1 Syntax
Alternating-time temporal logic (ATL, for short) [7] generalizes

branching-time temporal logic CTL∗ by replacing path quantifiers
E,A with strategic modality 〈〈A〉〉. Informally, 〈〈A〉〉γ reads "there
exists a strategy for the coalition A such that, no matter how the
other players will act, the formula γ is satisfied. Natural ATL
(NatATL, for short) is obtained by replacing in ATL the modal-
ity 〈〈A〉〉 with the bounded strategic modality 〈〈A〉〉≤k. Intuitively,
〈〈A〉〉≤kγ reads as coalition A has a collective strategy of size less
or equal than k to enforce the property γ. As for ATL, the formulas
of NatATL make use of classical temporal operators: “X ” (“in the
next state”), “G” (“always from now on”), “F” (“now or sometime
in the future”), U (strong “until”), and W (weak “until”).

Formally, let A be a finite set of agents and Prop a countable
set of atomic propositions. The language of NatATL is defined as
follows:

ϕ ::= p |¬ϕ |ϕ ∧ ϕ | 〈〈A〉〉≤kX ϕ | 〈〈A〉〉≤kϕU ϕ | 〈〈A〉〉≤kϕW ϕ.

where A ⊆ A, k ∈ N, and p ∈ Prop. Derived boolean connec-
tives and constants (∨,>,⊥) are defined as usual. “Sometime” and
“always” can be defined as Fγ ≡ >U γ and Gγ ≡ γW⊥.

Additionally, 1NatATL will denote the fragment of NatATL that
admits only formulas consisting of a single strategic modality, fol-
lowed by a temporal formula over boolean connectives and atomic
propositions.

2.2 Concurrent Game Structures
The semantics of NatATL is defined over concurrent game struc-

tures[7].

DEFINITION 1 (CGS). A concurrent game structure (CGS) is
a tupleM = 〈A, St, Act, d, t, Prop, V 〉 which includes nonempty
finite sets of: agents A = {a1, . . . , a|A|}, states St, actions Act,
atomic propositionsProp, and a propositional valuation V : St→
2Prop. The function d : A× St→ 2Act defines availability of ac-
tions. The (deterministic) transition function t assigns a successor
state q′ = t(q, α1, . . . , α|A|) to each state q ∈ St and any tuple of
actions αi ∈ d(ai, q) that can be executed by A in q.

In the rest of the paper, we will write da(q) instead of d(a, q),
and we will denote the set of collective choice of group A at state q
by dA(q) =

∏
ai∈A dai(q).

A pointed CGS is a pair (M, q0) consisting of a concurrent game
structure M and an initial state q0 in M .

A path λ = q0q1q2 . . . in a CGS is an infinite sequence of states
such that there is a transition between each qi, qi+1. λ[i] denotes

the ith position on λ, λ[i, j] the part of λ between positions i and
j, and λ[i,∞] the suffix of λ starting with i. We denote with Λ the
set of all paths. Similarly, a history h = q0q1q2 . . . qn is a finite
sequence of states that can be effected by subsequent transitions.
By last(h) = qn we denote the last element of the sequence. We
denote by H = St+ the set of all the histories in the model.

2.3 Strategies and Their Complexity
To properly interpret NatATL formulas, we introduce the con-

cept of natural strategies and their outcomes over a CGS. Follow-
ing Schobbens [40], we distinguish between strategies with and
without the recall of the hitherto history of the game. We will use
R to refer to the semantics of strategic ability arising for strate-
gies with recall, and r for strategies without recall. In this section,
we show how natural strategies without recall can be defined. The
other kind of strategies is proposed and studied in Section 4.

We start by defining a natural memoryless strategy (or r-strategy)
sa for agent a. The idea is to use a rule-based representation, with
a list of condition-action rules. The first rule whose condition holds
in the current state is selected, and the corresponding action is ex-
ecuted. We formally represent it with lists of guarded actions, i.e.,
sequences of pairs (β(2Prop), α) such that β(2Prop) is a boolean
combination over possible subsets of Prop and α is an action in
da(q) for every q ∈ St such that q |= β(2Prop), i.e. q satisfies
β(2Prop) w.r.t. the propositional evaluation V . We assume that
the last pair on the list is (>, idle), i.e., the last rule is guarded
by a condition that will always be satisfied. The set of all natu-
ral memoryless strategies is denoted by Σr

a. By size(sa), we de-
note the number of guarded actions in sa. Moreover, condk(sa)
will denote the kth guard (condition) on the list, and actk(sa)
the corresponding action. Finally, match(q, sa) is the smallest
n ≤ size(sa) such that q |= condn(sa) and actn(sa) ∈ da(q).
That is, match(q, sa) matches state q with the first condition in sa
that holds in q, and action available in q.

By compl (sa), we denote the complexity of the strategy sa. In-
tuitively, the complexity of a strategy is understood as the level of
sophistication of its representation. Several natural metrics can be
used to measure the complexity of a strategy, given its representa-
tion from (β(2Prop)×Act)+, e.g.:

Number of used propositions: compl#(sa) = |{p ∈ Prop |
p ∈ dom(sa)}|;

Largest condition: complmax(sa) = max{|φ| | (φ, α) ∈ sa};
Total size of the representation: complΣ(sa) =

∑
(φ,α)∈sa |φ|

with |φ| being the number of symbols in φ. From now on, we
will focus on the last metric for complexity of strategies, which
takes into account the total size of all the conditions used in the
representation.

EXAMPLE 2. Consider the following r-strategy s:

1. (¬ticket ∧ ¬selected, select);

2. (¬ticket ∧ selected, pay);

3. (>, idle).

If we look at the number of used propositions, we have that
compl#(s) = |{ticket, selected}| = 2. If we consider the largest
condition instead, we have complmax(s) = 5. Finally, if we use
the total size of the representation, we get complΣ(s) = 10.1

1We leave it as an exercise to the interested reader to construct an
equivalent strategy with complΣ(s) = 8.



A collective natural strategy for agents A = {a1, . . . , a|A|} is a
tuple of individual natural strategies sA = (sa1 , . . . , sa|A|). The
set of such strategies is denoted by Σr

A. The “outcome” function
out(q, sA) returns the set of all paths that occur when agents A
execute strategy sA from state q onward. Formally, given a state
q ∈ St, a subset of agents A and a collective memoryless strategy
sA, we define:

out(q, sA) = {λ ∈ Λ | (λ[0] = q) ∧ ∀i≥0∃α1,...,α|A| .

(a ∈ A⇒ αa = actmatch(λ[i],sa)(sa)) ∧
(a /∈ A⇒ αa ∈ da(λ[i])) ∧ (λ[i+ 1] = t(λ[i], α1,..., α|A|))}.

2.4 Semantics of NatATL
Given a CGS M , a state q ∈ St, a path λ ∈ Λ, and k ∈ N, the

semantics of NatATL is defined as follows:

M, q |=r p iff p ∈ V (q), for p ∈ Prop;
M, q |=r ¬ϕ iff M, q 6|=r ϕ;
M, q |=r ϕ1 ∧ ϕ2 iff M, q |=r ϕ1 and M, q |=r ϕ2;

M, q |=r 〈〈A〉〉≤kX ϕ iff there is a strategy sA ∈ Σr
A such that

compl (sA) ≤ k and, for each path λ ∈ out(q, sA), we have
M,λ[1] |=r ϕ;

M, q |=r 〈〈A〉〉≤kGϕ iff there is a strategy sA ∈ Σr
A such that

compl (sA) ≤ k and, for each path λ ∈ out(q, sA), we have
M,λ[i] |=r ϕ for all i ≥ 0;

M, q |=r 〈〈A〉〉≤kϕU ψ iff there is a strategy sA ∈ Σr
A such

that compl (sA) ≤ k and, for each path λ ∈ out(q, sA), we
have M,λ[i] |=r ψ for some i ≥ 0 and M,λ[j] |=r ϕ for all
0 ≤ j < i.

EXAMPLE 3. When designing a game, the designer can define
the game level by the complexity of the smallest winning strategy
for the player. Using NatATL, we can say that the level of game G
is k iff G |=r 〈〈a〉〉≤kFwin ∧ ¬〈〈a〉〉≤k−1Fwin.

We will refer to the logical system (NatATL, |=r) as NatATLr,
and analogously for 1NatATLr .

3. MODEL CHECKING FOR NATURAL
MEMORYLESS STRATEGIES

In this section we show how to solve the model checking prob-
lem for NatATL with r-strategies, i.e. NatATLr. We start with the
simpler case in which the bound of the strategies is given as a con-
stant and prove that the model checking problem is polynomial in
the size of the game structure. Then, we consider the case in which
the bound k is a variable and prove that the model checking prob-
lem becomes ∆P

2 − complete. Regarding this latter case, we also
investigate the setting in which NatATLr formulas have only one
strategic operator, i.e. 1NatATLr, and show that the model check-
ing problem turns out to be NP − complete. The results and the
proofs presented in this section have been inspired by [40, 29].

3.1 Model Checking for Small Strategies
We begin by looking at the model checking of NatATLr formulas

with constant bounds on the strategy modalities. Under this restric-
tion, one can show a polynomial reduction to the model checking
problem for CTL formulas. Thus, we obtain the following result.

THEOREM 1. The model checking problem for NatATLr with
fixed k is in P.

Proof. First, consider the formula ϕ = 〈〈A〉〉≤kγ, in which
A ⊆ A and γ is a formula over boolean connectives and atomic
propositions. By assumption, the collective strategy that we can
assign to coalition A, namely sA, is bounded and precisely it holds
that complΣ(sA) ≤ k. Thus, we have O(|Prop|k) possible kinds
of guarded actions and so O((|Prop|k)k) = O(|Prop|k

2

) possi-
ble lists. Given the collective strategy sA, we can prune the CGS
by removing all edges that disagree with sA. This operation costs,
in the worst case, O(|t|), where t is the transition relation of the
input CGS. So far we have solved the strategic operator of the
input formula ϕ and we are left with a structure S that can be
seen as a Kripke structure. Now, we can reduce our problem to
model checking the CTL formula Aγ (“for all paths γ”) over S by
using the standard model checking algorithm for CTL [22], well-
known to have complexity O(|t| · |γ|). The total complexity is thus
O(|Prop|k

2

· (|t|+(|t| · |γ|))) = O(|Prop|k
2

· |t| · |γ|), and hence
polynomial in the size of the model.

To conclude the proof, note that if we have a formula with more
strategic operators then we can use a classic bottom-up procedure,
i.e. we start solving the innermost formula having a strategic oper-
ator (as we have done above) and, once this is solved, we update the
formula and the structure and continue with the new innermost for-
mula. The procedure ends on dealing with the outermost strategic
operator of the input formula.

3.2 Model Checking: General Case
We now study the complexity for NatATLr with the bound of the

strategic modalities given as variables. We consider two different
cases: formulas with a single strategic operator followed by a sim-
ple temporal subformula, and formulas with possibly nested strate-
gic operators. For the former case we show an NP procedure, and
by a reduction from SAT that the problem is NP-complete. For
the latter case we show a ∆P

2 procedure and by a reduction from
SNSAT the ∆P

2 -completeness.

THEOREM 2. Model checking 1NatATLr is in NP.

Proof. Consider ϕ = 〈〈A〉〉≤kγ, in which A ⊆ A and γ is
a formula over boolean connectives and atomic propositions. By
assumption, we can use strategies with no a priori bounded size.
To overcome this, to construct a collective strategy sA we use an
oracle that returns a collective strategy forA. We can now conclude
by using the same reasoning done in the proof of Theorem 1. In
particular, since we use an oracle over a polynomial algorithm the
overall complexity is NP.

We continue by showing a matching lower bound by means of a
reduction from the well-known SAT problem. We first provide the
reduction and then show that it is correct in Theorem 3. In SAT,
the main ingredients are a CNF formula ϕ = C1 ∧ . . . ∧ Cn and
m propositional variables from a set X = {x1, . . . , xm}. Each
clause Ci can be written as Ci = x

s(i,1)
1 ∨ . . . ∨ xs(i,m)

m , where
s(i, j) ∈ {+,−, 0}; x+

j denotes a positive occurrence of xj in Ci,
x−j denotes an occurrence of ¬xj in Ci, and x0

j indicates that xj
does not occur in Ci. The SAT problem asks if ∃X.ϕ, that is, if
there is a valuation of x1, . . . , xm such that ϕ holds. We construct
the corresponding CGS Mϕ as follows. There are two players:
verifier v and refuter r. The state space contains an initial state q0,
a state for each clause Ci in ϕ, a state for each literal in Ci and
the state q>. The set of Prop is {C1, . . . ,Cn, x1, . . . , xm, win}.
Furthermore, we label each state clause/variable with its proposi-
tion and q> with win. The flow of the game is defined as follows.
The refuter decides at the beginning of the game which clause Ci
will have to be satisfied: it is done by proceeding from the initial
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Figure 1: A CGS for checking satisfiability of ϕ = (x1 ∨ x3) ∧
(x2∨¬x3). Action I denotes “idle.” For simplicity, we omit the
states that have no incoming edges.

state q0 to a clause state qi. At qi, verifier decides (by proceed-
ing to a proposition state qi,j) which of the literals xs(i,j)j from Ci
will be attempted. Finally, at qi,j , verifier attempts to prove Ci by
declaring the underlying propositional variable xj true (action >)
or false (action ⊥). If v succeeds (i.e., if it executes > for x+

j , or
executes ⊥ for x−j ), then the system proceeds to the winning state
q>. Otherwise, the system stays in qi,j . It is important to note that
by definitions of Prop and V , we know that v can use just one
action (i.e. truth value) for each variable. This is due to the fact
that we use as strategies the guarded actions that are determined
directly from the atomic proposition instead from states.

More formally, Mϕ = 〈A, St, Act, d, t, Prop, V 〉, where:

• A = {v, r},
• St = {q0}∪Stcl∪Stprop∪{q>}, where Stcl = {q1, . . . , qn},

and Stprop = {q1,1, . . . , q1,m, . . . , qn,1, . . . , qn,m};
• Act = {I, C1, . . . , Cn, x1, . . . , xm,>,⊥},
• d(v, q0) = d(v, q>) = {I}, d(v, qi) = {xj | xj or ¬xj is

in Ci}, d(v, qi,j) = {>,⊥}; d(r, q0) = {C1, . . . , Cn} and
d(r, q) = {I} with q ∈ St \ {q0};
• t(q0, I, Ci) = qi, t(qi, xj , I) = qi,j , t(qi,j ,>, I) = q>

if s(i, j) = +, and qi,j otherwise, t(qi,j ,⊥, I) = q⊥ if
s(i, j) = −, and qi,j otherwise;

• Prop = {C1 . . .Cn, x1, . . . , xm, win};
• V (q0) = ∅, V (qi) = Ci, V (qi,j) = xj, and V (q>) = win;

where 1 ≤ i ≤ n and 1 ≤ j ≤ m.
As an example, model Mϕ for ϕ = (x1 ∨ x3) ∧ (x2 ∨ ¬x3) is

presented in Figure 1.

THEOREM 3. SAT (n,m,ϕ) iff Mϕ, q0 |= 〈〈v〉〉≤n+mFwin

Proof. (⇒) Firstly, if there is a valuation υ that makes ϕ true,
then for every clause Ci one can choose a literal out of Ci that is
made true by the valuation. Now, we can construct a strategy for v
such that: (i) for each clauseCi we define a guarded action (Ci, α),
whereα is the action to go at the state literal that satisfyCi in accor-
dance with υ; and (ii) for each literal xj we define a guarded action
(xj, α), where α is the action to go in q> in accordance with υ.
(⇐) Conversely, if Mϕ, q0 |= 〈〈v〉〉≤n+mFwin, then there is a
strategy sv such that q> is achieved for all paths from out(q0, sv).
But then the valuation, which assigns propositions x1, . . . , xm with
the same values as sv, satisfies ϕ.

By Theorem 2 and Theorem 3, the following result holds.

COROLLARY 1. Model checking 1NatATLr is NP-complete.

Now, we show how to solve the model checking problem for any
formula in NatATLr.

THEOREM 4. Model checking NatATLr is in ∆P
2 .

Proof. We make use of a bottom-up procedure based on the one
introduced in the proof of Theorem 1. Precisely, take an arbitrary
formula ϕ of NatATLr and consider its inner part that is of the kind
ψ = 〈〈A〉〉≤kγ, with γ being a formula over boolean connectives
and atomic propositions. Now, apply over ψ the procedure used in
the proof of Theorem 2 that we know to be NP. Once ψ is solved,
use the same NP procedure to solve ψ′, a formula that contains ψ
and a strategic operator, and so on for each strategic operator in ϕ.
This means that we use an oracle over a polynomial procedure for
each strategic operator in ϕ. Summing up, the total complexity to
solve a formula in NatATLr is PNP = ∆P

2 .
We now turn on the lower bound and show a reduction from

the SNSAT problem, a well-known ∆P
2 -hard problem. We first

provide the reduction and then prove that it is correct.

DEFINITION 2. Given a fixed number r and 1 ≤ i ≤ r, a
SNSAT instance is defined as follows:

• r sets of propositional variables Xi = {x1,i, . . . , xm,i};
• r propositional variables zi;

• r Boolean formulas ϕi involving only on variables in Xi ∪
{z1, . . . , zi−1};
• zi ≡ there exists an assignment of variables in Xi such that
ϕi is true.

The output of an SNSAT instance is the truth-value of zr . Note
that we can write, by abuse of notation, zi ≡ ∃Xiϕi(z1, . . . , zi−1,
Xi). Let n be the maximal number of clauses in any ϕ1, . . . , ϕr
from the given input. Now, each ϕi can be written as:

ϕi = Ci1 ∧ . . . ∧ Cin, and

Cij = x
si(j,1)
1,i ∨ . . . ∨ xs

i(j,m)
m,i ∨ zs

i(j,m+1)
1 ∨ . . . zs

i(j,m+i−1)
i−1

where 1 ≤ j ≤ n, si(j, k) ∈ {+,−, 0} with 1 ≤ k ≤ m;
as before, x+

k,i denotes a positive occurrence of xk,i in Cij , x
−
k,i

denotes an occurrence of ¬xk,i in Cij , and x0
k,i indicates that xk,i

does not occur in Cij , and si(j, k) ∈ {+,−, 0} with m < k <

m+ i; defines the sign of zk−m in Cij .
Given such an instance of SNSAT, we construct a sequence of

concurrent game structures Mi in a similar way to the construction
used for the reduction from SAT. That is, clauses and variables xk,i
are handled in exactly the same way as before. Moreover, if zh,
with 1 ≤ h < i, occurs as a positive literal in ϕi, we embed Mh

in Mi, and add a transition to the initial state qh0 of Mh. If ¬zh
occurs in ϕi, we do almost the same: the only difference is that
we split the transition into two steps, with a state negih (labeled
with a proposition neg) added in between. More formally, Mi =
〈A, Sti, Acti, di, ti, P ropi, V i〉, where:

• A = {v, r},
• Sti = {qi0}∪Stcl∪Stprop∪Stneg ∪{q>}∪Sti−1, where
Stcl = {qi1, . . . , qin}, Stprop = {qi1,1, . . . , qi1,m, . . . , qin,1,
. . . , qin,m}, and Stneg = {negi1, . . . , negii−1};
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Figure 2: A CGS for ϕ3 = z2∧¬z1∧ (x1∨x2), ϕ2 = z1∧¬x2,
and ϕ1 = (x1 ∨ x2) ∧ ¬x2. For simplicity, we omit the states
that have no ingoing edges.

• Acti = {I, C1, . . . , Cn, x1, . . . , xm, z1, . . . , zr,>,⊥};
• di(v, qi0) = di(v, q>) = di(v, negih) = {I}, di(v, qij) =

{xk | xk,i or ¬xk,i is in Cij} ∪ {zh | zh or ¬zh is in Cij},
di(v, qij,k) = {>,⊥}; di(r, qi0) = {C1, . . . , Cn} and di(r, q) =

{I} with q ∈ St \ {qi0}. For q ∈ Sti−1, we simply include
the function from Mi−1: di(a, q) = di−1(a, q);

• ti(qi0, I, Cj) = qij , t
i(qij , xk, I) = qij,k, ti(qij , zh, I) = qh0

if si(j, h) = + and negih otherwise, ti(negih, I, I) = qh0 ,
t(qij,k,>, I) = q> if si(j, k) = +, and qij,k otherwise,
t(qij,k,⊥, I) = q> if si(j, k) = −, and qi,j otherwise. For
q ∈ Sti−1, we include the transition function from Mi−1:
ti(q, α1, α2) = ti−1(q, α1, α2);

• Propi = {Ci
1, . . . ,C

i
n, x

i
1, . . . , x

i
m,win, neg};

• V (qi0) = ∅, V (qij) = Ci
j, V (qij,k) = xik, V (negih) = neg

and V (q>) = win.

where 1 ≤ i ≤ r, 1 ≤ j ≤ n, 1 ≤ k ≤ m, and 1 ≤ h < i.
As an example, model M3 is presented in Figure 2.
To prove the hardness, we consider the following sequence of

formulas.

φ1 = 〈〈v〉〉≤n+m(¬neg)U (win),
:

φi = 〈〈v〉〉≤n+m(¬neg)U (win ∨ (neg ∧ 〈〈∅〉〉≤0X ¬φi−1)).2

2Note that 〈〈∅〉〉≤0 is equivalent to the CTL path quantifier A (“for
all paths”). To see this, observe that the empty coalition ∅ has just
one strategy – the empty strategy, which is of size 0 – and the strat-
egy enforces γ iff γ holds on all paths in the system, starting from
the current state.

Before we prove the hardness, we state an important lemma. It
says that overlong formulas φi do not introduce new properties of
model Ml, with 1 ≤ l ≤ i ≤ r. More precisely, a formula φi that
includes more nestings than model Ml can be as well reduced to
φi−1 when model checked in Ml, q

l
0.

LEMMA 1. ∀1 ≤ l ≤ i ≤ r: Ml, q
l
0 |= φi iff Ml, q

l
0 |= φi−1.

The proof of the lemma is a straightforward adaptation of [29,
Lemma 5].

THEOREM 5. ∀1 ≤ i ≤ r : zi is true iff Mi, q
i
0 |= φi

Proof. Induction on i:
(i) For i = 1, we use the proof of Theorem 3.
(ii) For i > 1, we prove both directions.
(⇒) Firstly, if zi is true then there is a valuation υ ofXi that makes
ϕi true. We construct sv as in the proof of Theorem 3. In case
that some xsk,i has been chosen in clause Cij then we define the
guarded action (Ci

j, xk) and we are done. In case that some z−h
has been chosen in clause Cij , where h < i, we have (by induction)
that Mh, q

h
0 |= ¬φh. By Lemma 1, also Mh, q

h
0 |= ¬φi, and

hence Mi, q
h
0 |= ¬φi. So we can make the same choice (i.e., we

define the guarded action (Ci
j, zh)) in sv , and this will lead to state

neqih, in which it holds that neg ∧ AX ¬φi. In case that some z+
h

has been chosen in clause Cij , we have that Mh, q
h
0 |= φh. By

Lemma 1, also Mh, q
h
0 |= φi. That is, there is a strategy s′v in Mh

such that (¬neg)U (win ∨ (neg ∧AX ¬φi−1)) holds for all paths
from out(qh0 , s

′
v). Then, we can merge s′v into sv .

(⇐) Conversely, if Mi, q
i
0 |= φi, then there is a strategy sv that

enforces (¬neg)U (win ∨ (neg ∧AX ¬φi−1)). First, we consider
the clause Cij with guarded action (Ci

j, xk), i.e. for which a propo-
sitional state is chosen by sv . The strategy defines a valuation for
Xi that satisfies these clauses. For the other clauses, i.e. there is a
guarded action (Ci

j, zh), we have two possibilities:

• sv chooses qh0 in the state corresponding to Cij . Neither
win nor neg have been encountered on this path yet, so we
can take sv to demonstrate that Mi, q

h
0 |= φi, and hence

Mh, q
h
0 |= φi. By Lemma 1, also Mh, q

h
0 |= φh. By induc-

tion, zh must be true, and hence clause Cij is satisfied.

• sv chooses negih in the state corresponding to Cij . Then, it
must be that Mi, neg

i
h |= AX ¬φi−1, and hence Mh, q

h
0 |=

¬φi−1. By Lemma 1, also Mh, q
h
0 |= ¬φh. By induction,

zh must be false, and hence clause Cij (containing ¬zh) is
also satisfied.

By Theorem 4 and Theorem 5, the following result holds.

COROLLARY 2. Model checking NatATLr is ∆P
2 -complete.

4. A LOGIC FOR NATURAL STRATEGIC
ABILITY OF AGENTS WITH MEMORY

Agents with memory can base their decisions on the history of
the game, that has occurred so far. We represent conditions on his-
tories by regular expression over boolean propositional formulas.

4.1 Natural Recall
LetReg(L) be the set of regular expressions over the languageL

(with the standard constructors ·,∪, ∗ representing concatenation,
nondeterministic choice, and finite iteration). A natural strategy
with recall (or R-strategy) sa for agent a is a sequence of appro-
priate pairs from Reg(β(2Prop)) × Act. That is, it consists of



pairs (r, α) where r is a regular expression over β(2Prop) and
α is an action available in last(h), i.e. α ∈ da(last(h)), for all
histories h ∈ H consistent with r. Formally, given a regular ex-
pression r and the language L(r) on words generated by r, a his-
tory h = q0 . . . qn is consistent with r iff ∃ b ∈ L(r) such that
|h| = |b| and ∀0≤i≤n h[i] |= b[i]. Similarly to r-strategies, the
last pair on the list is assumed to be simply (>∗, idle). The set
of such strategies is denoted by ΣR

a . Finally, match(λ[0, i], sa) is
the smallest n ≤ size(sa) such that ∀0≤j≤iλ[j] |= condn(sa)[j]
and actn(sa) ∈ da(λ[i]). A collective natural strategy for agents
A = {a1, . . . , a|A|} is a tuple of individual natural strategies sA =

(sa1 , . . . , sa|A|). The set of such strategies is denoted by ΣR
A.

Again, out(q, sA) returns the set of all paths of strategy sA. For
strategies with recall, we simply replace “match(λ[i], sa)” with
“match(λ[0, i], sa)” in the definition from Section 2.3.

We extend the metrics to strategies with recall and collective
strategies with recall in the straightforward way.

EXAMPLE 4. Consider the following R-strategy s:

1. (safe∗, digGold);

2. (safe∗ · (¬safe ∧ haveGun), shoot);

3. (safe∗ · (¬safe ∧ ¬haveGun), run);

4. (>∗ · (¬safe) · (¬safe), hide);

5. (>∗, idle).

(1) represents the guarded action in which safe has held in all the
states of the history. In that case, the agent should quietly dig for
gold. Otherwise, (2) or (3) is used for each history in which safe
held for all states but the last. Then, the agent should run away or
shoot back depending on whether she has a gun. If it doesn’t work
(item (3)), the agent should hide. Otherwise (item (4)), she waits
and does nothing. For the complexity, we have that compl#(s) =
2, complmax(s) = 8, and complΣ(s) = 27.

REMARK 1. Note that natural strategies with recall are by def-
inition finite. Thus, they do not exactly correspond to the notion of
perfect recall where an agent may specify different choices for each
of the infinitely many finite histories of the game. In this sense, our
representations are similar to finite memory strategies from [43].
We will look closer at the connection in Section 4.4.

4.2 NatATL for Strategies with Recall
Now it is easy to define the semantics of natural strategic ability

for agents with recall. Formally, we construct the semantic relation
|=R by replacing “|=r” with “|=R” and Σr

A with ΣR
A in the clauses

from Section 2.4.
We will refer to the logical system (NatATL, |=R) as NatATLR.

4.3 Relation to Natural Memoryless Strategies
It is well known that the semantics of ATL based on memoryless

and perfect recall strategies coincide (under perfect information).
This follows from the correctness of the model checking algorithm
in [7], cf. also [40]. Precisely, there is a strategy with recall to en-
force a given temporal property γ iff there is a memoryless strategy
to enforce γ. We now prove that the same does not hold in NatATL.

THEOREM 6. The following results hold in NatATL:

1. For all M, q, and all formulas ϕ = 〈〈A〉〉≤kγ, it holds that
M, q |=r ϕ implies M, q |=R ϕ.

2. There exist M, q, and a formula ϕ = 〈〈A〉〉≤kγ, such that
M, q |=R ϕ and not M, q |=r ϕ.

q0

∅

q1
p1

q2
p2

q3

∅

q4

∅

q5
win

q6

∅

(a, a)

(a, b)

(a, a)

(a, a)

(a, a)

(b, a)

(a, a)

(b, a)

(a, a)

(a, a)

Figure 3: A counterexample for Theorem 6.

Proof. (1) Firstly, given an r-strategy s it is possible to construct
an R-strategy s′ that has the same behavior of s. In fact, for each
guarded action (θ, α) of s with θ ∈ β(2Prop) and α ∈ Act we
can write a guarded action (r, α) in s′ such that r = (>∗) · θ.
(2) Consider, the CGS M in Figure 3, where there are two players
1 and 2. Each transition is labeled with a couple of actions (α, β),
where α is an action of 1 and β is an action of 2. We show that the
formula ϕ = 〈〈1〉〉≤kFwin is true by using a natural strategy with
recall and is false for each possible natural memoryless strategy.
The following strategy with recall s satisfies ϕ:

• (> · p1 · >, a);

• (> · p2 · >, b);

• (>∗, a).

To be convinced, first recall that natural memoryless strategies
are defined only over atomic propositions, so, if there are states
with the same set of atomic propositions, then there exists at most
one guarded action and then at most one possible action in these
states. Therefore, in the model in Figure 3 with a natural memo-
ryless strategy it is impossible to define two different behaviors in
the states q3 and q4, and for this reason player 1 has no memoryless
strategies to reach a state labeled with win.

Note that the proof of (2) does not use the bound k to construct
the counterexample. Thus, it is not only the case that a strategy with
recall may inflate beyond the given bound when being transformed
to memoryless; it may even be the case that an equivalent natural
memoryless strategy does not exist! This is because in NatATL
choices in strategies are based on conditions whose granularity de-
pends on the available Boolean propositions. In contrast, the se-
mantics of ATL defines memoryless strategies as functions from
states to actions, which allows for arbitrary granularity.

To remove the limit of natural memoryless strategies, we define
a subclass of models named fully distinguishing models. The idea
behind this kind of models is the one used in [7, 32] to define the
distinguishing models. The formal definition follows.

DEFINITION 3. Given a CGS M , we say that M is a fully
distinguishing model iff, for all S ⊆ St, there exists p ∈ Prop
such that:

• ∀s ∈ S, M, s |= p, and

• ∀s /∈ S, M, s 2 p

THEOREM 7. Given a fully distinguishing model M , a state q,
a subset of agents A, and a formula ϕ = 〈〈A〉〉≤kγ, it holds that:
M, q |=r ϕ iff M, q |=R ϕ.

Proof. (⇒) For this direction we use the proof of Theorem 6(1).
(⇐) Assume now that M, q |=R ϕ. By definition, there is a
strategy sA ∈ ΣR

A such that compl (sA) ≤ k, and for each path



λ ∈ out(q, sA), we have M,λ |=R γ. From sA, let us con-
struct a memoryless strategy s′A ∈ Σr

A such that the following
facts hold: (i) ∀λ ∈ out(q, s′A), we have M,λ |=r γ and (ii)
compl (s′A) ≤ compl (sA). We start at the state q. We know that
M is a fully distinguishing model, so the state q is distinguishable
with respect to the other states of M . Consider for simplicity that
the only atomic proposition that is true in q is q. We fix s′A(q) =
sA(q), where sA(q) represents the action in the strategy with re-
call sA for the regular expression q that is just an atomic propo-
sition. Consider now the successors of q consistent with sA(q).
∀q′ ∈ out(q, sA(q)) we take the atomic proposition q′ that is true
just in q′ and fix s′A(q′) = sA(q · q′), where q · q′ is the regular
expression that is composed by the atomic propositions q and q′

that are only true in q and q′, respectively. We repeat this proce-
dure until we get to a fixpoint, i.e. all states are covered, except
possibly for some states that are unreachable when we execute sA.
By the definition, we also know that these states satisfy the guarded
action (>, idle). To conclude the proof, we just need to show that
(i) and (ii) hold. Item (i) can be proved by induction. For the lack
of space, we omit the details. Item (ii) follows by the construction
of s′A. In fact, we construct s′A from sA, that is for each guarded
action (q, α) of s′A there is a guarded action (r, α) of sA, where
r = r0 · . . . · rn and rn = q, then compl (s′A) ≤ compl (sA).

4.4 Correspondence to DFST
In [43], another useful representation of finite-memory strategies

has been introduced by means of deterministic finite-state trans-
ducers (DFST’s). A DFST is a tuple (V, v0, In,Out, Fin, Fout),
where V is a finite non-empty set of states, v0 is the initial state, In
is the input alphabet, Out is the output alphabet, Fin : V × In→
V is the transition function and Fout : V × In → Out is the
output function. The set V represents the possible values of the
internal memory of the strategy. The initial state corresponds to
the initial memory value. The input and output symbols are the
states and the actions of the game, respectively. In each round of
the game the DFST reads a state of the game. Then it updates its
memory based on the current memory value and the input state and
performs an action. Formally, a strategy s : H → Act is a finite-
memory strategy if there exists a DFST such that for all h ∈ H:
s(h) = Fout(G(v0, h[0, |h| − 1]), last(h)), where G is defined
recursively by G(v, ρ) = In(v, ρ0) for any state v and any history
ρ with |ρ| = 0 and G(v, ρ) = In(G(v, ρ[0, |ρ| − 1]), last(ρ))
for any state v and any history ρ with |ρ| > 0. Intuitively G is
the function that repeatedly applies the transition function In on a
sequence of inputs to calculate the state after a given history.

In our setting, given a strategy s : H → Act, it is possible to
rewrite s in a natural strategy with recall s′ if for all h ∈ H we
have that s(h) = α, where (r, α) is the first pair in s′ in which h
is consistent with r.

We now compare natural strategies with recall vs. finite-memory
strategies, the way they are defined in [43]. In particular, we prove
the following result.

THEOREM 8. Natural strategies with recall are equally expres-
sive and more succinct than finite-memory strategies represented
by DFST.

Proof. To prove that the two representations are equally expressive,
we show that from a natural strategy with recall s we can construct
an equivalent DFST D (possibly with an exponential blowup) and
from a DFST D we can construct an equivalent natural strategy
with recall s (by a polynomial construction).
(⇒) Firstly, given s we show how to construct D. Recall that s is a
sequence of pairs (r, α). We know that with a sequence of regular

expressions it is possible to construct, in polynomial time, a non-
deterministic finite automaton N . By means of a classic powerset
construction, given N of size n, we can construct a deterministic
finite automatonAwith size 2n [39], i.e. in an exponential blowup.
(⇐) Conversely, givenD we now sketch how to construct an equiv-
alent natural strategy s. Basically, for each edge e in D, i.e. for
each (v, q) ∈ dom(FIn), we construct a guarded action (r, α),
where r = r0 · . . . · rl, in which r0 · . . . · rl−1 is derived from
the actual state of D to the initial state of D (w.r.t backward) and
rl = q, and α = FOut(v, q).

Finally, the fact that natural strategies with recall are more suc-
cinct is a consequence of the fact that there a minimal NFA that are
exponentially smaller than the minimal equivalent DFA [39].

5. MODEL CHECKING FOR NATURAL
STRATEGIES WITH RECALL

In this section we show how to solve the model checking prob-
lem for NatATL with R-strategies, i.e. NatATLR. We consider
both the cases in which the bound of the strategies is a constant or
a variable.

5.1 Model Checking for Small Strategies
When the bound of the strategies is fixed, we can reduce our

problem to the model checking for CTL. This leads to the following
result.

THEOREM 9. The model checking problem for NatATLR with
fixed k is in ∆P

2 .

Proof. Assume for the moment that we have a NatATLR formula
ϕ = 〈〈A〉〉≤kγ, whereA ⊆ A and γ is a formula over boolean con-
nectives and atomic propositions. As for the solution in NatATLr,
we know that the collective strategy we can assign to A, namely
sA, is bounded and, precisely, we have that complΣ(sA) ≤ k. The
main difference between r-strategies and R-strategies regards the
underlying domains, i.e., we move from boolean propositional for-
mulas to regular expressions over boolean propositional formulas
(both over atomic propositions). Recall that, regular expressions
are a combination of atomic propositions (Prop), boolean connec-
tives (Bool), and standard constructors (Con). Thus, in this case,
we have (|Prop + Bool + Con|)k possible different guarded ac-
tions and (|Prop+Bool+Con|k)k = |Prop+Bool+Con|k

2

possible lists. Given sA, we cannot prune M since we have an R-
strategy. Let us consider now the unwinding of M and remove all
edges that are not in accordance with sA. It is important to observe
that the unwinding of a model can be infinite and thus we need to
consider a bounded unwinding. A possibility would be to consider
the tree unwinding with depth |St| + 1 as we are sure that after
this bound there is a loop. Unfortunately, this is a too big upper-
bound. Indeed, checking all paths of the unwinding, in the worst
case (i.e. each state is connected with all states of the model), re-
quires |St||St| steps, that is exponential on the number of states.
To avoid this exponential blow-up we use a guessing oracle. The
algorithm that solves the model checking problem for NatATLR

with fixed k is depicted in Figure 4. The mCheckkNatATLR
algo-

rithm uses the oracle depicted in Figure 5. It guesses a history h
of length |St| + 1 that satisfies the CTL formula ¬Aγ. If such
a history exists then the oracle returns true and mCheckkNatATLR

returns false because the original formula wants γ to hold. Con-
versely, if the oracle returns false and mCheckkNatATLR

returns true
then M, q |=R ϕ. For the complexity, we use an oracle over a
polynomial procedure. So, we have that the total complexity is



1 Algorithm mCheckkNatATLR
(M, q ,ϕ ) :

2 f o r e v e r y sA wi th compl (sA) ≤ k do
3 t = Oracle(M, q, ϕ, sA)
4 re turn (¬t )

Figure 4: Model checking algorithm for NatATLR with fixed k

1 Algorithm O r a c l e (M, q ,ϕ ,sA ) :
2 Guess h ∈ H |St+1|(q)
3 i f h i s i n c o n s i s t e n t w i th sA
4 re turn f a l s e
5 e l s e
6 re turn mCheckCTL(h, h[0],¬Aγ)

Figure 5: Oracle

PNP = ∆P
2 . To conclude the proof, let us drop the initial limi-

tations on the formula. If the formula has more than one strategic
operator, then we proceed as in the proof of Theorem 1 and so we
use a bottom-up procedure, i.e. we first solve the formula with
the inner most strategic operator, then we update the formula and
repeat the procedure, until we reach the outermost formula. This
requires to use a further oracle over a polynomial procedure that
works over a polynomial procedure itself. Hence, we have that the
overall complexity is PPNP

= PNP = ∆P
2 .

5.2 Model Checking: General Case
We now study the complexity for NatATLR in case the bound

over the strategies is not fixed. In particular, we study separately
the cases in which the formula under exam has one or more nested
strategic operators. For the former we show a ΣP

2 procedure and,
for the latter, a ∆P

3 one. As for the memoryless case, the proofs in
this section have been inspired by [40, 29].

THEOREM 10. Model checking 1NatATLR with variable k is
in ΣP

2 .

Proof. Consider the formula 〈〈A〉〉≤kγ, where A = {a} and γ
is a formula over boolean connectives and atomic propositions. By
assumption, the bound of the strategy is not fixed. For this reason,
to construct a strategy sa we use an NP oracle that constructs a
strategy for a. We report in Figure 6 the related mCheckNatATLR

algorithm. Regarding the complexity, since we use an oracle over
a non-deterministic algorithm we have that checking the model
checking problem is NPNP = ΣP

2 .

THEOREM 11. Model checking NatATLR with variable k is in
∆P

3 .

Proof. We can use a bottom-up procedure similarly to the one
we have used in the proof of Theorem 1 for NatATLr, by looping
the construction in Theorem 10. In this case, we use an oracle over
a non-deterministic procedure over a polynomial procedure, so we
obtain that the overall complexity to solve the addressed problem
is PNPNP

= ∆P
3 .

1 Algorithm mCheckNatATLR (M, q ,ϕ , k ) :
2 Guess sA wi th compl (sA) ≤ k
3 t = O r a c l e (M, q, ϕ, sA)
4 re turn (¬t )

Figure 6: Model checking NatATLR with variable k

memoryless finite recall
ATL P-complete P-complete

1NatATL, fixed k in P in ∆P
2

NatATL, fixed k in P in ∆P
2

1NatATL, variable k NP-complete in ΣP
2

NatATL, variable k ∆P
2 -complete in ∆P

3

Figure 7: Summary of model checking complexity results

6. SUMMARY AND FUTURE WORK
In this paper, we propose an alternative take on strategic reason-

ing, where agents can handle only relatively simple strategies. We
use a natural representation of strategies by lists of guarded actions,
and assume that only strategies up to size k can be employed as wit-
nesses to formula 〈〈A〉〉≤kγ. In terms of technical results, we show
that model-checking for NatATL with memoryless strategies is in
P when k is fixed, and ∆P

2 -complete when k is a parameter of the
problem. For strategies with recall, the problem is in ∆P

2 when k
is fixed, and in ∆P

3 in the general case, cf. the summary presented
in Figure 7. Clearly, reasoning about simple natural memoryless
strategies is no more difficult than about arbitrary ATL strategies
(and in practice we expect it to be actually easier). On the other
hand, verification of natural strategies with recall seems distinctly
harder. It would be interesting to look for conditions under which
the latter kind of strategies can be synthesized in polynomial time.

We also prove an important property that sets NatATL apart from
standard ATL: in NatATL, the memoryless and memoryfull se-
mantics do not coincide. Moreover, we show that our represen-
tation of memoryfull strategies is equally expressive, and strictly
more succinct, than deterministic finite-state transducers from [43].
As a consequence, model checking natural strategic ability in un-
bounded strategies with recall is undecidable.

In the future, we plan to extend the framework to natural strate-
gies with imperfect information. We would also like to extend our
results to the broader language of NatATL∗, and refine them in
terms of parameterized complexity. Another interesting path con-
cerns a graded version of the logic with counting how many suc-
cessful natural strategies are available. We also intend to look at
other natural expressions of strategies, including a survey of psy-
chological studies suggesting how people plan and execute their
long-term behaviors. Finally, a more complete account of bounded
rationality may be obtained by combining bounds on conceptual
complexity of strategies (in the spirit of our work here) with their
temporal complexity via timing constraints in the vein of [14, 9].
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