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A main distinction in system modeling is between closed systems, whose be-
havior is totally determined by the program, and open systems, which are sys-
tems where the program interacts with an external environment [HP85, Hoa85].
In order to check whether a closed system satisfies a required property, we trans-
late the system into a formal model (such as a transition system), specify the
property with a temporal-logic formula (such as CTL [CE81], CTL∗ [EH86], and
µ-calculus [Koz83]), and check formally that the model satisfies the formula. This
process is called model checking ([CE81, QS81]). Checking whether an open sys-
tem satisfies a required temporal logic formula is much harder, as one has to
consider the interaction of the system with all possible environments.

In this paper, we consider open systems which are modeled in the framework
introduced by Kupferman, Vardi, and Wolper. Concretely, in [KV96, KVW01],
an open finite-state system is described by an extended transition system called
a module, whose set of states is partitioned into system states (where the system
makes a transition) and environment states (where the environment makes a
transition). Given a module M describing the system to be verified and a tem-
poral logic formula ϕ specifying the desired behavior of the system, the problem
of model checking a module, called module checking, asks whether for all possible
environments M satisfies ϕ. In particular, it might be that the environment does
not enable all the external choices. Module checking thus involves not only check-
ing that the full computation tree obtained by unwinding M (which corresponds
to the interaction of M with a maximal environment) satisfies the specification
ϕ, but also that every tree obtained from it by pruning children of environment
nodes (this corresponds to different environment choices) satisfies ϕ. For exam-
ple, consider an ATM machine that allows customers to deposit money, withdraw
money, check balance, etc. The machine is an open system and an environment
for it is a subset of the set of all possible infinite lines of customers, each with
their own plans. Accordingly, there are many different possible environments to
consider.

The finite-state system module checking problem forCTL andCTL∗ formulas
has been investigated in [KV96, KVW01, MNP08], while for the propositional
µ-calculus ones it has been investigated in [FM07, FMP08]. In all these cases,
it has been shown that module checking is exponentially harder than model
checking. However, an interesting aspect of those results is that they bear on the
corresponding automata-based results for closed systems [KVW00], which gives
the hope for practical implementations and applications. The finite-state module
checking idea has been also extended to environments with imperfect informa-
tion [KV97]. In this framework, every state of the module is a composition of
visible and invisible variables, where the latter are hidden from the environment.
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While a composition of a module M with an environment with perfect infor-
mation corresponds to arbitrary disabling of transitions in M, the composition
of M with an environment with imperfect information is such that whenever
two computations of the system differ only in the values of invisible variables
along them, the disabling of transitions along them coincide. In [KV97], it has
been shown that CTL and CTL∗ module checking with imperfect information is
harder than module checking with perfect information.

In this paper, we consider the extension of the module checking idea to
open pushdown systems. These are pushdown systems in which the set of con-
figurations are partitioned (in accordance with the control state and the sym-
bol on the top of the stack) into a set of system configurations and a set of
environment configurations. As in the case of finite-state systems, pushdown
module checking is much harder than pushdown model checking for both CTL,
CTL∗, and µ-calculus. Indeed, it turns out that pushdown module checking is
2Exptime-complete for CTL [BMP05, BMP] and µ-calculus[FMP07, FMP08],
and 3Exptime-complete for CTL∗ [BMP05, BMP]. For the upper bounds, we
exploit the standard automata-theoretic approach. while the lower bound for
CTL (resp.,CTL∗) is shown by a technically non-trivial reduction from the word
problem for Expspace–bounded (resp., 2Expspace–bounded) alternating Tur-
ing Machines.

We further extend the pushdown module checking problem by consider-
ing environments with imperfect information about the system’s control state
and pushdown store content. Like in the finite-state case, the control states
are assignments to Boolean control variables, some of which are visible and
some of which are not. Similarly, symbols of the pushdown store are assign-
ments to Boolean visible and invisible pushdown store variables. In presence of
imperfect information, it turns out that CTL pushdown module-checking be-
comes undecidable, and that the undecidability relies upon hiding information
about the pushdown store [AMV07]. Indeed, CTL pushdown module checking
with imperfect state information but visible pushdown store is decidable and
2Exptime-complete. The decidability also holds for more expressive logics. In-
deed, pushdown module-checking is 2Exptime-complete w.r.t the propositional
µ-calculus and the graded µ-calculus [KSV02]1 and 3Exptime-complete w.r.t
CTL∗ [ALMS08]. All the above lower bounds follow from the known perfect in-
formation case. For the upper bounds, it is possible to use an automata-theoretic
approach by reducing the problem to the emptiness problem of a semi-alternating
pushdown tree automaton. These are alternating pushdown tree automata that
behave deterministically on the pushdown store content.
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1 The graded µ-calculus extends the propositional µ-calculus by allowing graded
modalities, which enable statements about the number of successors of a state (see
also [BLMV06, BLMV08, BMM08]).
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