
Logical Methods in Computer Science
Volume 00, Number 0, Pages 000–000
S 0000-0000(XX)0000-0

July 2, 2008
THE COMPLEXITY OF ENRICHED µ-CALCULI

PIERO A. BONATTI a,?, CARSTEN LUTZ b, ANIELLO MURANO c,?, AND MOSHE Y. VARDI d,??

a Università di Napoli “Federico II”, Dipartimento di Scienze Fisiche, 80126 Napoli, Italy
e-mail address: bonatti@na.infn.it

b TU Dresden, Institute for Theoretical Computer Science, 01062 Dresden, Germany
e-mail address: clu@tcs.inf.tu-dresden.de

c Università di Napoli “Federico II”, Dipartimento di Scienze Fisiche, 80126 Napoli, Italy
e-mail address: murano@na.infn.it

d Microsoft Research and Rice University, Dept. of Computer Science, TX 77251-1892, USA
e-mail address: vardi@cs.rice.edu

ABSTRACT. The fully enriched µ-calculus is the extension of the propositional µ-calculus with in-
verse programs, graded modalities, and nominals. While satisfiability in several expressive fragments
of the fully enriched µ-calculus is known to be decidable and EXPTIME-complete, it has recently been
proved that the full calculus is undecidable. In this paper, we study the fragments of the fully enriched
µ-calculus that are obtained by dropping at least one of the additional constructs. We show that, in all
fragments obtained in this way, satisfiability is decidable and EXPTIME-complete. Thus, we identify
a family of decidable logics that are maximal (and incomparable) in expressive power. Our results
are obtained by introducing two new automata models, showing that their emptiness problems are
EXPTIME-complete, and then reducing satisfiability in the relevant logics to these problems. The
automata models we introduce are two-way graded alternating parity automata over infinite trees
(2GAPTs) and fully enriched automata (FEAs) over infinite forests. The former are a common gen-
eralization of two incomparable automata models from the literature. The latter extend alternating
automata in a similar way as the fully enriched µ-calculus extends the standard µ-calculus.

1. INTRODUCTION

The µ-calculus is a propositional modal logic augmented with least and greatest fixpoint op-
erators [Koz83]. It is often used as a target formalism for embedding temporal and modal logics
with the goal of transferring computational and model-theoretic properties such as the EXPTIME
upper complexity bound. Description logics (DLs) are a family of knowledge representation lan-
guages that originated in artificial intelligence [BM+03] and currently receive considerable atten-
tion, which is mainly due to their use as an ontology language in prominent applications such as the
semantic web [BHS02]. Notably, DLs have recently been standardized as the ontology language
OWL by the W3C committee. It has been pointed out by several authors that, by embedding DLs

? Supported in part by the European Network of Excellence REWERSE, IST-2004-506779.
?? Supported in part by NSF grants CCR-0311326 and ANI-0216467, by BSF grant 9800096, and by Texas ATP

grant 003604-0058-2003. Work done in part while this author was visiting the Isaac Newton Institute for Mathematical
Science, Cambridge, UK, as part of a Special Programme on Logic and Algorithm.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a copy of this license,
visit http://creativecommons.org/licenses/by-nd/2.0/ or send a letter to Creative Commons, 559
Nathan Abbott Way, Stanford, California 94305, USA.

1

2 BONATTI, LUTZ, MURANO, AND VARDI

Inverse progr. Graded mod. Nominals Complexity
fully enriched µ-calculus x x x undecidable
full graded µ-calculus x x EXPTIME (1ary/2ary)
full hybrid µ-calculus x x EXPTIME
hybrid graded µ-calculus x x EXPTIME (1ary/2ary)
graded µ-calculus x EXPTIME (1ary/2ary)

Figure 1: Enriched µ-calculi and previous results.

into the µ-calculus, we can identify DLs that are of very high expressive power, but computation-
ally well-behaved [CGL99, SV01, KSV02]. When putting this idea to work, we face the problem
that modern DLs such as the ones underlying OWL include several constructs that cannot easily
be translated into the µ-calculus. The most important such constructs are inverse programs, graded
modalities, and nominals. Intuitively, inverse programs allow to travel backwards along accessibil-
ity relations [Var98], nominals are propositional variables interpreted as singleton sets [SV01], and
graded modalities enable statements about the number of successors (and possibly predecessors) of
a state [KSV02]. All of the mentioned constructs are available in the DLs underlying OWL.

The extension of the µ-calculus with these constructs induces a family of enriched µ-calculi.
These calculi may or may not enjoy the attractive computational properties of the original µ-
calculus: on the one hand, it has been shown that satisfiability in a number of the enriched calculi
is decidable and EXPTIME-complete [CGL99, SV01, KSV02]. On the other hand, it has recently
been proved by Bonatti and Peron that satisfiability is undecidable in the fully enriched µ-calculus,
i.e., the logic obtained by extending the µ-calculus with all of the above constructs simultaneously
[BP04]. In computer science logic, it has always been a major research goal to identify decidable
logics that are as expressive as possible. Thus, the above results raise the question of maximal
decidable fragments of the fully enriched µ-calculus. In this paper, we study this question in a
systematic way by considering all fragments of the fully enriched µ-calculus that are obtained by
dropping at least one of inverse programs, graded modalities, and nominals. We show that, in
all these fragments, satisfiability is decidable and EXPTIME-complete. Thus, we identify a whole
family of decidable logics that have maximum expressivity.

The relevant fragments of the fully enriched µ-calculus are shown in Figure 1 together with
the complexity of their satisfiability problem. The results shown in gray are already known from
the literature: the EXPTIME lower bound for the original µ-calculus stems from [FL79]; it has
been shown in [SV01] that satisfiability in the full hybrid µ-calculus is in EXPTIME; under the
assumption that the numbers inside graded modalities are coded in unary, the same result was proved
for the full graded µ-calculus in [CGL99]; finally, the same was also shown for the (non-full) graded
µ-calculus in [KSV02] under the assumption of binary coding. In this paper, we prove EXPTIME-
completeness of the full graded µ-calculus and the hybrid graded µ-calculus. In both cases, we allow
numbers to be coded in binary (in contrast, the techniques used in [CGL99] involve an exponential
blow-up when numbers are coded in binary).

Our results are based on the automata-theoretic approach and extends the techniques in [KSV02,
SV01, Var98]. They involve introducing two novel automata models. To show that the full graded
µ-calculus is in EXPTIME, we introduce two-way graded parity tree automata (2GAPTs). These
automata generalize in a natural way two existing, but incomparable automata models: two-way
alternating parity tree automata (2APTs) [Var98] and (one-way) graded alternating parity tree au-
tomata (GAPTs) [KSV02]. The phrase “two-way” indicates that 2GAPTs (like 2APTs) can move
up and down in the tree. The phrase “graded” indicates that 2GAPTs (like GAPTs) have the ability

THE COMPLEXITY OF ENRICHED µ-CALCULI 3

to count the number of successors of a tree node that it moves to. Namely, such an automaton can
move to at least n or all but n successors of the current node, without specifying which successors
exactly these are. We show that the emptines problem for 2GAPT is in EXPTIME by a reduction to
the emptiness of graded nondeterministic parity tree automata (GNPTs) as introduced in [KSV02].
This is the technically most involved part of this paper. To show the desired upper bound for the full
graded µ-calculus, it remains to reduce satisfiability in this calculus to emptiness of 2GAPTs. This
reduction is based on the tree model property of the full graded µ-calculus, and technically rather
standard.

To show that the hybrid graded µ-calculus is in EXPTIME, we introduce fully enriched au-
tomata (FEAs) which run on infinite forests and, like 2GAPTs, use a parity acceptance condition.
FEAs extend 2GAPTs by additionally allowing the automaton to send a copy of itself to some or
all roots of the forest. This feature of “jumping to the roots” is in rough correspondence with the
nominals included in the full hybrid µ-calculus. We show that the emptiness problem for FEAs
is in EXPTIME using an easy reduction to the emptiness problem for 2GAPTs. To show that the
hybrid graded µ-calculus is in EXPTIME, it thus remains to reduce satisfiability in this calculus to
emptiness of FEAs. Since the correspondence between nominals in the µ-calculus and the jumping
to roots of FEAs is only a rough one, this reduction is more delicate than the corresponding one for
the full graded µ-calculus. The reduction is based on a forest model property enjoyed by the hybrid
graded µ-calculus and requires us to work with the two-way automata FEAs although the hybrid
graded µ-calculus does not offer inverse programs.

We remark that, intuitively, FEAs generalize alternating automata on infinite trees in a similar
way as the fully enriched µ-calculus extends the standard µ-calculus: FEAs can move up to a node’s
predecessor (by analogy with inverse programs), move down to at least n or all but n successors (by
analogy with graded modalities), and jump directly to the roots of the input forest (which are the
analogues of nominals). Still, decidability of the emptiness problem for FEAs does not contradict
the undecidability of the fully enriched µ-calculus since the latter does not enjoy a forest model
property [BP04], and hence satisfiability cannot be decided using forest-based FEAs.

The rest of the paper is structured as follows. The subsequent section introduces the syntax and
semantics of the fully enriched µ-calculus. The tree model property for the full graded µ-calculus
and a forest model property for the hybrid graded µ-calculus are then established in Section 3. In
Section 4, we introduce FEAs and 2GAPTs and show how the emptiness problem for the former
can be polynomially reduced to that of the latter. In this section, we also state our upper bounds for
the emptiness problem of these automata models. Then, Section 5 is concerned with reducing the
satisfiability problem of enriched µ-calculi to the emptiness problems of 2GAPTs and FEAs. The
purpose of Section 6 is to reduce the emptiness problem for 2GAPTs to that of GNPTs. Finally, we
conclude in Section 7.

2. ENRICHED µ-CALCULI

We introduce the syntax and semantics of the fully enriched µ-calculus. Let Prop be a finite
set of atomic propositions, Var a finite set of propositional variables, Nom a finite set of nominals,
and Prog a finite set of atomic programs. We use Prog− to denote the set of inverse programs
{a− | a ∈ Prog}. The elements of Prog ∪ Prog− are called programs. We assume a−− = a. The
set of formulas of the fully enriched µ-calculus is the smallest set such that

• true and false are formulas;
• p and ¬p, for p ∈ Prop, are formulas;
• o and ¬o, for o ∈ Nom, are formulas;
• x ∈ Var is a formula;

4 BONATTI, LUTZ, MURANO, AND VARDI

• ϕ1 ∨ ϕ2 and ϕ1 ∧ ϕ2 are formulas if ϕ1 and ϕ2 are formulas;
• 〈n, α〉ϕ, and [n, α]ϕ are formulas if n is a non-negative integer, α is a program, and ϕ is a

formula;
• µy.ϕ(y) and νy.ϕ(y) are formulas if y is a propositional variable and ϕ(y) is a formula

containing y as a free variable.
Observe that we use positive normal form, i.e., negation is applied only to atomic propositions.
We call µ and ν fixpoint operators and use λ to denote a fixpoint operator µ or ν. A propo-

sitional variable y occurs free in a formula if it is not in the scope of a fixpoint operator λy, and
bounded otherwise. Note that y may occur both bounded and free in a formula. A sentence is a
formula that contains no free variables. For a formula λy.ϕ(y), we write ϕ(λy.ϕ(y)) to denote the
formula that is obtained by one-step unfolding, i.e., replacing each free occurrence of y in ϕ with
λy.ϕ(y). We often refer to the graded modalities 〈n, α〉ϕ and [n, α]ϕ as atleast formulas and allbut
formulas and assume that the integers in these operators are given in binary coding: the contribution
of n to the length of the formulas 〈n, α〉ϕ and [n, α]ϕ is dlog ne rather than n. We refer to fragments
of the fully enriched µ-calculus using the names from Figure 1. Hence, we say that a formula of the
fully enriched µ-calculus is also a formula of the hybrid graded µ-calculus, full hybrid µ-calculus,
and full graded µ-calculus if it does not have inverse programs, graded modalities, and nominals,
respectively.

The semantics of the fully enriched µ-calculus is defined in terms of a Kripke structure, i.e., a
tuple K = 〈W,R, L〉 where

• W is a non-empty (possibly infinite) set of states;
• R : Prog → 2W×W assigns to each atomic program a binary relation over W ;
• L : Prop∪Nom → 2W assigns to each atomic proposition and nominal a set of states such

that the sets assigned to nominals are singletons.
To deal with inverse programs, we extend R as follows: for each atomic program a, we set

R(a−) = {(v, u) : (u, v) ∈ R(a)}. For a program α, if (w,w′) ∈ R(α), we say that w′ is an
α-successor of w. With succR(w, α) we denote the set of α-successors of w.

Informally, an atleast formula 〈n, α〉ϕ holds at a state w of a Kripke structure K if ϕ holds at
least in n + 1 α-successors of w. Dually, the allbut formula [n, α]ϕ holds in a state w of a Kripke
structure K if ϕ holds in all but at most n α-successors of w. Note that ¬〈n, α〉ϕ is equivalent to
[n, α]¬ϕ. Indeed,¬〈n, α〉ϕ holds in a state w if ϕ holds in less than n+1 α-successors of w, thus, at
most n α-successors of w do not satisfy ¬ϕ, that is, [n, α]¬ϕ holds in w. The modalities 〈α〉ϕ and
[α]ϕ of the standard µ-calculus can be expressed as 〈0, α〉ϕ and [0, α]ϕ, respectively. The least and
greatest fixpoint operators are interpreted as in the standard µ-calculus. Readers not familiar with
fixpoints might want to look at [Koz83, SE89, BS06] for instructive examples and explanations of
the semantics of the µ-calculus.

To formalize the semantics, we introduce valuations. Given a Kripke structure K = 〈W,R,L〉
and a set {y1, . . . , yn} of propositional variables in Var, a valuation V : {y1, . . . , yn} → 2W is
an assignment of subsets of W to the variables y1, . . . , yn. For a valuation V , a variable y, and a
set W ′ ⊆ W , we denote by V[y ← W ′] the valuation obtained from V by assigning W ′ to y. A
formula ϕ with free variables among y1, . . . , yn is interpreted over the structure K as a mapping
ϕK from valuations to 2W , i.e., ϕK(V) denotes the set of states that satisfy ϕ under valuation V .
The mapping ϕK is defined inductively as follows:

• trueK(V) = W and falseK(V) = ∅;
• for p ∈ Prop ∪ Nom, we have pK(V) = L(p) and (¬p)K(V) = W \ L(p);
• for y ∈ Var, we have yK(V) = V(y);

THE COMPLEXITY OF ENRICHED µ-CALCULI 5

• (ϕ1 ∧ ϕ2)K(V) = ϕK
1 (V) ∩ ϕK

2 (V)
• (ϕ1 ∨ ϕ2)K(V) = ϕK

1 (V) ∪ ϕK
2 (V);

• (〈n, α〉ϕ)K(V) = {w : |{w′ ∈ W : (w, w′) ∈ R(α) and w′ ∈ ϕK(V)}| > n};
• ([n, α]ϕ)K(V) = {w : |{w′ ∈ W : (w,w′) ∈ R(α) and w′ 6∈ ϕK(V)}| ≤ n};
• (µy.ϕ(y))K(V) =

⋂{W ′ ⊆ W : ϕK(V[y ← W ′]) ⊆ W ′};
• (νy.ϕ(y))K(V) =

⋃{W ′ ⊆ W : W ′ ⊆ ϕK(V[y ← W ′])}.
Note that, in the clauses for graded modalities, α denotes a program, i.e., α can be either an

atomic program or an inverse program. Also, note that no valuation is required for a sentence.
Let K = 〈W,R,L〉 be a Kripke structure and ϕ a sentence. For a state w ∈ W , we say that ϕ

holds at w in K, denoted K, w |= ϕ, if w ∈ ϕK(∅). K is a model of ϕ if there is a w ∈ W such
that K,w |= ϕ. Finally, ϕ is satisfiable if it has a model.

3. TREE AND FOREST MODEL PROPERTIES

We show that the full graded µ-calculus has the tree model property, and that the hybrid graded
µ-calculus has a forest model property. Regarding the latter, we speak of “a” (rather than “the”)
forest model property because it is an abstraction of the models that is forest-shaped, instead of the
models themselves.

For a (potentially infinite) set X , we use X+ (X∗) to denote the set of all non-empty (possibly
empty) words over X . As usual, for x, y ∈ X∗, we use x · y to denote the concatenation of x and
y. Also, we use ε to denote the empty word and by convention we take x · ε = x, for each x ∈ X∗.
Let IN be a set of non-negative integers. A forest is a set F ⊆ IN+ that is prefix-closed, that is, if
x · c ∈ F with x ∈ IN+ and c ∈ IN, then also x ∈ F . The elements of F are called nodes. For every
x ∈ F , the nodes x · c ∈ F with c ∈ IN are the successors of x, and x is their predecessor. We use
succ(x) to denote the set of all successors of x in F . A leaf is a node without successors, and a root
is a node without predecessors. A forest F is a tree if F ⊆ {c · x | x ∈ IN∗} for some c ∈ IN (the
root of F). The root of a tree F is denoted with root(F). If for some c, T = F ∩ {c · x | x ∈ IN∗},
then we say that T is the tree of F rooted in c.

We call a Kripke structure K = 〈W,R,L〉 a forest structure if
(i) W is a forest,

(ii)
⋃

α∈Prog∪Prog− R(α) = {(w, v) ∈ W ×W | w is a predecessor or a successor of v}.
Moreover, K is directed if (w, v) ∈ ⋃

a∈Prog R(a) implies that v is a successor of w. If W is a tree,
then we call K a tree structure.

We call K = 〈W,R, L〉 a directed quasi-forest structure if 〈W,R′, L〉 is a directed forest
structure, where R′(a) = R(a) \ (W × IN) for all a ∈ Prog, i.e., K becomes a directed forest
structure after deleting all the edges entering a root of W . Let ϕ be a formula and o1, . . . , ok the
nominals occurring in ϕ. A forest model (resp. tree model, quasi-forest model) of ϕ is a forest (resp.
tree, quasi-forest) structure K = 〈W,R, L〉 such that there are roots c0, . . . , ck ∈ W ∩ IN with
K, c0 |= ϕ and L(oi) = {ci}, for 1 ≤ i ≤ k. Observe that the roots c0, . . . , ck do not have to be
distinct.

Using a standard unwinding technique such as in [Var98, KSV02], it is possible to show that
the full graded µ-calculus enjoys the tree model property, i.e., if a formula ϕ is satisfiable, it is also
satisfiable in a tree model. We omit details and concentrate on the similar, but more difficult proof
of the fact that the hybrid graded µ-calculus has a forest model property.

Theorem 3.1. If a sentence ϕ of the full graded µ-calculus is satisfiable, then ϕ has a tree model.

6 BONATTI, LUTZ, MURANO, AND VARDI

In contrast to the full graded µ-calculus, the hybrid graded µ-calculus does not enjoy the tree
model property. This is, for example, witnessed by the formula

o ∧ 〈0, a〉(p1 ∧ 〈0, a〉(p2 ∧ · · · 〈0, a〉(pn−1 ∧ 〈0, a〉o) · · ·))
which generates a cycle of length n if the atomic propositions pi are forced to be mutually exclusive
(which is easy using additional formulas). However, we can follow [SV01, KSV02] to show that
the hybrid graded µ-calculus has a forest model property. More precisely, we prove that the hybrid
graded µ-calculus enjoys the quasi-forest model property, i.e., if a formula ϕ is satisfiable, it is also
satisfiable in a directed quasi-forest structure.

The proof is a variation of the original construction for the µ-calculus given by Streett and
Emerson in [SE89]. It is an amalgamation of the constructions for the hybrid µ-calculus in [SV01]
and for the hybrid graded µ-calculus in [KSV02]. We start with introducing the notion of a well-
founded adorned pre-model, which augments a model with additional information that is relevant
for the evaluation of fixpoint formulas. Then, we show that any satisfiable sentence ϕ of the hy-
brid graded µ-calculus has a well-founded adorned pre-model, and that any such pre-model can be
unwound into a tree-shaped one, which can be converted into a directed quasi-forest model of ϕ.

To determine the truth value of a Boolean formula, it suffices to consider its subformulas. For µ-
calculus formulas, one has to consider a larger collection of formulas, the so called Fischer-Ladner
closure [FL79]. The closure cl(ϕ) of a sentence ϕ of the hybrid graded µ-calculus is the smallest
set of sentences satisfying the following:

• ϕ ∈ cl(ϕ);
• if ψ1 ∧ ψ2 ∈ cl(ϕ) or ψ1 ∨ ψ2 ∈ cl(ϕ), then {ψ1, ψ2} ⊆ cl(ϕ);
• if 〈n, a〉ψ ∈ cl(ϕ) or [n, a]ψ ∈ cl(ϕ), then ψ ∈ cl(ϕ);
• if λy.ψ(y) ∈ cl(ϕ), then ψ(λy.ψ(y)) ∈ cl(ϕ).

An atom is a subset A ⊆ cl(ϕ) satisfying the following properties:
• if p ∈ Prop ∪ Nom occurs in ϕ, then p ∈ A iff ¬p 6∈ A;
• if ψ1 ∧ ψ2 ∈ cl(ϕ), then ψ1 ∧ ψ2 ∈ A iff {ψ1, ψ2} ⊆ A;
• if ψ1 ∨ ψ2 ∈ cl(ϕ), then ψ1 ∨ ψ2 ∈ A iff {ψ1, ψ2} ∩A 6= ∅;
• if λy.ψ(y) ∈ cl(ϕ), then λy.ψ(y) ∈ A iff ψ(λy.ψ(y)) ∈ A.

The set of atoms of ϕ is denoted at(ϕ). A pre-model 〈K, π〉 for a sentence ϕ of the hybrid graded
µ-calculus consists of a Kripke structure K = 〈W,R,L〉 and a mapping π : W → at(ϕ) that
satisfies the following properties:

• there is w0 ∈ W with ϕ ∈ π(w0);
• for p ∈ Prop ∪ Nom, if p ∈ π(w), then w ∈ L(p), and if ¬p ∈ π(w), then w 6∈ L(p);
• if 〈n, a〉ψ ∈ π(w), then there is a set V ⊆ succR(w, a), such that |V | > n and ψ ∈ π(v)

for all v ∈ V ;
• if [n, a]ψ ∈ π(w), then there is a set V ⊆ succR(w, a), such that |V | ≤ n and ψ ∈ π(v) for

all v ∈ succR(w, a) \ V .
If there is a pre-model 〈K, π〉 of ϕ such that for every state w and all ψ ∈ π(w), it holds that
K, w |= ψ, then K is clearly a model of ϕ. However, the definition of pre-models does not guarantee
that ψ ∈ π(w) is satisfied at w if ψ is a least fixpoint formula. In a nutshell, the standard approach
for dealing with this problem is to enforce that it is possible to trace the evaluation of a least fixpoint
formula through K such that the original formula is not regenerated infinitely often. When tracing
such evaluations, a complication is introduced by disjunctions and at least restrictions, which require
us to make a choice on how to continue the trace. To address this issue, we adapt the notion of a
choice function of Streett and Emerson [SE89] to the hybrid graded µ-calculus.

THE COMPLEXITY OF ENRICHED µ-CALCULI 7

A choice function for a pre-model 〈K, π〉 for ϕ is a partial function ch from W × cl(ϕ) to
cl(ϕ) ∪ 2W , such that for all w ∈ W , the following conditions hold:

• if ψ1 ∨ ψ2 ∈ π(w), then ch(w, ψ1 ∨ ψ2) ∈ {ψ1, ψ2} ∩ π(w);
• if 〈n, a〉ψ ∈ π(w), then ch(w, 〈n, a〉ψ) = V ⊆ succR(w, a), such that |V | > n and

ψ ∈ π(v) for all v ∈ V ;
• if [n, a]ψ ∈ π(w), then ch(w, [n, a]ψ) = V ⊆ succR(w, a), such that |V | ≤ n and ψ ∈

π(v) for all v ∈ succR(w, a) \ V .
An adorned pre-model 〈K, π, ch〉 of ϕ consists of a pre-model 〈K, π〉 of ϕ and a choice function ch.
We now define the notion of a derivation between occurrences of sentences in adorned pre-models,
which formalizes the tracing mentioned above. For an adorned pre-model 〈K, π, ch〉 of ϕ, the
derivation relation Ã ⊆ (W × cl(ϕ)) × (W × cl(ϕ)) is the smallest relation such that, for all
w ∈ W , we have:

• if ψ1 ∨ ψ2 ∈ π(w), then (w, ψ1 ∨ ψ2) Ã (w, ch(ψ1 ∨ ψ2));
• if ψ1 ∧ ψ2 ∈ π(w), then (w, ψ1 ∧ ψ2) Ã (w, ψ1) and (w, ψ1 ∧ ψ2) Ã (w,ψ2);
• if 〈n, a〉ψ ∈ π(w), then (w, 〈n, a〉ψ) Ã (v, ψ) for each v ∈ ch(w, 〈n, a〉ψ);
• if [n, a]ψ ∈ π(w), then (w, [n, a]ψ) Ã (v, ψ) for each v ∈ succR(w, a) \ ch(w, [n, a]ψ);
• if λy.ψ(y) ∈ π(w), then (w, λy.ψ(y)) Ã (w, ψ(λy.ψ(y))).

A least fixpoint sentence µy.ψ(y) is regenerated from state w to state v in an adorned pre-model
〈K, π, ch〉 of ϕ if there is a sequence (w1, ρ1), . . . , (wk, ρk) ∈ (W × cl(ϕ))∗, k > 1, such that
ρ1 = ρk = µy.ψ(y), w = w1, v = wk, the formula µy.ψ(y) is a sub-sentence of each ρi in the
sequence, and for all 1 ≤ i < k, we have (wi, ρi) Ã (wi+1, ρi+1). We say that 〈K,π, ch〉 is well-
founded if there is no least fixpoint sentence µy.ψ(y) ∈ cl(ϕ) and infinite sequence w1, w2, . . . such
that, for each i ≥ 1, µy.ψ(y) is regenerated from wi to wi+1. The proof of the following lemma
is based on signatures, i.e., sequence of ordinals that guides the evaluation of least fixpoints. It is a
minor variation of the one given for the original µ-calculus in [SE89]. Details are omitted.

Lemma 3.2. Let ϕ be a sentence of the hybrid graded µ-calculus. Then:
(1) if ϕ is satisfiable, it has a well-founded adorned pre-model;
(2) if 〈K, π, ch〉 is a well-founded adorned pre-model of ϕ, then K is a model of ϕ.

We now establish the forest model property of the hybrid graded µ-calculus.

Theorem 3.3. If a sentence ϕ of the hybrid graded µ-calculus is satisfiable, then ϕ has a directed
quasi-forest model.

Proof. Let ϕ be satisfiable. By item (1) of Lemma 3.2, there is a well-founded adorned pre-model
〈K, π, ch〉 for ϕ. We unwind K into a directed quasi-forest structure K ′ = 〈W ′, L′, R′〉, and define
a corresponding mapping π′ : W ′ → at(ϕ) and choice function ch′ such that 〈K ′, π′, ch′〉 is again
a well-founded adorned pre-model of ϕ. Then, item (2) of Lemma 3.2 yields that K ′ is actually a
model of ϕ.

Let K = 〈W,L,R〉, and let w0 ∈ W such that ϕ ∈ π(w0). The set of states W ′ of K ′ is
a subset of IN+ as required by the definition of (quasi) forest structures, and we define K ′ in a
stepwise manner by proceeding inductively on the length of elements of W ′. Simultaneously, we
define π′, ch′, and a mapping τ : W ′ → W that keeps track of correspondences between states in
K ′ and K.

The base of the induction is as follows. Let I = {w1, . . . , wk} ⊆ W be a minimal subset such
that w0 ∈ I and if o is a nominal in ϕ and L(o) = {w}, then w ∈ I . Define K ′ by setting:

• W ′ := {1, . . . , k};

8 BONATTI, LUTZ, MURANO, AND VARDI

• R′(a) := {(i, j) | (wi, wj) ∈ R(a), 1 ≤ i ≤ j ≤ k} for all a ∈ Prog;
• L′(p) := {i | wi ∈ L(p), 1 ≤ i ≤ k} for all p ∈ Prop ∪ Nom.

Define τ by setting τ(i) = wi for 1 ≤ i ≤ k. Then, π′(w) is defined as π(τ(w)) for all w ∈ W ′,
and ch′ is defined by setting ch′(w, ψ1∨ψ2) = ch(τ(w), ψ1∨ψ2) for all ψ1∨ψ2 ∈ π′(w). Choices
for atleast and allbut formulas are defined in the induction step.

In the induction step, we iterate over all w ∈ W ′ of maximal length, and for each such w
extend K ′, π′, ch′, and τ as follows. Let (〈a1, n1〉ψ1, v1), . . . , (〈am, nm〉ψm, vm) be all pairs from
cl(ϕ) × W of this form such that for each (〈ai, ni〉ψi, vi), we have 〈ai, ni〉ψi ∈ π(w) and vi ∈
ch(τ(w), 〈ai, ni〉ψi). For 1 ≤ i ≤ m, define

σ(vi) =
{

j if vi = τ(j), 1 ≤ j ≤ k
w · i otherwise.

To extend K ′, set
• W ′ := W ′ ∪ {σ(v1), . . . , σ(vm)};
• R′(a) := R′(a) ∪ {(w, σ(vi)) | ai = a, 1 ≤ i ≤ m} for all a ∈ Prog;
• L′(p) := L′(p) ∪ {w · i ∈ W | vi ∈ L(p), 1 ≤ i ≤ m} for all p ∈ Prop ∪ Nom.

Extend τ and π′ by setting τ(w · i) = vi and π′(w · i) = π(vi) for all w · i ∈ W ′. Finally, extend
ch′ by setting

• ch′(w · i, ψ1 ∨ ψ2) := ch(vi, ψ1 ∨ ψ2) for all w · i ∈ W ′ and ψ1 ∨ ψ2 ∈ π′(w · i);
• ch′(w, 〈n, a〉ψ) := {σ(v) | v ∈ ch(τ(w), 〈n, a〉ψ)} for all 〈n, a〉ψ ∈ π′(w);
• ch′(w, [n, a]ψ) := {σ(v) | v ∈ ch(τ(w), [n, a]ψ) ∩ {v1, . . . , vm}} for all [n, a]ψ ∈ π′(w).

It is easily seen that K ′ is a directed quasi-forest structure. Since 〈K,π, ch〉 is an adorned pre-
model of ϕ, it is readily checked that 〈K ′, π′, ch′〉 is an adorned pre-model of ϕ as well. If a
sentence µy.ψ(y) is regenerated from x to y in (K ′, π′, ch′), then µy.ψ(y) is regenerated from τ(x)
to τ(y) in (K, π, ch). It follows that well-foundedness of 〈K,π, ch〉 implies well-foundedness of
〈K ′, π′, ch′〉.

Note that the construction from this proof fails for the fully enriched µ-calculus because the
unwinding of K duplicates states, and thus also duplicates incoming edges to nominals. Together
with inverse programs and graded modalities, this may result in 〈K ′, π′〉 not being a pre-model of ϕ.

4. ENRICHED AUTOMATA

Nondeterministic automata on infinite trees are a variation of nondeterministic automata on
finite and infinite words, see [Tho90] for an introduction. Alternating automata, as first introduced
in [MS87], are a generalization of nondeterministic automata. Intuitively, while a nondeterministic
automaton that visits a node x of the input tree sends one copy of itself to each of the successors of
x, an alternating automaton can send several copies of itself to the same successor. In the two-way
paradigm [Var98], an automaton can send a copy of itself to the predecessor of x, too. In graded
automata [KSV02], the automaton can send copies of itself to a number n of successors, without
specifying which successors these exactly are. Our most general automata model is that of fully
enriched automata, as introduced in the next subsection. These automata work on infinite forests,
include all of the above features, and additionally have the ability to send a copy of themselves to
the roots of the forest.

THE COMPLEXITY OF ENRICHED µ-CALCULI 9

4.1. Fully enriched automata. We start with some preliminaries. Let F ⊆ IN+ be a forest, x a
node in F , and c ∈ IN. As a convention, we take (x · c) · −1 = x and c · −1 as undefined. A path
π in F is a minimal set π ⊆ F such that some root r of F is contained in π and for every x ∈ π,
either x is a leaf or there exists a c ∈ F such that x · c ∈ π. Given an alphabet Σ, a Σ-labeled forest
is a pair 〈F, V 〉, where F is a forest and V : F → Σ maps each node of F to a letter in Σ. We call
〈F, V 〉 a Σ-labeled tree if F is a tree.

For a given set Y , let B+(Y) be the set of positive Boolean formulas over Y (i.e., Boolean
formulas built from elements in Y using ∧ and ∨), where we also allow the formulas true and false
and ∧ has precedence over ∨. For a set X ⊆ Y and a formula θ ∈ B+(Y), we say that X satisfies
θ iff assigning true to elements in X and assigning false to elements in Y \ X makes θ true. For
b > 0, let

〈〈b〉〉 = {〈0〉, 〈1〉, . . . , 〈b〉}
[[b]] = {[0], [1], . . . , [b]}
Db = 〈〈b〉〉 ∪ [[b]] ∪ {−1, ε, 〈root〉, [root]}

A fully enriched automaton is an automaton in which the transition function δ maps a state q and
a letter σ to a formula in B+(Db × Q). Intuitively, an atom (〈n〉, q) (resp. ([n], q)) means that
the automaton sends copies in state q to n + 1 (resp. all but n) different successors of the current
node, (ε, q) means that the automaton sends a copy in state q to the current node, (−1, q) means that
the automaton sends a copy in state q to the predecessor of the current node, and (〈root〉, q) (resp.
([root], q)) means that the automaton sends a copy in state q to some root (resp. all roots). When,
for instance, the automaton is in state q, reads a node x, and

δ(q, V (x)) = (−1, q1) ∧ ((〈root〉, q2) ∨ ([root], q3)),

it sends a copy in state q1 to the predecessor and either sends a copy in state q2 to some root or a
copy in state q3 to all roots.

Formally, a fully enriched automaton (FEA, for short) is a tuple A = 〈Σ, b, Q, δ, q0, F〉, where
Σ is a finite input alphabet, b > 0 is a counting bound, Q is a finite set of states, δ : Q × Σ →
B+(Db×Q) is a transition function, q0 ∈ Q is an initial state, and F is an acceptance condition. A
run of A on an input Σ-labeled forest 〈F, V 〉 is an F ×Q-labeled tree 〈Tr, r〉. Intuitively, a node in
Tr labeled by (x, q) describes a copy of the automaton in state q that reads the node x of F . Runs
start in the initial state at a root and satisfy the transition relation. Thus, a run 〈Tr, r〉 has to satisfy
the following conditions:

(i) r(root(Tr)) = (c, q0) for some root c of F and
(ii) for all y ∈ Tr with r(y) = (x, q) and δ(q, V (x)) = θ, there is a (possibly empty) set

S ⊆ Db ×Q such that S satisfies θ and for all (d, s) ∈ S, the following hold:
– If d ∈ {−1, ε}, then x · d is defined and there is j ∈ IN such that y · j ∈ Tr and

r(y · j) = (x · d, s);
– If d = 〈n〉, then there is a set M ⊆ succ(x) of cardinality n+1 such that for all z ∈ M ,

there is j ∈ IN such that y · j ∈ Trand r(y · j) = (z, s);
– If d = [n], then there is a set M ⊆ succ(x) of cardinality n such that for all z ∈

succ(x) \M , there is j ∈ IN such that y · j ∈ Tr and r(y · j) = (z, s);
– If d = 〈root〉, then for some root c ∈ F and some j ∈ IN such that y · j ∈ Tr, it holds

that r(y · j) = (c, s);
– If d = [root], then for each root c ∈ F there exists j ∈ IN such that y · j ∈ Tr and

r(y · j) = (c, s).
Note that if θ = true, then y does not need to have successors. Moreover, since no set S satisfies
θ = false, there cannot be any run that takes a transition with θ = false.

10 BONATTI, LUTZ, MURANO, AND VARDI

A run 〈Tr, r〉 is accepting if all its infinite paths satisfy the acceptance condition. We consider
here the parity acceptance condition [Mos84, EJ91, Tho97], where F = {F1,F2, . . . ,Fk} is such
that F1 ⊆ F2 ⊆ . . . ⊆ Fk = Q. The number k of sets in F is called the index of the automaton.
Given a run 〈Tr, r〉 and an infinite path π ⊆ Tr, let Inf(π) ⊆ Q be the set of states q such that
r(y) ∈ F × {q} for infinitely many y ∈ π. A path π satisfies a parity acceptance condition
F = {F1,F2, . . . ,Fk} if the minimal i with Inf(π) ∩ Fi 6= ∅ is even. An automaton accepts a
forest iff there exists an accepting run of the automaton on the forest. We denote by L(A) the set of
all Σ-labeled forests that A accepts. The emptiness problem for FEAs is to decide, given a FEA A,
whether L(A) = ∅.

4.2. Two-way graded alternating parity tree automata. A two-way graded alternating parity
tree automaton (2GAPT) is a FEA that accepts trees (instead of forests) and cannot jump to the root
of the input tree, i.e., it does not support transitions 〈root〉 and [root]. The emptiness problem for
2GAPTs is thus a special case of the emptiness problem for FEAs. In the following, we give a
reduction of the emptiness problem for FEAs to the emptiness problem for 2GAPTs. This allows
us to derive an upper bound for the former problem from the upper bound for the latter that is
established in Section 6.

We show how to translate a FEA A into a 2GAPT A′ such that L(A′) consists of the forests
accepted by A, encoded as trees. The encoding that we use is straightforward: the tree encoding of
a Σ-labeled forest 〈F, V 〉 is the Σ] {root}-labeled tree 〈T, V ′〉 obtained from 〈F, V 〉 by adding a
fresh root labeled with {root} whose children are the roots of F .

Lemma 4.1. Let A be a FEA running on Σ-labeled forests with n states, index k and counting
bound b. There exists a 2GAPT A′ that

(1) accepts exactly the tree encodings of forests accepted by A and
(2) has O(n) states, index k, and counting bound b.

Proof. Suppose A = 〈Σ, b, Q, δ, q0,F〉. Define A′ as 〈Σ] {root}, b, Q′, δ′, q′0,F ′〉, where Q′ and
δ′ are defined as follows:

Q′ = Q] {q′0, qr}] {someq, allq | q ∈ Q}
δ′(q′0, root) = (〈0〉, q0) ∧ ([0], qr)

δ′(q′0, σ) = false for all σ 6= {root}
δ′(qr, root) = false

δ′(qr, σ) = ([0], qr) for all σ 6= {root}
δ′(someq, σ) =

{
(−1, someq) if σ 6= root
(〈0〉, q) otherwise

δ′(allq, σ) =
{

(−1, allq) if σ 6= root
([0], q) otherwise

δ′(q, σ) = tran(δ(q, σ)) for all q ∈ Q and σ ∈ Σ

Here, tran(β) replaces all atoms (〈root〉, q) in β with (ε, someq), and all atoms ([root], q) in β with
(ε, allq). The acceptance condition F ′ is identical to F = {F1, . . . ,Fk}, except that all Fi are
extended with qr and Fk is extended with q0 and all states someq and allq. It is not hard to see that
A′ accepts 〈T, V 〉 iff A accepts the forest encoded by 〈T, V 〉.

THE COMPLEXITY OF ENRICHED µ-CALCULI 11

In Section 6, we shall prove the following result.

Theorem 4.2. The emptiness problem for a 2GAPT A = 〈Σ, b, Q, δ, q0,F〉 with n states and index
k can be solved in time (b + 2)O(n3·k2·log k·log b2).

By Lemma 4.1, we obtain the following corollary.

Corollary 4.3. The emptiness problem for a FEA A = 〈Σ, b, Q, δ, q0,F〉 with n states and index k

can be solved in time (b + 2)O(n3·k2·log k·log b2).

5. EXPTIME UPPER BOUNDS FOR ENRICHED µ-CALCULI

We use Theorem 4.2 and Corollary 4.3 to establish EXPTIME upper bounds for satisfiability in
the full graded µ-calculus and the hybrid graded µ-calculus.

5.1. Full graded µ-calculus. We give a polynomial translation of formulas ϕ of the full graded µ-
calculus into a 2GAPT Aϕ that accepts the tree models of ϕ. We can thus decide satisfiability of ϕ
by checking non-emptiness of L(Aϕ). There is a minor technical difficulty to be overcome: we use
Kripke structures with labeled edges, while the trees accepted by 2GAPTs do not. This problem can
be dealt with by moving the label from each edge to the target node of the edge. For this purpose, we
introduce a new propositional symbol pα for each program α. For a formula ϕ, let Γ(ϕ) denote the
set of all atomic propositions and all propositions pα such that α is an (atomic or inverse) program
occurring in ϕ. The encoding of a tree structure K = 〈W,R, L〉 is the 2Γ(ϕ)-labeled tree 〈W,L∗〉
such that

L∗(w) = {p ∈ Prop | w ∈ L(p)} ∪ {pα | ∃(v, w) ∈ R(α) with w α-successor of v in W}.
For a sentence ϕ, we use |ϕ| to denote the length of ϕ with numbers inside graded modalities

coded in binary. Formally, |ϕ| is defined by induction on the structure of ϕ in a standard way, where
in particular |〈n, α〉ψ| = |[n, α]ψ| = dlog ne+ 1 + |ψ|. We say that a formula ϕ counts up to b if
the maximal integer in atleast and allbut formulas used in ϕ is b− 1.

Theorem 5.1. Given a sentence ϕ of the full graded µ-calculus that counts up to b, we can construct
a 2GAPT Aϕ such that Aϕ

(1) accepts exactly the encodings of tree models of ϕ,
(2) has O(|ϕ|) states, index O(|ϕ|), and counting bound b.

The construction can be done in time O(|ϕ|).
Proof. The automaton Aϕ verifies that ϕ holds at the root of the encoded tree. To define the set
of states, we use the Fischer-Ladner closure cl(ϕ) of ϕ. It is defined analogously to the Fischer-
Ladner closure cl(·) for the hybrid graded µ-calculus, as given in Section 3. We define Aϕ as
〈2Γ(ϕ), b, cl(ϕ), δ, ϕ,F〉, where the transition function δ is defined by setting, for all σ ∈ 2Γ(ϕ),

δ(p, σ) = (p ∈ σ)
δ(¬p, σ) = (p 6∈ σ)

δ(ψ1 ∧ ψ2, σ) = (ε, ψ1) ∧ (ε, ψ2)
δ(ψ1 ∨ ψ2, σ) = (ε, ψ1) ∨ (ε, ψ2)
δ(λy.ψ(y), σ) = (ε, ψ(λy.ψ(y)))
δ(〈n, a〉ψ, σ) = ((−1, ψ) ∧ (ε, pa−) ∧ (〈n− 1〉, ψ ∧ pa)) ∨ (〈n〉, ψ ∧ pa)

δ(〈n, a−〉ψ, σ) = ((−1, ψ) ∧ (ε, pa) ∧ (〈n− 1〉, ψ ∧ pa−)) ∨ (〈n〉, ψ ∧ pa−)
δ([n, a]ψ, σ) = ((−1, ψ) ∧ (ε, pa−) ∧ ([n], ψ ∧ pa)) ∨ ([n− 1], ψ ∧ pa)

δ([n, a−]ψ, σ) = ((−1, ψ) ∧ (ε, pa) ∧ ([n], ψ ∧ pa−)) ∨ ([n− 1], ψ ∧ pa−)

12 BONATTI, LUTZ, MURANO, AND VARDI

In case n = 0, the conjuncts (resp. disjuncts) involving “n − 1” are simply dropped in the last two
lines.

The acceptance condition of Aϕ is defined in the standard way as follows (see e.g. [KVW00]).
For a fixpoint formula ψ ∈ cl(ϕ), the alternation level of ψ is the number of alternating fixpoint
formulas one has to “wrap ψ with” to reach a sub-sentence of ϕ. Formally, let ψ = λy.ψ′(y). The
alternation level of ψ in ϕ, denoted alϕ(ψ) is defined as follows ([BC96]): if ψ is a sentence, then
alϕ(ψ) = 1. Otherwise, let ξ = λ′z.ψ′′(z) be the innermost µ or ν subformula of ϕ that has ψ as
a strict subformula. Then, if z is free in ψ and λ′ 6= λ, we have alϕ(ψ) = alϕ(ξ) + 1; otherwise,
alϕ(ψ) = alϕ(ξ).

Let d be the maximum alternation level of (fixpoint) subformulas of ϕ. Denote by Gi the set
of all ν-formulas in cl(ϕ) of alternation level i and by Bi the set of all µ-formulas in cl(ϕ) of
alternation level less than or equal to i. Now, define F := {F0,F1, . . . ,F2d, Q} with F0 = ∅ and
for every 1 ≤ i ≤ d, F2i−1 = F2i−2 ∪Bi and F2i = F2i−1 ∪Gi. Let π be a path. By definition of
F , the minimal i with Inf(π) ∩ Fi 6= ∅ determines the alternation level and type λ of the outermost
fixpoint formula λy.ψ(y) that was visited infinitely often on π. The acceptance condition makes
sure that this formula is a ν-formula. In other words, every µ-formula that is visited infinitely often
on π has a super-formula that (i) is a ν-formula and (ii) is also visited infinitely often.

Let ϕ be a sentence of the full graded µ-calculus with ` at-least subformulas. By Theorems 3.1,
4.2, and 5.1, the satisfiability of ϕ can be checked in time bounded by 2p(|ϕ|) where p(|ϕ|) is a
polynomial (note that, in Theorem 4.2, n, k, log `, and log b are all in O(|ϕ|)). This yields the
desired EXPTIME upper bound. The lower bound is due to the fact that the µ-calculus is EXPTIME-
hard [FL79].

Theorem 5.2. The satisfiability problem of the full graded µ-calculus is EXPTIME-complete even if
the numbers in the graded modalities are coded in binary.

5.2. Hybrid graded µ-calculus. We reduce satisfiability in the hybrid graded µ-calculus to the
emptiness problem of FEAs. Compared to the reduction presented in the previous section, two
additional difficulties have to be addressed.

First, FEAs accept forests while the hybrid µ-calculus has only a quasi-forest model property.
This problem can be solved by introducing in node labels new propositional symbols ↑a

o which
do not occur in the input formula and represent an edge labeled with the atomic program a from
the current node to the (unique) root node labeled by nominal o. Let Θ(ϕ) denote the set of all
atomic propositions and nominals occurring in ϕ and all propositions pa and ↑a

o such that the atomic
program a and the nominal o occur in ϕ. Analogously to encodings of trees in the previous section,
the encoding of a directed quasi-forest structure K = 〈W,R, L〉 is the 2Θ(ϕ)-labeled forest 〈W,L∗〉
such that

L∗(w) = {p ∈ Prop ∪ Nom | w ∈ L(p)} ∪
{pa | ∃(v, w) ∈ R(a) with w successor of v in W} ∪
{↑a

o| ∃(w, v) ∈ R(a) with L(o) = {v}}.
Second, we have to take care of the interaction between graded modalities and the implicit

edges encoded via propositions ↑a
o . To this end, we fix some information about the structures ac-

cepted by FEAs already before constructing the FEA, namely (i) the formulas from the Fischer-
Ladner closure that are satisfied by each nominal and (ii) the nominals that are interpreted as the
same state. This information is provided by a so-called guess. To introduce guesses formally, we
need to extend the Fischer-Ladner closure cl(ϕ) for a formula ϕ of the hybrid graded µ-calculus
as follows: cl(ϕ) has to satisfy the closure conditions given for the hybrid graded µ-calculus in
Section 3 and, additionally, the following:

THE COMPLEXITY OF ENRICHED µ-CALCULI 13

• if ψ ∈ cl(ϕ), then ¬ψ ∈ cl(ϕ), where ¬ψ denotes the formula obtained from ψ by dualiz-
ing all operators and replacing every literal (i.e., atomic proposition, nominal, or negation
thereof) with its negation.

Let ϕ be a formula with nominals O = {o1, . . . , ok}. A guess for ϕ is a pair (t,∼) where t assigns
a subset t(o) ⊆ cl(ϕ) to each o ∈ O and ∼ is an equivalence relation on O such that the following
conditions are satisfied, for all o, o′ ∈ O:

(i) ψ ∈ t(o) or ¬ψ ∈ t(o) for all formulas ψ ∈ cl(ϕ);
(ii) o ∈ t(o);

(iii) o ∼ o′ implies t(o) = t(o′);
(iv) o 6∼ o′ implies ¬o ∈ t(o′).

The intuition of a guess is best understood by considering the following notion of compatibility.
A directed quasi-forest structure K = (W,R, L) is compatible with a guess G = (t,∼) if the
following conditions are satisfied, for all o, o′ ∈ O:

• L(o) = {w} implies that {ψ ∈ cl(ϕ) | K, w |= ψ} = t(o);
• L(o) = L(o′) iff o ∼ o′.

We construct a separate FEA Aϕ,G for each guess G for ϕ such that ϕ is satisfiable iff L(Aϕ,G) is
non-empty for some guess G. Since the number of guesses is exponential in the length of ϕ, we get
an EXPTIME decision procedure by constructing all of the FEAs and checking whether at least one
of them accepts a non-empty language.

Theorem 5.3. Given a sentence ϕ of the hybrid graded µ-calculus that counts up to b and a guess
G for ϕ, we can construct a FEA Aϕ,G such that

(1) if 〈F, V 〉 is the encoding of a directed quasi-forest model of ϕ compatible with G, then
〈F, V 〉 ∈ L(Aϕ,G),

(2) if L(Aϕ,G) 6= ∅, then there is an encoding 〈F, V 〉 of a directed quasi-forest model of ϕ
compatible with G such that 〈F, V 〉 ∈ L(Aϕ,G), and

(3) Aϕ,G has O(|ϕ|2) states, index O(|ϕ|), and counting bound b.
The construction can be done in time O(|ϕ|2).
Proof. Let ϕ be a formula of the hybrid graded µ-calculus and G = (t,∼) a guess for ϕ. Assume
that the nominals occurring in ϕ are O = {o1, . . . , ok}. For each formula ψ ∈ cl(ϕ), atomic
program a, and σ ∈ 2Θ(ϕ), let

• noma
ψ(σ) = {o | ψ ∈ t(o) ∧ ↑a

o ∈ σ};
• |noma

ψ(σ)|∼ denote the number of equivalence classes C of ∼ such that some member of
C is contained in noma

ψ(σ).
The automaton Aϕ,G verifies compatibility with G, and ensures that ϕ holds in some root. As its set
of states, we use

Q = cl(ϕ) ∪ {q0} ∪ {¬oi ∨ ψ, | 1 ≤ i ≤ k ∧ ψ ∈ cl(ϕ)} ∪ {inii | 1 ≤ i ≤ k}.

14 BONATTI, LUTZ, MURANO, AND VARDI

Set Aϕ,G = 〈2Θ(ϕ), b, Q, δ, q0,F〉, where the transition function δ and the acceptance condition F
is defined in the following. For all σ ∈ 2Θ(ϕ), define:

δ(q0, σ) = (〈root〉, ϕ) ∧
∧

1≤i≤k

(〈root〉, oi) ∧
∧

1≤i≤k

([root], inii)

δ(inii, σ) = (ε,¬oi) ∨
∧

γ∈t(oi)

(ε, γ)

δ(¬p, σ) = (p 6∈ σ)
δ(ψ1 ∧ ψ2, σ) = (ε, ψ1) ∧ (ε, ψ2)
δ(ψ1 ∨ ψ2, σ) = (ε, ψ1) ∨ (ε, ψ2)
δ(λy.ψ(y), σ) = (ε, ψ(λy.ψ(y)))
δ([n, a]ψ, σ) = false if |noma

¬ψ(σ)|∼ > n

δ([n, a]ψ, σ) = ([n− |noma
¬ψ(σ)|∼], ψ ∧ pa) ∧

∧

o∈noma
ψ(σ)

([root],¬o ∨ ψ) if |noma
¬ψ(σ)|∼ ≤ n

δ(〈n, a〉ψ, σ) = (〈n− |noma
ψ(σ)|∼〉, ψ ∧ pa) ∧

∧

o∈noma
ψ(σ)

([root],¬o ∨ ψ)

In the last line, the first conjunct is omitted if |noma
ψ(σ)|∼ > n. The first two transition rules check

that each nominal occurs in at least one root and that the encoded quasi-forest structure is compatible
with the guess G. Consider the last three rules, which are concerned with graded modalities and
reflect the existence of implicit back-edges to nominals. The first of these rules checks for allbut
formulas that are violated purely by back-edges. The other two rules consist of two conjuncts, each.
In the first conjunct, we subtract the number of nominals to which there is an implicit a-edge and
that violate the formula ψ in question. This is necessary because the 〈·〉 and [·] transitions of the
automaton do not take into account implicit edges. In the second conjunct, we send a copy of the
automaton to each nominal to which there is an a-edge and that satisfies ψ. Observe that satisfaction
of ψ at this nominal is already guaranteed by the second rule that checks compatibility with G. We
nevertheless need the second conjunct in the last two rules because, without the jump to the nominal,
we will be missing paths in runs of Aϕ,G (those that involve an implicit back-edge). Thus, it would
not be guaranteed that these paths satisfy the acceptance condition, which is defined below. This, in
turn, means that the evaluation of least fixpoint formulas is not guaranteed to be well-founded. This
point was missed in [SV01], and the same strategy used here can be employed to fix the construction
in that paper.

The acceptance condition of Aϕ,G is defined as in the case of the full graded µ-calculus: let
d be the maximal alternation level of subformulas of ϕ, which is defined as in the case of the
full graded µ-calculus. Denote by Gi the set of all the ν-formulas in cl(ϕ) of alternation level
i and by Bi the set of all µ-formulas in cl(ϕ) of alternation depth less than or equal to i. Now,
F = {F0,F1, . . . ,F2d, Q}, where F0 = ∅ and for every 1 ≤ i ≤ d we have F2i−1 = F2i−2 ∪ Bi,
and F2i = F2i−1 ∪Gi.

It is standard to show that if 〈F, V 〉 is the encoding of a directed quasi-forest model K of ϕ
compatible with G, then 〈F, V 〉 ∈ L(Aϕ,G). Conversely, let 〈F, V 〉 ∈ L(Aϕ,G). If 〈F, V 〉 is
nominal unique, i.e., if every nominal occurs only in the label of a single root, it is not hard to show
that 〈F, V 〉 is the encoding of a directed quasi-forest model K of ϕ compatible with G. However,
the automaton Aϕ,G does not (and cannot) guarantee nominal uniqueness. To establish Point (2) of
the theorem, we thus have to show that wheneverL(Aϕ,G) 6= ∅, then there is an element ofL(Aϕ,G)
that is nominal unique.

THE COMPLEXITY OF ENRICHED µ-CALCULI 15

Let 〈F, V 〉 ∈ L(Aϕ,G). From 〈F, V 〉, we extract a new forest 〈F ′, V ′〉 as follows: Let r be a
run of Aϕ,G on 〈F, V 〉. Remove all trees from F except those that occur in r as witnesses for the
existential root transitions in the first transition rule. Call the modified forest F ′. Now modify r into
a run r′ on F ′: simply drop all subtrees rooted at nodes whose label refers to one of the trees that
are present in F but not in F ′. Now, r′ is a run on F ′ because (i) the only existential root transitions
are in the first rule, and these are preserved by construction of F ′ and r′; and (ii) all universal root
transitions are clearly preserved as well. Also, r′ is accepting because every path in r′ is a path in r.
Thus, 〈F ′, V ′〉 ∈ L(Aϕ,G) and it is easy to see that 〈F ′, V ′〉 is nominal unique.

Combining Theorems 3.3, Corollary 4.3, and Theorem 5.3, we obtain an EXPTIME-upper
bound for the hybrid graded µ-calculus. Again, the lower bound is from [FL79].

Theorem 5.4. The satisfiability problems of the full graded µ-calculus and the hybrid graded µ-
calculus are EXPTIME-complete even if the numbers in the graded modalities are coded in binary.

6. THE EMPTINESS PROBLEM FOR 2GAPTS

We prove Theorem 4.2 and thus show that the emptiness problem of 2GAPTs can be solved in
EXPTIME. The proof is by a reduction to the emptiness problem of graded nondeterministic parity
tree automata (GNPTs) as introduced in [KSV02].

6.1. Graded nondeterministic parity tree automata. We introduce the graded nondeterministic
parity tree automata (GNPTs) of [KSV02]. For b > 0, a b-bound is a pair in

Bb = {(>, 0), (≤, 0), (>, 1), (≤, 1), . . . , (>, b), (≤, b)}.
For a set X , a subset P of X , and a (finite or infinite) word t = x1x2 · · · ∈ X∗ ∪Xω, the weight
of P in t, denoted weight(P, t), is the number of occurrences of symbols in t that are members of
P . That is, weight(P, t) = |{i : xi ∈ P}|. For example, weight({1, 2}, 1241) = 3. We say that
t satisfies a b-bound (>,n) with respect to P if weight(P, t) > n, and t satisfies a b-bound (≤, n)
with respect to P if weight(P, t) ≤ n.

For a set Y , we use B(Y) to denote the set of all Boolean formulas over atoms in Y . Each
formula θ ∈ B(Y) induces a set sat(θ) ⊆ 2Y such that x ∈ sat(θ) iff x satisfies θ. For an
integer b ≥ 0, a b-counting constraint for 2Y is a relation C ⊆ B(Y) × Bb. For example, if
Y = {y1, y2, y3}, then we can have

C = {〈y1 ∨ ¬y2, (≤, 3)〉, 〈y3, (≤, 2)〉, 〈y1 ∧ y3, (>, 1)〉}.
A word t = x1x2 · · · ∈ (2Y)∗ ∪ (2Y)ω satisfies the b-counting constraint C if for all 〈θ, ξ〉 ∈ C,
the word t satisfies ξ with respect to sat(θ), that is, when θ is paired with ξ = (>,n), at least
n + 1 occurrences of symbols in t should satisfy θ, and when θ is paired with ξ = (≤, n), at
most n occurrences satisfy θ. For example, the word t1 = ∅{y1}{y2}{y1, y3} does not satisfy the
constraint C above, as the number of sets in t1 that satisfies y1 ∧ y3 is one. On the other hand, the
word t2 = {y2}{y1}{y1, y2, y3}{y1, y3} satisfies C. Indeed, three sets in t2 satisfy y1 ∨ ¬y2, two
sets satisfy y3, and two sets satisfy y1 ∧ y3.

We use C(Y, b) to denote the set of all b-counting constraints for 2Y . We assume that the
integers in constraints are coded in binary.

We can now define graded nondeterministic parity tree automata (GNPTs, for short). A GNPT
is a tuple A = 〈Σ, b, Q, δ, q0,F〉 where Σ, b, q0, and F are as in 2GAPT, Q ⊆ 2Y is the set of
states (i.e., Q is encoded by a finite set of variables), and δ : Q × Σ → C(Y, b) maps a state and a
letter to a b-counting constraint C for 2Y such that the cardinality of C is bounded by log |Q|. For
defining runs, we introduce an additional notion. Let x be a node in a Σ-labeled tree 〈T, V 〉, and let

16 BONATTI, LUTZ, MURANO, AND VARDI

x · i1, x · i2, . . . be the (finitely or infinitely many) successors of x in T , where ij < ij+1 (the actual
ordering is not important, but has to be fixed). Then we use lab(x) to denote the (finite or infinite)
word of labels induced by the successors, i.e., lab(x) = V (x · i1)V (x · i2) · · · . Given a GNPT A, a
run of A on a Σ-labeled tree 〈T, V 〉 rooted in z is then a Q-labeled tree 〈T, r〉 such that

• r(z) = q0 and
• for every x ∈ T , lab(x) satisfies δ(r(x), V (x)).

Observe that, in contrast to the case of alternating automata, the input tree 〈T, V 〉 and the run
〈T, r〉 share the component T . The run 〈T, r〉 is accepting if all its infinite paths satisfy the parity
acceptance condition. A GNPT accepts a tree iff there exists an accepting run of the automaton on
the tree. We denote by L(A) the set of all Σ-labeled trees that A accepts.

We need two special cases of GNPT: FORALL automata and SAFETY automata. In FORALL
automata, for each q ∈ Q and σ ∈ Σ there is a q′ ∈ Q such that δ(q, σ) = {〈(¬θq′), (≤, 0)〉},
where θq′ ∈ B(Y) is such that sat(θq′) = {{q′}}. Thus, a FORALL automaton is very similar to
a (non-graded) deterministic parity tree automaton, where the transition function maps q and σ to
〈q′, . . . , q′〉 (and the out-degree of trees is not fixed). In SAFETY automata, there is no acceptance
condition, and all runs are accepting. Note that this does not mean that SAFETY automata accept all
trees, as it may be that on some trees the automaton does not have a run at all.

We need two simple results concerning GNPTs. The following has been stated (but not proved)
already in [KSV02].

Lemma 6.1. Given a FORALL GNPT A1 with n1 states and index k1, and a SAFETY GNPT A2

with n2 states and counting bound b2, we can define a GNPT A with n1n2 states, index k1, and
counting bound b2, such that L(A) = L(A1) ∩ L(A2).

Proof. We can use a simple product construction. Let Ai = (Σ, bi, Qi, δi, q0,i,F (i)) with Qi ⊆ 2Yi

for i ∈ {1, 2}. Assume w.l.o.g. that Y1 ∩ Y2 = ∅. We define A = (Σ, b2, Q, δ, (q0,1 ∪ q0,2),F),
where

• Q = {q1 ∪ q2 | q1 ∈ Q1 and q2 ∈ Q2} ⊆ 2Y , where Y = Y1] Y2;
• for all σ ∈ Σ and q = q1 ∪ q2 ∈ Q with δ1(q1, σ) = {〈(¬θq), (≤, 0)〉} and δ2(q2, σ) = C,

we set δ(q, σ) = C ∪{〈(¬θ′q), (≤, 0)〉}, where θ′q ∈ B(Y) is such that sat(θ′q) = {q′ ∈ Q |
q′ ∩Q1 = q};

• F = {F1, . . . ,Fk} with Fi = {q ∈ Q | q ∩Q1 ∈ F (1)
i } if F (1) = {F (1)

1 , . . . ,F (1)
k }.

It is not hard to check that A is as required.

The following result can be proved by an analogous product construction.

Lemma 6.2. Given SAFETY GNPTs Ai with ni states and counting bounds bi, i ∈ {1, 2}, we
can define a SAFETY GNPT A with n1n2 states and counting bound b = max{b1, b2} such that
L(A) = L(A1) ∩ L(A2).

6.2. Reduction to Emptiness of GNPTs. We now show that the emptiness problem of 2GAPTs
can be reduced to the emptiness problem of GNPTs that are only exponentially larger. Let A =
〈Σ, b, Q, δ, q0,F〉 be a 2GAPT. We recall that δ is a function from Q × Σ to B+(D−

b × Q), with
D−

b := 〈〈b〉〉 ∪ [[b]]∪ {−1, ε}. A strategy tree for A is a 2Q×D−b ×Q-labeled tree 〈T, str〉. Intuitively,
the purpose of a strategy tree is to guide the automaton A by pre-choosing transitions that satisfy
the transition relation. For each label w = str(x), we use head(w) = {q | (q, c, q′) ∈ w} to denote
the set of states for which str chooses transitions at x. Intuitively, if A is in state q ∈ head(w), str
tells it to execute the transitions {(c, q′) | (q, c, q′) ∈ w}. In the following, we usually consider only
the str part of a strategy tree. Let 〈T, V 〉 be a Σ-labeled tree and 〈T, str〉 a strategy tree for A, based

THE COMPLEXITY OF ENRICHED µ-CALCULI 17

〈1, a〉

ª
〈11, b〉

R
〈12, a〉

ª R
〈111, b〉 〈112, a〉

(1, q0)

®
(11, q1)

ª ? R
(1, q2) (111, q3) (112, q3)

?
(12, q3)

(q0, 〈0〉, q1),(q2, 〈0〉, q3)

ª R
(q1,−1, q2), (q1, 〈1〉, q3)

ª R

Figure 2: A fragment of an input tree, a corresponding run, and its strategy tree.

on the same T . Then str is a strategy for A on V if for all nodes x ∈ T and all states q ∈ Q, we
have:

(1) δ(q0, V (root(T))) = true or q0 ∈ head(str(root(T)));
(2) if q ∈ head(str(x)), then the set {(c, q′) : (q, c, q′) ∈ str(x)} satisfies δ(q, V (x)),
(3) if (q, c, q′) ∈ str(x) with c ∈ {−1, ε}, then (i) x · c is defined and (ii) δ(q′, V (x · c)) = true

or q′ ∈ head(str(x · c)).
If A is understood, we simply speak of a strategy on V .

Example 6.3. Let A = 〈Σ, b, Q, δ, q0,F〉 be a 2GAPT such that Σ = {a, b, c}, Q = {q0, q1,
q2, q3}, and δ is such that δ(q, a) = (〈0〉, q1)∨ (〈0〉, q3) for q ∈ {q0, q2}, and δ(q1, b) = ((−1, q2)∧
(〈1〉, q3))∨ ([1], q1). Consider the trees depicted in Figure 2. From left to right, the first tree 〈T, V 〉
is a fragment of the input tree, the second tree is a fragment of a run 〈Tr, r〉 of A on 〈T, V 〉, and the
third tree is a fragment of a strategy tree suggesting this run. In a label 〈w, a〉 of the input tree, w is
the node name and a ∈ Σ the label in the tree. In the run and strategy tree, only the labels are given,
but not the node names.

Strategy trees do not give full information on how to handle transitions (〈n〉, q) and ([n], q)
as they do not say which successors should be used when executing them. This is compensated
by promise trees. A promise tree for A is a 2Q×Q-labeled tree 〈T, pro〉. Intuitively, if a run that
proceeds according to pro visits a node x in state q and chooses a move (〈n〉, q′) or ([n], q′), then
the successors x · i of x that inherit q′ are those with (q, q′) ∈ pro(x · i). Let 〈T, V 〉 be a Σ-labeled
tree, str a strategy on V , and 〈T, pro〉 a promise tree. We call pro a promise for A on str if the states
promised to be visited by pro satisfy the transitions chosen by str, i.e., for every node x ∈ T , the
following hold:

(1) for every (q, 〈n〉, q′) ∈ str(x), there is a subset M ⊆ succ(x) of cardinality n + 1 such that
each y ∈ M satisfies (q, q′) ∈ pro(y);

(2) for every (q, [n], q′) ∈ str(x), there is a subset M ⊆ succ(x) of cardinality n such that each
y ∈ succ(x) \M satisfies (q, q′) ∈ pro(y);

(3) if (q, q′) ∈ pro(x), then δ(q′, V (x)) = true or q′ ∈ head(str(x)).
Consider a Σ-labeled tree 〈T, V 〉, a strategy str on V , and a promise pro on str. An infinite

sequence of pairs (x0, q0), (x1, q1) . . . is a trace induced by str and pro if x0 is the root of T , q0 is
the initial state of A and, for each i ≥ 0, one of the following holds:

• there is (qi, c, qi+1) ∈ str(xi) with c = −1 or c = ε, xi · c defined, and xi+1 = xi · c;

18 BONATTI, LUTZ, MURANO, AND VARDI

• str(xi) contains (qi, 〈n〉, qi+1) or (qi, [n], qi+1), there exists j ∈ IN with xi+1 = xi · j ∈ T ,
and (qi, qi+1) ∈ pro(xi+1).

Let F = {F1, . . . ,Fk}. For each state q ∈ Q, let index(q) be the minimal i such that q ∈ Fi. For a
trace π, let index(π) be the minimal index of states that occur infinitely often in π. Then, π satisfies
F if it has even index. The strategy str and promise pro are accepting if all the traces induced by
str and pro satisfy F .

In [KSV02], it was shown that a necessary and sufficient condition for a tree 〈T, V 〉 to be
accepted by a one-way GAPT is the existence of a strategy str on V and a promise pro on str that
are accepting. We establish the same result for the case of 2GAPTs.

Lemma 6.4. A 2GAPT A accepts 〈T, V 〉 iff there exist a strategy str for A on V and a promise pro
for A on str that are accepting.

Proof. Let A = 〈Σ, b, Q, δ, q0,F〉 be a 2GAPT withF = {F1, . . . ,Fk}, and let 〈T, V 〉 be the input
tree. Suppose first that A accepts 〈T, V 〉. Consider a two-player game on Σ-labeled trees, Protago-
nist vs. Antagonist, such that Protagonist is trying to show that A accepts the tree, and Antagonist
is challenging that. A configuration of the game is a pair in T × Q. The initial configuration
is (root(T), q0). Consider a configuration (x, q). Protagonist is first to move and chooses a set
P1 = {(c1, q1), . . . , (cm, qm)} ⊆ D−

b × Q that satisfies δ(q, V (x)). If δ(q, V (x)) = false, then
Antagonist wins immediately. If P1 is empty, Protagonist wins immediately. Antagonist responds
by choosing an element (ci, qi) of P1. If ci ∈ {−1, ε}, then the new configuration is (x · ci, qi).
If x · ci is undefined, then Antagonist wins immediately. If ci = 〈n〉, Protagonist chooses a subset
M ⊆ succ(x) of cardinality n + 1, Antagonist wins immediately if there is no such subset and oth-
erwise responds by choosing an element y of M . Then, the new configuration is (y, qi). If ci = [n],
Protagonist chooses a subset M ⊆ succ(x) of cardinality at most n, Antagonist wins immediately if
there is no such subset and otherwise responds by choosing an element y of succ(x)\M . Protagonist
wins immediately if there is no such element. Otherwise, the new configuration is (y, qi).

Consider now an infinite game Y , that is, an infinite sequence of immediately successive game
configurations. Let Inf(Y) be the set of states in Q that occur infinitely many times in Y . Protagonist
wins if there is an even i > 0 for which Inf(Y) ∩ Fi 6= ∅ and Inf(Y) ∩ Fj = ∅ for all j < i.
It is not difficult to see that a winning strategy of Protagonist against Antagonist is essentially a
representation of a run of A on 〈T, V 〉 and vice versa. Thus, such a winning strategy exists iff A
accepts this tree. The described game meets the conditions in [Jut95]. It follows that if Protagonist
has a winning strategy, then it has a memoryless strategy, i.e., a strategy whose moves do not depend
on the history of the game, but only on the current configuration.

Since we assume that A accepts the input tree 〈T, V 〉, Protagonist has a memoryless winning
strategy on 〈T, V 〉. This winning strategy can be used to build a strategy str on V and a promise pro
on str in the following way. For each x ∈ T , str(x) and pro(x) are the smallest sets such that, for
all configurations (x, q) occurring in Protagonist’s winning strategy, if Protagonist chooses a subset
P1 = {(c1, q1), . . . , (cm, qm)} of D−

b ×Q in the winning strategy, then we have
(i) {q} × P1 ⊆ str(x) and

(ii) for each atom (ci, qi) of P1 with ci = 〈n〉 (resp. ci = [n]) if M = {y1, . . . , yn+1} (resp.
M = {y1, . . . , yn}) is the set of successors chosen by Protagonist after Antagonist has cho-
sen (ci, qi), then we have (q, qi) ∈ pro(y) for each y ∈ M (resp. for each y ∈ succ(x) \M).

Using the definition of games and the construction of str, it is not hard to show that str is indeed a
strategy on V . Similarly, it is easy to prove that pro is a promise on str. Finally, it follows from the
definition of wins of Protagonist that str and pro are accepting.

THE COMPLEXITY OF ENRICHED µ-CALCULI 19

Assume now that there exist a strategy str on V and a promise pro on str that are accepting.
Using str and pro, it is straightforward to inductively build an accepting run 〈Tr, r〉 of A on 〈T, V 〉:

• start with introducing the root z of Tr, and set r(z) = (root(T), q0);
• if y is a leaf in Tr with r(y) = (x, q) and δ(q, V (x)) 6= true, then do the following for all

(q, c, q′) ∈ str(x):
– If c = −1 or c = ε, then add a fresh successor y ·j to y in Tr and set r(y ·j) = (x·c, q′);
– If c = 〈n〉 or c = [n], then for each j ∈ IN with (q, q′) ∈ pro(x · j), add a fresh

successor y · j′ to y in Tr and set r(y · j′) = (x · j, q′).
By Condition (3) of strategy trees, y · j is defined in the induction step. Using the properties of
strategies on V and of promises on str, it is straightforward to show that 〈Tr, r〉 is a run. It thus
remains to prove that 〈Tr, r〉 is accepting. Let π be a path in 〈Tr, r〉. By definition of traces induced
by str and pro, the labeling of π is a trace induced by str and pro. Since str and pro are accepting,
so is π.

Strategy and promise trees together serve as a witness for acceptance of an input tree by a
2GAPT that, in contrast to a run 〈Tr, r〉, has the same tree structure as the input tree. To translate
2GAPTs into GNPTs, we still face the problem that traces in strategies and promises can move both
up and down. To restrict attention to unidirectional paths, we extend to our setting the notion of
annotation as defined in [Var98]. Annotations allow decomposing a trace of a strategy and a promise
into a downward part and several finite parts that are detours, i.e., divert from the downward trace
and come back to the point of diversion.

Let A = 〈Σ, b, Q, δ, q0,F〉 be a 2GAPT. An annotation tree for A is a 2Q×{1,...,k}×Q-labeled
tree 〈T, ann〉. Intuitively, (q, i, q′) ∈ ann(x) means that from node x and state q, A can make a
detour and comes back to x with state q′ such that i is the smallest index of all states that have been
seen along the detour. Let 〈T, V 〉 be a Σ-labeled tree, str a strategy on V , pro a promise on str, and
〈T, ann〉 an annotation tree. We call ann an annotation for A on str and pro if for every node x ∈ T ,
the following conditions are satisfied:

(1) If (q, ε, q′) ∈ str(x) then (q, index(q′), q′) ∈ ann(x);
(2) if (q, j′, q′) ∈ ann(x) and (q′, j′′, q′′) ∈ ann(x), then (q, min(j′, j′′), q′′) ∈ ann(x);
(3) if (i) x = y · i, (ii) (q,−1, q′) ∈ str(x), (iii) (q′, j, q′′) ∈ ann(y) or q′ = q′′ with

index(q′) = j, (iv) (q′′, 〈n〉, q′′′) or (q′′, [n], q′′′) is in str(y), and (v) (q′′, q′′′) ∈ pro(x),
then (q,min(index(q′), j, index(q′′′)), q′′′) ∈ ann(x);

(4) if (i) y = x·i, (ii) (q, 〈n〉, q′) or (q, [n], q′) is in str(x), (iii) (q, q′) ∈ pro(y), (iv) (q′, j, q′′) ∈
ann(y) or q′ = q′′ with index(q′) = j, and (v) (q′′,−1, q′′′) ∈ str(y), then
(q, min(index(q′), j, index(q′′′)), q′′′) ∈ ann(x).

Example 6.5. Reconsider the 2GAPT A = 〈Σ, b, Q, δ, q0,F〉 from Example 6.3, as well as the
fragments of the input tree 〈T, V 〉 and the strategy str on 〈T, V 〉 depicted in Figure 2. Assume
that there is a promise pro on str with (q0, q1) ∈ pro(11) telling the automaton that if it executes
(〈0〉, q1) in state q0 at node 1, it should send a copy in state q1 to node 11. Using str(1) and
Condition (4) of annotations, we can now deduce that, in any annotation ann on str and pro, we
have (q0, j, q2) ∈ ann(1) with j the minimum of the indexes of q0, q1, and q2.

Given an annotation tree 〈T, ann〉 on str and pro, a downward trace π induced by str, pro, and
ann is a sequence (x0, q0, t0), (x1, q1, t1), . . . of triples, where x0 = root(T), q0 is the initial state
of A, and for each i ≥ 0, one of the following holds:

(†) ti is (qi, c, qi+1) ∈ str(xi) for some c ∈ [[b]]∪ [〈b〉], (qi, qi+1) ∈ pro(xi ·d) for some d ∈ IN,
and xi+1 = xi · d

20 BONATTI, LUTZ, MURANO, AND VARDI

(‡) ti is (qi, d, qi+1) ∈ ann(xi) for some d ∈ {1, . . . , k}, and xi+1 = xi.
In the first case, index(ti) is the minimal j such that qi+1 ∈ Fj and in the second case, index(ti) = d.
For a downward trace π, index(π) is the minimal index(ti) for all ti occurring infinitely often in π.
Note that a downward trace π can loop indefinitely at a node x ∈ T when, from some point i ≥ 0
on, all the tj , j ≥ i, are elements of ann (and all the xj are x). We say that a downward trace
π satisfies F = {F1, . . . ,Fk} if index(π) is even. Given a strategy str, a promise pro on str, an
annotation ann on str and pro, we say that ann is accepting if all downward traces induced by str,
pro, and ann satisfy F .

Lemma 6.6. A 2GAPT A accepts 〈T, V 〉 iff there exist a strategy str for A on V , a promise pro for
A on str, and an annotation ann for A on str and pro such that ann is accepting.

Proof. Suppose first that A accepts 〈T, V 〉. By Lemma 6.4, there is a strategy str on V and a
promise pro on str which are accepting. By definition of annotations on str and pro, it is obvious
that there exists a unique smallest annotation ann on str and pro in the sense that, for each node x
in T and each annotation ann′, we have ann(x) ⊆ ann′(x). We show that ann is accepting. Let
π = (x0, q0, t0), (x1, q1, t1), . . . be a downward trace induced by str, pro, and ann. It is not hard
to construct a trace π′ = (x′0, q

′
0), (x

′
1, q

′
1), . . . induced by str and pro that is accepting iff π is:

first expand π by replacing elements in π of the form (‡) with the detour asserted by ann, and then
project π on the first two components of its elements. Details are left to the reader.

Conversely, suppose that there exist a strategy str on V , a promise pro on str, and an annotation
ann on str and pro such that ann is accepting. By Lemma 6.4, it suffices to show that str and pro are
accepting. Let π = (x0, q0), (x1, q1), . . . be a trace induced by str and pro. It is possible to construct
a downwards trace π′ induced by str, pro, and ann that is accepting iff π is: whenever the step from
(xi, qi) to (xi+1, qi+1) is such that xi+1 = xi · c for some c ∈ IN, the definition of traces induced
by str and pro ensures that there is a ti = (qi, c, qi+1) ∈ str(xi) such that the conditions from (†)
are satisfied; otherwise, we consider the maximal subsequence (xi, qi), . . . , (xj , qj) of π such that
xj = xi · c for some c ∈ IN, and replace it with (xi, qi), (xj , qj). By definition of annotations,
there is ti = (qi, d, qi+1) ∈ ann(xi) such that the conditions from (‡) are satisfied. Again, we leave
details to the reader.

In the following, we combine the input tree, the strategy, the promise, and the annotation into
one tree 〈T, (V, str, pro, ann)〉. The simplest approach to representing the strategy as part of the
input tree is to additionally label the nodes of the input tree with an element of 2Q×D−b ×Q. However,
we can achieve better bounds if we represent strategies more compactly. Indeed, it suffices to store
for every pair of states q, q′ ∈ Q, at most four different tuples (q, c, q′): two for c ∈ {ε,−1} and
two for the minimal n and maximal n′ such that (q, [n], q′), (q, 〈n′〉, q′) ∈ str(y). Call the set of
all representations of strategies Lstr. We can now define the alphabet of the combined trees. Given
an alphabet Σ for the input tree, let Σ′ denote the extended signature for the combined trees, i.e.,
Σ′ = Σ× Lstr × 2Q×Q × 2Q×{1,...,k}×Q.

Theorem 6.7. Let A be a 2GAPT running on Σ-labeled trees with n states, index k and counting
bound b. There exists a GNPT A′ running on Σ′-labeled trees with 2O(kn2·log k·log b2) states, index
nk, and b-counting constraints such that A′ accepts a tree iff A accepts its projection on Σ.

Proof. Let A = 〈Σ, b, Q, δ, q0,F〉 with F = {F1, . . . ,Fk}. The automaton A′ is the intersection
of three automata A1, A2, and A3. The automaton A1 is a SAFETY GNPT, and it accepts a tree
〈T, (V, str, pro, ann)〉 iff str is a strategy on V and pro is a promise on str. It is similar to the
corresponding automaton in [KSV02], but additionally has to take into account the capability of
2GAPTs to travel upwards. The state set of A1 is Q1 := 2(Q×Q)∪Q. Let P ∈ Q1. Intuitively,

THE COMPLEXITY OF ENRICHED µ-CALCULI 21

(a) pairs (q, q′) ∈ P represent obligations for pro in the sense that if a node x of an input tree
receives state P in a run of A, then (q, q′) is obliged to be in pro(x);

(b) states q ∈ P are used to memorize head(str(y)) of the predecessor y of x.
This behaviour is easily implemented via A1’s transition relation. Using false in the transition func-
tion of A1 and thus ensuring that the automaton blocks when encountering an undesirable situation,
it is easy to enforce Conditions (2) to (3) of strategies, and Condition (3) of promises. The initial
state of A1 is {(q0, q0)}, which together with Condition (3) of promises enforces Condition (1) of
strategies. It thus remains to treat Conditions (1) and (2) of promises. This is again straightforward
using the transition function. For example, if (q, 〈n〉, q′) ∈ str(x), then we can use the conjunct
〈(q, q′), (>,n)〉 in the transition. Details of the definition of A1 are left to the reader. Clearly, the
automaton A1 has 2O(n2) states and counting bound b.

The remaining automata A2 and A3 do not rely on the gradedness of GNPTs. The automaton
A2 is both a SAFETY and FORALL GNPT. It accepts a tree 〈T, (V, str, pro, ann)〉 iff ann is an
annotation. More precisely, A2 checks that all conditions of annotations hold for each node x
of the input tree. The first two conditions are checked locally by analyzing the labels str(x) and
ann(x). The last two conditions require to analyze pro(x), str(y), and ann(y), where y is the
parent of x. To access str(y) ⊆ Q×D−

b ×Q and ann(y) ⊆ Q× {1, . . . , k} ×Q while processing
x, A2 must memorize these two sets in its states. Regarding str(y), it suffices to memorize the
representation from Lstr. The number of such representations is (4b2)n2

, which is bounded by
2O(n2·log b2). There are 2kn2

different annotations, and thus the overall number of states of A2 is
bounded by 2O(kn2·log b2).

The automaton A3 is a FORALL GNPT, and it accepts a tree 〈T, (V, str, pro, ann)〉 iff ann is
accepting. By Lemma 6.6, it thus follows that A′ accepts 〈T, (V, str, pro, ann)〉 iff A accepts 〈T, V 〉.
The automaton A3 extends the automaton considered in [Var98] by taking into account promise trees
and graded moves in strategies.

We construct A3 in several steps. We first define a nondeterministic parity word automaton
(NPW) U over Σ′. An input word to U corresponds to a path in an input tree to A′. We build U
such that it accepts an input word/path if this path gives rise to a downward trace that violates the
acceptance condition F of A. An NPW is a tuple 〈Σ, S,M, s0,F〉, where Σ is the input alphabet,
S is the set of states, M : S → 2S is the transition function, s0 ∈ S is the initial state, and
F = {F1,F2 . . . ,Fk} is a parity acceptance condition. Given a word w = a0a1 . . . ∈ Σω, a run
r = q0q1 · · · of U on w is such that q0 = s0 and qi+1 ∈ M(qi, ai) for all i ≥ 0.

We define U = 〈Σ′, S, M, s0,F ′〉 such that S = (Q × Q × {1, . . . , k}) ∪ {qacc}. Intuitively,
a run of U describes a downward trace induced by str, pro, and ann on the input path. Suppose
that x is the i-th node in an input path to U , r is a run of U on that path, and the i-th state in r is
〈q, qprev, j〉. This means that r describes a trace in which the state of A on the node x is q, while the
previous state at the parent y of x was qprev. Thus, A has executed a transition (〈b〉, q) or ([b], q) to
reach state q at x. For reaching the state qprev at y, A may or may not have performed a detour at y
as described by ann. The j in 〈q, qprev, j〉 is the minimum index of q and any state encountered on
this detour (if any).

We now define the transition function M formally. To this end, let 〈q, qprev, j〉 ∈ S and let
σ = (V (x), str(x), pro(x), ann(x)). To define M(〈q, qprev, j〉, σ), we distinguish between three
cases:

(1) if (qprev, q) 6∈ pro(x), then M(〈q, qprev, j〉, σ) = ∅;
(2) otherwise and if H = {c : (q, c, q) ∈ ann(x)} is non-empty and some member of H has an

odd index, set M(〈q, qprev, j〉, σ) = {qacc};

22 BONATTI, LUTZ, MURANO, AND VARDI

(3) if neither (1) nor (2) apply, then we put 〈q′, q′prev, j
′〉 ∈ M(〈q, qprev, j〉, σ) iff

• (q, c, q′) ∈ str(x), with c ∈ 〈〈b〉〉 ∪ [[b]], q′prev = q and j′ = index(q′); or
• (q, d, q′prev) ∈ ann(x) for some d, (q′prev, c, q

′) ∈ str(x) for some c ∈ 〈〈b〉〉 ∪ [[b]], and
j′ = min(d, index(q′)).

In addition, M(qacc, σ) = {qacc}, for all σ ∈ Σ′. For (1), note that if (qprev, q) 6∈ pro(x), then
pro does not permit downwards traces in which A switches from qprev to q when moving from the
parent of x to x. Thus, the current run of U does not correspond to a downward trace, and U does
not accept. The purpose of (2) is to check for traces that “get caught” at a node.

The initial state s0 of U is defined as 〈q0, q0, `〉, where ` is such that q0 ∈ F`. Note that
the choice of the second element is arbitrary, as the local promise at the root of the input tree
is irrelevant. Finally, the parity condition is F ′ = {F ′1,F ′2, . . . ,F ′k+1}, where F ′1 = ∅, F ′2 =
Q×Q×{1}∪{qacc} and for each ` with 2 < ` ≤ k +1, we have F ′` = Q×Q×{`− 1}. Thus, U
accepts a word if this word corresponds to a path of the input tree on which there is a non-accepting
trace.

In order to get A3, we co-determinize the NPW U and expand it to a tree automaton, i.e., a
FORALL GNPT on Σ′. That is, we first construct a deterministic parity word automaton Ũ that
complements U , and then replace a transition M̃(q, σ) = q′ in Ũ by a transition

Mt(q, σ) = {〈(¬θq′), (≤, 0)〉}
in A3 where the states of Ũ are encoded by some set Y of variables and for every state q′, the formula
θq′ ∈ B(Y) holds only in the subset of Y that encodes q′. By [Saf89, Tho97], the automaton Ũ has
(nk)nk ≤ 2nk·log nk states and index nk, thus so does A3.

By Lemma 6.2, we can intersect the two SAFETY automata A1 and A2 obtaining a SAFETY

automaton with 2O(kn2·log b2) states and counting bound b. Moreover, by Lemma 6.1, the obtained
SAFETY automaton can be intersected with the FORALL automaton A3 yielding the desired GNPT
A′ with 2O(kn2·log k·log b2) states, counting bound b, and index nk.

6.3. Emptiness of GNPTs. By extending results of [KV98, KVW00, KSV02], we provide an al-
gorithm for deciding emptiness of GNPTs. The general idea is to translate GNPTs into alternating
(non-graded) parity automata on words, and then to use an existing algorithm from [KV98] for
deciding emptiness of the latter.

A singleton-alphabet GNPT on full ω-trees (ω-1GNPT) is a GNPT that uses a singleton alpha-
bet {a} and admits only a single input tree 〈Tω, V 〉, where Tω is the full ω-tree IN+ and V labels
every node with the only symbol a. Our first aim is to show that every GNPT can be converted
into an ω-1GNPT such that (non)emptiness is preserved. We first convert to a 1GNPT, which is a
single-alphabet GNPT.

Lemma 6.8. Let A = 〈Σ, b, Q, δ, q0,F〉 be a GNPT. Then there is a 1GNPT A′ = 〈{a}, b, Q′, δ′, q′0,F ′〉
with L(A) = ∅ iff L(A′) = ∅ and |Q′| ≤ |Q| × |Σ|+ 1.

Proof. Let Q ⊆ 2Y . We may assume w.l.o.g. that Σ ⊆ 2Z for some set Z with Z ∩ Y = ∅. Now
define the components of A′ as follows:

• Q′ = {{s}} ∪ {q ∪ σ, | q ∈ Q ∧ σ ∈ Σ} ⊆ 2Y ′ , where Y ′ = Y] Z] {s};
• q′0 = {s};
• δ′({s}, a) = {〈true, (≤, 1)〉, 〈∧y∈q0

y ∧∧
y∈Y \q0

¬y, (>, 0)〉, 〈s, (≤, 0)〉};
• δ′(q, a) = δ(q ∩ Y, q ∩ Z) ∪ {〈s, (≤, 0)〉} for all q ∈ Q with q 6= {s};
• F ′ = {F ′1, . . . ,F ′k} with F ′i = {q ∈ Q′ | q ∩Q ∈ Fi} if F = {F1, . . . ,Fk}.

THE COMPLEXITY OF ENRICHED µ-CALCULI 23

It is easy to see that A accepts 〈T, V 〉 iff A′ accepts 〈T ′, V ′〉, where T ′ is obtained from T by
adding an additional root, and V ′ assigns the label a to every node in T ′. Intuitively, the additional
root enables A′ to “guess” a label at the root of the original tree. Then, the label will be guessed
iteratively.

In the next step, we translate to ω-1GNPTs.

Lemma 6.9. Let A = 〈{a}, b, Q, δ, q0,F〉 be a 1GNPT. Then there exists an ω-1GNPT
A′ = 〈{a}, b, Q′, δ′, q0,F ′〉 such that L(A) = ∅ iff L(A′) = ∅ and |Q′| = |Q|+ 1.

Proof. Define the components of A′ as follows:
• Q′ = Q ∪ {{⊥}} ⊆ 2Y ′ , where Y ′ = Y] {⊥};
• if δ(q, a) = {〈θ1, ξ1〉, . . . , 〈θk, ξk〉}, set δ′(q, a) = {〈θ1 ∧ ¬⊥, ξ1〉, . . . , 〈θk ∧ ¬⊥, ξk〉}, for

all q ∈ Q with ⊥ /∈ q;
• δ′(q, a) = {〈¬⊥, (≤, 0)〉} for all q ∈ Q with ⊥ ∈ q.
• F ′ = {F ′1, . . . ,F ′k} with F ′1 = F1, and F ′i = Fi ∪ {q ∈ Q′ | ⊥ ∈ q}, for 2 ≤ i ≤ k, if
F = {F1, . . . ,Fk}.

It is easy to see that L(A) 6= ∅ iff A′ accepts 〈Tω, V 〉. Accepting runs can be translated back and
forth. When going from runs of A to runs of A′, this involves of the children of each node with
nodes labeled {⊥}.

We are now ready to translate GNPTs to alternating word automata. A single-alphabet alter-
nating parity word automaton (1APW) is a tuple A = 〈{a}, Q, δ, q0,F〉, where {a} is the alphabet,
Q, q0, and F are as in FEAs, and δ : Q × {a} → B+(Q). There is only a single possible input to
a 1APW, namely the infinite word aaa · · · . Intuitively, if A is in state q on the i-th position of this
word and δ(q, a) = q′ ∨ (q ∧ q′′), then A can send to position i + 1 either a copy of itself in state q′
or one copy in state q and one in state q′′. The input word is accepted iff there is an accepting run of
A, where a run is a Q-labeled tree 〈Tr, r〉 such that

• r(root(Tr)) = q0;
• for all y ∈ Tr with r(y) = q and δ(q, a) = θ, there is a (possibly empty) set S ⊆ Q such

that S satisfies θ and for all q′ ∈ S, there is j ∈ IN such that y · j ∈ Tr and r(y · j) = q′.
As for FEAs, a run 〈Tr, r〉 is accepting if all its infinite paths satisfy the acceptance condition.

For an ω-1GNPT A = 〈{a}, b, Q, δ, q0,F〉, q ∈ Q, and P ⊆ Q, the function is motherA(q, P)
returns true if there is an infinite word t ∈ Pω that satisfies the counting constraint δ(q, a), and false
otherwise.

Lemma 6.10. For every ω-1GNPT A = 〈{a}, b, Q, δ, q0,F〉, the 1APW A′ = 〈{a}, Q, δ′, q0,F〉 is
such that L(A) = ∅ iff L(A′) = ∅, where for all q ∈ Q,

δ′(q, a) =
∨

P⊆Q s.t. is motherA(q,P)

∧

q∈P

q.

Proof. (sketch) First assume that 〈Tω, V 〉 ∈ L(A). Then there exists an accepting run 〈Tω, r〉 of A
on 〈Tω, V 〉. It is not difficult to verify that 〈Tω, r〉 is also an accepting run of A′. Conversely, assume
that aω ∈ L(A′). Then there is an accepting run 〈Tr, r〉 of A′. We define an accepting run 〈Tω, r′〉
of A on 〈Tω, V 〉 by inductively defining r′. Along with r′, we define a mapping τ : Tω → Tr such
that r′(x) = r(τ(x)) for all x ∈ Tω. To start, set r′(root(Tω)) = q0 and τ(root(Tω)) = root(Tr).
For the induction step, let x ∈ Tω such that r′(y) is not yet defined for the successors y of x. Since
〈Tr, r〉 is a run of A′ and by definition of δ′, there is a P ⊆ Q such that (i) is motherA(r(τ(x)), P)
and (ii) for all q ∈ P , there is a successor y of τ(x) in Tr with r(y) = q. By (i), there is a word

24 BONATTI, LUTZ, MURANO, AND VARDI

t = q1q2 · · · ∈ Pω that satisfies the counting constraint δ(r(τ(x)), a) = δ(r′(x), a). For all i ≥ 1,
define r′(x · i) = qi and set τ(x · i) to some successor y of τ(x) in Tr such that r(y) = qi (which
exists by (ii)). It is not hard to check that 〈Tω, r′〉 is indeed an accepting run of A on 〈Tω, V 〉.

For a 1APW A = 〈{a}, Q, δ, q0,F〉, q ∈ Q, and P ⊆ Q, the function is motherA(q, P) returns
true if P satisfies the Boolean formula δ(q, a), and false otherwise.

Since the transition function of the automaton A′ from Lemma 6.10 is of size exponential in
the number of states of the ω-1GNPT A, we should not compute A′ explicitly. Indeed, this is not
necessary since all we need from A′ is access toF and is motherA′ and, as stated in the next lemma,
is motherA′ coincides with is motherA. The lemma is an immediate consequence of the definition
of the 1APW in Lemma 6.10.

Lemma 6.11. Let A and A′ be as in Lemma 6.10, with state set Q. Then is motherA = is motherA′ .

To decide the emptiness of 1APWs, we use the algorithm from [KV98]. It is a recursive pro-
cedure that accesses the transition function of the 1APW only via is mother. If started on a 1APW
with n states and index k, it makes at most 2O(k log n) calls to is mother and performs at most
2O(k log n) additional steps. To analyze its runtime requirements, we first determine the complexity
of computing is mother.1

Lemma 6.12. Let A = 〈{a}, b, Q, δ, q0,F〉 be an ω-1GNPT with n states and counting bound b.
Then is motherA can be computed in time bO(log n).

Proof. Assume that we want to check whether is motherA(q, P), for some q ∈ Q and P ⊆ Q. Let
θ1, . . . , θk be all formulas occurring in C := δ(q, a). We construct a deterministic Büchi automaton
A′ = 〈Σ′, Q′, q′0, δ

′, F ′〉 on infinite words that accepts precisely those words t ∈ Pω that satisfy C:
• Σ′ = P ;
• Q′ = {0, . . . , b}k;
• q′0 = {0}k;
• δ′((i1, . . . , ik), p) is the vector (j1, . . . , jk), where for all h ∈ {1, . . . , k}, we have

jh = min{b, ih + 1} if p ∈ Σ′ satisfies θh, and jh = ih otherwise;
• F ′ consists of those tuples (i1, . . . , ik) such that for all h ∈ {1, . . . , k},

(1) there is no 〈θh, (≤, r)〉 ∈ C with r < ih;
(2) for all 〈θh, (>, r)〉 ∈ C, we have ih ≥ r.

By definition of GNPTs, the cardinality of C is bounded by log n. Thus, A′ has blog n states. It
remains to note that the emptiness problem for deterministic Büchi word automata (is NLOGSPACE-
complete [VW94] and) can be solved in linear time [Var07].

Now for the runtime of the algorithm. Let A be a GNPT with n states, counting bound b, and
index k. To decide emptiness of A, we convert A into an ω-1GNPT A′ with n + 1 states, counting
bound b, and index k, and then into a 1APW A′′ with n + 1 states and index k. By Lemma 6.12, we
obtain the following result.

Theorem 6.13. Let A = 〈Σ, b, Q, δ, q0,F〉 be a GNPT with |Q| = n, and index k. Then emptiness
of A can be decided in time (b + 2)O(k·log n).

1We remark that the analogous Lemma 1 of [KSV02] is flawed because it considers only trees of finite outdegree.

THE COMPLEXITY OF ENRICHED µ-CALCULI 25

6.4. Wrapping Up. Finally, we are ready to prove Theorem 4.2, which we restate here for conve-
nience.

Theorem 4.2. The emptiness problem for a 2GAPT A = 〈Σ, b, Q, δ, q0,F〉 with n states and index
k can be solved in time (b + 2)O(n2·k2·log k·log b2).

Proof. By Theorem 6.7, we can convert A into a GNPT A′ with 2O(kn2·log k·log b2) states, index nk,
and counting bound b. Thus, Theorem 6.13 yields the desired result.

A matching EXPTIME lower bound is inherited from nongraded, one-way alternating tree au-
tomata.

7. CONCLUSION

We have studied the complexity of µ-calculi enriched with inverse programs, graded modalities,
and nominals. Our analysis has resulted in a rather complete picture of the complexity of such
logics. In particular, we have shown that only the fully enriched µ-calculus is undecidable, whereas
all its fragments obtained by dropping at least one of the enriching features inherit the attractive
computational behavior of the original, non-enriched µ-calculus.

From the perspective of the description logic OWL, the picture is as follows. Undecidability of
the fully enriched µ-calculus means that OWL extended with fixpoints is undecidable. The decid-
able µ-calculi identified in this paper give rise to natural fragments of OWL that remain decidable
when enriched with fixpoints. Orthogonal to the investigations carried out in this paper, it would
be interesting to understand whether there are any second-order features that can be added to OWL
without losing decidability. In particular, decidability of OWL extended with transitive closure is
still an open problem.

Acknowledgements. We are grateful to Orna Kupferman and Ulrike Sattler for helpful discussions
of [SV01, KSV02].

REFERENCES

[BHS02] F. Baader, I. Horrocks, and U. Sattler. Description logics for the semantic web. KI –
Künstliche Intelligenz, 3, 2002.

[BM+03] F. Baader, D.L. McGuiness, D. Nardi, and P. Patel-Schneider. The Description Logic
Handbook: Theory, implementation and applications. Cambridge Univ. Press, 2003.

[BC96] G. Bhat and R. Cleaveland. Efficient local model-checking for fragments of the modal
mu-calculus. In Proc. of TACAS’96, LNCS 1055, pages 107–126, 1996.

[BP04] P.A. Bonatti and A. Peron. On the undecidability of logics with converse, nominals, re-
cursion and counting. Artificial Intelligence, Vol. 158(1), pages 75–96, 2004.

[BS06] J. Bradfield and C. Stirling. Modal µ-calculi, Handbook of Modal Logic (Blackburn,
Wolter, and van Benthem, eds.), pages 722–756, Elsevier, 2006.

[CGL99] D. Calvanese, G. De Giacomo, and M. Lenzerini. Reasoning in expressive description
logics with fixpoints based on automata on infinite trees. In Proc. of the 16th Int. Joint
Conf. on Artificial Intelligence (IJCAI’99), pages 84–89, 1999.

[EJ91] E. A. Emerson and C. S. Jutla. Tree automata, Mu-Calculus and determinacy. In Proc.
of the 32nd Annual Symposium on Foundations of Computer Science (FOCS’01), IEEE
Computer Society Press, pages 368–377, 1991.

[FL79] M.J. Fischer and R.E. Ladner. Propositional dynamic logic of regular programs. Journal
of Computer and Systems Sciences, Vol.18, pages 194–211, 1979.

26 BONATTI, LUTZ, MURANO, AND VARDI

[Jut95] C.S. Jutla. Determinization and memoryless winning strategies. Information and Compu-
tation, Vol. 133(2), pages 117–134, 1997.

[Koz83] D. Kozen. Results on the propositional µ-calculus. Theoretical Computer Science, Vol.
27, pages 333–354, 1983.

[KSV02] O. Kupferman, U. Sattler, and M.Y. Vardi. The complexity of the Graded µ-calculus. In
Proc. of the 18th CADE, LNAI 2392, pages 423–437, 2002. Extended version at URL
http://www.cs.huji.ac.il/ ornak/publications/cade02.pdf

[KV98] O. Kupferman and M.Y. Vardi. Weak alternating automata and tree automata emptiness.
Proc. of the 30th STOC, ACM, pages 224–233, 1998.

[KVW00] O. Kupferman, M.Y. Vardi, and P. Wolper. An automata-theoretic approach to branching-
time model checking. Journal of the ACM, Vol. 47(2), pages 312–360, 2000.

[Mos84] A. W. Mostowski. Regular expressions for infinite trees and a standard form of automata.
In Fifth Symposium on Computation Theory, LNCS 208, pages 157–168, 1984.

[MS87] D.E. Muller and P.E. Schupp. Alternating automata on infinite trees. Theoretical Com-
puter Science, Vol. 54, pages 267–276, 1987.

[Saf89] S. Safra. Complexity of automata on infinite objects. PhD thesis, Weizmann Institute of
Science, Rehovot, Israel, 1989.

[SV01] U. Sattler and M. Y. Vardi. The hybrid mu-calculus. In Proc. of IJCAR’01, LNAI 2083,
pages 76–91. Springer Verlag, 2001.

[SE89] R. S. Streett and E. A. Emerson. An automata theoretic decision procedure for the propo-
sitional mu-calculus. Information and Computation, Vol. 81(3), pages 249–264, 1989 .

[Tho90] W. Thomas. Automata on Infinite Objects. In Handbook of Theoretical Computer Science,
pages 133–191, 1990.

[Tho97] W. Thomas. Languages, automata, and logic. In Handbook of Formal Language Theory,
volume III, pages 389–455, G. Rozenberg and A. Salomaa editors, 1997.

[Var98] M.Y. Vardi. Reasoning about the Past with Two-Way Automata. In Proc. of ICALP’98,
LNCS 1443, pages 628–641, 1998.

[Var07] M.Y. Vardi. Automata-Theoretic Model Checking Revisited In Proc. of the 8th VMCAI,
LNAI 4349, pages 137-150, 2007..

[VW94] M.Y. Vardi and P. Wolper. Reasoning about Infinite Computations. Information and Com-
putation, Vol. 115(1), pages 1–37, 1994.

a Università di Napoli “Federico II”, Dipartimento di Scienze Fisiche, 80126 Napoli, Italy
e-mail address: bonatti@na.infn.it

b TU Dresden, Institute for Theoretical Computer Science, 01062 Dresden, Germany
e-mail address: clu@tcs.inf.tu-dresden.de

c Università di Napoli “Federico II”, Dipartimento di Scienze Fisiche, 80126 Napoli, Italy
e-mail address: murano@na.infn.it

d Microsoft Research and Rice University, Dept. of Computer Science, TX 77251-1892, USA
e-mail address: vardi@cs.rice.edu

