Preface 0000	Minimal Model Quantifiers in CTL*	Main results 000000		

Branching-Time Temporal Logics with Minimal Model Quantifiers

Fabio Mogavero Aniello Murano

Universitá degli Studi di Napoli "Federico II", Italy http://people.na.infn.it/~{mogavero,murano}

> DLT 2009 Stuttgart, Germany June 30 - July 3, 2009

> > - * ロ ト * @ ト * 言 ト * 言 * 三 * の < @

Fabio Mogavero, Aniello Murano

Universitá degli Studi di Napoli "Federico II", Italy http://people.na.infn.it/~{mogavero, murano}

Preface			
0000			

Let S be a system and P a desired behavior (specification).

Two very challenging problems!

- Model Checking: is S correct w.r.t. P?
- Satisfiability: is P a correct specification?

To answer to these questions, formal methods are used.

- S can be modelled by a labeled transition graph \mathcal{K} (Kripke structure).
- P can be expressed as a temporal logic formula φ .

Then,

- Model Checking: $\mathcal{K} \models \varphi$?
- Satisfiability: is there a \mathcal{K} such that $\mathcal{K} \models \varphi$?

Fabio Mogavero, Aniello Murano

Preface			
0000			

Let S be a system and P a desired behavior (specification).

Two very challenging problems!

- Model Checking: is S correct w.r.t. P?
- Satisfiability: is P a correct specification?

To answer to these questions, formal methods are used.

- S can be modelled by a labeled transition graph \mathcal{K} (Kripke structure).
- P can be expressed as a temporal logic formula φ .

Then,

- Model Checking: $\mathcal{K} \models \varphi$?
- Satisfiability: is there a \mathcal{K} such that $\mathcal{K} \models \varphi$?

Fabio Mogavero, Aniello Murano

Preface			
0000			

Let S be a system and P a desired behavior (specification).

Two very challenging problems!

- Model Checking: is S correct w.r.t. P?
- Satisfiability: is P a correct specification?

To answer to these questions, formal methods are used.

- S can be modelled by a labeled transition graph \mathcal{K} (Kripke structure).
- P can be expressed as a temporal logic formula φ .

Then,

- Model Checking: $\mathcal{K} \models \varphi$?
- Satisfiability: is there a \mathcal{K} such that $\mathcal{K} \models \varphi$?

不得た 不足た 不足

Preface			
0000			

Let S be a system and P a desired behavior (specification).

Two very challenging problems!

- Model Checking: is S correct w.r.t. P?
- Satisfiability: is P a correct specification?

To answer to these questions, formal methods are used.

- S can be modelled by a labeled transition graph \mathcal{K} (Kripke structure).
- P can be expressed as a temporal logic formula φ .

Then,

- Model Checking: $\mathcal{K} \models \phi$?
- Satisfiability: is there a \mathcal{K} such that $\mathcal{K} \models \varphi$?

周 ト イ ヨ ト イ ヨ

Preface				
0000	00000000	000000		

Formal languages for systems specifications

Temporal logic: description of the temporal ordering of events!

Two main families of temporal logics:

- Linear-Time Temporal Logics (LTL)
 - Each moment in time has a unique possible future.
 - Formulas can be interpreted over linear sequences.
 - Useful for hardware specification.
- Branching-Time Temporal Logics (PML, CTL, CTL+, and CTL*)
 - Each moment in time may split into various possible future.
 - Formulas can be interpreted on infinite trees.
 - Useful for software specification.

・ロ・・聞・・聞・・聞・ ・日・

Fabio Mogavero, Aniello Murano

Universitá degli Studi di Napoli "Federico II", Italy http://people.na.infn.it/~{mogavero, murano]

Preface				
0000	00000000	000000		

Formal languages for systems specifications

Temporal logic: description of the temporal ordering of events!

Two main families of temporal logics:

- Linear-Time Temporal Logics (LTL)
 - Each moment in time has a unique possible future.
 - Formulas can be interpreted over linear sequences.
 - Useful for hardware specification.
- Branching-Time Temporal Logics (PML, CTL, CTL+, and CTL*)
 - Each moment in time may split into various possible future.
 - Formulas can be interpreted on infinite trees.
 - Useful for software specification.

Fabio Mogavero, Aniello Murano

Universitá degli Studi di Napoli "Federico II", Italy http://people.na.infn.it/~{mogavero, murano]

周レイラレイラ

Preface ○OOOO	Minimal Model Quantifiers in CTL*	Main results		

Computational complexity

	M.C. (Formula)	M.C. (Program)	Sat.
LTL	PSPACE-COMPLETE	NLOGSPACE-COMPLETE	PSPACE-COMPLETE
PML	РТіме	NLOGSPACE	PSPACE-COMPLETE
CTL	PTIME-COMPLETE	NLOGSPACE-COMPLETE	EXPTIME-COMPLETE
CTL+	Δ^p_2 -Complete	NLOGSPACE-COMPLETE	2ExpTime-Complete
CTL*	PSPACE-COMPLETE	NLOGSPACE-COMPLETE	2EXPTIME-COMPLETE

Table: Computational complexity of Model Checking and Satisfiability.

Fabio Mogavero, Aniello Murano

Universitá degli Studi di Napoli "Federico II", Italy http://people.na.infn.it/~{mogavero, murano}

<ロト < 回 > < 回 > < 回 > < 回 >

Preface ○○○●		Minimal Model Quantifiers in CTL*	Main results 000000		
Motiva	tion				

Two very challenging issues with temporal logic.

- To introduce techniques that automatically allow to select small critical parts of the system to be successively verified.
- To extend the expressiveness of classical temporal logics to model more complex specifications.

Our proposal is to extend CTL* with Minimal Model Quantifiers.

We use a formula to both select and verify the system part of interest.

We call this idea the Extract-Verify Paradigm.

- * ロ * * @ * * 言 * * 言 * のへぐ

Universitá degli Studi di Napoli "Federico II", Italy http://people.na.infn.it/~{mogavero, murano]

Preface ○○○●		Minimal Model Quantifiers in CTL*	Main results		
Motiv	vation				

Two very challenging issues with temporal logic.

- To introduce techniques that automatically allow to select small critical parts of the system to be successively verified.
- To extend the expressiveness of classical temporal logics to model more complex specifications.

Our proposal is to extend CTL* with Minimal Model Quantifiers.

We use a formula to both select and verify the system part of interest.

We call this idea the *Extract-Verify Paradigm*.

Fabio Mogavero, Aniello Murano

Universitá degli Studi di Napoli "Federico II", Italy http://people.na.infn.it/~{mogavero, murano]

< 同 > < 三 > < 三 >

Preface 0000	Outline	Minimal Model Quantifiers in CTL*	Main results		

- Syntax and Semantics
- Properties

2 Main results

- Model Checking
- Satisfiability

3 Open problems

4 Conclusion

5 References

Fabio Mogavero, Aniello Murano

Universitá degli Studi di Napoli "Federico II", Italy http://people.na.infn.it/~{mogavero, murano}

Preface 0000	Outline	Minimal Model Quantifiers in CTL*	Main results		

- Syntax and Semantics
- Properties
- 2 Main results
 - Model Checking
 - Satisfiability

4 Conclusion

Fabio Mogavero, Aniello Murano

Universitá degli Studi di Napoli "Federico II", Italy http://people.na.infn.it/~{mogavero, murano}

Preface 0000	Outline	Minimal Model Quantifiers in CTL*	Main results		

- Syntax and Semantics
- Properties

2 Main results

- Model Checking
- Satisfiability

3 Open problems

4 Conclusion

5 References

Fabio Mogavero, Aniello Murano

Universitá degli Studi di Napoli "Federico II", Italy http://people.na.infn.it/~{mogavero, murano}

Preface 0000	Outline	Minimal Model Quantifiers in CTL*	Main results		

- Syntax and Semantics
- Properties
- 2 Main results
 - Model Checking
 - Satisfiability
- 3 Open problems
- 4 Conclusion

Fabio Mogavero, Aniello Murano

Universitá degli Studi di Napoli "Federico II", Italy http://people.na.infn.it/~{mogavero,murano}

Preface 0000	Outline	Minimal Model Quantifiers in CTL*	Main results		

- Syntax and Semantics
- Properties
- 2 Main results
 - Model Checking
 - Satisfiability
- 3 Open problems
- 4 Conclusion

Fabio Mogavero, Aniello Murano

Universitá degli Studi di Napoli "Federico II", Italy http://people.na.infn.it/~{mogavero, murano}

		Minimal Model Quantifiers in CTL*					
		• 000 00000					
Suntay and Semantice							

Definition

MCTL* state (ϕ) and path (ψ) formulas are built inductively as follows:

 $\begin{array}{c} \bullet \end{array} \phi ::= \rho \mid \neg \phi \mid \phi \land \phi \mid \phi \lor \phi \mid \phi \supseteq \phi \mid \phi \land \phi \mid E\psi \mid A\psi, \\ \bullet \end{array}$ $\begin{array}{c} \bullet \end{array} \psi ::= \phi \mid \neg \psi \mid \psi \land \psi \mid \psi \lor \psi \mid X\psi \mid \tilde{X}\psi \mid \psi \cup \psi \mid \psi \exists \psi. \end{array}$

MCTL* extends CTL* by adding the quantifiers Ξ and Λ . MCTL+: MCTL* without nesting of temporal operators [No: pU(Xq)]. MCTL: MCTL+ without comb. of temporal operators [No: $(pUq) \land (rRs)$]. MPML: MCTL with next-time temporal operators only [No: pUq].

▲□▶▲圖▶▲≣▶▲≣▶ ≡ めんの

Fabio Mogavero, Aniello Murano

Universitá degli Studi di Napoli "Federico II", Italy http://people.na.infn.it/~{mogavero, murano]

		Minimal Model Quantifiers in CTL*					
		• 000 00000					
Suntay and Semantice							

Definition

MCTL* state (ϕ) and path (ψ) formulas are built inductively as follows:

 $2 \psi ::= \phi | \neg \psi | \psi \land \psi | \psi \lor \psi | X \psi | \tilde{X} \psi | \psi U \psi | \psi R \psi.$

MCTL* extends CTL* by adding the quantifiers Ξ and Λ .

MCTL+: MCTL* without nesting of temporal operators [No: $p \cup (Xq)$]. MCTL: MCTL+ without comb. of temporal operators [No: $(p \cup q) \land (r R s)$]. MPML: MCTL with next-time temporal operators only [No: $p \cup q$].

Fabio Mogavero, Aniello Murano

Universitá degli Studi di Napoli "Federico II", Italy http://people.na.infn.it/~{mogavero, murano]

・ロト (過) () () () () ()

		Minimal Model Quantifiers in CTL*					
		• 000 00000					
Suntay and Semantice							

Definition

MCTL* state (ϕ) and path (ψ) formulas are built inductively as follows:

 $\blacksquare \phi ::= p | \neg \phi | \phi \land \phi | \phi \lor \phi | \phi \Xi \phi | \phi \land \phi | E \psi | A \psi,$

2 $\psi ::= \phi | \neg \psi | \psi \land \psi | \psi \lor \psi | X \psi | \tilde{X} \psi | \psi U \psi | \psi R \psi.$

MCTL* extends CTL* by adding the quantifiers Ξ and Λ . MCTL+: MCTL* without nesting of temporal operators [No: $p \cup (Xq)$].

MCTL: MCTL+ without comb. of temporal operators [No: $(p \cup q) \land (r \sqcap s)$].

MPML: MCTL with next-time temporal operators only [No: $p \cup q$].

Fabio Mogavero, Aniello Murano

Universitá degli Studi di Napoli "Federico II", Italy http://people.na.infn.it/~{mogavero, murano]

		Minimal Model Quantifiers in CTL*					
		• 000 00000					
Suntax and Semantice							

Definition

MCTL* state (ϕ) and path (ψ) formulas are built inductively as follows:

 $\blacksquare \phi ::= p | \neg \phi | \phi \land \phi | \phi \lor \phi | \phi \Xi \phi | \phi \land \phi | E \psi | A \psi,$

 $2 \psi ::= \phi | \neg \psi | \psi \land \psi | \psi \lor \psi | X \psi | \tilde{X} \psi | \psi U \psi | \psi R \psi.$

MCTL* extends CTL* by adding the quantifiers Ξ and Λ .

MCTL+: MCTL* without nesting of temporal operators [No: pU(Xq)].

MCTL: MCTL+ without comb. of temporal operators [No: $(p \cup q) \land (r \land s)$].

MPML: MCTL with next-time temporal operators only [No: $p \cup q$].

Fabio Mogavero, Aniello Murano

Universitá degli Studi di Napoli "Federico II", Italy http://people.na.infn.it/~{mogavero, murano]

		Minimal Model Quantifiers in CTL*					
		• 000 00000					
Suntay and Semantice							

Definition

MCTL* state (ϕ) and path (ψ) formulas are built inductively as follows:

2 $\psi ::= \phi | \neg \psi | \psi \land \psi | \psi \lor \psi | X \psi | \tilde{X} \psi | \psi U \psi | \psi R \psi.$

MCTL* extends CTL* by adding the quantifiers Ξ and Λ .

MCTL+: MCTL* without nesting of temporal operators [No: pU(Xq)].

MCTL: MCTL+ without comb. of temporal operators [No: $(p \cup q) \land (r \land s)$].

MPML: MCTL with next-time temporal operators only [No: $p \cup q$].

Fabio Mogavero, Aniello Murano

Universitá degli Studi di Napoli "Federico II", Italy http://people.na.infn.it/~{mogavero, murano]

Preface 0000		Minimal Model Quantifiers in CTL*	Main results		
Syntax and Sema	intics				

Informal meaning of Ξ and Λ

Definition

MCTL* state (ϕ) and path (ψ) formulas are built inductively as follows:

- $2 \psi ::= \phi | \neg \psi | \psi \land \psi | \psi \lor \psi | X \psi | \tilde{X} \psi | \psi U \psi | \psi R \psi.$

Informally, Ξ and Λ can be read as

- **1** $\phi_1 \equiv \phi_2$: there is a submodel of ϕ_2 that satisfies ϕ_1 ,
- **2** $\phi_1 \Lambda \phi_2$: all submodels of ϕ_2 satisfy ϕ_1 .
- $\mathbf{I} \quad \boldsymbol{\varphi}_1$ is the *submodel verifier*.
- **2** φ_2 is the *submodel extractor*.

Fabio Mogavero, Aniello Murano

Universitá degli Studi di Napoli "Federico II", Italy http://people.na.infn.it/~{mogavero, murano]

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Preface 0000		Minimal Model Quantifiers in CTL*	Main results		
Syntax and Sema	intics				

Informal meaning of Ξ and Λ

Definition

MCTL* state (ϕ) and path (ψ) formulas are built inductively as follows:

- $2 \psi ::= \phi | \neg \psi | \psi \land \psi | \psi \lor \psi | X \psi | \tilde{X} \psi | \psi U \psi | \psi R \psi.$

Informally, Ξ and Λ can be read as

- **1** $\phi_1 \equiv \phi_2$: there is a submodel of ϕ_2 that satisfies ϕ_1 ,
- **2** $\phi_1 \Lambda \phi_2$: all submodels of ϕ_2 satisfy ϕ_1 .
- **1** ϕ_1 is the *submodel verifier*.
- **2** ϕ_2 is the *submodel extractor*.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Preface 0000		Minimal Model Quantifiers in CTL*	Main results		
Syntax and Se	mantics				

Definition

A Kripke structure (KRIPKE, for short) is a tuple $\mathcal{K} = \langle AP, W, R, L \rangle$ where:

- AP: finite non-empty set of *atomic propositions*;
- W: non-empty set of *worlds*;
- $R \subseteq W \times W$: *transition* relation;
- **L** : $W \mapsto 2^{AP}$: *labeling* function.

A KRIPKE \mathcal{K}' is a *substructure* of \mathcal{K} , formally $\mathcal{K}' \preccurlyeq \mathcal{K}$, iff the related labeled graphs are one a subgraph of the other.

For a set of KRIPKES S, we say that \mathcal{K} is *minimal* in S iff, for all $\mathcal{K}' \in S$, it holds that *(i)* $\mathcal{K} \preccurlyeq \mathcal{K}'$ or *(ii)* $\mathcal{K}' \preccurlyeq \mathcal{K}$.

By min(S) we denote the set of minimal structures (*antichain*) of S.

Fabio Mogavero, Aniello Murano

Universitá degli Studi di Napoli "Federico II", Italy http://people.na.infn.it/~{mogavero, murano]

< ロ > < 同 > < 回 > < 回 > < 回 > <

Preface 0000		Minimal Model Quantifiers in CTL*	Main results		
Syntax and Se	mantics				

Definition

A Kripke structure (KRIPKE, for short) is a tuple $\mathcal{K} = \langle AP, W, R, L \rangle$ where:

- AP: finite non-empty set of *atomic propositions*;
- W: non-empty set of *worlds*;
- $R \subseteq W \times W$: *transition* relation;
- **L** : $W \mapsto 2^{AP}$: *labeling* function.

A KRIPKE \mathcal{K}' is a *substructure* of \mathcal{K} , formally $\mathcal{K}' \preccurlyeq \mathcal{K}$, iff the related labeled graphs are one a subgraph of the other.

For a set of KRIPKES S, we say that \mathcal{K} is *minimal* in S iff, for all $\mathcal{K}' \in S$, it holds that *(i)* $\mathcal{K} \preccurlyeq \mathcal{K}'$ or *(ii)* $\mathcal{K}' \preccurlyeq \mathcal{K}$.

By min(S) we denote the set of minimal structures (*antichain*) of S.

Fabio Mogavero, Aniello Murano

Universitá degli Studi di Napoli "Federico II", Italy http://people.na.infn.it/~{mogavero, murano]

Preface 0000		Minimal Model Quantifiers in CTL*	Main results		
Syntax and Ser	mantics				

Definition

A Kripke structure (KRIPKE, for short) is a tuple $\mathcal{K} = \langle AP, W, R, L \rangle$ where:

- AP: finite non-empty set of *atomic propositions*;
- W: non-empty set of *worlds*;
- $R \subseteq W \times W$: *transition* relation;
- $L: W \mapsto 2^{AP}$: *labeling* function.

A KRIPKE \mathcal{K}' is a *substructure* of \mathcal{K} , formally $\mathcal{K}' \preccurlyeq \mathcal{K}$, iff the related labeled graphs are one a subgraph of the other.

For a set of KRIPKES S, we say that \mathcal{K} is *minimal* in S iff, for all $\mathcal{K}' \in S$, it holds that (i) $\mathcal{K} \preccurlyeq \mathcal{K}'$ or (ii) $\mathcal{K}' \preccurlyeq \mathcal{K}$.

By min(S) we denote the set of minimal structures (*antichain*) of S.

Universitá degli Studi di Napoli "Federico II", Italy http://people.na.infn.it/~{mogavero, murano]

< ロ > < 同 > < 回 > < 回 > < 回 > <

Preface 0000		Minimal Model Quantifiers in CTL*	Main results		
Syntax and Ser	mantics				

Definition

A Kripke structure (KRIPKE, for short) is a tuple $\mathcal{K} = \langle AP, W, R, L \rangle$ where:

- AP: finite non-empty set of *atomic propositions*;
- W: non-empty set of *worlds*;
- $R \subseteq W \times W$: *transition* relation;
- **L** : $W \mapsto 2^{AP}$: *labeling* function.

A KRIPKE \mathcal{K}' is a *substructure* of \mathcal{K} , formally $\mathcal{K}' \preccurlyeq \mathcal{K}$, iff the related labeled graphs are one a subgraph of the other.

For a set of KRIPKES S, we say that \mathcal{K} is *minimal* in S iff, for all $\mathcal{K}' \in S$, it holds that (i) $\mathcal{K} \preccurlyeq \mathcal{K}'$ or (ii) $\mathcal{K}' \preccurlyeq \mathcal{K}$.

By min(S) we denote the set of minimal structures (*antichain*) of S.

(日)

Preface 0000		Minimal Model Quantifiers in CTL*	Main results		
Syntax and Ser	nantics				

Semantics of MCTL*

Definition

Given a KRIPKE $\mathcal{K} = \langle AP, W, R, L \rangle$, a world $w \in W$, and two MCTL* state formulas φ_1 and φ_2 it holds that:

- 1 $\mathcal{K}, w \models \varphi_1 \Xi \varphi_2$ iff there is $\mathcal{K}' \in \min(\mathfrak{S}(\mathcal{K}, w, \varphi_2))$ such that $\mathcal{U}, w \models \varphi_1$;
- 2 $\mathcal{K}, w \models \varphi_1 \Lambda \varphi_2$ iff for all $\mathcal{K}' \in \min(\mathfrak{S}(\mathcal{K}, w, \varphi_2))$ it holds that $\mathcal{U}, w \models \varphi_1$.

where $\mathfrak{S}(\mathfrak{K}, w, \varphi)$ is the set of $\mathfrak{K}' \preccurlyeq \mathfrak{K}$ rooted in *w* that are *conservative* w.r.t. φ (i.e., all KRIPKES between \mathfrak{K}' and \mathfrak{K} behave as \mathfrak{K}').

Fabio Mogavero, Aniello Murano

Preface 0000	Minimal Model Quantifiers in CTL*	Main results		
Properties				

Consider the formula $\varphi = (\mathsf{EX} \mathsf{EX} p) \Lambda (\mathsf{EX} \mathfrak{t})$, where \mathfrak{t} means true.

φ is Sat!

Suppose that $\mathcal{K}, w \models \varphi$.

- The submodel extractor EX t requires that w has an outcoming edge.
- **2** The submodel verifier EX EX *p* requires that in a minimal and conservative submodel \mathcal{K}' of \mathcal{K} there is a path of length 2 leading to a node in which *p* holds.

Since ϕ is built using the universal model quantifiers Λ , we have that \mathcal{K} is necessarily formed by a unique world with a self loop.

the world w is labeled with p

Fabio Mogavero, Aniello Murano

Universitá degli Studi di Napoli "Federico II", Italy http://people.na.infn.it/~{mogavero, murano]

イロト イポト イヨト イヨト

Preface 0000	Minimal Model Quantifiers in CTL*	Main results		
Properties				

Consider the formula $\phi = (\mathsf{EX}\,\mathsf{EX}\,\rho)\,\Lambda\,(\mathsf{EX}\,\mathfrak{t}),$ where \mathfrak{t} means true.

φ is Sat!

Suppose that $\mathcal{K}, w \models \varphi$.

- The submodel extractor EX t requires that w has an outcoming edge.
- **2** The submodel verifier EX EX *p* requires that in a minimal and conservative submodel \mathcal{K}' of \mathcal{K} there is a path of length 2 leading to a node in which *p* holds.

Since ϕ is built using the universal model quantifiers Λ , we have that \mathcal{K} is necessarily formed by a unique world with a self loop.

the world w is labeled with p

Fabio Mogavero, Aniello Murano

Universitá degli Studi di Napoli "Federico II", Italy http://people.na.infn.it/~{mogavero, murano]

Preface 0000	Minimal Model Quantifiers in CTL*	Main results 000000		
Properties				

Consider the formula $\phi = (\mathsf{EX} \, \mathsf{EX} \, p) \Lambda (\mathsf{EX} \, \mathfrak{t})$, where \mathfrak{t} means true.

φ is Sat!

Suppose that $\mathcal{K}, w \models \varphi$.

1 The submodel extractor EX t requires that *w* has an outcoming edge.

2 The submodel verifier EX EX *p* requires that in a minimal and conservative submodel \mathcal{K}' of \mathcal{K} there is a path of length 2 leading to a node in which *p* holds.

Since ϕ is built using the universal model quantifiers Λ , we have that \mathcal{K} is necessarily formed by a unique world with a self loop.

the world w is labeled with p

Fabio Mogavero, Aniello Murano

Universitá degli Studi di Napoli "Federico II", Italy http://people.na.infn.it/~{mogavero, murano]

イロト イポト イヨト イヨト

Preface 0000	Minimal Model Quantifiers in CTL*	Main results		
Properties				

Consider the formula $\varphi = (\mathsf{EX} \mathsf{EX} p) \Lambda (\mathsf{EX} \mathfrak{t})$, where \mathfrak{t} means true.

φ is Sat!

Suppose that $\mathcal{K}, w \models \varphi$.

- 1 The submodel extractor EX t requires that *w* has an outcoming edge.
- **2** The submodel verifier EX EX *p* requires that in a minimal and conservative submodel \mathcal{K}' of \mathcal{K} there is a path of length 2 leading to a node in which *p* holds.

Since ϕ is built using the universal model quantifiers Λ , we have that \mathcal{K} is necessarily formed by a unique world with a self loop.

the world w is labeled with p

Fabio Mogavero, Aniello Murano

Universitá degli Studi di Napoli "Federico II", Italy http://people.na.infn.it/~{mogavero,murano}

Preface 0000	Minimal Model Quantifiers in CTL*	Main results		
Properties				

Consider the formula $\varphi = (\mathsf{EX} \mathsf{EX} p) \Lambda (\mathsf{EX} \mathfrak{t})$, where \mathfrak{t} means true.

φ is Sat!

Suppose that $\mathcal{K}, w \models \varphi$.

- **1** The submodel extractor EX t requires that *w* has an outcoming edge.
- **2** The submodel verifier EX EX *p* requires that in a minimal and conservative submodel \mathcal{K}' of \mathcal{K} there is a path of length 2 leading to a node in which *p* holds.

Since ϕ is built using the universal model quantifiers Λ , we have that \mathcal{K} is necessarily formed by a unique world with a self loop.

$$\mathcal{K}: \frac{w}{p}$$

the world w is labeled with p

Fabio Mogavero, Aniello Murano

< ロ > < 同 > < 回 > < 回 > .

Preface 0000	Minimal Model Quantifiers in CTL*	Main results		
Properties				

Consider again $\varphi = (\mathsf{EX} \mathsf{EX} \rho) \Lambda (\mathsf{EX} \mathfrak{t}).$

$$\mathcal{K}: \quad \frac{w}{\rho} \bigcirc \qquad \qquad \mathcal{K}_1: \quad \frac{w}{\rho} \to \frac{v}{\rho} \bigcirc \qquad \qquad \mathcal{K}_1': \quad \frac{w}{\rho} \to \frac{v}{\rho}$$

 \mathcal{K}_1 is the one-step unwinding of \mathcal{K} .

- $\blacksquare \{\mathcal{K}\} = \min(\mathfrak{S}(\mathcal{K}, w, \mathsf{EX}\mathfrak{t})) = \mathfrak{S}(\mathcal{K}, w, \mathsf{EX}\mathfrak{t}) = \{\mathcal{K}\};\$
- $= \{ \mathcal{K}'_1 \} = \min(\mathfrak{S}(\mathcal{K}_1, w, \mathsf{EX}\mathfrak{t})) \subset \mathfrak{S}(\mathcal{K}_1, w, \mathsf{EX}\mathfrak{t}) = \{ \mathcal{K}_1, \mathcal{K}'_1 \}.$
- Since $\mathcal{K}, w \models \mathsf{EXEX} p$, it holds that $\mathcal{K}, w \models \varphi$;
- Instead, since \mathcal{K}'_1 , $w \not\models \mathsf{EXEX}\,p$, it holds that \mathcal{K}_1 , $w \not\models \varphi$.

Fabio Mogavero, Aniello Murano

Universitá degli Studi di Napoli "Federico II", Italy http://people.na.infn.it/~{mogavero, murano]

< ロ > < 同 > < 回 > < 回 > .

Preface 0000	Minimal Model Quantifiers in CTL*	Main results		
Properties				

Consider again $\varphi = (\mathsf{EX} \mathsf{EX} p) \Lambda (\mathsf{EX} \mathfrak{t}).$

$$\mathcal{K}: \quad \frac{w}{p} \bigcirc \qquad \qquad \mathcal{K}_1: \quad \frac{w}{p} \to \frac{v}{p} \bigcirc \qquad \qquad \mathcal{K}'_1: \quad \frac{w}{p} \to \frac{v}{p}$$

 \mathcal{K}_1 is the one-step unwinding of \mathcal{K} .

 $\{ \mathcal{K} \} = \min(\mathfrak{S}(\mathcal{K}, w, \mathsf{EX}\mathfrak{t})) = \mathfrak{S}(\mathcal{K}, w, \mathsf{EX}\mathfrak{t}) = \{ \mathcal{K} \};$

 $\{ \mathcal{K}'_1 \} = \min(\mathfrak{S}(\mathcal{K}_1, w, \mathsf{EX}\mathfrak{t})) \subset \mathfrak{S}(\mathcal{K}_1, w, \mathsf{EX}\mathfrak{t}) = \{ \mathcal{K}_1, \mathcal{K}'_1 \}.$

Since $\mathcal{K}, w \models \mathsf{EXEX}\, p$, it holds that $\mathcal{K}, w \models \varphi$;

Instead, since \mathcal{K}'_1 , $w \not\models \mathsf{EXEX}\,p$, it holds that \mathcal{K}_1 , $w \not\models \varphi$.

Fabio Mogavero, Aniello Murano

Universitá degli Studi di Napoli "Federico II", Italy http://people.na.infn.it/~{mogavero, murano]

< ロ > < 同 > < 回 > < 回 > .

Preface 0000	Minimal Model Quantifiers in CTL* ○○○○○●○○○	Main results		
Properties				

Consider again $\varphi = (\mathsf{EX} \mathsf{EX} p) \Lambda (\mathsf{EX} \mathfrak{t}).$

$$\mathcal{K}: \quad \frac{w}{p} \bigcirc \qquad \qquad \mathcal{K}_1: \quad \frac{w}{p} \to \frac{v}{p} \bigcirc \qquad \qquad \mathcal{K}_1': \quad \frac{w}{p} \to \frac{v}{p}$$

 \mathcal{K}_1 is the one-step unwinding of \mathcal{K} .

$$\{\mathcal{K}\} = \min(\mathfrak{S}(\mathcal{K}, w, \mathsf{EX}\mathfrak{t})) = \mathfrak{S}(\mathcal{K}, w, \mathsf{EX}\mathfrak{t}) = \{\mathcal{K}\};$$

 $\{ \mathcal{K}'_1 \} = \min(\mathfrak{S}(\mathcal{K}_1, w, \mathsf{EX}\mathfrak{t})) \subset \mathfrak{S}(\mathcal{K}_1, w, \mathsf{EX}\mathfrak{t}) = \{ \mathcal{K}_1, \mathcal{K}'_1 \}.$

Since
$$\mathcal{K}, w \models \mathsf{EX} \mathsf{EX} \rho$$
, it holds that $\mathcal{K}, w \models \varphi$;

Instead, since \mathcal{K}'_1 , $w \not\models \mathsf{EXEX}\,p$, it holds that \mathcal{K}_1 , $w \not\models \varphi$.

Fabio Mogavero, Aniello Murano

Universitá degli Studi di Napoli "Federico II", Italy http://people.na.infn.it/~{mogavero,murano}

< ロ > < 同 > < 回 > < 回 > .

Preface 0000	Minimal Model Quantifiers in CTL* ○○○○○●○○○	Main results		
Properties				

Consider again $\varphi = (\mathsf{EX} \mathsf{EX} p) \Lambda (\mathsf{EX} \mathfrak{t}).$

$$\mathcal{K}: \quad \frac{w}{p} \bigcirc \qquad \qquad \mathcal{K}_1: \quad \frac{w}{p} \rightarrow \frac{v}{p} \bigcirc \qquad \qquad \mathcal{K}'_1: \quad \frac{w}{p} \rightarrow \frac{v}{p}$$

 \mathcal{K}_1 is the one-step unwinding of \mathcal{K} .

$$\{ \mathcal{K} \} = \min(\mathfrak{S}(\mathcal{K}, w, \mathsf{EXt})) = \mathfrak{S}(\mathcal{K}, w, \mathsf{EXt}) = \{ \mathcal{K} \};$$

$$\{ \mathcal{K}'_1 \} = \min(\mathfrak{S}(\mathcal{K}_1, w, \mathsf{EX}\mathfrak{t})) \subset \mathfrak{S}(\mathcal{K}_1, w, \mathsf{EX}\mathfrak{t}) = \{ \mathcal{K}_1, \mathcal{K}'_1 \}.$$

Since
$$\mathcal{K}, w \models \mathsf{EX} \mathsf{EX} \rho$$
, it holds that $\mathcal{K}, w \models \varphi$;

Instead, since \mathcal{K}'_1 , $w \not\models \mathsf{EXEX} p$, it holds that \mathcal{K}_1 , $w \not\models \varphi$.

Fabio Mogavero, Aniello Murano

Universitá degli Studi di Napoli "Federico II", Italy http://people.na.infn.it/~{mogavero, murano]

< ロ > < 同 > < 回 > < 回 > < 回 > <

Preface 0000	Minimal Model Quantifiers in CTL* ○○○○○○●○○	Main results		
Properties				

Hence, it is immediate to note that

- MPML is not invariant under unwinding and partial unwinding,
- it does not have the tree model property.

Then,

- it is not invariant under bisimulation,
- it is more expressive than PML.

All the above results also hold for MCTL, MCTL+, and MCTL*, since they subsume MPML.

Fabio Mogavero, Aniello Murano

Universitá degli Studi di Napoli "Federico II", Italy http://people.na.infn.it/~{mogavero, murano]

Preface 0000	Minimal Model Quantifiers in CTL* ○○○○○○●○○	Main results		
Properties				

Hence, it is immediate to note that

- MPML is not invariant under unwinding and partial unwinding,
- it does not have the tree model property.

Then,

- it is not invariant under bisimulation,
- it is more expressive than PML.

All the above results also hold for MCTL, MCTL+, and MCTL*, since they subsume MPML.

Fabio Mogavero, Aniello Murano

Universitá degli Studi di Napoli "Federico II", Italy http://people.na.infn.it/~{mogavero, murano]

(日) (日) (日)

Preface 0000	Minimal Model Quantifiers in CTL* ○○○○○○●○○	Main results 000000		
Properties				

Hence, it is immediate to note that

- MPML is not invariant under unwinding and partial unwinding,
- it does not have the tree model property.

Then,

- it is not invariant under bisimulation,
- it is more expressive than PML.

All the above results also hold for MCTL, MCTL+, and MCTL*, since they subsume MPML.

Fabio Mogavero, Aniello Murano

Universitá degli Studi di Napoli "Federico II", Italy http://people.na.infn.it/~{mogavero, murano]

周 ト イ ヨ ト イ ヨ

Preface 0000		Minimal Model Quantifiers in CTL* ○○○○○○○●○	Main results		
Properties					
Succ	inctne	ss (1)			

CTL+ is equivalent to CTL, but exponentially more succinct.

÷

MCTL+ is equivalent to MCTL and the translation is polynomial.

MCTL is exponentially more succinct than CTL

Fabio Mogavero, Aniello Murano

Universitá degli Studi di Napoli "Federico II", Italy http://people.na.infn.it/~{mogavero, murano}

Preface 0000		Minimal Model Quantifiers in CTL* ○○○○○○○●○	Main results		
Properties					
Succi	nctnes	ss (1)			

CTL+ is equivalent to CTL, but exponentially more succinct.

+

MCTL+ is equivalent to MCTL and the translation is polynomial.

MCTL is exponentially more succinct than CTL.

Fabio Mogavero, Aniello Murano

Universitá degli Studi di Napoli "Federico II", Italy http://people.na.infn.it/~{mogavero,murano}

Preface 0000		Minimal Model Quantifiers in CTL* ○○○○○○○●○	Main results 000000		
Properties					
Succi	nctnes	s (1)			

CTL+ is equivalent to CTL, but exponentially more succinct.

+

MCTL+ is equivalent to MCTL and the translation is polynomial.

=

MCTL is exponentially more succinct than CTL.

Fabio Mogavero, Aniello Murano

Universitá degli Studi di Napoli "Federico II", Italy http://people.na.infn.it/~{mogavero, murano}

Preface 0000		Minimal Model Quantifiers in CTL* ○○○○○○○○●	Main results 000000		
Properties					
Succi	nctnes	s (2)			

Consider the CTL+ formula $\varphi = E(F p_1 \wedge F p_2 \wedge F p_3)$.

We translate ϕ in MCTL with only a polynomial blow-up.

Suppose that there is a path such that $w_0 \rightsquigarrow p_1 \rightsquigarrow p_2 \rightsquigarrow p_3$.

The idea of the traslation is to

- **extract** a submodel where each path reaching p_1 or p_2 also reaches p_3 ,
- verify that, in such a submodel, there exists a path between p_1 and p_2 .

Preface 0000		Minimal Model Quantifiers in CTL* ○○○○○○○○●	Main results 000000		
Properties					
Succi	nctnes	s (2)			

Consider the CTL+ formula $\varphi = E(F p_1 \wedge F p_2 \wedge F p_3)$.

We translate φ in MCTL with only a polynomial blow-up.

Suppose that there is a path such that $w_0 \rightsquigarrow p_1 \rightsquigarrow p_2 \rightsquigarrow p_3$.

The idea of the traslation is to

- **extract** a submodel where each path reaching p_1 or p_2 also reaches p_3 ,
- verify that, in such a submodel, there exists a path between p_1 and p_2 .

Preface 0000		Minimal Model Quantifiers in CTL* ○○○○○○○○●	Main results 000000		
Properties					
Succi	nctnes	s (2)			

Consider the CTL+ formula $\varphi = E(F p_1 \wedge F p_2 \wedge F p_3)$.

We translate φ in MCTL with only a polynomial blow-up.

Suppose that there is a path such that $w_0 \rightsquigarrow p_1 \rightsquigarrow p_2 \rightsquigarrow p_3$.

The idea of the traslation is to

- **extract** a submodel where each path reaching p_1 or p_2 also reaches p_3 ,
- verify that, in such a submodel, there exists a path between p_1 and p_2 .

Fabio Mogavero, Aniello Murano

Universitá degli Studi di Napoli "Federico II", Italy http://people.na.infn.it/~{mogavero, murano]

Preface 0000		Minimal Model Quantifiers in CTL*	Main results ●OOOOO					
Model Checking								
Model	Model Checking result							

Idea: use of oracle machines.

Bad results:

- M.C. for MPML is Δ_2^p (PML has a PTIME M.C.).
- M.C. for MCTL is Δ_2^p -COMPLETE (CTL has a PTIME-COMPLETE M.C.).

Good results:

- M.C. for MCTL+ is Δ_2^{p} -COMPLETE (same complexity for CTL+).
- M.C. for MCTL* is **PSPACE-COMPLETE** (same complexity for CTL*).

The program complexity is **PSPACE**.

A (B) < (B) < (B)</p>

Preface 0000		Minimal Model Quantifiers in CTL*	Main results ●OOOOO					
Model Checking								
Mode	Model Checking result							

Idea: use of oracle machines.

Bad results:

- M.C. for MPML is Δ_2^p (PML has a PTIME M.C.).
- M.C. for MCTL is Δ_2^p -COMPLETE (CTL has a PTIME-COMPLETE M.C.).

Good results:

- M.C. for MCTL+ is Δ_2^p -COMPLETE (same complexity for CTL+).
- M.C. for MCTL* is **PSPACE-COMPLETE** (same complexity for CTL*).

The program complexity is **PSPACE**.

Preface 0000		Minimal Model Quantifiers in CTL*	Main results ●OOOOO					
Model Checking								
Model	Check	ing result						

Idea: use of oracle machines.

Bad results:

- M.C. for MPML is Δ_2^p (PML has a PTIME M.C.).
- M.C. for MCTL is Δ_2^p -COMPLETE (CTL has a PTIME-COMPLETE M.C.).

Good results:

- M.C. for MCTL+ is Δ_2^{p} -COMPLETE (same complexity for CTL+).
- M.C. for MCTL* is **PSPACE-COMPLETE** (same complexity for CTL*).

The program complexity is **PSPACE**.

不得る イラトイラ

Preface 0000		Minimal Model Quantifiers in CTL*	Main results ●OOOOO					
Model Checking								
Model	Check	ing result						

Idea: use of oracle machines.

Bad results:

- M.C. for MPML is Δ_2^{ρ} (PML has a PTIME M.C.).
- M.C. for MCTL is Δ_2^p -COMPLETE (CTL has a PTIME-COMPLETE M.C.).

Good results:

- M.C. for MCTL+ is Δ_2^{p} -COMPLETE (same complexity for CTL+).
- M.C. for MCTL* is **PSPACE-COMPLETE** (same complexity for CTL*).

The program complexity is **PSPACE**.

不得る イラトイラ

Preface 0000	Minimal Model Quantifiers in CTL*	Main results		
Model Checking				

Basic step of the procedure: \mathcal{K} , $w \models \varphi_1 \equiv \varphi_2$.

Construction of a polynomial certificate \mathcal{K}' of the test $\mathcal{K}, w \models \phi_1 \Xi \phi_2$ that is verifiable in

- PTIME for MCTL,
- PSPACE for MCTL*.
- $\mathcal{K}', w \models \varphi_1 \text{ and } \mathcal{K}', w \models \varphi_2.$

In particular, we have to verify that \mathcal{K}' is

minimal,

conservative.

Finally, we build a bottom-up algorithm that uses the previous idea as an atomic step of an oracle.

Fabio Mogavero, Aniello Murano

Universitá degli Studi di Napoli "Federico II", Italy http://people.na.infn.it/~ [mogavero, murano]

イロト イポト イヨト イヨト

Preface 0000	Minimal Model Quantifiers in CTL*	Main results		
Model Checking				

Basic step of the procedure: \mathcal{K} , $w \models \varphi_1 \equiv \varphi_2$.

Construction of a polynomial certificate \mathcal{K}' of the test \mathcal{K} , $w \models \phi_1 \Xi \phi_2$ that is verifiable in

- PTIME for MCTL,
- PSPACE for MCTL*.
- $\mathcal{K}', w \models \varphi_1 \text{ and } \mathcal{K}', w \models \varphi_2.$

In particular, we have to verify that ${\cal K}'$ is

minimal,

conservative.

Finally, we build a bottom-up algorithm that uses the previous idea as an atomic step of an oracle.

Fabio Mogavero, Aniello Murano

Universitá degli Studi di Napoli "Federico II", Italy http://people.na.infn.it/~{mogavero, murano]

< ロ > < 同 > < 回 > < 回 > < 回 > <

Preface 0000	Minimal Model Quantifiers in CTL*	Main results		
Model Checking				

Basic step of the procedure: \mathcal{K} , $w \models \phi_1 \Xi \phi_2$.

Construction of a polynomial certificate \mathcal{K}' of the test $\mathcal{K}, w \models \phi_1 \Xi \phi_2$ that is verifiable in

- PTIME for MCTL,
- PSPACE for MCTL*.
- $\mathcal{K}', w \models \phi_1 \text{ and } \mathcal{K}', w \models \phi_2.$

In particular, we have to verify that \mathcal{K}' is

minimal,

conservative.

Finally, we build a bottom-up algorithm that uses the previous idea as an atomic step of an oracle.

Fabio Mogavero, Aniello Murano

Universitá degli Studi di Napoli "Federico II", Italy http://people.na.infn.it/~{mogavero, murano}

< ロ > < 同 > < 回 > < 回 > < 回 > <

Preface 0000	Minimal Model Quantifiers in CTL*	Main results		
Model Checking				

Basic step of the procedure: \mathcal{K} , $w \models \phi_1 \Xi \phi_2$.

Construction of a polynomial certificate \mathcal{K}' of the test $\mathcal{K}, w \models \phi_1 \Xi \phi_2$ that is verifiable in

- PTIME for MCTL,
- PSPACE for MCTL*.
- $\mathcal{K}', w \models \phi_1 \text{ and } \mathcal{K}', w \models \phi_2.$

In particular, we have to verify that \mathcal{K}' is

minimal,

conservative.

Finally, we build a bottom-up algorithm that uses the previous idea as an atomic step of an oracle.

Fabio Mogavero, Aniello Murano

Universitá degli Studi di Napoli "Federico II", Italy http://people.na.infn.it/~{mogavero,murano}

< ロ > < 同 > < 回 > < 回 > < 回 > <

Preface 0000		Minimal Model Quantifiers in CTL*	Main results		
Satisfiability					
Satisf	iability	result			

Satisfiability for MPML is decidable.

Idea: brute force algorithm via finite model property.

Sat. for MPML is **NEXPTIME** (PML has a PSPACE-COMPLETE Sat.)

Satisfiability for MCTL, MCTL+, and MCTL* is highly undecidable.

Idea: reduction from the recurrent domino problem.

Sat. for MCTL is Σ_1^1 -HARD.

- ・ロト・個ト・ヨト・ヨト ・ヨー ろくの

Fabio Mogavero, Aniello Murano

Universitá degli Studi di Napoli "Federico II", Italy http://people.na.infn.it/~{mogavero, murano]

Preface 0000		Minimal Model Quantifiers in CTL*	Main results		
Satisfiability					
Satisf	iability	result			

Satisfiability for MPML is decidable.

Idea: brute force algorithm via finite model property.

Sat. for MPML is **NEXPTIME** (PML has a PSPACE-COMPLETE Sat.)

Satisfiability for MCTL, MCTL+, and MCTL* is highly undecidable.

Idea: reduction from the recurrent domino problem.

Sat. for MCTL is Σ_1^1 -HARD.

- * ロ > * @ > * 注 > * 注 > … 注 … のへで

Preface 0000	Minimal Model Quantifiers in CTL*	Main results		
Satisfiability				

Proof sketch (1)

Let α , β , γ , and δ four incompatible formulas. E.g., $\alpha = a \land b$, $\beta = \neg a \land b$, $\gamma = a \land \neg b$, and $\delta = \neg a \land \neg b$.

Consider the formula $\varphi_e = \alpha \wedge \mathsf{EX}(\beta \wedge \mathsf{EX} \delta) \wedge \mathsf{EX}(\gamma \wedge \mathsf{EX}(\delta \wedge \mathsf{EX} \gamma)).$

There are only four models (up to isomorphism) of φ_e :

Universitá degli Studi di Napoli "Federico II", Italy http://people.na.infn.it/~{mogavero, murano]

Preface 0000		Minimal Model Quantifiers in CTL*	Main results		
Satisfiability					
Proof	sketcl	n (1)			

Let α , β , γ , and δ four incompatible formulas. E.g., $\alpha = a \land b$, $\beta = \neg a \land b$, $\gamma = a \land \neg b$, and $\delta = \neg a \land \neg b$.

Consider the formula $\varphi_e = \alpha \wedge \mathsf{EX}(\beta \wedge \mathsf{EX}\delta) \wedge \mathsf{EX}(\gamma \wedge \mathsf{EX}(\delta \wedge \mathsf{EX}\gamma)).$

There are only four models (up to isomorphism) of φ_e :

Fabio Mogavero, Aniello Murano

Universitá degli Studi di Napoli "Federico II", Italy http://people.na.infn.it/~{mogavero, murano]

Preface 0000		Minimal Model Quantifiers in CTL*	Main results		
Satisfiability					
Proof	sketcl	n (1)			

Let α , β , γ , and δ four incompatible formulas. E.g., $\alpha = a \land b$, $\beta = \neg a \land b$, $\gamma = a \land \neg b$, and $\delta = \neg a \land \neg b$.

Consider the formula $\varphi_e = \alpha \wedge \mathsf{EX}(\beta \wedge \mathsf{EX}\delta) \wedge \mathsf{EX}(\gamma \wedge \mathsf{EX}(\delta \wedge \mathsf{EX}\gamma)).$

There are only four models (up to isomorphism) of φ_e :

Preface 0000	Minimal Model Quantifiers in CTL*	Main results		
Satisfiability				

Proof sketch (2)

Consider now the formula $\varphi_{\nu} = \mathsf{EX}(\beta \wedge \mathsf{EX} \mathsf{EX} \gamma)$.

Only \mathcal{K}_3 and \mathcal{K}_4 are models of φ_v .

Hence, $\varphi = \varphi_v \Xi \varphi_e$ has necessarily a square model.

Using this idea, we are able to reduce the domino problem to MCTL Sat.

Fabio Mogavero, Aniello Murano

Universitá degli Studi di Napoli "Federico II", Italy http://people.na.infn.it/~{mogavero, murano]

< ロ > < 同 > < 回 > < 回 > < 回 >

Preface 0000	Minimal Model Quantifiers in CTL*	Main results		
Satisfiability				

Proof sketch (2)

Consider now the formula $\varphi_v = \mathsf{EX}(\beta \land \mathsf{EX} \mathsf{EX} \gamma)$.

Only \mathcal{K}_3 and \mathcal{K}_4 are models of φ_v .

Hence, $\phi = \phi_v \Xi \phi_e$ has necessarily a square model.

Using this idea, we are able to reduce the domino problem to MCTL Sat.

Fabio Mogavero, Aniello Murano

Universitá degli Studi di Napoli "Federico II", Italy http://people.na.infn.it/~{mogavero, murano]

Preface 0000	Minimal Model Quantifiers in CTL*	Main results		
Satisfiability				

Proof sketch (2)

Consider now the formula $\varphi_{\nu} = \mathsf{EX}(\beta \wedge \mathsf{EX} \mathsf{EX} \gamma)$.

Only \mathcal{K}_3 and \mathcal{K}_4 are models of φ_v .

Hence, $\phi = \phi_v \Xi \phi_e$ has necessarily a square model.

Using this idea, we are able to reduce the domino problem to MCTL Sat.

Fabio Mogavero, Aniello Murano

Universitá degli Studi di Napoli "Federico II", Italy http://people.na.infn.it/~{mogavero, murano]

Preface 0000	Minimal Model Quantifiers in CTL*	Main results		

Complexity summary

	M.C. (Formula)	M.C. (Program)	Sat.
LTL	PSPACE-COMPLETE	NLOGSPACE-COMPLETE	PSPACE-COMPLETE
PML	РТіме	NLOGSPACE	PSPACE-COMPLETE
CTL	PTIME-COMPLETE	NLOGSPACE-COMPLETE	EXPTIME-COMPLETE
CTL+	Δ_2^p -Complete	NLOGSPACE-COMPLETE	2ExpTime-Complete
CTL*	PSPACE-COMPLETE	NLOGSPACE-COMPLETE	2ExpTime-Complete
MPML	Δ_2^{ρ}	PSPACE	NEXPTIME
MCTL	Δ^p_2 -Complete	PSPACE	Σ ¹ -Hard
MCTL+	Δ_2^p -Complete	PSPACE	Σ ¹ -Hard
MCTL*	PSPACE-COMPLETE	PSPACE	Σ_1^1 -Hard

Table: Computational complexity of Model Checking and Satisfiability.

Fabio Mogavero, Aniello Murano

Universitá degli Studi di Napoli "Federico II", Italy http://people.na.infn.it/~{mogavero,murano}

イロト イポト イヨト イヨト

Preface 0000	Minimal Model Quantifiers in CTL*	Main results 000000	Open problems	

Is the formula complexity of model checking for MPML complete for Δ_2^{ρ} ?

Is the complexities of satisfiability for MPML complete for NEXPTIME?

Is the program complexity for all logics complete for PSPACE?

Is the bisimulation-invariant fragment of MCTL* equivalent to CTL*?

Fabio Mogavero, Aniello Murano

Universitá degli Studi di Napoli "Federico II", Italy http://people.na.infn.it/~{mogavero, murano]

Preface 0000	Minimal Model Quantifiers in CTL*	Main results 000000	Open problems	

Is the formula complexity of model checking for MPML complete for Δ_2^{ρ} ?

Is the complexities of satisfiability for MPML complete for NEXPTIME?

Is the program complexity for all logics complete for PSPACE?

Is the bisimulation-invariant fragment of MCTL* equivalent to CTL*?

Fabio Mogavero, Aniello Murano

Universitá degli Studi di Napoli "Federico II", Italy http://people.na.infn.it/~{mogavero, murano]

Preface 0000	Minimal Model Quantifiers in CTL*	Main results 000000	Open problems	

Is the formula complexity of model checking for MPML complete for Δ_2^{ρ} ?

Is the complexities of satisfiability for MPML complete for NEXPTIME?

Is the program complexity for all logics complete for PSPACE?

Is the bisimulation-invariant fragment of MCTL* equivalent to CTL*?

Fabio Mogavero, Aniello Murano

Universitá degli Studi di Napoli "Federico II", Italy http://people.na.infn.it/~{mogavero, murano]

Preface 0000	Minimal Model Quantifiers in CTL*	Main results 000000	Open problems	

Is the formula complexity of model checking for MPML complete for Δ_2^{ρ} ?

Is the complexities of satisfiability for MPML complete for NEXPTIME?

Is the program complexity for all logics complete for PSPACE?

Is the bisimulation-invariant fragment of MCTL* equivalent to CTL*?

◆□▶◆□▶◆∃▶◆∃▶ ∃ 少へ⊙

Preface 0000	Minimal Model Quantifiers in CTL*	Main results 000000	Conclusion	

Conclusion

In this work ...

 we introduced MCTL*, i.e., CTL* augmented with Minimal Model Quantifiers (some similarity with Arbitrary Announcement Logic¹ and Sabotage Logic²),

we study some elementary model-theoretic properties

- expressiveness,
- succinctness,
- finite model property,
- finally, we show
 - the decidability of M.C. for all the introduced logics,
 - the decidability of Sat. for MPML,
 - the highly undecidability of Sat. for MCTL, MCTL+, and MCTL*.
- ¹ T. French and H.P. van Ditmarsch. Undecidability for Arbitrary Public Announcement Logic

² C. Löding and P. Rohde. Model Checking and Satisfiability for Sabota Model Logie > 3

Preface 0000		Minimal Model Quantifiers in CTL*	Main results	Conclusion	
Con	clusion				

In this work ...

 we introduced MCTL*, i.e., CTL* augmented with Minimal Model Quantifiers (some similarity with Arbitrary Announcement Logic¹ and Sabotage Logic²),

we study some elementary model-theoretic properties

expressiveness,

succinctness,

finite model property,

finally, we show

the decidability of M.C. for all the introduced logics,

the decidability of Sat. for MPML,

■ the highly undecidability of Sat. for MCTL, MCTL+, and MCTL*.

¹ T. French and H.P. van Ditmarsch. Undecidability for Arbitrary Public Announcement Logic

² C. Löding and P. Rohde. Model Checking and Satisfiability for Sabotage Modal Logic

Fabio Mogavero, Aniello Murano

Universitá degli Studi di Napoli "Federico II", Italy http://people.na.infn.it/~{mogavero, murano}

Preface 0000	Minimal Model Quantifiers in CTL*	Main results	Conclusion	
Can				

In this work ...

- we introduced MCTL*, i.e., CTL* augmented with Minimal Model Quantifiers (some similarity with Arbitrary Announcement Logic¹ and Sabotage Logic²),
- we study some elementary model-theoretic properties
 - expressiveness,
 - succinctness,
 - finite model property,
- finally, we show
 - the decidability of M.C. for all the introduced logics,
 - the decidability of Sat. for MPML,
 - the highly undecidability of Sat. for MCTL, MCTL+, and MCTL*.
- ¹ T. French and H.P. van Ditmarsch. Undecidability for Arbitrary Public Announcement Logic
- ² C. Löding and P. Rohde. Model Checking and Satisfiability for Sabotage Modal Logic

Fabio Mogavero, Aniello Murano

Universitá degli Studi di Napoli "Federico II", Italy http://people.na.infn.it/~{mogavero, murano}

Preface 0000		Minimal Model Quantifiers in CTL*	Main results 000000	Conclusion	
Concl	usion				

In this work ...

- we introduced MCTL*, i.e., CTL* augmented with Minimal Model Quantifiers (some similarity with Arbitrary Announcement Logic¹ and Sabotage Logic²),
- we study some elementary model-theoretic properties
 - expressiveness,
 - succinctness,
 - finite model property,
- finally, we show
 - the decidability of M.C. for all the introduced logics,
 - the decidability of Sat. for MPML,
 - the highly undecidability of Sat. for MCTL, MCTL+, and MCTL*.
- ¹ T. French and H.P. van Ditmarsch. Undecidability for Arbitrary Public Announcement Logic

² C. Löding and P. Rohde. Model Checking and Satisfiability for Sabotage Modal Logic

Fabio Mogavero, Aniello Murano

Universitá degli Studi di Napoli "Federico II", Italy http://people.na.infn.it/~{mogavero, murano}

Preface 0000	Minimal Model Quantifiers in CTL*	Main results		References

References

- Martin Abadi, Leslie Lamport: Composing Specifications. ACM Trans. Program. Lang. Syst. 15(1): 73-132 (1993)
- Orna Kupferman, Gila Morgenstern, Aniello Murano: Typeness for omega-regular Automata. Int. J. Found. Comput. Sci. 17(4): 869-884 (2006)
- Orna Kupferman, Moshe Y. Vardi, Pierre Wolper: An automata-theoretic approach to branching-time model checking. J. ACM 47(2): 312-360 (2000)
- Orna Kupferman, Moshe Y. Vardi: An automata-theoretic approach to modular model checking. ACM Trans. Program. Lang. Syst. 22(1): 87-128 (2000)
- Orna Kupferman, Moshe Y. Vardi: Modular Model Checking. COMPOS 1997: 381-401
- Fabio Mogavero, Aniello Murano: Branching-Time Temporal Logics with Minimal Model Quantifiers. Developments in Language Theory 2009: 396-409
- Alessandro Bianco, Fabio Mogavero, Aniello Murano: Graded Computation Tree Logic. LICS 2009: 342-351
- Piero A. Bonatti, Carsten Lutz, Aniello Murano, Moshe Y. Vardi: The Complexity of Enriched Mu-Calculi. Logical Methods in Computer Science 4(3) (2008)

Fabio Mogavero, Aniello Murano

Universitá degli Studi di Napoli "Federico II", Italy http://people.na.infn.it/~{mogavero, murano}