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In system modeling, a main distinction is between closed systems, whose behavior is totally
determined by the program, and open systems, which are systems where the program interacts
with an external environment [HP85, Hoa85]. In order to check whether a closed system satisfies
a required property, we translate the system into a formal model (such as a transition system),
specify the property with a temporal-logic formula (such as CTL [CE81], CTL∗ [EH86], and µ-
calculus [Koz83]), and check formally that the model satisfies the formula. This process is called
model checking ([CE81, QS81]). Checking whether an open system satisfies a required temporal
logic formula is much harder, as one has to consider the interaction of the system with all possible
environments.

We consider open systems that are modeled in the framework introduced by Kupferman, Vardi,
and Wolper. Concretely, in [KV96, KVW01], an open finite-state system is described by an extended
transition system called a module, whose set of states is partitioned into system states (where the
system makes a transition) and environment states (where the environment makes a transition).
Given a module M describing the system to be verified and a temporal logic formula ϕ specifying
the desired behavior of the system, the problem of model checking a module, called module checking,
asks whether for all possible environments M satisfies ϕ. In particular, it might be that the
environment does not enable all the external choices. Module checking thus involves not only
checking that the full computation tree obtained by unwinding M (which corresponds to the
interaction of M with a maximal environment) satisfies the specification ϕ, but also that every
tree obtained from it by pruning children of environment nodes (this corresponds to different
environment choices) satisfies ϕ.

The finite-state system module checking problem for CTL and CTL∗ formulas has been in-
vestigated in [KV96, KVW01], while for propositional µ-calculus ones it has been investigated
in [FM07]. In all these cases, it has been shown that module checking is exponentially harder than
model checking. However, an interesting aspect of those results is that they bear on the corre-
sponding automata-based results for closed systems [KVW00], which gives the hope for practical
implementations and applications. The finite-state module checking idea has been also extended to
environments with imperfect information [KV97]. In this framework, every state of the module is
a composition of visible and invisible variables, where the latter are hidden from the environment.
While a composition of a module M with an environment with perfect information corresponds
to arbitrary disabling of transitions in M, the composition of M with an environment with im-
perfect information is such that whenever two computations of the system differ only in the values
of invisible variables along them, the disabling of transitions along them coincide. In [KV97], it
has been shown that CTL and CTL∗ module checking with imperfect information is harder than
module checking with perfect information.

In this extended abstract, we consider the extension of the module checking idea to open
pushdown systems. Formally we address the problem of model-checking open-pushdown systems,
pushdown module checking, for short. In open pushdown systems the set of configurations is parti-
tioned (in accordance with the control state and the symbol on the top of the stack) into a set of
system configurations and a set of environment configurations. As in the case of finite-state systems,
pushdown module checking is much harder than pushdown model checking for bothCTL andCTL∗.
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Indeed, it turns out that pushdown module checking is 2Exptime-complete forCTL [BMP05], and
3Exptime-complete forCTL∗ [BMP05]. For the upper bounds, we exploit the standard automata-
theoretic approach. while the lower bound for CTL (resp., CTL∗) is shown by a technically non-
trivial reduction from the word problem for Expspace–bounded (resp., 2Expspace–bounded)
alternating Turing Machines. We further extend the pushdown module checking problem by con-
sidering environments with imperfect information. In this new setting, we show thatCTL pushdown
module-checking becomes undecidable, and that the undecidability relies upon hiding information
about the pushdown store [AMV07].
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