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In open systems veri�cation, to formally check for reliability, one needs an appropriate formalism to

model the interaction between agents and express the correctness of the system no matter how the envi-

ronment behaves. An important contribution in this context is given by modal logics for strategic ability,

in the setting of multi-agent games, such as Atl, Atl∗, and the like. Recently, Chatterjee, Henzinger, and

Piterman introduced Strategy Logic, which we denote here by CHP-Sl, with the aim of getting a powerful

framework for reasoning explicitly about strategies. CHP-Sl is obtained by using �rst-order quanti�cations

over strategies and has been investigated in the very speci�c setting of two-agents turned-based games,

where a non-elementary model-checking algorithm has been provided. While CHP-Sl is a very expressive

logic, we claim that it does not fully capture the strategic aspects of multi-agent systems.

In this paper, we introduce and study a more general strategy logic, denoted Sl, for reasoning about

strategies in multi-agent concurrent games. As a key aspect, strategies in Sl are not intrinsically glued

to a speci�c agent, but an explicit binding operator allows to bind an agent to a strategy variable. This

allows agents to share strategies or reuse one previously adopted. We prove that Sl strictly includes CHP-

Sl, while maintaining a decidable model-checking problem. In particular, the algorithm we propose is

computationally not harder than the best one known for CHP-Sl. Moreover, we prove that such a problem

for Sl is NonElementary. This negative result has spurred us to investigate syntactic fragments of Sl,

strictly subsuming Atl∗, with the hope of obtaining an elementary model-checking problem. Among the

others, we introduce and study the sublogics Sl[NG], Sl[BG], and Sl[1G]. They encompass formulas in a

special prenex normal form having, respectively, nested temporal goals, Boolean combinations of goals and,

a single goal at a time. Intuitively, for a goal we mean a sequence of bindings, one for each agent, followed by

an Ltl formula. We prove that the model-checking problem for Sl[1G] is 2ExpTime-complete, thus not
harder than the one for Atl∗. In contrast, Sl[NG] turns out to be NonElementary-hard, strengthening

the corresponding result for Sl. Regarding Sl[BG], we show that it includes CHP-Sl and its model-checking

is decidable with a 2ExpTimelower-bound.

It is worth enlightening that to achieve the positive results about Sl[1G], we introduce a fundamental

property of the semantics of this logic, called behavioral, which allows to strongly simplify the reasoning

about strategies. Indeed, in a non-behavioral logic such as Sl[BG] and the subsuming ones, in order to

satisfy a formula, one has to take into account that a move of an agent, at a given moment of a play, may

depend on the moves taken by any agent in another counterfactual play.

Categories and Subject Descriptors: F.3.1 [Logics and Meanings of Programs]: Specifying and Verifying and Reasoning
about Programs—Specification techniques; F.4.1 [Mathematical Logic and Formal Languages]: Mathematical Logic—
Modal logic; Temporal logic

General Terms: Theory, Specification, Verification.

Additional Key Words and Phrases: Strategy Logic, Model Checking, Behavioral Strategies.

This work is partially based on the paper [Mogavero et al. 2010a], which appeared in FSTTCS’10.
Partially supported by the FP7 European Union project 600958-SHERPA and the Embedded System Cup Project,
B25B09090100007 (POR Campania FS 2007/2013, asse IV e asse V).
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies show this notice on the first
page or initial screen of a display along with the full citation. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute
to lists, or to use any component of this work in other works requires prior specific permission and/or a fee. Permissions may
be requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
© YYYY ACM 1529-3785/YYYY/01-ARTA $10.00
DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.



A:2 Fabio Mogavero et al.

ACM Reference Format:
... . ACM Trans. Comput. Logic V, N, Article A (January YYYY), 42 pages.
DOI = 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

1. INTRODUCTION
In system design, model checking is a well-established formal method that allows to automatically
check for global system correctness [Clarke and Emerson 1981; Queille and Sifakis 1981; Clarke
et al. 2002]. In such a framework, in order to check whether a system satisfies a required property, we
describe its structure in a mathematical model (such as Kripke structures [Kripke 1963] or labeled
transition systems [Keller 1976]), specify the property with a formula of a temporal logic (such as
LTL [Pnueli 1977], CTL [Clarke and Emerson 1981], or CTL∗ [Emerson and Halpern 1986]), and
check formally that the model satisfies the formula. In the last decade, interest has arisen in analyzing
the behavior of individual components or sets of them in systems with several entities. This interest
has started in reactive systems, which are systems that interact continuously with their environments.
In module checking [Kupferman et al. 2001], the system is modeled as a module that interacts with its
environment and correctness means that a desired property holds with respect to all such interactions
(see also [Ferrante et al. 2008] and [Aminof et al. 2013; Jamroga and Murano 2014] for recent works
in this field).

Starting from the study of module checking, researchers have looked for logics focusing on the
strategic behavior of agents in multi-agent systems [Agotnes et al. 2007; Alur et al. 2002; Pauly
2002; Jamroga and van der Hoek 2004; Walther et al. 2007; Bulling and Jamroga 2014; Benerecetti
et al. 2013]. One of the most important developments in this field is Alternating-Time Temporal Logic
(ATL∗, for short), introduced by Alur, Henzinger, and Kupferman [Alur et al. 2002]. ATL∗ allows
reasoning about strategies of agents with temporal goals. Formally, it is obtained as a generalization
of CTL∗ in which the path quantifiers, there exists “E” and for all “A”, are replaced with strategic
modalities of the form “〈〈A〉〉” and “[[A]]”, where A is a set of agents (a.k.a. players). Strategic
modalities over agent sets are used to express cooperation and competition among them in order to
achieve certain goals. In particular, these modalities express selective quantifications over those paths
that are the result of infinite games between a coalition and its complement.

ATL∗ formulas are interpreted over concurrent game structures (CGS, for short) [Alur et al. 2002],
which model interacting processes. Given a CGS G and a set A of agents, the ATL∗ formula 〈〈A〉〉ψ
is satisfied at a state s of G if there is a set of strategies for agents in A such that, no matter which
strategies are executed by agents not in A, the resulting outcome of the interaction in G satisfies ψ at
s. Thus, ATL∗ can express properties related to the interaction among components, while CTL∗ can
only express property of the global system. As an example, consider the property “processes α and
β cooperate to ensure that a system (having more than two processes) never enters a failure state”.
This can be expressed by the ATL∗ formula 〈〈{α, β}〉〉G ¬fail , where G is the classical LTL temporal
operator “globally”. CTL∗, in contrast, cannot express this property [Alur et al. 2002]. Indeed, it
can only assert whether the set of all agents may or may not prevent the system from entering a
failure state. It turns out that both the model-checking and the satisfiability problems are elementarily
decidable and, precisely, 2EXPTIME-COMPLETE [Alur et al. 2002; Schewe 2008].

Despite its powerful expressiveness, ATL∗ suffers from a strong limitation, due to the fact that
strategies are only treated implicitly, through modalities that refer to games between competing
coalitions. To overcome this problem, Chatterjee, Henzinger, and Piterman introduced Strategy Logic
(CHP-SL, for short) [Chatterjee et al. 2007], a logic that treats strategies in two-player turn-based
games as explicit first-order objects. In CHP-SL, the ATL∗ formula 〈〈{α}〉〉ψ, for a system modeled
by a CGS with agents α and β, becomes ∃x.∀y.ψ(x, y), i.e., “there exists a player-α strategy x such
that for all player-β strategies y, the unique infinite path resulting from the two players following the
strategies x and y satisfies the property ψ”. The explicit treatment of strategies in this logic allows to
state many properties not expressible in ATL∗. In particular, it is shown in [Chatterjee et al. 2007] that
ATL∗, in the restricted case of two-agent turn-based games, corresponds to a proper one-alternation
fragment of CHP-SL. The authors of that work have also shown that the model-checking problem
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for CHP-SL is decidable, although only a non-elementary algorithm for it, both in the size of system
and formula, has been provided, leaving as an open question whether an algorithm with a better
complexity exists or not. The complementary question about the decidability of the satisfiability
problem for CHP-SL was also left open and it is not addressed in other papers apart our preliminary
work [Mogavero et al. 2010a].

While the basic idea exploited in [Chatterjee et al. 2007] to quantify over strategies and then to
commit agents explicitly to certain of these strategies turns to be very powerful and useful [Fisman
et al. 2010], CHP-SL still presents severe limitations. Among the others, it needs to be extended to
the more general concurrent multi-agent setting. Also, the specific syntax considered there allows
only a weak kind of strategy commitment. For example, CHP-SL does not allow different players to
share the same strategy, suggesting that strategies have yet to become first-class objects in this logic.
Moreover, an agent cannot change his strategy during a play without forcing the other to do the same.

These considerations, as well as all questions left open about decision problems, led us to introduce
and investigate a new Strategy Logic, denoted SL, as a more general framework than CHP-SL, for
explicit reasoning about strategies in multi-agent concurrent games. Syntactically, SL extends LTL by
means of two strategy quantifiers, the existential 〈〈x〉〉 and the universal [[x]], as well as agent binding
(a, x), where a is an agent and x a variable. Intuitively, these elements can be respectively read as

“there exists a strategy x”, “for all strategies x”, and “bind agent a to the strategy associated with
x”. For example, in a CGS with three agents α, β, γ, the previous ATL∗ formula 〈〈{α, β}〉〉G ¬fail
can be translated in the SL formula 〈〈x〉〉〈〈y〉〉[[z]](α, x)(β, y)(γ, z)(G ¬fail). The variables x and y
are used to select two strategies for the agents α and β, respectively, while z is used to select
one for the agent γ such that their composition, after the binding, results in a play where fail is
never met. Note that we can also require, by means of an appropriate choice of agent bindings,
that agents α and β share the same strategy, using the formula 〈〈x〉〉[[z]](α, x)(β, x)(γ, z)(G ¬fail).
Furthermore, we may vary the structure of the game by changing the way the quantifiers alternate,
as in the formula 〈〈x〉〉[[z]]〈〈y〉〉(α, x)(β, y)(α, z)(G ¬fail). In this case, x remains uniform w.r.t. z,
but y becomes dependent on it. Finally, we can change the strategy that one agent uses during the
play without changing those of the other agents, by simply using nested bindings, as in the formula
〈〈x〉〉〈〈y〉〉[[z]]〈〈w〉〉(α, x)(β, y)(γ, z)(G (γ,w)G ¬fail). The last examples intuitively show that SL is
an extension of both ATL∗ and CHP-SL. It is worth noting that the pattern of modal quantifications
over strategies and binding to agents can be extended to other linear-time temporal logics than
LTL, such as the linear µCALCULUS [Vardi 1988]. In fact, the use of LTL here is only a matter of
simplicity in presenting our framework, and changing the embedded temporal logic only involves
few side-changes in proofs and decision procedures.

As one of the main results in this paper about SL, we show that the model-checking problem
is non-elementarily decidable. To gain this, we use an automata-theoretic approach [Kupferman
et al. 2000]. Precisely, we reduce the decision problem for our logic to the emptiness problem of a
suitable alternating parity tree automaton, which is an alternating tree automaton (see [Grädel et al.
2002], for a survey) along with a parity acceptance condition [Muller and Schupp 1995]. Due to the
operations of projection required by the elimination of quantifications on strategies, which induce at
any step an exponential blow-up, the overall size of the required automaton is non-elementary in
the size of the formula, while it is only polynomial in the size of the model. Thus, together with the
complexity of the automata-nonemptiness calculation, we obtain that the model checking problem is
in PTIME, w.r.t. the size of the model, and NONELEMENTARY, w.r.t. the size of the specification.
Hence, the algorithm we propose is computationally not harder than the best one known for CHP-SL
and, notably, a non-elementary data complexity improvement, (i.e., with respect to the size of the
model). The latter is remarkable as in formal verification often the specification is very small (or even
constant) with respect to the system. Moreover, we prove that our problem has a non-elementary
lower bound. Specifically, it is k-EXPSPACE-HARD in the alternation number k of quantifications in
the specification.

The contrast between the high complexity of the model-checking problem for our logic and the
elementary one for ATL∗ has spurred us to investigate syntactic fragments of SL, strictly subsuming
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ATL∗, with a better complexity. In particular, by means of these sublogics, we want to understand
why SL is computationally more difficult than ATL∗.

The main fragments we study here are Nested-Goal, Boolean-Goal, and One-Goal Strategy Logic,
respectively denoted by SL[NG], SL[BG], and SL[1G]. Note that, differently from the first two, we
introduced the last in a very recent paper and investigated it w.r.t. the satisfiability problem [Mogavero
et al. 2012]. These fragments encompass formulas in a special prenex normal form having nested
temporal goals, Boolean combinations of goals, and a single goal at a time, respectively. For goal we
mean an SL formula of the type [ψ, where [ is a binding prefix of the form (α1, x1), . . . , (αn, xn)
containing all the involved agents and ψ is an agent-full formula. With more detail, the idea behind
SL[NG] is that, when in ψ there is a quantification over a variable, then there are quantifications of all
free variables contained in the inner subformulas. So, a subgoal of ψ that has a variable quantified in
ψ itself cannot use other variables quantified out of this formula. Thus, goals can be only nested or
combined with Boolean and temporal operators. SL[BG] and SL[1G] further restrict the use of goals.
In particular, in SL[1G], each temporal formula ψ is prefixed by a quantification-binding prefix ℘[
that quantifies over a tuple of strategies and binds them to all agents.

As main results about these fragments, we prove that the model-checking problem for SL[1G] is
2EXPTIME-COMPLETE, thus not harder than the one for ATL∗. On the contrary, for SL[NG], it is
NONELEMENTARY-HARD and thus we enforce the corresponding result for SL. Finally, by observing
that SL[NG] includes SL[BG], we have that the model-checking problem for the latter is decidable with
a 2EXPTIME lower-bound, given by SL[1G] model-checking complexity. The problem of determine
its precise complexity is left open here.

To achieve all positive results about SL[1G], we introduce a fundamental property of the semantics
of this logic, called behavioral1, which allows us to strongly simplify the reasoning about strategies
by reducing it to a set of reasonings about agent’s choices (formally, agent’s actions). This intrinsic
characteristic of SL[1G], which unfortunately is not shared by the other fragments, asserts that, in a
determined history of the play, the value of an existential quantified strategy depends only on the
values of strategies, from which the first depends, on the same history. This means that, to choose
an existential strategy, we do not need to know the entire structure of universal strategies, as for
the whole SL, but only their values on the histories of interest. In other words, by means of the
behavioral property, a one-shot second-order quantification over strategies can be eliminated in
favor of a progressive first-order quantification over agent’s choices. Technically, to describe the
behavioral property, we make use of the machinery of Skolem dependence function, which defines a
Skolemization procedure for SL, inspired by the one in first order logic (see [Hodges 2001]).

By means of behavioral, we can modify the SL model-checking procedure via alternating tree
automata in such a way that we avoid the projection operations by using a dedicated automaton
that makes an action quantification for each node of the tree model. Consequently, the resulting
automaton is only exponential in the size of the formula, independently from its alternation number.
Thus, together with the complexity of the automata-nonemptiness calculation, we get that the model-
checking procedure for SL[1G] is 2EXPTIME. Clearly, the behavioral property also holds for ATL∗,
as it is included in SL[1G]. In particular, although it has not been explicitly stated, this property is
crucial for most of the results achieved in literature about ATL∗ by means of automata (see [Schewe
2008], as an example). Moreover, we believe that our proof techniques are of independent interest
and applicable to other logics as well.

Related works. Several works have focused on extensions of ATL and ATL∗ to incorpo-
rate more powerful strategic constructs. Among them, we recall Alternating-Time µCALCULUS
(AµCALCULUS, for short) [Alur et al. 2002], Game Logic (GL, for short) [Alur et al. 2002], Quanti-
fied Decision Modality µCALCULUS (QDµCALCULUS, for short) [Pinchinat 2007], Coordination
Logic (CL, for short) [Finkbeiner and Schewe 2010], (ATL with plausibility (ATL+, for short) [Bulling

1We use this term as it has a direct correspondence with the “behavioral” concept used in game theory [Myerson 1997;
Mogavero et al. 2013; 2014a].
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et al. 2008], (ATL with Irrevocable strategies (IATL, for short) [Agotnes et al. 2007], (Memory-
ful ATL∗ (mATL∗, for short) [Mogavero et al. 2010b], Basic Strategy-Interaction Logic (BSIL,
for short) [Wang et al. 2011] Temporal Cooperation Logic (TCL, for short) [Huang et al. 2013],
Alternating-time Temporal Logic with Explicit Actions (ATLEA, for short) [Herzig et al. 2013] and
some extensions of ATL∗ considered in [Brihaye et al. 2009]. AµCALCULUS and QDµCALCULUS
are intrinsically different from SL (as well as from CHP-SL and ATL∗) as they are obtained by
extending the propositional µ-calculus [Kozen 1983] with strategic modalities. CL is similar to
QDµCALCULUS but with LTL temporal operators instead of explicit fixpoint constructors. GL is
strictly included in CHP-SL, in the case of two-player turn-based games, but it does not use any
explicit treatment of strategies, neither it does the extensions of ATL∗ introduced in [Brihaye et al.
2009], which consider restrictions on the memory for strategy quantifiers. ATL+enables to express
rationality assumptions of intelligent agents in ATL. In IATL, the semantics of the logic ATL is
changed in a way that, in the evaluation of the goal, agents can be forced to keep the strategy they
have chosen in the past in order to reach the state where a goal is evaluated. mATL∗ enriches ATL∗ by
giving the ability to agents to “relent” and change their goals and strategies depending on the history
of the play. BSIL allows to specify behaviors of a system that can cooperate with several strategies of
the environment for different requirements. TCL extends ATL by allowing successive definitions of
agent strategies, with the aim of using the collaborative power of groups of agents to enforce different
temporal objectives. ATLEA introduces explicit actions in the logic ATL to reason about abilities
of agents under commitments to play precise actions. Thus, all above logics are different from SL,
which we recall it aims to be a minimal but powerful logic to reason about strategic behavior in
multi-agent systems.

At roughly the same time we have conceived Strategy Logic, another generalization of ATL∗,
named ATL∗ with Strategy Contexts, which results to be very expressive but a proper sublogic of
SL, has been considered in [Da Costa et al. 2010a] (see also [Da Costa et al. 2012; Laroussinie and
Markey 2013] for more recent works). In this logic, a quantification over strategies does not reset
the strategies previously quantified but allows to maintain them in a particular context in order to be
reused. This makes the logic much more expressive than ATL∗. On the other hand, as it does not allow
agents to share the same strategy, it is not comparable with the fragments we have considered in
this paper. We want to remark that our non-elementary hardness proof about the SL model-checking
problem is inspired by and improves a proof proposed for the logic proposed in in [Da Costa et al.
2010a] and communicated to us [Da Costa et al. 2010b] by the authors of [Da Costa et al. 2010a].

Recently, several extensions of SL have been also investigated. Updating Strategy Logic (U-SL,
for short) has been considered in [Chareton et al. 2013] where, in addition to SL, an agent can refine
its own strategies by means of an "unbinder" operator, which explicitly deletes the binding of a
strategy to an agent. In [Belardinelli 2014], an epistemic extension of SL with modal operators for
individual knowledge has been considered, showing that the complexity of model checking for this
logic is not worse than the one for (non-epistemic) SL. Last but not least, in [Čermák et al. 2014]
a BDD-based model checker for the verification of systems against specifications expressed in the
epistemic extension of SL, named MCMAS-SLK, has been introduced.

Finally, works worthy of mention are those handling the synthesis question of specifications
expressed in the logic CHP-SL, as well as logics related to SL. Among the others, we report the
works [Chatterjee et al. 2014; Fisman et al. 2010].

Note on [Mogavero et al. 2010a]. Preliminary results on SL appeared in [Mogavero et al. 2010a].
We presented there a 2EXPTIME algorithm for the model-checking problem. The described procedure
applies only to the SL[1G] fragment, as the model-checking problem for the full SL is non-elementary.

Outline. The remaining part of this work is structured as follows. In Section 2, we recall the
semantic framework based on concurrent game structures and introduce syntax and semantics of
SL. In Section 3, we show the non-elementary lower bound for the model-checking problem. In
Section 4, we start the study of few syntactic and semantic SL fragments and introduce the concepts
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of Skolem dependence function and behavioral satisfiability. In Section 5, we describe the model-
checking automata-theoretic procedures for all SL fragments. Finally, in Section 6, we give some
concluding observation. Note that, in the accompanying electronic appendix, we recall some standard
mathematical notation and basic definitions that are used in the paper. However, for the sake of a
simpler understanding of the technical part, we make a reminder, by means of footnotes, for each
first use of a non trivial or immediate mathematical concept. The paper is self contained. All missing
proofs in the main body of the work are reported in the electronic appendix.

2. STRATEGY LOGIC
In this section, we introduce Strategy Logic, an extension of the classic linear-time temporal logic
LTL [Pnueli 1977] along with the concepts of strategy quantifications and agent binding. Our aim is
to define a formalism that allows to express strategic plans over temporal goals in a way that separates
the part related to the strategic reasoning from that concerning the tactical one. This distinctive
feature is achieved by decoupling the instantiation of strategies, done through the quantifications,
from their application, by means of bindings. Our proposal, on the line marked by its precursor
CHP-SL [Chatterjee et al. 2007; 2010] and differently from classical temporal logics [Emerson 1990],
turns in a logic that is not simply propositional but predicative, since we treat strategies as a first order
concept via the use of agents and variables as explicit syntactic elements. This fact let us to write
Boolean combinations and nesting of complex predicates, linked together by some common strategic
choices, which may represent each one a different temporal goal. However, it is worth noting that the
technical approach we follow here is quite different from that used for the definition of CHP-SL,
which is based, on the syntactic side, on the CTL∗ formula framework [Emerson and Halpern 1986]
and, on the semantic one, on the two-player turn-based game model [Perrin and Pin 2004].

The section is organized as follows. In Subsection 2.1, we recall the definition of concurrent game
structure, used to interpret Strategy Logic, along with some useful example. In Subsection 2.2 we
introduce the syntax. Then, in Subsection 2.3, we give, among the others, the notions of strategy,
assignment, and play, which are finally used, in Subsection 2.4, to define the semantics of the logic.

2.1. Underlying framework
As semantic framework for our logic language, we use a graph-based model for multi-player games
named concurrent game structure [Alur et al. 2002]. Intuitively, this mathematical formalism provides
a generalization of Kripke structures [Kripke 1963] and labeled transition systems [Keller 1976],
modeling multi-agent systems viewed as games, in which players perform concurrent actions chosen
strategically as a function on the history of the play.

Definition 2.1 (Concurrent Game Structures). A concurrent game structure (CGS, for short)
is a tuple G , 〈AP,Ag,Ac,St, λ, τ, s0〉, where AP and Ag are finite non-empty sets of atomic
propositions and agents, Ac and St are enumerable non-empty sets of actions and states, s0 ∈ St is
a designated initial state, and λ : St→ 2AP is a labeling function that maps each state to the set of
atomic propositions true in that state. Let Dc , AcAg be the set of decisions, i.e., functions from Ag
to Ac representing the choices of an action for each agent 2. Then, τ : St×Dc→ St is a transition
function mapping a pair of a state and a decision to a state.

Observe that elements in St are not global states of the system, but states of the environment in which
the agents operate. Thus, they can be viewed as states of the game, which do not include the local
states of the agents. From a practical point of view, this means that all agents have perfect information
on the whole game, since local states are not taken into account in the choice of actions [Fagin et al.
1995]. Observe also that, differently from other similar formalizations, each agent has the same set of
possible executable actions, independently of the current state and of choices made by other agents.
However, as already reported in literature [Pinchinat 2007], this simplifying choice does not result in

2In the following, we use both X→ Y and YX to denote the set of functions from the domain X to the codomain Y.
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a limitation of our semantics framework and allows us to give a simpler and clearer explanation of
all formal definitions and techniques we work on.

From now on, apart from the examples and if not differently stated, all CGSs are defined on the same
sets of atomic propositions AP and agents Ag. So, when we introduce a new structure in our reason-
ings, we do not make explicit their definition anymore. In addition, we use the italic letters p, a, c, and
s, possibly with indexes, as meta-variables on, respectively, the atomic propositions p, q, . . . in AP, the
agents α, β, γ, . . . in Ag, the actions 0, 1, . . . in Ac, and the states s, . . . in St. Finally, we use the name
of a CGS as a subscript to extract the components from its tuple-structure. Accordingly, if G = 〈AP,
Ag,Ac,St, λ, τ, s0〉, we have that AcG = Ac, λG = λ, s0G = s0, and so on. Furthermore, we use
the same notational concept to make explicit to which CGS the set Dc of decisions is related to. Note
that, we omit the subscripts if the structure can be unambiguously individuated from the context.

si
∅

sA
wA

sB
wB

DA DB

Di

∗∗ ∗∗

Fig. 1: The CGS GPRS .

Now, to get attitude to the introduced semantic framework, let us
describe some running examples of simple concurrent games. We
start by modeling the paper, rock, and scissor game.

Example 2.2 (Paper, Rock, and Scissor). Consider the classic
two-player concurrent game paper, rock, and scissor (PRS, for
short) as represented in Figure 1, where a play continues until one
of the participants catches the move of the other. Vertexes are states
of the game and labels on edges represent decisions of agents or
sets of them, where the symbol ∗ is used in place of every possible
action. In this specific case, since there are only two agents, the pair
of symbols ∗∗ indicates the whole set Dc of decisions. The agents
“Alice” and “Bob” in Ag , {A,B} have as possible actions those in the set Ac , {P,R,S}, which
stand for “paper”, “rock”, and “scissor”, respectively. During the play, the game can stay in one of the
three states in St , {si, sA, sB}, which represent, respectively, the waiting moment, named idle, and
the two winner positions. The latter ones are labeled accordingly with one of the atomic propositions
in AP , {wA,wB}, in order to represent who is the winner between A and B. The catch of one action
over another is described by the relation C , {(P,R), (R,S), (S,P)} ⊆ Ac×Ac. We can now define
the CGS GPRS , 〈AP,Ag,Ac,St, λ, τ, si〉 for the PRS game. The labeling is given by λ(si) , ∅,
λ(sA) , {wA}, and λ(sB) , {wB}. Moreover, the transition function is defined as follows, where
DA , {d ∈ DcGPRS : (d(A), d(B)) ∈ C} and DB , {d ∈ DcGPRS : (d(B), d(A)) ∈ C} are the sets
of winning decisions for the two agents: if s = si and d ∈ DA then τ(s, d) , sA, else if s = si and
d ∈ DB then τ(s, d) , sB, otherwise τ(s, d) , s. Note that, when none of the two agents catches
the action of the other, i.e., the used decision is in Di , DcGPRS \ (DA ∪DB), the play remains in
the idle state to allow another try, otherwise it is stuck in a winning position forever.

si
fA1

, fA2

sA1
fA1

sj

∅

sA2
fA2

DC

DD

CD

CC

∗∗

∗∗

∗∗

Fig. 2: The CGS GPD .

We now describe a non-classic qualitative version of the well-
known prisoner’s dilemma.

Example 2.3 (Prisoner’s Dilemma). In the prisoner’s dilemma
(PD, for short), two accomplices are interrogated in separated rooms
by the police, which offers them the same agreement. If one defects,
i.e., testifies for the prosecution against the other, while the other
cooperates, i.e., remains silent, the defector goes free and the silent
accomplice goes to jail. If both cooperate, they remain free, but will
be surely interrogated in the next future waiting for a defection. On
the other hand, if they both defect, both go to jail. Note that no one
of the two prisoners knows about the choice made by the other. This
tricky situation can be modeled by the CGS GPD , 〈AP,Ag,Ac,
St, λ, τ, si〉 depicted in Figure 2, where the agents “Accomplice-1”
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and “Accomplice-2” in Ag , {A1,A2} can chose an action in Ac , {C,D}, which stand for
“cooperation” and “defection”, respectively. There are four states in St , {si, sA1

, sA2
, sj}. In the

idle state si the agents are waiting for the interrogation, while sj represents the jail for both of them.
Instead the remaining states sA1

and sA2
indicate the situations in which only one of the agents

becomes definitely free. To characterize the different meaning of these states, we use the atomic
propositions in AP , {fA1 , fA2}, which denote who is “free”, by defining the following labeling:
λ(si) , {fA1

, fA2
}, λ(sA1

) , {fA1
}, λ(sA2

) , {fA2
}, and λ(sj) , ∅. The transition function τ can

be easily deduced by the figure.
1

4

2 3

8

5 6

7
9

C

M
R

Balcony

Fig. 3: Romeo and Juliet game.

As another example in which it is possible to discuss about
the ability of an agent to be safe with respect to the behavior of
malicious agents, we consider a generalization of the well known
robber-vs-cops game (see [Aigner and Fromme 1984] for a survey).

Example 2.4 (Romeo and Juliet Game).
In the Romeo and Juliet game, Romeo, being able to move inside

Juliet’s house, aims to reach her balcony, trying to avoid meeting
both the Montagues and Capulets families, who are able to move
concurrently with him in the house. Graphically, the house is divided
in rooms and each room has doors on all internal walls. The topology
of the house depends on the status of these doors that can be closed
or open.

Additionally, Romeo is helped by the accomplice Shakespeare that controls the doors of the rooms.
Specifically, at each step of the game, Shakespeare can switch the status of at most two doors at a
time (i.e., from open to closed or viceversa). Hence, he can modify the shape of the house during
a play. We consider Romeo meeting the families in two cases: if they are in the same room in a
certain phase of the play (Romeo is captured) or if they are in adjacent rooms with the connecting
door open (Romeo is shot). In each step, the agents Romeo, Montagues family, and Capulets family
can independently decide to stay in the room or, in the case a connection door to another room is
open, move to this one. A sample game given in Figure 3 is made by nine rooms, with Room 9
being the balcony, Romeo in Room 1, Montagues family in Room 3 and Capulets family in Room 7,
respectively, and all the doors open as initial state of the game. We denote with R = [1, 9] the set of
rooms and D = {d = (r1, r2) ∈ R× R : r1 is adjacent to r2} the set of doors.

We can model this situation with a CGS GRJ = 〈AP,Ag,Ac,St, λ, τ, s0〉 with AP , {c, r}
standing for Captured or Shot (c) and Reached (r); Ag , {R,M,C,S}, standing for Romeo
(R), Montagues (M), Capulets (C), Shakespeare (S), respectively; Ac , M ∪ C where M ,
{stay, up, down, left, right} is the set of moves for Romeo and Families and C = {d ∈ 2D : |d| ≤ 2}
be the set of possible switching of doors for Shakespeare, in which the empty set stands for no
switching; St , R × R2 × {0, 1}D be the set of states in which the first coordinate stands for
the position of Romeo, the second and third coordinates stand for the positions of Montagues and
Capulets, respectively, and the fourth coordinate is a function describing the status open or closed of
each door in the house. The initial state is given by (1, 3, 7, f0) where f0 : D→ {0, 1} is the function
constant to 0, i.e., all the doors are open. The labeling function is given as follows: for each state
s = (n,m1,m2, f) ∈ St, r ∈ λ(s) iff n = 9,3 c ∈ λ(s) iff there exists i ∈ {1, 2} such that either
n = mi or (n,mi) ∈ D and f((n,mi)) = 0.4 The transition function can be easily deduced by the
figure. For the sake of simplicity, all the states labeled with r only have a loop in the game. 5

3Romeo has reached the balcony.
4Romeo is in the same room with a family or they are close with the door open.
5For the sake of simplicity, we assume that each agent, at each state of the game, has a specific subset of possible choices of
actions. For instance, if Romeo stays in the room 4 and the door (4, 5) is closed, than only the actions up, down, and stay are
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2.2. Syntax
Strategy Logic (SL, for short) syntactically extends LTL by means of two strategy quantifiers, the
existential 〈〈x〉〉 and the universal [[x]], and the agent binding (a, x), where a is an agent and x a
variable. Intuitively, these new elements can be read as “there exists a strategy x”, “for all strategies
x”, and “bind agent a to the strategy associated with the variable x”, respectively. The formal syntax
of SL follows.

Definition 2.5 (SL Syntax). SL formulas are built inductively from the sets of atomic proposi-
tions AP, variables Var, and agents Ag, by using the following grammar, where p ∈ AP, x ∈ Var,
and a ∈ Ag:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | X ϕ | ϕ U ϕ | ϕ R ϕ | 〈〈x〉〉ϕ | [[x]]ϕ | (a, x)ϕ.

SL denotes the infinite set of formulas generated by the above rules.

Observe that, by construction, LTL is a proper syntactic fragment of SL, i.e., LTL ⊂ SL. In order to
abbreviate the writing of formulas, we use the boolean values true t and false f and the well-known
temporal operators future F ϕ , t U ϕ and globally G ϕ , f R ϕ. Moreover, we use the italic letters
x, y, z, . . ., possibly with indexes, as meta-variables on the variables x, y, z, . . . in Var.

A first classic notation related to the SL syntax that we need to introduce is that of subformula,
i.e., a syntactic expression that is part of an a priori given formula. By sub(ϕ) we formally denote
the set of subformulas of an SL formula ϕ. For instance, consider ϕ = 〈〈x〉〉(α, x)(F p). Then, it is
immediate to see that sub(ϕ) = {ϕ, (α, x)(F p), (F p), p, t}.

Normally, predicative logics need the concepts of free and bound placeholders in order to formally
define the meaning of their formulas. The placeholders are used to represent particular positions
in syntactic expressions that have to be highlighted, since they have a crucial role in the definition
of the semantics. In first order logic, for instance, there is only one type of placeholders, which is
represented by the variables. In SL, instead, we have both agents and variables as placeholders, as
it can be noted by its syntax, in order to distinguish between the quantification of a strategy and
its application by an agent. Consequently, we need a way to differentiate whether an agent has an
associated strategy via a variable and whether a variable is quantified. To do this, we use the set of
free agents/variables as the subset of Ag∪Var containing (i) all agents for which there is no binding
after the occurrence of a temporal operator and (ii) all variables for which there is a binding but no
quantifications.

Definition 2.6 (SL Free Agents/Variables). The set of free agents/variables of an SL formula is
given by the function free : SL → 2Ag∪Var defined as follows:

(i) free(p) , ∅, where p ∈ AP;
(ii) free(¬ϕ) , free(ϕ);

(iii) free(ϕ1Op ϕ2) , free(ϕ1) ∪ free(ϕ2), where Op ∈ {∧,∨};
(iv) free(X ϕ) , Ag ∪ free(ϕ);
(v) free(ϕ1Op ϕ2) , Ag ∪ free(ϕ1) ∪ free(ϕ2), where Op ∈ {U,R};

(vi) free(Qn ϕ) , free(ϕ) \ {x}, where Qn ∈ {〈〈x〉〉, [[x]] : x ∈ Var};
(vii) free((a, x)ϕ) , free(ϕ), if a 6∈ free(ϕ), where a ∈ Ag and x ∈ Var;

(viii) free((a, x)ϕ) , (free(ϕ) \ {a}) ∪ {x}, if a ∈ free(ϕ), where a ∈ Ag and x ∈ Var.

A formula ϕ without free agents (resp., variables), i.e., with free(ϕ)∩Ag = ∅ (resp., free(ϕ)∩Var =
∅), is named agent-closed (resp., variable-closed). If ϕ is both agent- and variable-closed, it is referred

available to him. It is easy to see that such assumption can be overcame in a suitable, but even tricky, CGS that is somehow
equivalent.
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to as a sentence. The function snt : SL → 2SL returns the set of subsentences snt(ϕ) , {φ ∈ sub(ϕ)
: free(φ) = ∅}, for each SL formula ϕ.

Observe that, on one hand, free agents are introduced in Items (iv) and (v) and removed in Item (viii).
On the other hand, free variables are introduced in Item (viii) and removed in Item (vi). As an
example, let ϕ = 〈〈x〉〉(α, x)(β, y)(F p) be a formula on the agents Ag = {α, β, γ}. Then, we have
free(ϕ) = {γ, y}, since γ is an agent without any binding after F p and y has no quantification at
all. Consider also the formulas (α, z)ϕ and (γ, z)ϕ, where the subformula ϕ is the same as above.
Then, we have free((α, z)ϕ) = free(ϕ) and free((γ, z)ϕ) = {y, z}, since α is not free in ϕ but γ is,
i.e., α /∈ free(ϕ) and γ ∈ free(ϕ). So, (γ, z)ϕ is agent-closed while (α, z)ϕ is not.

Similarly to the case of first order logic, another important concept that characterizes the syntax of
SL is the one of alternation number of quantifiers, i.e., the maximum number of quantifier switches
〈〈·〉〉[[·]], [[·]]〈〈·〉〉, 〈〈·〉〉¬〈〈·〉〉, or [[·]]¬[[·]] that binds a variable in a subformula that is not a sentence. The
constraint on the kind of subformulas that are considered here means that, when we evaluate the
number of such switches, we consider each possible subsentence as an atomic proposition, hence, its
quantifiers are not taken into account. Moreover, it is important to observe that vacuous quantifications,
i.e., quantifications on variable that are not free in the immediate inner subformula, are not considered
at all in the counting of quantifier switches. This value is crucial when we want to analyze the
complexity of the decision problems of fragments of our logic, since a higher alternation can usually
means a higher complexity. By alt(ϕ) we formally denote the alternation number of an SL formula
ϕ. Furthermore, the fragment SL[k-alt] , {ϕ ∈ SL : ∀ϕ′ ∈ sub(ϕ) . alt(ϕ′) ≤ k} of SL, for k ∈ N,
denotes the subset of formulas having all subformulas with alternation number bounded by k. For
instance, consider the sentence ϕ = [[x]]〈〈y〉〉(α, x)(β, y)(F ϕ′) with ϕ′ = [[x]]〈〈y〉〉(α, x)(β, y)(X p),
on the set of agents Ag = {α, β}. Then, the alternation number alt(ϕ) is 1 and not 3, as one can think
at a first glance, since ϕ′ is a sentence. Moreover, it holds that alt(ϕ′) = 1. Hence, ϕ ∈ SL[1-alt]. On
the other hand, if we substitute ϕ′ with ϕ′′ = [[x]](α, x)(X p), we have that alt(ϕ) = 2, since ϕ′′ is
not a sentence. Thus, in the latter case, it holds that ϕ 6∈ SL[1-alt] but ϕ ∈ SL[2-alt].

At this point, in order to practice with the syntax of our logic by expressing game-theoretic
concepts through formulas, we describe two examples of important properties that are possible to
write in SL, but neither in ATL∗ [Alur et al. 2002] nor in CHP-SL. This is clarified later in the
paper. The first concept we introduce is the well-known deterministic concurrent multi-player Nash
equilibrium for Boolean valued payoffs.

Example 2.7 (Nash Equilibrium). Consider the n agents α1, . . . , αn of a game, each of them
having, respectively, a possibly different temporal goal described by one of the LTL formulas
ψ1,. . ., ψn. Then, we can express the existence of a strategy profile (x1, . . . , xn) that is a Nash
equilibrium (NE, for short) for α1, . . . , αn w.r.t. ψ1, . . . , ψn by using the SL[1-alt] sentence ϕNE,
〈〈x1〉〉(α1, x1) · · · 〈〈xn〉〉(αn, xn) ψNE , where ψNE ,

∧n
i=1(〈〈y〉〉(αi, y)ψi) → ψi is a variable-closed

formula. Informally, this asserts that every agent αi has xi as one of the best strategy w.r.t. the goal
ψi, once all the other strategies of the remaining agents αj , with j 6= i, have been fixed to xj . Note
that here we are only considering equilibria under deterministic strategies.

Note that the syntactic feature of SL that allows us to represent Nash Equilibria is the binding
construct. Indeed, by means of a suitable usage of it, we can compare, in a Boolean way, the outcomes
of two strategy profiles in which only one agent has changed his choice. This cannot be done in ATL∗,
since the use of an agent modality necessarily re-quantify the strategies associated with all the agents.
Therefore, we cannot change in ATL∗ just a strategy of a single selected agent.

In game theory, it is important to recall that an equilibrium is not always stable. Indeed, there are
games like the PD of Example 2.3 on page 7 having Nash equilibria that are instable. One of the
simplest concepts of stability that is possible to think is called stability profile.

Example 2.8 (Stability Profile). Think about the same situation of the above example on NE.
Then, a stability profile (SP, for short) is a strategy profile (x1, . . . , xn) for α1, . . . , αn w.r.t.
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ψ1, . . . , ψn such that there is no agent αi that can choose a different strategy from xi without changing
its own payoff and penalizing the payoff of another agent αj , with j 6= i. To represent the existence
of such a profile, we can use the SL[1-alt] sentence ϕSP , 〈〈x1〉〉(α1, x1) · · · 〈〈xn〉〉(αn, xn) ψSP ,
where ψSP ,

∧n
i,j=1,i6=j ψj → [[y]]((ψi ↔ (αi, y)ψi) → (αi, y)ψj). Informally, with the ψSP

subformula, we assert that, if αj is able to achieve his goal ψj , all strategies y of αi that left
unchanged the payoff related to ψi, also let αj to maintain his achieved goal. At this point, it
is very easy to ensure the existence of an NE that is also an SP, by using the SL[1-alt] sentence
ϕSNE , 〈〈x1〉〉(α1, x1) · · · 〈〈xn〉〉(αn, xn) ψSP ∧ ψNE .

2.3. Basic concepts
Before continuing with the description of our logic, we have to introduce some basic concepts,
regarding a generic CGS, which are at the base of the semantics formalization. Most of these notions
are inspired from the classical ones given in the settings of game structures and graphs. However, as
there are different formalizations of them in the literature, as well as for the sake of completeness, we
prefer to give them here in full detail. We recall that a description of the used mathematical notation
is reported in the accompanying electronic appendix.

We start with the notions of track and path. Intuitively, tracks and paths of a CGS G are legal
sequences of reachable states in G that can be respectively seen as partial and complete descriptions
of possible outcomes of the game modeled by G itself. A track (resp., path) in a CGS G is a finite
(resp., an infinite) sequence of states ρ ∈ St∗ (resp., π ∈ Stω) such that, for all i ∈ [0, |ρ| − 1[ (resp.,
i ∈ N), there exists a decision d ∈ Dc such that (ρ)i+1 = τ((ρ)i, d) (resp., (π)i+1 = τ((π)i, d)). 6

A track ρ is non-trivial if it has non-zero length, i.e., |ρ| > 0 that is ρ 6= ε. 7 The set Trk ⊆ St+

(resp., Pth ⊆ Stω) contains all non-trivial tracks (resp., paths). Moreover, Trk(s) , {ρ ∈ Trk

: fst(ρ) = s} (resp., Pth(s) , {π ∈ Pth : fst(π) = s}) indicates the subsets of tracks (resp.,
paths) starting at a state s ∈ St. 8 For instance, consider the PRS game of Example 2.2 on page 7.
Then, ρ = si · sA ∈ St+ and π = si

ω ∈ Stω are, respectively, a track and a path in the CGS GPRS .
Moreover, it holds that Trk = si

+ + si
∗ · (sA+ + sB

+) and Pth = si
ω + si

∗ · (sAω + sB
ω).

At this point, we can define the concept of strategy. Intuitively, a strategy is a scheme for an agent
that contains all choices of actions as a function of the history of the current outcome. However,
observe that here we do not set an a priori connection between a strategy and an agent, since the
same strategy can be used by more than one agent at the same time. A strategy in a CGS G is a partial
function f : Trk ⇀ Ac that maps each non-trivial track in its domain to an action. For a state s ∈ St,
a strategy f is said s-total if it is defined on all tracks starting in s, i.e., dom(f) = Trk(s). The set
Str , Trk ⇀ Ac (resp., Str(s) , Trk(s)→ Ac) contains all (resp., s-total) strategies. An example
of strategy in the CGS GPRS is the function f1 ∈ Str(si) that maps each track having length multiple
of 3 to the action P, the tracks whose remainder of length modulo 3 is 1 to the action R, and the
remaining tracks to the action S. A different strategy is given by the function f2 ∈ Str(si) that returns
the action P, if the tracks ends in sA or sB or if its length is neither a second nor a third power of a
positive number, the action R, if the length is a square power, and the action S, otherwise.

We now introduce the notion of assignment. Intuitively, an assignment gives a valuation of variables
with strategies, where the latter are used to determine the behavior of agents in the game. With more
detail, as in the case of first order logic, we use this concept as a technical tool to quantify over strate-
gies associated with variables, independently of agents to which they are related to. So, assignments
are used precisely as a way to define a correspondence between variables and agents via strategies.

Definition 2.9 (Assignments). An assignment in a CGS G is a partial function χ : Var ∪Ag ⇀
Str mapping variables and agents in its domain to a strategy. An assignment χ is complete if it

6The notation (w)i ∈ Σ indicates the element of index i ∈ [0, |w|[ of a non-empty sequence w ∈ Σ∞.
7The Greek letter ε stands for the empty sequence.
8By fst(w) , (w)0 it is denoted the first element of a non-empty sequence w ∈ Σ∞.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.



A:12 Fabio Mogavero et al.

is defined on all agents, i.e., Ag ⊆ dom(χ). For a state s ∈ St, it is said that χ is s-total if all
strategies χ(l) are s-total, for l ∈ dom(χ). The set Asg , Var ∪ Ag ⇀ Str (resp., Asg(s) ,
Var ∪Ag ⇀ Str(s)) contains all (resp., s-total) assignments. Moreover, Asg(X) , X→ Str (resp.,
Asg(X, s) , X→ Str(s)) indicates the subset of X-defined (resp., s-total) assignments, i.e., (resp.,
s-total) assignments defined on the set X ⊆ Var ∪Ag.

As an example of assignment, let us consider the function χ1 ∈ Asg in the CGS GPRS , defined on
the set {A, x}, whose values are f1 on A and f2 on x, where the strategies f1, f2 ∈ Str(si) are those
described above. Another examples is given by the assignment χ2 ∈ Asg, defined on the set {A,B},
such that χ2(A) = χ1(x) and χ2(B) = χ1(A). Note that both assignments are si-total and the latter
is also complete while the former is not.

Given an assignment χ ∈ Asg, an agent or variable l ∈ Var ∩ Ag, and a strategy f ∈ Str, it
is important to define a notation to represent the redefinition of χ, i.e., a new assignment equal
to the first on all elements of its domain but l, on which it assumes the value f. Then Formally,
with χ[l 7→ f] ∈ Asg we denote the new assignment defined on dom(χ[l 7→ f]) , dom(χ) ∪ {l}
that returns f on l and is equal to χ on the remaining part of its domain, i.e., χ[l 7→ f](l) , f and
χ[l 7→ f](l′) , χ(l′), for all l′ ∈ dom(χ) \ {l}. Intuitively, if we have to add or update a strategy
that needs to be bound by an agent or variable, we can simply take the old assignment and redefine it
by using the above notation. It is worth observing that, if χ and f are s-total then χ[l 7→ f] is s-total,
as well.

Now, we can introduce the concept of play in a game. Intuitively, a play is the unique outcome of
the game determined by all agent strategies participating to it.

Definition 2.10 (Plays). A path π ∈ Pth(s) starting at a state s ∈ St is a play w.r.t. a complete s-
total assignment χ ∈ Asg(s) ((χ, s)-play, for short) if, for all i ∈ N, it holds that (π)i+1 = τ((π)i, d),
where d(a) , χ(a)((π)≤i), for each a ∈ Ag. 9 The partial function play : Asg × St ⇀ Pth,
with dom(play) , {(χ, s) : Ag ⊆ dom(χ) ∧ χ ∈ Asg(s) ∧ s ∈ St}, returns the (χ, s)-play
play(χ, s) ∈ Pth(s), for all pairs (χ, s) in its domain.

As a last example, consider again the complete si-total assignment χ2 previously described for the
CGS GPRS , which returns the strategies f2 and f1 on the agents A and B, respectively. Then, we have
that play(χ2, si) = si

3 · sBω . This means that the play is won by the agent B.
Finally, we give the definition of global translation of a complete assignment together with a

related state, which is used to calculate, at a certain step of the play, what is the current state and its
updated assignment.

Definition 2.11 (Global Translation). For a given state s ∈ St and a complete s-total assignment
χ ∈ Asg(s), the i-th global translation of (χ, s), with i ∈ N, is the pair of a complete assignment and
a state (χ, s)i , ((χ)(π)≤i , (π)i), where π = play(χ, s) and by (χ)(π)≤i we are denoting the (π)i-
total assignment, with dom((χ)(π)≤i) = dom(χ), such that, for all l ∈ dom(χ), dom((χ)(π)≤i(l)) =

{ρ ∈ Trk((π)i) : (π)≤i · ρ ∈ dom(χ(l))} and (χ)(π)≤i(l)(ρ) = χ(l)((π)≤i · ρ), for all ρ ∈
dom((χ)(π)≤i(l)).

In order to avoid any ambiguity of interpretation of the described notions, we sometimes use the
name of a CGS as a subscript of the sets and functions just introduced to clarify to which structure
they are related to, as in the case of components in the tuple-structure of the CGS itself.

2.4. Semantics
As already reported at the beginning of this section, just like ATL∗ and differently from CHP-SL, the
semantics of SL is defined w.r.t. concurrent game structures. For an SL formula ϕ, a CGS G, one of

9The notation (w)≤i ∈ Σ∗ indicates the prefix up to index i ∈ [0, |w|] of a non-empty sequence w ∈ Σ∞.
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its states s, and an s-total assignment χ with free(ϕ) ⊆ dom(χ), we write G, χ, s |= ϕ to indicate
that the formula ϕ holds at s in G under χ. The semantics of SL formulas involving the atomic
propositions, the Boolean connectives ¬, ∧, and ∨, as well as the temporal operators X, U, and R
is defined as usual in LTL. The novel part resides in the formalization of the meaning of strategy
quantifications 〈〈x〉〉 and [[x]] and agent binding (a, x).

Definition 2.12 (SL Semantics). Given a CGS G, for all SL formulas ϕ, states s ∈ St, and s-total
assignments χ ∈ Asg(s) with free(ϕ) ⊆ dom(χ), the modeling relation G, χ, s |= ϕ is inductively
defined as follows.

(1) G, χ, s |= p if p ∈ λ(s), with p ∈ AP.
(2) For all formulas ϕ, ϕ1, and ϕ2, it holds that:

(a) G, χ, s |= ¬ϕ if not G, χ, s |= ϕ, that is G, χ, s 6|= ϕ;
(b) G, χ, s |= ϕ1 ∧ ϕ2 if G, χ, s |= ϕ1 and G, χ, s |= ϕ2;
(c) G, χ, s |= ϕ1 ∨ ϕ2 if G, χ, s |= ϕ1 or G, χ, s |= ϕ2.

(3) For a variable x ∈ Var and a formula ϕ, it holds that:
(a) G, χ, s |= 〈〈x〉〉ϕ if there exists an s-total strategy f ∈ Str(s) such that G, χ[x 7→ f], s |= ϕ;
(b) G, χ, s |= [[x]]ϕ if for all s-total strategies f ∈ Str(s) it holds that G, χ[x 7→ f], s |= ϕ.

(4) For an agent a ∈ Ag, a variable x ∈ Var, and a formula ϕ, it holds that G, χ, s |= (a, x)ϕ if
G, χ[a 7→ χ(x)], s |= ϕ.

(5) Finally, if the assignment χ is also complete, for all formulas ϕ, ϕ1, and ϕ2, it holds that:
(a) G, χ, s |= X ϕ if G, (χ, s)1 |= ϕ;
(b) G, χ, s |= ϕ1U ϕ2 if there is an index i ∈ N with k ≤ i such that G, (χ, s)i |= ϕ2 and, for all

indexes j ∈ N with k ≤ j < i, it holds that G, (χ, s)j |= ϕ1;
(c) G, χ, s |= ϕ1R ϕ2 if, for all indexes i ∈ N with k ≤ i, it holds that G, (χ, s)i |= ϕ2 or there

is an index j ∈ N with k ≤ j < i such that G, (χ, s)j |= ϕ1.

Intuitively, at Items 3a and 3b, respectively, we evaluate the existential 〈〈x〉〉 and universal [[x]]
quantifiers over strategies, by associating them to the variable x. Moreover, at Item 4, by means of an
agent binding (a, x), we commit the agent a to a strategy associated with the variable x. It is evident
that, due to Items 5a, 5b, and 5c, the LTL semantics is simply embedded into the SL one.

In order to complete the description of the semantics, we now give the classic notions of model
and satisfiability of an SL sentence. We say that a CGS G is a model of an SL sentence ϕ, in symbols
G |= ϕ, if G,∅, s0 |= ϕ. 10 In general, we also say that G is a model for ϕ on s ∈ St, in symbols
G, s |= ϕ, if G,∅, s |= ϕ. An SL sentence ϕ is satisfiable if there is a model for it.

It remains to introduce the concepts of implication and equivalence between SL formulas, which
are useful to describe transformations preserving the meaning of a specification. Given two SL
formulas ϕ1 and ϕ2, with free(ϕ1) = free(ϕ2), we say that ϕ1 implies ϕ2, in symbols ϕ1 ⇒ ϕ2,
if, for all CGSs G, states s ∈ St, and free(ϕ1)-defined s-total assignments χ ∈ Asg(free(ϕ1), s), it
holds that if G, χ, s |= ϕ1 then G, χ, s |= ϕ2. Accordingly, we say that ϕ1 is equivalent to ϕ2, in
symbols ϕ1 ≡ ϕ2, if both ϕ1 ⇒ ϕ2 and ϕ2 ⇒ ϕ1 hold.

In the rest of the paper, especially when we describe a decision procedure, we may consider
formulas in existential normal form (enf, for short) and positive normal form (pnf, for short), i.e.,
formulas in which only existential quantifiers appear or in which the negation is applied only to
atomic propositions, respectively. In fact, it is to this aim that we have considered in the syntax
of SL both the Boolean connectives ∧ and ∨, the temporal operators U, and R, and the strategy
quantifiers 〈〈·〉〉 and [[·]]. Indeed, all formulas can be linearly translated in pnf by using De Morgan’s
laws together with the following equivalences, which directly follow from the semantics of the logic:
¬X ϕ ≡ X ¬ϕ, ¬(ϕ1U ϕ2) ≡ (¬ϕ1)R (¬ϕ2), ¬〈〈x〉〉ϕ ≡ [[x]]¬ϕ, and ¬(a, x)ϕ ≡ (a, x)¬ϕ.

10The symbol ∅ stands for the empty function.
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At this point, in order to better understand the meaning of our logic, we discuss two examples in
which we describe the evaluation of the semantics of some formula w.r.t. the a priori given CGSs. We
start by explaining how a strategy can be shared by different agents.

s0
∅

s1
p

s2
p, q

s3
q

00 01

10

11

∗∗

∗∗ ∗∗

Fig. 4: The CGS GSV .

Example 2.13 (Shared Variable). Consider the SL[2-
alt] sentence ϕ = 〈〈x〉〉[[y]]〈〈z〉〉((α, x)(β, y)(X p) ∧
(α, y)(β, z)(X q)). It is immediate to note that both
agents α and β use the strategy associated with y to
achieve simultaneously the LTL temporal goals X p and
X q. A model for ϕ is given by the CGS GSV , 〈{p, q},
{α, β}, {0, 1}, {s0, s1, s2, s3}, λ, τ, s0〉, where λ(s0) , ∅,
λ(s1) , {p}, λ(s2) , {p, q}, λ(s3) , {q}, τ(s0, (0, 0)) , s1,
τ(s0, (0, 1)) , s2, τ(s0, (1, 0)) , s3, and all the remaining
transitions (with any decision) go to s0. In Figure 4, we report
a graphical representation of the structure. Clearly, GSV |= ϕ
by letting, on s0, the variables x to chose action 0 (the goal
(α, x)(β, y)(X p) is satisfied for any choice of y, since we can
move from s0 to either s1 or s2, both labeled with p) and z to choose action 1 when y has action 0
and, vice versa, 0 when y has 1 (in both cases, the goal (α, y)(β, z)(X q) is satisfied, since one can
move from s0 to either s2 or s3, both labeled with q).

We now discuss an application of the concepts of Nash equilibrium and stability profile to both the
prisoner’s dilemma and the paper, rock, and scissor game.

Example 2.14 (Equilibrium Profiles). Let us first consider the CGS GPD of the prisoner’s
dilemma described in the Example 2.3 on page 7. Intuitively, each of the two accomplices A1

and A2 want to avoid the prison. These goals can be represented by the LTL formulas ψA1
, G fA1

and ψA2 , G fA2 , respectively. The existence of a Nash equilibrium in GPD for the two accom-
plices w.r.t. the above goals can be written as φNE , 〈〈x1〉〉(A1, x1)〈〈x2〉〉(A2, x2) ψNE , where
ψNE , ((〈〈y〉〉(A1, y)ψA1

)→ ψA1
)∧ ((〈〈y〉〉(A2, y)ψA2

)→ ψA2
), which results to be an instantiation

of the general sentence ϕNE of Example 2.7 on page 10. In the same way, the existence of a stable
Nash equilibrium can be represented with the sentence φSNE , 〈〈x1〉〉(A1, x1)〈〈x2〉〉(A2, x2)ψNE∧ψSP ,
where ψSP , (ψ1 → [[y]]((ψ2 ↔ (A2, y)ψ2) → (A2, y)ψ1)) ∧ (ψ2 → [[y]]((ψ1 ↔ (A1, y)ψ1) →
(A1, y)ψ2)), which is a particular case of the sentence ϕSNE of Example 2.8 on page 10. Now, it is
easy to see that GPD |= φSNE and, so, GPD |= φNE . Indeed, an assignment χ ∈ AsgGPD (Ag, si),
for which χ(A1)(si) = χ(A2)(si) = D, is a stable equilibrium profile, i.e., it is such that
GPD, χ, si |= ψNE ∧ ψSP . This is due to the fact that, if an agent Ak, for k ∈ {1, 2}, choses another
strategy f ∈ StrGPD (si), he is still unable to achieve his goal ψk, i.e., GPD, χ[Ak 7→ f], si 6|= ψk, so,
he cannot improve his payoff. Moreover, this equilibrium is stable, since the payoff of an agent cannot
be made worse by the changing of the strategy of the other agent. However, it is interesting to note that
there are instable equilibria too. One of these is represented by the assignment χ′ ∈ AsgGPD (Ag, si),
for which χ′(A1)(si

j) = χ′(A2)(si
j) = C, for all j ∈ N. Indeed, we have that GPD, χ′, si |= ψNE ,

since GPD, χ′, si |= ψ1 and GPD, χ′, si |= ψ2, but GPD, χ′, si 6|= ψSP . The latter property holds
because, if one of the agents Ak, for k ∈ {1, 2}, choses a different strategy f ′ ∈ StrGPD (si) for which
there is a j ∈ N such that f ′(sij) = D, he cannot improve his payoff but makes surely worse the
payoff of the other agent, i.e., GPD, χ′[Ak 7→ f ′], si |= ψk but GPD, χ′[Ak 7→ f ′], si 6|= ψ3−k. Finally,
consider the CGS GPRS of the paper, rock, and scissor game described in the Example 2.2 on page 7
together with the associated formula for the Nash equilibrium φNE , 〈〈x1〉〉(A, x1)〈〈x2〉〉(B, x2) ψNE ,
where ψNE , ((〈〈y〉〉(A, y)ψA)→ ψA) ∧ ((〈〈y〉〉(B, y)ψB)→ ψB) with ψA , F wA and ψB , F wB

representing the LTL temporal goals for Alice and Bob, respectively. Then, it is not hard to see that
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GPRS 6|= φNE , i.e., there are no Nash equilibria in this game, since there is necessarily an agent that
can improve his/her payoff by changing his/her strategy.

1
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2 3

8

5 6

7
9

∗ ∗

∗ ∗ ∗

∗ ∗
R

Balcony

Fig. 5: Winning position.

In the next example, we show the expressive power of alternation
of quantifications in SL by pointing out an example based on the
“Romeo and Juliet” game, shown in Example 2.4 on page 8.

Example 2.15 (Quantification modalities.). First consider the
CGS GRJ described in Example 2.4 on page 8. Romeo R, helped by
Shakespeare S, wants to reach the balcony of his loved Juliet while
never meeting the Montagues family M nor the Capulets family C.
According to the CGS, this aim can be easily expressed with the
LTL formula ψ = F r ∧ G ¬c. The game can be played with several
quantification modalities, each of them having a different meaning.
For example, we can consider the formula ϕ1 = [[z]][[w]]〈〈x〉〉〈〈y〉〉[ψ,
where [ = (R, x)(S, y)(M, z)(C,w). This means that both R and
S have full visibility about the moves of the families in the house.
Conversely, we can consider the formula ϕ2 = 〈〈x〉〉〈〈y〉〉[[z]][[w]][ψ, which means that both R and S
have to play a strategy that is winning no matter what the families do. Moreover, one can select a
modality in which the alternation of the quantification is greater than one. For instance, in the formula
ϕ3 = 〈〈x〉〉[[z]][[w]]〈〈y〉〉[ψ, Romeo has to play independently on the families while Shakespeare can
select a strategy according to what the families are doing in the house. In other word, a team of
agents has visibility on the adversary team that differs agent by agent, and depends on the order in
which their strategies are quantified in the formula. It is worth noting that, while ϕ1 and ϕ2 can be
represented also in ATL∗, ϕ3 does not have an equivalent ATL∗ formula, due to its alternation number
of quantifications equal to 2.

It is easy to see that the position in Figure 5, with rooms 1 and 9 completely isolated and families
standing in the remaining sector of the house composed by rooms from 2 to 8, is winning for Romeo
and Shakespeare. In fact, a trivial strategy for them is given by Romeo remaining in the room 1
until Shakespeare closes the doors needed to block the families in two rooms (possibly the same) of
the house, then opening a path toward the balcony for Romeo. Note that such a path always exists,
since there are three different non intersecting paths from room 1 to room 9 (i.e., 1− 2− 3− 6− 9,
1− 4− 7− 8− 9, and 1− 5− 9) and the families can occupy at most two of them.

Moreover, it is easy to see that the winning position in Figure 5 cannot be reached if Shakespeare
does not have full visibility on families’ moves. Indeed, starting from the initial position, Shakespeare
is forced to close doors (1, 2) and (1, 4), in order to prevent Romeo to be shot at the second step, since
Montagues and Capulets can move in 2 and 4, respectively. But, by closing those doors, Montagues
(resp., Capulets) can move in 6 (resp., 8), being able to reach the balcony room in the next step of the
game then holding there indefinitely. This makes impossible to eventually satisfy r without satisfying
c, as well. Hence, we have that GRJ 6|= ϕ2.

On the other hand, if Shakespeare knows where the families are moving from the initial state, then
he can close the nearest doors and prevent them to reach the key rooms, i.e., 1 and 9, in the next
steps. Indeed, if Montagues and Capulets are going to move in 2 and 4, then Shakespeare closes
the doors (1, 2) and (1, 4), otherwise, if Montagues and Capulets are going to move in 6 and 8,
then Shakespeare closes the doors (6, 9) and (7, 9). Again, the “mixed” strategies of Montagues
and Capulets given by moving in 2 and 8 or 4 and 6 can be neutralized by a suitable choice for
Shakespeare. Moreover, it is easy to see that, after a well played initial step, the the winning position
of Figure 5 is easily reachable by Romeo and Shakespeare, as the latter can close the doors (1, 5)
and (5, 9) at the second step and then close the remaining doors in order to isolate the rooms 1 and 9.

Thanks to this reasoning, we have that GRJ |= ϕ3.

Finally, we discuss another examples that is useful to point out the power of forcing two or more
agents to share a strategy. Hex is a two-player game, red vs blue, in which each player in turn
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places a stone of his color on a single empty hexagonal cell of the rhomboidal playing board having
opposite sides equally colored, either red or blue. The goal of each player is to be the first to form
a path connecting the opposing sides of the board marked by his color. It is easy to prove that the
stealing-strategy argument does not lead to a winning strategy in Hex, i.e., if the player that moves
second copies the moves of the opponent, he surely loses the play. It is possible to formalize this fact
in SL as in the following example.

Example 2.16 (Stealing-Strategy argument in Hex).
First model Hex with a CGS GH whose states represent every possible configuration reached

during a play between Player “r” red and “b” blue. Then, verify the negation of the stealing-strategy
argument by checking GH |= 〈〈x〉〉(r, x)(b, x)(F cncr). Intuitively, this sentence says that agent r has a
strategy that, once it is copied (bound) by b it allows the former to win, i.e., to be the first to connect
the related red edges (F cncr).

It should be noted that the syntax of SL does not allow to express manipulation of strategies. For
example, in the Hex game, we cannot express, for Player b, the effects of a strategy obtained by a
manipulation of the one chosen by Player r. As a further example, consider a CGS having Ac = {0, 1}.
Then, in SL it is not possible to describe a comparison between the outcomes that a player may
obtain by replacing one of his strategies f with the associated flipping f ′, i.e., f ′(ρ) = 1− f(ρ), for
all ρ ∈ dom(f).

3. MODEL-CHECKING HARDNESS
In this section, we show the non-elementary lower bound for the model-checking problem of SL.
Precisely, we prove that, for sentences having alternation number k, this problem is k-EXPSPACE-
HARD. To this aim, in Subsection 3.1, we first recall syntax and semantics of Quantified propositional
temporal logic [Sistla 1983]. Then, in Subsection 3.2, we give a reduction from the satisfiability
problem for this logic to the model-checking problem for SL.

3.1. Quantified propositional temporal logic
Quantified Propositional Temporal Logic (QPTL, for short) syntactically extends the old-style
temporal logic with the future F and global G operators by means of two proposition quantifiers, the
existential ∃q. and the universal ∀q., where q is an atomic proposition. Intuitively, these elements can
be respectively read as “there exists an evaluation of q” and “for all evaluations of q”. The formal
syntax of QPTL follows.

Definition 3.1 (QPTL Syntax). QPTL formulas are built inductively from the sets of atomic
propositions AP, by using the following grammar, where p ∈ AP:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | X ϕ | F ϕ | G ϕ | ∃p.ϕ | ∀p.ϕ.

QPTL denotes the infinite set of formulas generated by the above grammar.

Similarly to SL, we use the concepts of subformula, free atomic proposition, sentence, and
alternation number, together with the QPTL syntactic fragment of bounded alternation QPTL[k-alt],
with k ∈ N.

In order to define the semantics of QPTL, we have first to introduce the concepts of truth evaluations
used to interpret the meaning of atomic propositions at the passing of time. A temporal truth
evaluation is a function tte : N → {f, t} that maps each natural number to a Boolean value.
Moreover, a propositional truth evaluation is a partial function pte : AP ⇀ TTE mapping every
atomic proposition in its domain to a temporal truth evaluation. The sets TTE , N → {f, t} and
PTE , AP ⇀ TTE contain, respectively, all temporal and propositional truth evaluations.

At this point, we have the tool to define the interpretation of QPTL formulas. For a propositional
truth evaluation pte with free(ϕ) ⊆ dom(pte) and a number k, we write pte, k |= ϕ to indicate that
the formula ϕ holds at the k-th position of the pte.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.



Reasoning About Strategies A:17

Definition 3.2 (QPTL Semantics). For all QPTL formulas ϕ, propositional truth evaluation
pte ∈ PTE with free(ϕ) ⊆ dom(pte), and numbers k ∈ N, the modeling relation pte, k |= ϕ is
inductively defined as follows.

(1) pte, k |= p iff pte(p)(k) = t, with p ∈ AP.
(2) For all formulas ϕ, ϕ1, and ϕ2, it holds that:

(a) pte, k |= ¬ϕ iff not pte, k |= ϕ, that is pte, k 6|= ϕ;
(b) pte, k |= ϕ1 ∧ ϕ2 iff pte, k |= ϕ1 and pte, k |= ϕ2;
(c) pte, k |= ϕ1 ∨ ϕ2 iff pte, k |= ϕ1 or pte, k |= ϕ2;
(d) pte, k |= X ϕ iff pte, k + 1 |= ϕ;
(e) pte, k |= F ϕ iff there is an index i ∈ N with k ≤ i such that pte, i |= ϕ;
(f) pte, k |= G ϕ iff, for all indexes i ∈ N with k ≤ i, it holds that pte, i |= ϕ.

(3) For an atomic proposition q ∈ AP and a formula ϕ, it holds that:
(a) pte, k |= ∃q.ϕ iff there exists a temporal truth evaluation tte ∈ TTE such that pte[q 7→

tte], k |= ϕ;
(b) pte, k |= ∀q.ϕ iff for all temporal truth evaluations tte ∈ TTE it holds that pte[q 7→

tte], k |= ϕ.

Obviously, a QPTL sentence ϕ is satisfiable if ∅, 0 |= ϕ. Observe that the described semantics is
slightly different but completely equivalent to that proposed and used in [Sistla et al. 1987] to prove
the non-elementary hardness result for the satisfiability problem.

3.2. Non-elementary lower-bound
We can show how the solution of QPTL satisfiability problem can be reduced to that of the model-
checking problem for SL, over a constant size CGS with a unique atomic proposition.

s0
∅

s1
p

t

f

f

t

Fig. 6: The CGS GRdc.

In order to do this, we first prove the following auxiliary lemma,
which actually represents the main step of the above mentioned
reduction.

LEMMA 3.3 (QPTL REDUCTION). There is a one-agent CGS
GRdc such that, for each QPTL[k-alt] sentence ϕ, with k ∈ N,
there exists an SL[k-alt] variable-closed formula ϕ such that ϕ
is satisfiable iff GRdc, χ, s0 |= ϕ, for all complete assignments
χ ∈ Asg(Ag, s0).

PROOF. Consider the one-agent CGS GRdc , 〈{p}, {α}, {f, t}, {s0, s1}, λ, τ, s0〉 depicted in
Figure 6, where the two actions are the Boolean values false and true and where the labeling
and transition functions λ and τ are set as follows: λ(s0) , ∅, λ(s1) , {p}, and τ(s, d) = s0 iff
d(α) = f, for all s ∈ St and d ∈ Dc. Moreover, consider the transformation function · : QPTL → SL
inductively defined as follows:

— q , (α, xq)X p, for q ∈ AP;
— ∃q.ϕ , 〈〈xq〉〉ϕ;
— ∀q.ϕ , [[xq]]ϕ;
— Op ϕ , Op ϕ, where Op ∈ {¬,X,F,G};
— ϕ1Op ϕ2 , ϕ1Op ϕ2 , where Op ∈ {∧,∨}.

It is not hard to see that a QPTL formula ϕ is a sentence iff ϕ is variable-closed. Furthermore, we
have that alt(ϕ) = alt(ϕ).

At this point, it remains to prove that, a QPTL sentence ϕ is satisfiable iff GRdc, χ, s0 |= ϕ, for
all total assignments χ ∈ Asg({α}, s0). To do this by induction on the structure of ϕ, we actually
show a stronger result asserting that, for all subformulas ψ ∈ sub(ϕ), propositional truth evaluations
pte ∈ PTE, and i ∈ N, it holds that pte, i |= ψ iff GRdc, (χ, s0)i |= ψ , for each total assignment
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χ ∈ Asg({α} ∪ {xq ∈ Var : q ∈ free(ψ)}, s0) such that χ(xq)((π)≤n) = pte(q)(n), where
π , play(χ, s0), for all q ∈ free(ψ) and n ∈ [i, ω[ .

Here, we only show the base case of atomic propositions and the two inductive cases regarding
the proposition quantifiers. The remaining cases of Boolean connectives and temporal operators are
straightforward and left to the reader as a simple exercise.

— ψ = q.
By Item 1 of Definition 3.2 of QPTL semantics, we have that pte, i |= q iff pte(q)(i) = t. Thus,

due to the above constraint on the assignment, it follows that pte, i |= q iff χ(xq)((π)≤i) = t. Now,
by applying Items 4 and 5a of Definition 2.12 of SL semantics, we have that GRdc, (χ, s0)i |=
(α, xq)X p iff GRdc, (χ′[α 7→ χ′(xq)], s

′)1 |= p, where (χ′, s′) = (χ, s0)i. At this point, due to the
particular structure of the CGS GRdc, we have that GRdc, (χ′[α 7→ χ′(xq)], s

′)1 |= p iff (π′)1 = s1,
where π′ , play(χ′[α 7→ χ′(xq)], s

′), which in turn is equivalent to χ′(xq)((π′)≤0) = t. So,
GRdc, (χ, s0)i |= (α, xq)X p iff χ′(xq)((π′)≤0) = t. Now, by observing that (π′)≤0 = (π)i and
using the above definition of χ′, we obtain that χ′(xq)((π′)≤0) = χ(xq)((π)≤i). Hence, pte, i |= q
iff pte(q)(i) = χ(xq)((π)≤i) = t = χ′(xq)((π

′)≤0) iff GRdc, (χ, s0)i |= (α, xq)X p.
— ψ = ∃q.ψ′.

[Only if]. If pte, i |= ∃q.ψ′, by Item 3a of Definition 3.2, there exists a temporal truth evaluation
tte ∈ TTE such that pte[q 7→ tte], i |= ψ′. Now, consider a strategy f ∈ Str(s0) such that
f((π)≤n) = tte(n), for all n ∈ [i, ω[ . Then, it is evident that χ[xq 7→ f](xq′)((π)≤n) = pte[q 7→
tte](q′)(n), for all q′ ∈ free(ψ) and n ∈ [i, ω[ . So, by the inductive hypothesis, it follows that
GRdc, (χ[xq 7→ f], s0)i |= ψ′ . Thus, we have that GRdc, (χ, s0)i |= 〈〈xq〉〉ψ′ .

[If]. If GRdc, (χ, s0)i |= 〈〈xq〉〉ψ′ , there exists a strategy f ∈ Str(s0) such that GRdc, (χ[xq 7→
f], s0)i |= ψ′ . Now, consider a temporal truth evaluation tte ∈ TTE such that tte(n) = f((π)≤n),
for all n ∈ [i, ω[ . Then, it is evident that χ[xq 7→ f](xq′)((π)≤n) = pte[q 7→ tte](q′)(n), for all
q′ ∈ free(ψ) and n ∈ [i, ω[ . So, by the inductive hypothesis, it follows that pte[q 7→ tte], i |= ψ′.
Thus, by Item 3a of Definition 3.2, we have that pte, i |= ∃q.ψ′.

— ψ = ∀q.ψ′.
[Only if]. For each strategy f ∈ Str(s0), consider a temporal truth evaluation tte ∈ TTE

such that tte(n) = f((π)≤n), for all n ∈ [i, ω[ . It is evident that χ[xq 7→ f](xq′)((π)≤n) =
pte[q 7→ tte](q′)(n), for all q′ ∈ free(ψ) and n ∈ [i, ω[ . Now, since pte, i |= ∀q.ψ′, by Item 3b of
Definition 3.2, it follows that pte[q 7→ tte], i |= ψ′. So, by the inductive hypothesis, for each strategy
f ∈ Str(s0), it holds that GRdc, (χ[xq 7→ f], s0)i |= ψ′ . Thus, we have that GRdc, (χ, s0)i |= [[xq]]ψ′ .

[If]. For each temporal truth evaluation tte ∈ TTE, consider a strategy f ∈ Str(s0) such that
f((π)≤n) = tte(n), for all n ∈ [i, ω[ . It is evident that χ[xq 7→ f](xq′)((π)≤n) = pte[q 7→
tte](q′)(n), for all q′ ∈ free(ψ) and n ∈ [i, ω[ . Now, since GRdc, (χ, s0)i |= [[xq]]ψ′ , it follows that
GRdc, (χ[xq 7→ f], s0)i |= ψ′ . So, by the inductive hypothesis, for each temporal truth evaluation
tte ∈ TTE, it holds that pte[q 7→ tte], i |= ψ′. Thus, by Item 3b of Definition 3.2, we have that
pte, i |= ∀q.ψ′.

Thus, we are done with the proof.

Now, we can show the full reduction that allows us to state the existence of a non-elementary
lower-bound for the model-checking problem of SL.

THEOREM 3.4 (SL MODEL-CHECKING HARDNESS). The model-checking problem for SL[k-
alt] is k-EXPSPACE-HARD.

PROOF. Let ϕ be a QPTL[k-alt] sentence, ϕ the related SL[k-alt] variable-closed formula, and
GRdc the CGS of Lemma 3.3 of QPTL reduction. Then, by applying the previous mentioned lemma,
it is easy to see that ϕ is satisfiable iff GRdc |= [[x]](α, x)ϕ iff GRdc |= 〈〈x〉〉(α, x)ϕ. Thus, the
satisfiability problem for QPTL can be reduced to the model-checking problem for SL. Now, since
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the satisfiability problem for QPTL[k-alt] is k-EXPSPACE-HARD [Sistla et al. 1987], we have that the
model-checking problem for SL[k-alt] is k-EXPSPACE-HARD as well.

4. STRATEGY QUANTIFICATIONS
Since model checking for SL is non-elementary hard, while the same problem for ATL∗ is only
2EXPTIME-COMPLETE, a question that arises naturally is whether there are proper fragments of SL
of practical interest that strictly subsuming ATL∗yet still have the same elementary complexity. In
this section, we answer positively to this question and go even further. More precisely, we reveal a
fundamental property that, if satisfied, allows to retain a 2EXPTIME-COMPLETE model-checking
problem. This is the property of behavioral quantification. Standard quantification over strategies
introduces a somewhat unintuitive interpretation in the semantics of games, since it instantiates full
strategies, which includes also future actions, whereas players see only actions played in the past. In
more details, quantification of the form ∀∃ means that the existentially quantified strategy is chosen
in response to the universally quantified strategy, which prescribes actions in response to histories
that may never arise in the actual game. On the other hand, in classic games player reacts only to
current and past actions of other players, so the response of the existentially quantified strategy to
a given history should depend only on the response of the universally quantified strategy to this
history. To formally introduce the concept of behavioral quantification, we use the notion of Skolem
dependence function as a machinery (see also [Kolaitis 1985] for more on this subject).

The remaining part of this section is organized as follows. In Subsection 4.1, we describe three
syntactic fragments of SL, named SL[NG], SL[BG], and SL[1G], having the peculiarity to use strategy
quantifications grouped in atomic blocks. Then, in Subsection 4.2, we define the notion of Skolem
dependence function, which is used, in Subsection 4.3, to introduce the concept of behavioral.
Finally, in Subsection 4.4, we prove a fundamental result, which is at the base of our elementary
model-checking procedure for SL[1G].

4.1. Syntactic fragments
In order to formalize the syntactic fragments of SL we want to investigate, we first need to define
the concepts of quantification and binding prefixes. A quantification prefix over a set V ⊆ Var of
variables is a finite word ℘ ∈ {〈〈x〉〉, [[x]] : x ∈ V}|V| of length |V| such that each variable x ∈ V
occurs just once in ℘, i.e., there is exactly one index i ∈ [0, |V|[ such that (℘)i ∈ {〈〈x〉〉, [[x]]}.

A binding prefix over a set of variables V ⊆ Var is a finite word [ ∈ {(a, x) : a ∈ Ag∧x ∈ V}|Ag|

of length |Ag| such that each agent a ∈ Ag occurs just once in [, i.e., there is exactly one index
i ∈ [0, |Ag|[ for which ([)i ∈ {(a, x) : x ∈ V}.

Finally, Qnt(V) ⊆ {〈〈x〉〉, [[x]] : x ∈ V}|V| and Bnd(V) ⊆ {(a, x) : a ∈ Ag∧x ∈ V}|Ag| denote,
respectively, the sets of all quantification and binding prefixes over variables in V.

We now have all tools to define the syntactic fragments we want to analyze, which we name
Nested-Goal, Boolean-Goal, and One-Goal Strategy Logic, respectively (SL[NG], SL[BG], and SL[1G],
for short). For a goal we mean an SL agent-closed formula of the kind [ϕ, with Ag ⊆ free(ϕ), being
[ ∈ Bnd(Var) a binding prefix. The idea behind SL[NG] is that, when there is a quantification over
a variable used in a goal, we are forced to quantify over all free variables of the inner subformula
containing the goal itself, by using a quantification prefix. In this way, the subformula is build only by
nesting and Boolean combinations of goals. In addition, with SL[BG] we avoid nested goals sharing
the variables of a same quantification prefix, but allow their Boolean combinations. Finally, SL[1G]
forces the use of a different quantification prefix for each single goal in the formula. The formal
syntax of SL[NG], SL[BG], and SL[1G] follows.

Definition 4.1 (SL[NG], SL[BG], and SL[1G] Syntax). SL[NG] formulas are built inductively
from the sets of atomic propositions AP, quantification prefixes Qnt(V) for any V ⊆ Var, and
binding prefixes Bnd(Var), by using the following grammar, with p ∈ AP, ℘ ∈ ∪V⊆VarQnt(V),
and [ ∈ Bnd(Var):
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ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | X ϕ | ϕ U ϕ | ϕ R ϕ | ℘ϕ | [ϕ,

where in the formation rule ℘ϕ it is ensured that ϕ is agent-closed and ℘ ∈ Qnt(free(ϕ)).
In addition, SL[BG] formulas are determined by splitting the above syntactic class in two different
parts, of which the second is dedicated to build the Boolean combinations of goals avoiding their
nesting:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | X ϕ | ϕ U ϕ | ϕ R ϕ | ℘ψ,
ψ ::= [ϕ | ¬ψ | ψ ∧ ψ | ψ ∨ ψ,

where in the formation rule ℘ψ it is ensured that ℘ ∈ Qnt(free(ψ)).
Finally, the simpler SL[1G] formulas are obtained by forcing each goal to be coupled with a quantifi-
cation prefix:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | X ϕ | ϕ U ϕ | ϕ R ϕ | ℘[ϕ,

where in the formation rule ℘[ϕ it is ensured that ℘ ∈ Qnt(free([ϕ)).
SL ⊃ SL[NG] ⊃ SL[BG] ⊃ SL[1G] denotes the syntactic chain of infinite sets of formulas generated
by the respective grammars with the associated constraints on free variables of goals.

Intuitively, in SL[NG], SL[BG], and SL[1G], we force the writing of formulas to use atomic blocks
of quantifications and bindings, where the related free variables are strictly coupled with those
that are effectively quantified in the prefix just before the binding. In a nutshell, we can only write
formulas by using sentences of the form ℘ψ belonging to a kind of prenex normal form in which the
quantifications contained into the matrix ψ only belong to the prefixes ℘′ of some inner subsentence
℘′ψ′ ∈ snt(℘ψ).

We want to remark that the nesting of goals in SL formulas is much more expressive than the
nesting of quantification in ATL∗. Indeed, in ATL∗, we can make only a nesting of quantifications that
are in some sense complete w.r.t. players, which implies, at every nesting, a total replacement of the
strategy profile for all players. This is due to the fact that the quantifier operator over a set of agents
A in ATL∗ includes implicitly the quantification of strategies for agents not in A, i.e., each quantifier
ranges over the whole set of agents, and the binding is immediately applied to the agents. Instead, in
the case of SL, the quantification is referred to a single strategy and the binding with an agent can
be postponed. This power of nesting allows to embed very expressive logics such as QPTL, as it is
shown in Section 3.

An SL[NG] sentence φ is principal if it is of the form φ = ℘ψ, where ψ is agent-closed and
℘ ∈ Qnt(free(ψ)). By psnt(ϕ) ⊆ snt(ϕ) we denote the set of all principal subsentences of the
formula ϕ.

We now introduce other two general restrictions in which the numbers |Ag| of agents and |Var| of
variables that are used to write a formula are fixed to the a priori values n,m ∈ [1, ω[ , respectively.
Moreover, we can also forbid the sharing of variables, i.e., each variable is binded to one agent only,
so, we cannot force two agents to use the same strategy. We name these three fragments SL[n-ag],
SL[m-var], and SL[fvs], respectively. Note that, in the one agent fragment, the restriction on the
sharing of variables between agents, naturally, does not act, i.e., SL[1-ag, fvs] = SL[1-ag].

To start to practice with the above fragments, consider again the sentence ϕ of Example 2.13 on
page 14. It is easy to see that it actually belongs to SL[BG, 2-ag, 3-var, 2-alt], and so, to SL[NG], but not
to SL[1G], since it is of the form ℘([1X p∧[2X q), where the quantification prefix is ℘ = 〈〈x〉〉[[y]]〈〈z〉〉
and the binding prefixes of the two goals are [1 = (α, x)(β, y) and [2 = (α, y)(β, z).

Along the paper, sometimes we assert that a given formula ϕ belongs to an SL syntactic frag-
ment also if its syntax does not precisely correspond to what is described by the relative gram-
mar. We do this in order to make easier the reading and interpretation of the formula ϕ itself
and only in the case that it is simple to translate it into an equivalent formula that effectively be-
longs to the intended logic, by means of a simple generalization of classic rules used to put a
formula of first order logic in the prenex normal form. For example, consider the sentence ϕNE
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of Example 2.7 on page 10 representing the existence of a Nash equilibrium. This formula is con-
sidered to belong to SL[BG, n-ag, 2n-var, fvs, 1-alt], since it can be easily translated in the form
φNE = ℘

∧n
i=1 [iψi → [ψi, where ℘ = 〈〈x1〉〉 · · · 〈〈xn〉〉[[y1]] · · · [[yn]], [ = (α1, x1) · · · (αn, xn),

[i = (α1, x1) · · · (αi−1, xi−1)(αi, yi)(αi+1, xi+1) · · · (αn, xn), and free(ψi) = Ag. As another ex-
ample, consider the sentence ϕSP of Example 2.8 on page 10 representing the existence of a stability
profile. Also this formula is considered to belong to SL[BG, n-ag, 2n-var, fvs, 1-alt], since it is equiva-
lent to φSP = ℘

∧n
i,j=1,i6=j [ψj → (([ψi ↔ [iψi)→ [iψj). Furthermore, it is immediate to see that,

Example 2.15 on page 15, the formulas ϕ1 and ϕ2 are in SL[1G, 4-ag, 4-var, fvs, 1-alt], while ϕ3 is in
SL[1G, 4-ag, 4-var, fvs, 2-alt] Note that both φNE and φSP are principal sentences.

Now, it is interesting to observe that CTL∗ and ATL∗ are exactly equivalent to SL[1G, fvs, 0-alt]
and SL[1G, fvs, 1-alt], respectively. Moreover, GL [Alur et al. 2002] is the very simple fragment of
SL[BG, fvs, 1-alt] that forces all goals in a formula to have a common part containing all variables
quantified before the unique possible alternation of the quantification prefix. Finally, we have that
CHP-SL is the SL[BG, 2-ag, fvs] fragment interpreted over turn-based CGS.

From now on, we refer to CTL∗, ATL∗, and CHP-SL formulas by denoting them with their
translation in SL.

Remark 4.2 (SL[NG] Model-Checking Hardness). It is well-known that the non-elementary
hardness result for the satisfiability problem of QPTL [Sistla et al. 1987] already holds for formulas
in prenex normal form. Now, it is not hard to see that the transformation described in Lemma 3.3
of QPTL reduction puts QPTL[k-alt] sentences ϕ in prenex normal form into SL[NG, 1-ag, k-alt]
variable-closed formulas ϕ = ℘ψ. Moreover, the derived SL[1-ag, k-alt] sentence 〈〈x〉〉(α, x)℘ψ used
in Theorem 3.4 of SL model-checking hardness is equivalent to the SL[NG, 1-ag, k-alt] principal
sentence 〈〈x〉〉℘(α, x)ψ, since x is not used in the quantification prefix ℘. Thus, the hardness result for
the model-checking problem holds for SL[NG, 1-ag, k-alt] as well. However, it is important to observe
that, unfortunately, it is not know if such an hardness result holds for SL[BG] and, in particular, for
CHP-SL. We leave this problem open here.

Differently from SL[1G], in fragments like SL[BG] we are able to associate different strategies with
the same agent. This feature allows to represent game properties such as Nash Equilibria, Equilibrium
Profiles, and the like. This syntactic flexibility, however, is not the feature that forces these fragments
to have non-elementary complexities for the model-checking problem. Indeed, as it has been recently
pointed out in [Mogavero et al. 2013], the same problem for some of the SL fragments preserving
this feature is 2EXPTIME-COMPLETE. Thus, the non-elementary hardness in the model-checking
problem for SL[NG] is due to the ability to nest the binding of strategies by means of temporal
operators. A deeper study of these aspects is out of the scope of this paper.

s0
∅

s1
p

s2
∅

D1 DcG1 \D1

∗ ∗ ∗ ∗ ∗ ∗
(a) CGS G1.

s0
∅

s1
p

s2
∅

D2 DcG2 \D2

∗ ∗ ∗ ∗ ∗ ∗
(b) CGS G2.

Fig. 7: Alternation-2 non-equivalent CGSs.

At this point, we prove that ATL∗ is strictly less expressive than SL[1G] and, consequently, than
SL[BG] and SL[NG]. To do this, we show the existence of two structures that result to be equivalent
only w.r.t. sentences having alternation number bounded by 1. It can be interesting to note that,
we use an ad-hoc technique based on a brute-force check to verify that all ATL∗ formulas cannot
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distinguish between the two structures. A possible future line of research is to study variants of the
Ehrenfeucht-Fraïssé game [Ebbinghaus and Flum 1995; Hodges 1993] for SL, which would allow to
determine in a more direct way whether two structures are equivalent or not w.r.t. a particular SL
fragment.

THEOREM 4.3 (SL[1G] VS ATL∗ EXPRESSIVENESS). There exists an SL[1G, 3-ag, fvs, 2-alt] sen-
tence having no ATL∗ equivalent sentence.

PROOF. Consider the two CGSs G1 , 〈{p}, {α, β, γ}, {0, 1}, {s0, s1, s2}, λ, τ1, s0〉 and G2 ,
〈{p}, {α, β, γ}, {0, 1, 2}, {s0, s1, s2}, λ, τ2, s0〉 depicted in Figure 7 on the preceding page, where
λ(s0) = λ(s2) , ∅, λ(s1) , {p}, D1 , {00∗, 11∗}, and D2 , {00∗, 11∗, 12∗, 200, 202, 211}.
Moreover, consider the SL[1G, 3-ag, fvs, 2-alt] sentence ϕ∗ , ℘∗[∗X p, where ℘∗ , [[x]]〈〈y〉〉[[z]] and
[∗ , (α, x)(β, y)(γ, z). Then, it is easy to see that G1 |= ϕ∗ but G2 6|= ϕ∗. Indeed, G1, χ1, s0 |= [∗X p,
for all χ1 ∈ AsgG1({x, y, z}, s0) such that χ1(y)(s0) = χ1(x)(s0), and G2, χ2, s0 |= [∗X ¬p, for all
χ2 ∈ AsgG2({x, y, z}, s0) such that χ2(x)(s0) = 2 and χ2(z)(s0) = (χ2(y)(s0) + 1) mod 3.

Now, due to the particular structure of the CGSs Gi under exam, with i ∈ {1, 2}, for each path
π ∈ PthGi(s0), we have that either λ((π)j) = {p} or λ((π)j) = ∅, for all j ∈ [1, ω[ , i.e., apart from
the initial state, the path is completely labeled either with {p} or with ∅. Thus, it is easy to see that,
for each ATL∗ formula ℘[ψ, there is a literal lψ ∈ {p,¬p} such that Gi |= ℘[ψ iff Gi |= ℘[Xlψ, for
all i ∈ {1, 2}. W.l.o.g., we can suppose that [ = [∗, since we are always able to uniformly rename the
variables of the quantification and binding prefixes without changing the meaning of the sentence.

At this point, it is easy to see that there exists an index k ∈ {1, 2, 3} for which it holds that
either ℘k[∗Xlψ ⇒ ℘[∗Xlψ or ℘[∗Xlψ ⇒ ℘k [

∗Xlψ, where ℘1 , [[x]][[z]]〈〈y〉〉, ℘2 , 〈〈x〉〉〈〈y〉〉[[z]],
and ℘3 , [[y]][[z]]〈〈x〉〉. Thus, to prove that every ATL∗ formula cannot distinguish between G1 and G2,
we can simply show that the sentences ℘k[∗Xl, with k ∈ {1, 2, 3} and l ∈ {p,¬p}, do the same. In
fact, it holds that Gi |= ℘k[

∗Xl, for all i ∈ {1, 2}, k ∈ {1, 2, 3}, and l ∈ {p,¬p}. Hence, the thesis
holds. The check of the latter fact is trivial and left to the reader as an exercise.

4.2. Skolem Dependence Functions
We now introduce the concept of Skolem dependence function (Sdf, for short) of a quantification and
show how any quantification prefix contained into an SL formula can be represented by an adequate
choice of a Skolem dependence function over strategies. The main idea here is inspired by what
Skolem proposed for the first order logic in order to eliminate all existential quantifications over
variables, by substituting them with second order existential quantifications over functions, whose
choice is uniform w.r.t. the universal variables.

First, we introduce some notation regarding quantification prefixes. Let ℘ ∈ Qnt(V) be a quan-
tification prefix over a set V(℘) , V ⊆ Var of variables. By 〈〈℘〉〉 , {x ∈ V(℘) : ∃i ∈ [0,

|℘|[ . (℘)i = 〈〈x〉〉} and [[℘]] , V(℘) \ 〈〈℘〉〉 we denote the sets of existential and universal variables
quantified in ℘, respectively. For two variables x, y ∈ V(℘), we say that x precedes y in ℘, in
symbols x<℘y, if x occurs before y in ℘, i.e., there are two indexes i, j ∈ [0, |℘|[, with i < j, such
that (℘)i ∈ {〈〈x〉〉, [[x]]} and (℘)j ∈ {〈〈y〉〉, [[y]]}. Moreover, we say that y is functional dependent on
x, in symbols x ℘y, if x ∈ [[℘]], y ∈ 〈〈℘〉〉, and x<℘y, i.e., y is existentially quantified after that x
is universally quantified, so, there may be a dependence between a value chosen by x and that chosen
by y. This definition induces the set Dep(℘) , {(x, y) ∈ V(℘) × V(℘) : x ℘y} of dependence
pairs and its derived version Dep(℘, y) , {x ∈ V(℘) : x ℘y} containing all variables from
which y depends. Finally, we use ℘ ∈ Qnt(V(℘)) to indicate the quantification derived from ℘ by
dualizing each quantifier contained in it, i.e., for all indexes i ∈ [0, |℘|[, it holds that (℘)i = 〈〈x〉〉 iff
(℘)i = [[x]], with x ∈ V(℘). It is evident that 〈〈℘〉〉 = [[℘]] and [[℘]] = 〈〈℘〉〉. As an example, let ℘ =
[[x]]〈〈y〉〉〈〈z〉〉[[w]]〈〈v〉〉. Then, we have 〈〈℘〉〉 = {y, z, v}, [[℘]] = {x,w}, Dep(℘, x) = Dep(℘,w) = ∅,
Dep(℘, y) = Dep(℘, z) = {x}, Dep(℘, v) = {x,w}, and ℘ = 〈〈x〉〉[[y]][[z]]〈〈w〉〉[[v]].
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Finally, we define the notion of valuation of variables over a generic set D, called domain, i.e.,
a partial function v : Var ⇀ D mapping every variable in its domain to an element in D. By
ValD(V) , V→ D we denote the set of all valuation functions over D defined on V ⊆ Var.

At this point, we give a general high-level semantics for the quantification prefixes by means of
the following main definition of Skolem dependence function.

Definition 4.4 (Skolem Dependence Function). Let ℘ ∈ Qnt(V) be a quantification prefix over
a set V ⊆ Var of variables, and D a set. Then, a Skolem dependence function for ℘ over D is a
function θ : ValD([[℘]])→ ValD(V) satisfying the following properties:

(1) θ(v)�[[℘]] =v, for all v ∈ ValD([[℘]]); 11

(2) θ(v1)(x)=θ(v2)(x), for all v1, v2∈ValD([[℘]]) and x∈〈〈℘〉〉 such that v1�Dep(℘,x) =v2�Dep(℘,x).

SDFD(℘) denotes the set of all Skolem dependence functions for ℘ over D.

Intuitively, Item 1 asserts that θ takes the same values of its argument w.r.t. the universal variables
in ℘ and Item 2 ensures that the value of θ w.r.t. an existential variable x in ℘ does not depend on
variables not in Dep(℘, x). To get a better insight into this definition, a Skolem dependence function
θ for ℘ can be considered as a set of classical Skolem functions that, given a value for each variable
in V(℘) that is universally quantified in ℘, returns a possible value for all the existential variables
in ℘, in a way that is consistent w.r.t. the order of quantifications. Observe that, each θ ∈ SDFD(℘)

is injective, so, |rng(θ)| = |dom(θ)| = |D||[[℘]]|. Moreover, |SDFD(℘)| =
∏
x∈〈〈℘〉〉 |D||D|

|Dep(℘,x)|
.

As an example, let D = {0, 1} and ℘ = [[x]]〈〈y〉〉[[z]] ∈ Qnt(V) be a quantification prefix over
V = {x, y, z}. Then, we have that |SDFD(℘)| = 4 and |SDFD(℘)| = 8. Moreover, the Skolem
dependence functions θi ∈ SDFD(℘) with i ∈ [0, 3] and θi ∈ SDFD(℘) with i ∈ [0, 7], for a
particular fixed order, are such that θ0(v)(y) = 0, θ1(v)(y) = v(x), θ2(v)(y) = 1 − v(x), and
θ3(v)(y) = 1, for all v ∈ ValD([[℘]]), and θi(v)(x) = 0 with i ∈ [0, 3], θi(v)(x) = 1 with i ∈ [4,
7], θ0(v)(z) = θ4(v)(z) = 0, θ1(v)(z) = θ5(v)(z) = v(y), θ2(v)(z) = θ6(v)(z) = 1 − v(y), and
θ3(v)(z) = θ7(v)(z) = 1, for all v ∈ ValD([[℘]]).

We now prove the following fundamental theorem that describes how to eliminate the strategy
quantifications of an SL formula via a choice of a suitable Skolem dependence function over strategies.
This procedure can be seen as the equivalent of Skolemization in first order logic (see [Hodges 1993],
for more details).

THEOREM 4.5 (SL STRATEGY QUANTIFICATION). Let G be a CGS and ϕ = ℘ψ an SL for-
mula, being ℘ ∈ Qnt(V) a quantification prefix over a set V ⊆ free(ψ) ∩ Var of variables. Then,
for all assignments χ ∈ Asg(free(ϕ), s0), the following holds: G, χ, s0 |= ϕ iff there exists a Skolem
dependence function θ ∈ SDFStr(s0)(℘) such that G, χdθ(χ′), s0 |= ψ, for all χ′ ∈ Asg([[℘]], s0). 12

PROOF. The proof proceeds by induction on the length of the quantification prefix ℘. For the base
case |℘| = 0, the thesis immediately follows, since [[℘]] = ∅ and, consequently, both SDFStr(s0)(℘)

and Asg([[℘]], s0) contain the empty function only (we are assuming, by convention, that ∅(∅) , ∅).
We now prove, separately, the two directions of the inductive case.
[Only if]. Suppose that G, χ, s0 |= ϕ, where ℘ = Qn · ℘′. Then, two possible cases arise: either

Qn = 〈〈x〉〉 or Qn = [[x]].

— Qn = 〈〈x〉〉.
By Item 3a of Definition 2.12 of SL semantics, there is a strategy f ∈ Str(s0) such that G, χ[x 7→
f], s0 |= ℘′ψ. Note that [[℘]] = [[℘′]]. By the inductive hypothesis, we have that there exists a
Skolem dependence function θ ∈ SDFStr(s0)(℘

′) such that G, χ[x 7→ f] d θ(χ′), s0 |= ψ, for

11By g�Z : (X ∩ Z)→ Y we denote the restriction of a function g : X→ Y to the elements in the set Z.
12By g1 d g2 : (X1 ∪ X2) → (Y1 ∪ Y2) we denote the operation of union of two functions g1 : X1 → Y1 and
g2 : X2 → Y2 defined on disjoint domains, i.e., X1 ∩X2 = ∅.
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all χ′ ∈ Asg([[℘′]], s0). Now, consider the function θ′ : Asg([[℘]], s0) → Asg(V, s0) defined
by θ′(χ′) , θ(χ′)[x 7→ f], for all χ′ ∈ Asg([[℘]], s0). It is easy to check that θ′ is a Skolem
dependence function for ℘ over Str(s0), i.e., θ′ ∈ SDFStr(s0)(℘). Moreover, χ[x 7→ f] d θ(χ′) =
χ d θ(χ′)[x 7→ f] = χ d θ′(χ′), for χ′ ∈ Asg([[℘]], s0). Hence, G, χ d θ′(χ′), s0 |= ψ, for all
χ′ ∈ Asg([[℘]], s0).

— Qn = [[x]].
By Item 3b of Definition 2.12, we have that, for all strategies f ∈ Str(s0), it holds that G, χ[x 7→
f], s0 |= ℘′ψ. Note that [[℘]] = [[℘′]] ∪ {x}. By the inductive hypothesis, we derive that, for each
f ∈ Str(s0), there exists a Skolem dependence function θf ∈ SDFStr(s0)(℘

′) such that G, χ[x 7→
f] d θf(χ′), s0 |= ψ, for all χ′ ∈ Asg([[℘′]], s0). Now, consider the function θ′ : Asg([[℘]], s0)→
Asg(V, s0) defined by θ′(χ′) , θχ′(x)(χ

′
�[[℘′]])[x 7→ χ′(x)], for all χ′ ∈ Asg([[℘]], s0). It is

evident that θ′ is a Skolem dependence function for ℘ over Str(s0), i.e., θ′ ∈ SDFStr(s0)(℘).
Moreover, χ[x 7→ f] d θf(χ′) = χ d θf(χ′)[x 7→ f] = χ d θ′(χ′[x 7→ f]), for f ∈ Str(s0) and
χ′ ∈ Asg([[℘′]], s0). Hence, G, χ d θ′(χ′), s0 |= ψ, for all χ′ ∈ Asg([[℘]], s0).

[If]. Suppose that there exists a Skolem dependence function θ ∈ SDFStr(s0)(℘) such that
G, χd θ(χ′), s0 |= ψ, for all χ′ ∈ Asg([[℘]], s0), where ℘ = Qn · ℘′. Then, two possible cases arise:
either Qn = 〈〈x〉〉 or Qn = [[x]].

— Qn = 〈〈x〉〉.
There is a strategy f ∈ Str(s0) such that f = θ(χ′)(x), for all χ′ ∈ Asg([[℘]], s0). Note that
[[℘]] = [[℘′]]. Consider the function θ′ : Asg([[℘′]], s0) → Asg(V \ {x}, s0) defined by θ′(χ′) ,
θ(χ′)�(V\{x}), for all χ′ ∈ Asg([[℘′]], s0). It is easy to check that θ′ is a Skolem dependence
function for ℘′ over Str(s0), i.e., θ′ ∈ SDFStr(s0)(℘

′). Moreover, χdθ(χ′) = χdθ′(χ′)[x 7→ f] =
χ[x 7→ f] d θ′(χ′), for χ′ ∈ Asg([[℘′]], s0). Then, it is evident that G, χ[x→ f] d θ′(χ′), s0 |= ψ,
for all χ′ ∈ Asg([[℘′]], s0). By the inductive hypothesis, we derive that G, χ[x 7→ f], s0 |= ℘′ψ,
which means that G, χ, s0 |= ϕ, by Item 3a of Definition 2.12 of SL semantics.

— Qn = [[x]].
First note that [[℘]] = [[℘′]] ∪ {x}. Also, consider the functions θ′f : Asg([[℘′]], s0) → Asg(V \
{x}, s0) defined by θ′f(χ

′) , θ(χ′[x 7→ f])�(V\{x}), for each f ∈ Str(s0) and χ′ ∈ Asg([[℘′]], s0).
It is easy to see that every θ′f is a Skolem dependence function for ℘′ over Str(s0), i.e., θ′f ∈
SDFStr(s0)(℘

′). Moreover, χ d θ(χ′) = χ d θ′χ′(x)(χ
′
�[[℘′]])[x 7→ χ′(x)] = χ[x 7→ χ′(x)] d

θ′χ′(x)(χ
′
�[[℘′]]), for χ′ ∈ Asg([[℘]], s0). Then, it is evident that G, χ[x → f] d θ′f(χ

′), s0 |= ψ, for
all f ∈ Str(s0) and χ′ ∈ Asg([[℘′]], s0). By the inductive hypothesis, we derive that G, χ[x 7→
f], s0 |= ℘′ψ, for all f ∈ Str(s0), which means that G, χ, s0 |= ϕ, by Item 3b of Definition 2.12.

Thus, the thesis of the theorem holds.

As an immediate consequence of the previous result, we derive the following corollary that restricts
to SL sentences.

COROLLARY 4.6 (SL STRATEGY QUANTIFICATION). Let G be a CGS and ϕ = ℘ψ an SL
sentence, where ψ is agent-closed and ℘ ∈ Qnt(free(ψ)). Then, G |= ϕ iff there exists a Skolem
dependence function θ ∈ SDFStr(s0)(℘) such that G, θ(χ), s0 |= ψ, for all χ ∈ Asg([[℘]], s0).

4.3. Behavioral quantifications
We now have all tools we need to introduce the property of behavioral for a particular class of
Skolem dependence functions. Intuitively, a Skolem dependence function over functions from a
set T to a set D is behavioral if it can be split into a set of Skolem dependence functions over D,
one for each element of T. This idea allows us to enormously simplify the reasoning about strategy
quantifications, since we can reduce them to a set of quantifications over actions, one for each track
in their domains. This means that, under certain conditions, we can transform a Skolem dependence
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function θ ∈ SDFStr(s)(℘) over strategies in a function θ̃ : Trk(s) → SDFAc(℘) that associates
with each track a Skolem dependence function over actions.

To formally develop the above idea, we have first to introduce the generic concept of adjoint
function and state an auxiliary lemma.

Definition 4.7 (Adjoint Functions). Let D, T, U, and V be four sets, and m : (T → D)U →
(T→ D)V and m̃ : T→ (DU → DV) two functions. Then, m̃ is the adjoint of m if m̃(t)(ĝ(t))(x) =
m(g)(x)(t), for all g ∈ (T→ D)U, x ∈ V, and t ∈ T 13

Intuitively, m̃ is the adjoint of m if the dependence from the set T in both domain and codomain
of the latter can be extracted and put as a common factor of the functor given by the former. This
means also that, for every pair of functions g1, g2 ∈ (T → D)U such that ĝ1(t) = ĝ2(t) for some
t ∈ T, it holds that m(g1)(x)(t) = m(g2)(x)(t), for all x ∈ V. It is immediate to observe that if a
function has an adjoint then this adjoint is unique. At the same way, if one has an adjoint function
then it is possible to determine the original function without any ambiguity. Thus, it is established a
one-to-one correspondence between functions admitting an adjoint and the adjoint itself.

Next lemma formally states the property briefly described above, i.e., that each Skolem dependence
function over a set T→ D, admitting an adjoint function, can be represented as a function, with T
as domain, which returns Skolem dependence functions over D as values.

LEMMA 4.8 (ADJOINT SKOLEM DEPENDENCE FUNCTIONS). Let ℘ ∈ Qnt(V) be a quan-
tification prefix over a set V ⊆ Var of variables, D and T two sets, and θ : ValT→D([[℘]]) →
ValT→D(V) and θ̃ : T → (ValD([[℘]]) → ValD(V)) two functions such that θ̃ is the adjoint of θ.
Then, θ ∈ SDFT→D(℘) iff, for all t ∈ T, it holds that θ̃(t) ∈ SDFD(℘).

We now define the formal meaning of the behavioral of a Skolem dependence function over
functions.

Definition 4.9 (Behavioral Skolem Dependence Functions). Let ℘ ∈ Qnt(V) be a quantifica-
tion prefix over a set V ⊆ Var of variables, D and T two sets, and θ ∈ SDFT→D(℘) a Skolem
dependence function for ℘ over T → D. Then, θ is behavioral if it admits an adjoint function.
BSDFT→D(℘) denotes the set of all behavioral Skolem dependence functions for ℘ over T→ D.

It is important to observe that, unfortunately, there are Skolem dependence functions that are not
behavioral. To easily understand why this is actually the case, it is enough to count both the number
of Skolem dependence functions SDFT→D(℘) and those of adjoint functions T→ SDFD(℘), where
|D| > 1, |T| > 1, and ℘ is such that there is an x ∈ 〈〈℘〉〉 for which Dep(℘, x) 6= ∅. Indeed, it
holds that |SDFT→D(℘)| =

∏
x∈〈〈℘〉〉 |D||T|·|D|

|T|·|Dep(℘,x)|
>

∏
x∈〈〈℘〉〉 |D||T|·|D|

|Dep(℘,x)|
= |T →

SDFD(℘)|. So, there are much more Skolem dependence functions, a number double exponential in
|T|, than possible adjoint functions, whose number is only exponential in this value. Furthermore,
observe that the simple set Qnt∃∗∀∗(V) , {℘ ∈ Qnt(V) : ∃i ∈ [0, |℘|] . [[(℘)<i]] = ∅ ∧ 〈〈(℘)≥i〉〉 =
∅}, for V ⊆ Var, is the maximal class of quantification prefixes that admits only behavioral Skolem
dependence functions over T→ D, i.e., it is such that each θ ∈ SDFT→D(℘) is behavioral, for all
℘ ∈ Qnt∃∗∀∗(V). This is due to the fact that there are no functional dependences between variables,
i.e., for each x ∈ 〈〈℘〉〉, it holds that Dep(℘, x) = ∅.

Finally, we introduce an important semantics for syntactic fragments of SL, which is based on
the concept of behavioral Skolem dependence function over strategies, and we refer to the related
satisfiability concept as behavioral satisfiability, in symbols |=B. Intuitively, such a semantics has
the peculiarity that a strategy used in an existential quantification, in order to satisfy a formula, is
only chosen between those that are behavioral w.r.t. the universal quantifications. In this way, when
we have to decide what is its value c on a given track ρ, we do it only in dependence of the values

13By ĝ : Y → X→ Z we denote the operation of flipping of a function g : X→ Y → Z.
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on the same track of the strategies so far quantified, but not on their whole structure, as it is the
case for the classic semantics, instead. This means that c does not depend on the values of the other
strategies on tracks ρ′ that extend ρ, i.e., it does not depend on future choices made on ρ′. In addition,
we have that c does not depend on values of parallel tracks ρ′ that only share a prefix with ρ, i.e.,
it is independent on choices made on the possibly alternative futures ρ′. The behavioral semantics
of SL[NG] formulas involving atomic propositions, Boolean connectives, temporal operators, and
agent bindings is defined as for the classic one, where the modeling relation |= is substituted with
|=B, and we omit to report it here. In the following definition, we only describe the part concerning
the quantification prefixes.

Definition 4.10 (SL[NG] Behavioral Semantics). Let G be a CGS, s ∈ St one of its states, and
℘ψ an SL[NG] formula, where ψ is agent-closed and ℘ ∈ Qnt(free(ψ)). Then G,∅, s |=B ℘ψ if
there is a behavioral Skolem dependence function θ ∈ BSDFStr(s)(℘) for ℘ over Str(s) such that
G, θ(χ), s |=B ψ, for all χ ∈ Asg([[℘]], s).

It is immediate to see a strong similarity between the statement of Corollary 4.6 of SL strategy
quantification and the previous definition. The only crucial difference resides in the choice of the
kind of Skolem dependence function. Moreover, observe that, differently from the classic semantics,
the quantifications in the prefix are not treated individually but as an atomic block. This is due to the
necessity of having a strict correlation between the point-wise structure of the quantified strategies.

Remark 4.11 (SL Behavioral Semantics). It can be interesting to know that we do not define
a behavioral semantics for the whole SL, since we are not able, at the moment, to easily use the
concept of behavioral Skolem dependence function, when the quantifications are not necessarily
grouped in prefixes, i.e., when the formula is not in prenex normal form. In fact, this may represent a
challenging problem, whose solution is left to future works.

Due to the new semantics of SL[NG], we have to redefine the related concepts of model and
satisfiability, in order to differentiate between the classic relation |= and the behavioral one |=B.
Indeed, as we show later, there are sentences that are satisfiable but not behavioral satisfiable. We say
that a CGS G is a behavioral model of an SL[NG] sentence ϕ, in symbols G |=B ϕ, if G,∅, s0 |=B ϕ.
In general, we also say that G is a behavioral model for ϕ on s ∈ St, in symbols G, s |=B ϕ, if
G,∅, s |=B ϕ. An SL[NG] sentence ϕ is behavioral satisfiable if there is an behavioral model for it.

We have to modify the concepts of implication and equivalence, as well. Indeed, also in this
case we can have pairs of equivalent formulas that are not behavioral equivalent, and vice versa.
Thus, we have to be careful when we use natural transformation between formulas, since it can
be the case that they preserve the meaning only under the classic semantics. An example of this
problem can arise when one want to put a formula in pnf. Given two SL[NG] formulas ϕ1 and ϕ2

with free(ϕ1) = free(ϕ2), we say that ϕ1 behaviorally implies ϕ2, in symbols ϕ1 ⇒E ϕ2, if, for all
CGSs G, states s ∈ St, and free(ϕ1)-defined s-total assignments χ ∈ Asg(free(ϕ1), s), it holds that
if G, χ, s |=B ϕ1 then G, χ, s |=B ϕ2. Accordingly, we say that ϕ1 is behaviorally equivalent to ϕ2,
in symbols ϕ1≡Eϕ2, if both ϕ1⇒Eϕ2 and ϕ2⇒Eϕ1 hold.

4.4. Behavioral and non-behavioral semantics
Finally, we show that the introduced concept of behavioral satisfiability is relevant to the context of
our logic, as its applicability represents a demarcation line between “easy” and “hard” fragments of
SL. Moreover, we believe that it is because of this fundamental property that several well-known
temporal logics are so robustly decidable [Vardi 1996].

Remark 4.12 (SL[NG, 0-alt] Behavioral). It is interesting to observe that, for every CGS G and
SL[NG, 0-alt] sentence ϕ, it holds that G |= ϕ iff G |=B ϕ. This is an immediate consequence of
the fact that all quantification prefixes ℘ used in ϕ belong to Qnt∃∗∀∗(V), for a given set V ⊆ Var
of variables. Thus, as already mentioned, the related Skolem dependence functions on strategies
θ ∈ SDFStr(s0)(℘) are necessarily behavioral.
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By Corollary 4.6 of SL strategy quantification, it is easy to see that the following coherence
property about the behavioral of the SL[NG] satisfiability holds. Intuitively, it asserts that every
behaviorally satisfiable sentence in pnf is satisfiable too.

THEOREM 4.13 (SL[NG] BEHAVIORAL COHERENCE). Let G be a CGS, s ∈ St one of its states,
ϕ an SL[NG] formula in pnf, and χ ∈ Asg(s) an s-total assignment with free(ϕ) ⊆ dom(χ). Then, it
holds that G, χ, s |=B ϕ implies G, χ, s |= ϕ.

PROOF. The proof proceeds by induction on the structure of the formula. For the sake of suc-
cinctness, we only show the crucial case of principal subsentences φ ∈ psnt(ϕ), i.e., when φ is of
the form ℘ψ, where ℘ ∈ Qnt(free(ψ)) is a quantification prefix, and ψ is an agent-closed formula.

Suppose that G,∅, s |=B ℘ψ. Then, by Definition 4.10 of SL[NG] behavioral semantics, there
is a behavioral Skolem dependence function θ ∈ BSDFStr(s)(℘) such that, for all assignments
χ ∈ Asg([[℘]], s), it holds that G, θ(χ), s |=B ψ. Now, by the inductive hypothesis, there is a
Skolem dependence function θ ∈ SDFStr(s)(℘) such that, for all assignments χ ∈ Asg([[℘]], s),
it holds that G, θ(χ), s |= ψ. Hence, by Corollary 4.6 of SL strategy quantification, we have that
G,∅, s |= ℘ψ.

However, it is worth noting that the converse property may not hold, as we show in the next
theorem, i.e., there are sentences in pnf that are satisfiable but not behavioral satisfiable. Note that
the following results already holds for CHP-SL.

THEOREM 4.14 (SL[BG] NON-BEHAVIORAL). There exists a satisfiable SL[BG, 1-ag, 2-var, 1-
alt] sentence in pnf that is not behaviorally satisfiable.

PROOF. Consider the SL[BG, 1-ag, 2-var, 1-alt] sentence ϕ , ϕ1 ∧ ϕ2 in pnf where ϕ1 , ℘(ψ1 ∧
ψ2), with ℘ , [[x]]〈〈y〉〉, ψ1 , (α, x)X p ↔ (α, y)X ¬p, and ψ2 , (α, x)X X p ↔ (α, y)X X p, and
ϕ2 , [[x]](α, x)X ((〈〈x〉〉(α, x)X p) ∧ (〈〈x〉〉(α, x)X ¬p)). Moreover, note that the SL[1G, 1-ag, 1-var,
0-alt] sentence ϕ2 is equivalent to the CTL formula AX ((EX p) ∧ (EX ¬p)). Then, it is easy to see
that the turn-based CGS GRdc of Figure 6 on page 17 satisfies ϕ. Indeed, GRdc, θ(χ), s0 |= ψ1 ∧ ψ2,
for all assignments χ ∈ Asg({x}, s0), where the non-behavioral Skolem dependence function
θ ∈ SDFStr(s0)(℘) is such that θ(χ)(y)(s0) = ¬χ(x)(s0) and θ(χ)(y)(s0 · si) = χ(x)(s0 · s1−i), for
all i ∈ {0, 1}.

Now, let G be a generic CGS. If G 6|= ϕ, by Theorem 4.13 of SL[NG] behavioral coher-
ence, it holds that G 6|=B ϕ. Otherwise, we have that G |= ϕ and, in particular, G |= ϕ1,
which means that G |= ℘(ψ1 ∧ ψ2). At this point, to prove that G 6|=B ϕ, we show that, for
all behavioral Skolem dependence functions θ ∈ BSDFStr(s0)(℘), there exists an assignment
χ ∈ Asg({x}, s0) such that G, θ(χ), s0 6|=B ψ1 ∧ ψ2. To do this, let us fix a behavioral Skolem
dependence function θ and an assignment χ. Also, assume s1 , τ(s0, ∅[α 7→ χ(x)(s0)]) and
s2 , τ(s0, ∅[α 7→ θ(χ)(y)(s0)]). Now, we distinguish between two cases.

— p ∈ λ(s1) iff p ∈ λ(s2). In this case, we can easily observe that G, θ(χ), s0 6|= ψ1 and consequently,
by Theorem 4.13, it holds that G, θ(χ), s0 6|=B ψ1 ∧ ψ2. So, we are done.

— p ∈ λ(s1) iff p 6∈ λ(s2). If G, θ(χ), s0 6|= ψ2 then, by Theorem 4.13, it holds that G, θ(χ), s0 6|=B

ψ1 ∧ ψ2. So, we are done. Otherwise, let s3 , τ(s1, ∅[α 7→ χ(x)(s0 · s1)]) and s4 , τ(s2, ∅[α 7→
θ(χ)(y)(s0 · s2)]). Then, it holds that p ∈ λ(s3) iff p ∈ λ(s4). Now, consider a new assignment
χ′ ∈ Asg({x}, s0) such that χ′(x)(s0 · s2) = χ(x)(s0 · s2) and p ∈ λ(s3

′) iff p 6∈ λ(s4), where
s3
′ , τ(s1, ∅[α 7→ χ′(x)(s0·s1)]). Observe that the existence of such an assignment, with particular

reference to the second condition, is ensured by the fact that G |= ϕ2. At this point, due to the
behavioral of the Skolem dependence function θ, we have that θ(χ′)(y)(s0 · s2) = θ(χ)(y)(s0 · s2).
Consequently, it holds that s4 = τ(s2, ∅[α 7→ θ(χ′)(y)(s0 · s2)]). Thus, G, θ(χ′), s0 6|= ψ2, which
implies, by Theorem 4.13, that G, θ(χ′), s0 6|=B ψ1 ∧ ψ2. So, we are done.

Thus, the thesis of the theorem holds.
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It is interesting to note that, at the moment, we do not know if such a result can be extended to the
simpler GL fragment.

Remark 4.15 (Kinds of Non-Behavioral). It is worth remarking that the kind of non-behavioral
of the sentence ϕ shown in the above theorem can be called essential, i.e., it cannot be eliminated, due
to the fact that ϕ is satisfiable but not behavioral satisfiable. However, there are different sentences,
such as the conjunct ϕ1 in ϕ, having both models on which they are behaviorally satisfiable and
models, like the CGS GRdc, on which they are only non-behaviorally satisfiable. Such a kind of
non-behavioral can be called non-essential, since it can be eliminated by a suitable choice of the
underlying model. Note that a similar reasoning can be done for the dual concept of behavioral,
which we call essential if all models satisfying a given sentence behaviorally satisfy it as well.

Before continuing, we want to show the reason why we have redefined the concepts of implication
and equivalence in the context of behavioral semantics. Consider the SL[BG, 1-ag, 2-var, 1-alt] sentence
ϕ1 used in Theorem 4.14 of SL[BG] non-behavioral result. It is not hard to see that it is equivalent to
the SL[1G, 1-ag, 1-var, 0-alt] ϕ′ , (〈〈x〉〉(α, x)ψ1 ↔ 〈〈x〉〉(α, x)ψ2) ∧ (〈〈x〉〉(α, x)ψ3 ↔ 〈〈x〉〉(α, x)ψ4),
where ψ1 , X (p ∧ X p), ψ2 , X (¬p ∧ X p), ψ3 , X (p ∧ X ¬p), and ψ4 , X (¬p ∧ X ¬p). Note
that ϕ′ is in turn equivalent to the CTL∗ formula (Eψ1 ↔ Eψ2) ∧ (Eψ3 ↔ Eψ4). However, ϕ1 and
ϕ′ are not behaviorally equivalent, since we have that GRdc 6|=B ϕ1 but GRdc |=B ϕ

′, where GRdc is
the CGS of Figure 6 on page 17.

At this point, we can proceed with the proof of the behavioral satisfiability for SL[1G]. It is impor-
tant to note that there is no gap, in our knowledge, between the logics that are behaviorally satisfiable
and those that are not, since the fragment SL[BG, 1-ag, 2-var, 1-alt] used in the previous theorem cannot
be further reduced, due to the fact that otherwise it collapses into SL[1G]. Before starting, we have to
describe some notation regarding classic two-player games on infinite words [Perrin and Pin 2004],
which are used here as a technical tool. Note that we introduce the names of scheme and match in
place of the more usual strategy and play, in order to avoid confusion between the concepts related to
a CGS and those related to the tool.

A two-player arena (TPA, for short) is a tuple A , 〈Ne,No,E , n0〉, where Ne and No are non-
empty non-intersecting sets of nodes for player even and odd, respectively, E , Ee ∪ Eo , with
Ee ⊆ Ne ×No and Eo ⊆ No ×Ne, is the edge relation between nodes, and n0 ∈ No is a designated
initial node.

An even position in A is a finite non-empty sequence of nodes % ∈ Ne
+ such that (%)0 = n0

and, for all i ∈ [0, |%| − 1[ , there exists a node n ∈ No for which ((%)i, n) ∈ Ee and
(n, (%)i+1) ∈ Eo hold. In addition, an odd position in A is a finite non-empty sequence of nodes
% = %′ · n ∈ Ne

+ · No, with n ∈ No, such that %′ is an even position and (lst(%′), n) ∈ Ee .
By Pose and Poso we denote, respectively, the sets of even and odd positions.

An even (resp., odd) scheme in A is a function se : Pose → No (resp., so : Poso → Ne) that maps
each even (resp., odd) position to an odd (resp., even) node in a way that is compatible with the edge
relation Ee (resp., Eo), i.e., for all % ∈ Pose (resp., % ∈ Poso), it holds that (lst(%), se(%)) ∈ Ee

(resp., (lst(%), so(%)) ∈ Eo). By Sche (resp., Scho) we indicate the sets of even (resp., odd) schemes.
A match in A is an infinite sequence of nodes $ ∈ Ne

ω such that ($)0 = n0 and, for all i ∈ N,
there exists a node n ∈ No such that (($)i, n) ∈ Ee and (n, ($)i+1) ∈ Eo . By Mtc we denote the
set of all matches. A match map mtc : Sche × Scho → Mtc is a function that, given two schemes
se ∈ Sche and so ∈ Scho, returns the unique match $ = mtc(se, so) such that, for all i ∈ N, it holds
that ($)i+1 = so(($)≤i · se(($)≤i)).

A two-player game (TPG, for short) is a tupleH , 〈A,Win〉, where A is a TPA and Win ⊆ Mtc.
On one hand, we say that player even winsH if there exists an even scheme se ∈ Sche such that, for
all odd schemes so ∈ Scho, it holds that mtc(se, so) ∈Win. On the other hand, we say that player
odd wins H if there exists an odd scheme so ∈ Scho such that, for all even schemes se ∈ Sche, it
holds that mtc(se, so) 6∈Win.
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In the following, for a given binding prefix [ ∈ Bnd(V) with V ⊆ Var, we denote by ζ[ : Ag→ V
the function associating with each agent the related variable in [, i.e., for all a ∈ Ag, there is i ∈ [0,
|[|[ such that ([)i = (a, ζ[(a)).

As first step towards the proof of the behavioral of SL[1G], we have to give a construction of a
two-player game, based on an a priori chosen CGS, in which the players are explicitly viewed one
as a Skolem dependence function and the other as a valuation, both over actions. This construction
results to be a deep technical evolution of the proof method used for the dualization of alternating
automata on infinite objects [Muller and Schupp 1987].

Definition 4.16 (Dependence-vs-Valuation Game). Let G be a CGS, s ∈ St one of its states,
P ⊆ Pth(s) a set of paths, ℘ ∈ Qnt(V) a quantification prefix over a set V ⊆ Var of variables, and
[ ∈ Bnd(V) a binding. Then, the dependence-vs-valuation game for G in s over P w.r.t. ℘ and [ is
the TPG H(G, s,P, ℘, [) , 〈A(G, s, ℘, [),P〉, where the TPA A(G, s, ℘, [) , 〈St,St× SDFAc(℘),
E , s〉 has the edge relations defined as follows:

— Ee , {(t, (t, θ)) : t ∈ St ∧ θ ∈ SDFAc(℘)};
— Eo , {((t, θ), τ(t, θ(v) ◦ ζ[)) : t ∈ St ∧ θ ∈ SDFAc(℘) ∧ v ∈ ValAc([[℘]])} 14.

In the next lemma we state a fundamental relationship between dependence-vs-valuation games
and their duals. Basically, we prove that if a player wins the game then the opposite player can win
the dual game, and vice versa. This represents one of the two crucial steps in our behavioral proof.

LEMMA 4.17 (DEPENDENCE-VS-VALUATION DUALITY). Let G be a CGS, s ∈ St one of its
states, P ⊆ Pth(s) a set of paths, ℘ ∈ Qnt(V) a quantification prefix over a set V ⊆ Var of
variables, and [ ∈ Bnd(V) a binding. Then, player even wins the TPG H(G, s,P, ℘, [) iff player odd
wins the dual TPG H(G, s,Pth(s) \ P, ℘, [).

Now, we are going to give the definition of the important concept of encasement. Infor-
mally, an encasement is a particular subset of paths in a given CGS that “works to en-
case” a behavioral Skolem dependence function on strategies, in the sense that it contains
all plays obtainable by complete assignments derived from the evaluation of the above men-
tioned Skolem dependence function. In our context, this concept is used to summarize all
relevant information needed to verify the behavioral satisfiability of a sentence.

Definition 4.18 (Encasement). Let G be a CGS, s ∈ St one of its states, P ⊆ Pth(s) a set of
paths, ℘ ∈ Qnt(V) a quantification prefix over a set V ⊆ Var of variables, and [ ∈ Bnd(V) a binding.
Then, P is an encasement w.r.t. ℘ and [ if there exists a behavioral Skolem dependence function
θ∈BSDFStr(s)(℘) such that, for all assignments χ∈Asg([[℘]], s), it holds that play(θ(χ)◦ ζ[, s)∈P.

In the next lemma, we give the second of the two crucial steps in our behavioral proof. In particular,
we are able to show a one-to-one relationship between the winning in the dependence-vs-valuation
game of player even and the verification of the encasement property of the associated winning set.
Moreover, in the case that the latter is a Borelian set, by using Martin’s Determinacy Theorem [Martin
1975], we obtain a complete characterization of the winning concept by means of that of encasements.

LEMMA 4.19 (ENCASEMENT CHARACTERIZATION). Let G be a CGS, s ∈ St one of its states,
P ⊆ Pth(s) a set of paths, ℘ ∈ Qnt(V) a quantification prefix over a set V ⊆ Var of variables, and
[ ∈ Bnd(V) a binding. Then, the following hold:

(i) player even winsH(G, s,P, ℘, [) iff P is an encasement w.r.t. ℘ and [;
(ii) if player odd winsH(G, s,P, ℘, [) then P is not an encasement w.r.t. ℘ and [;

(iii) if P is a Borelian set and it is not an encasement w.r.t. ℘ and [ then player odd wins
H(G, s,P, ℘, [).

14By g2 ◦ g1 : X → Z we denote the operation of composition of two functions g1 : X → Y1 and g2 : Y2 → Z with
Y1 ⊆ Y2.
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Finally, we have all technical tools useful to prove the behavioral of the satisfiability for SL[1G].
Intuitively, we describe a bidirectional reduction of the problem of interest to the verification of the
winning in the dependence-vs-valuation game. The idea behind this construction resides in the strong
similarity between the statement of Corollary 4.6 of SL strategy quantification and the definition of
the winning condition in a two-player game. Indeed, on one hand, we say that a sentence is satisfiable
iff “there exists a Skolem dependence function such that, for all all assignments, it holds that ...”. On
the other hand, we say that player even wins a game iff “there exists an even scheme such that, for all
odd schemes, it holds that ...”. In particular, for the SL[1G] fragment, we can resolve the gap between
these two formulations, by using the concept of behavioral quantification.

THEOREM 4.20 (SL[1G] BEHAVIORAL). Let G be a CGS, ϕ an SL[1G] formula, s ∈ St a state,
and χ ∈ Asg(s) an s-total assignment with free(ϕ) ⊆ dom(χ). Then, it holds that G, χ, s |= ϕ iff
G, χ, s |=B ϕ.

PROOF. The proof proceeds by induction on the structure of the formula. For the sake of succinct-
ness, we only show the most important inductive case of principal subsentences φ ∈ psnt(ϕ), i.e.,
when φ is of the form ℘[ψ, where ℘ ∈ Qnt(V) and [ ∈ Bnd(V) are, respectively, a quantification
and binding prefix over a set V ⊆ Var of variables, and ψ is a variable-closed formula.

[If]. The proof of this direction is practically the same of the one used in Theorem 4.13 of SL[NG]
behavioral coherence. So, we omit to report it here.

[Only if]. Assume that G,∅, s |= ℘[ψ. Then, it is easy to see that, for all behavioral Skolem
dependence functions θ ∈ BSDFStr(s)(℘), there is an assignment χ ∈ Asg([[℘]], s) such that
G, θ(χ) ◦ ζ[, s |= ψ. Indeed, suppose by contradiction that there exists a behavioral Skolem depen-
dence function θ ∈ BSDFStr(s)(℘) such that, for all assignments χ ∈ Asg([[℘]], s), it holds that
G, θ(χ)◦ζ[, s 6|= ψ, i.e., G, θ(χ)◦ζ[, s |= ¬ψ, and so G, θ(χ), s |= [¬ψ. Then, by Corollary 4.6 of SL
strategy quantification, we have that G,∅, s |= ℘[¬ψ, i.e., G,∅, s |= ¬℘[ψ, and so G,∅, s 6|= ℘[ψ,
which is impossible.

Now, let P , {play(χ, s) ∈ Pth(s) : χ ∈ Asg(Ag, s) ∧ G, χ, s 6|= ψ}. Then, it is evident
that, for all behavioral Skolem dependence functions θ ∈ BSDFStr(s)(℘), there is an assignment
χ ∈ Asg([[℘]], s) such that play(θ(χ) ◦ ζ[, s) 6∈ P.

At this point, by Definition 4.18 of encasement, it is clear that P is not an encasement w.r.t. ℘
and [. Moreover, since ψ describes a regular language, the derived set P is Borelian [Perrin and Pin
2004]. Consequently, by Item iii of Lemma 4.19 of encasement characterization, we have that player
odd wins the TPG H(G, s,P, ℘, [). Thus, by Lemma 4.17 of dependence-vs-valuation duality, player
even wins the dual TPG H(G, s,Pth(s) \ P, ℘, [). Hence, by Item i of Lemma 4.19, we have that
Pth(s)\P is an encasement w.r.t. ℘ and [. Finally, again by Definition 4.18, there exists an behavioral
Skolem dependence function θ ∈ BSDFStr(s)(℘) such that, for all assignments χ ∈ Asg([[℘]], s), it
holds that play(θ(χ) ◦ ζ[, s) ∈ Pth(s) \ P.

Now, it is immediate to observe that Pth(s) \ P = {play(χ, s) ∈ Pth(s) : χ ∈ Asg(Ag, s) ∧
G, χ, s |= ψ}. So, by the inductive hypothesis, we have that Pth(s) \ P = {play(χ, s) ∈ Pth(s)
: χ ∈ Asg(Ag, s) ∧ G, χ, s |=B ψ}, from which we derive that there exists a behavioral Skolem
dependence function θ ∈ BSDFStr(s)(℘) such that, for all assignments χ ∈ Asg([[℘]], s), it holds
that G, θ(χ) ◦ ζ[, s |=B ψ. Consequently, by Definition 4.10 of SL[NG] behavioral semantics, we have
that G,∅, s |=B ℘[ψ.

As an immediate consequence of the previous theorem, we derive the following fundamental
corollary, restricted to SL[1G] sentences.

COROLLARY 4.21 (SL[1G] BEHAVIORAL). Let G be a CGS and ϕ an SL[1G] sentence. Then,
G |= ϕ iff G |=B ϕ.
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It is worth to observe that the behavioral property for SL[1G] is a crucial difference w.r.t. SL[BG],
which allows us to obtain a behavioral decision procedure for the related model-checking problem,
as described in the last part of the next section.

5. MODEL-CHECKING PROCEDURES
In this section, we study the model-checking problem for SL and show that, in general, it is non-
elementarily decidable, while, in the particular case of SL[1G] sentences, it is just 2EXPTIME-
COMPLETE, as for ATL∗. For the algorithmic procedures, we follow an automata-theoretic ap-
proach [Kupferman et al. 2000], reducing the decision problem for the logics to the emptiness
problem of an automaton. In particular, we use a bottom-up technique through which we recursively
label each state of the CGS of interest by all principal subsentences of the specification that are
satisfied on it, starting from the innermost subsentences and terminating with the sentence under
exam. In this way, at a given step of the recursion, since the satisfaction of all subsentences of the
given principal sentence has already been determined, we can assume that the matrix of the latter is
only composed by Boolean combinations and nesting of goals whose temporal part is simply LTL.
The procedure we propose here extends that used for ATL∗ in [Alur et al. 2002] by means of a richer
structure of the automata involved in.

The rest of this section is organized as follows. In Subsection 5.1, we recall the definition of
alternating parity tree automata. Then, in Subsection 5.2, we build an automaton accepting a tree
encoding of a CGS iff this satisfies the formula of interest, which is used to prove the main result
about SL and SL[NG] model checking. Finally, in Subsection 5.3, we refine the previous result to
obtain an elementary decision procedure for SL[1G].

5.1. Alternating tree automata
Nondeterministic tree automata are a generalization to infinite trees of the classical nondeterministic
word automata on infinite words (see [Thomas 1990], for an introduction). Alternating tree automata
are a further generalization of nondeterministic tree automata [Muller and Schupp 1987]. Intuitively,
on visiting a node of the input tree, while the latter sends exactly one copy of itself to each of the
successors of the node, the former can send several own copies to the same successor. Here we use,
in particular, alternating parity tree automata, which are alternating tree automata along with a parity
acceptance condition (see [Grädel et al. 2002], for a survey).

We now give the formal definition of alternating tree automata.

Definition 5.1 (Alternating Tree Automata). An alternating tree automaton (ATA, for short) is
a tuple A , 〈Σ,∆,Q, δ, q0,ℵ〉, where Σ, ∆, and Q are, respectively, non-empty finite sets of input
symbols, directions, and states, q0 ∈ Q is an initial state, ℵ is an acceptance condition to be defined
later, and δ : Q × Σ → B+(∆ × Q) is an alternating transition function that maps each pair of
states and input symbols to a positive Boolean combination on the set of propositions of the form
(d, q) ∈ ∆×Q, a.k.a. moves.

On one side, a nondeterministic tree automaton (NTA, for short) is a special case of ATA in
which each conjunction in the transition function δ has exactly one move (d, q) associated with
each direction d. This means that, for all states q ∈ Q and symbols σ ∈ Σ, we have that δ(q, σ) is
equivalent to a Boolean formula of the form

∨
i

∧
d∈∆(d, qi,d). On the other side, a universal tree

automaton (UTA, for short) is a special case of ATA in which all the Boolean combinations that
appear in δ are conjunctions of moves. Thus, we have that δ(q, σ) =

∧
i(di, qi), for all states q ∈ Q

and symbols σ ∈ Σ.
The semantics of the ATAs is given through the following concept of run.

Definition 5.2 (ATA Run). A run of an ATA A = 〈Σ,∆,Q, δ, q0,ℵ〉 on a Σ-labeled ∆-tree
T = 〈T, v〉 is a (∆ × Q)-tree R such that, for all nodes x ∈ R, where x =

∏n
i=1(di, qi) and

y ,
∏n
i=1 di with n ∈ [0, ω[ , it holds that (i) y ∈ T and (ii), there is a set of moves S ⊆ ∆×Q with

S |= δ(qn, v(y)) such that x · (d, q) ∈ R, for all (d, q) ∈ S.
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In the following, we consider ATAs along with the parity acceptance condition (APT, for short)
ℵ , (F1, . . . ,Fk) ∈ (2Q)+ with F1 ⊆ . . . ⊆ Fk = Q (see [Kupferman et al. 2000], for more). The
number k of sets in the tuple ℵ is called the index of the automaton. We also consider ATAs with the
co-Büchi acceptance condition (ACT, for short) that is the special parity condition with index 2.

Let R be a run of an ATA A on a tree T and w one of its branches. Then, by inf(w) , {q ∈ Q
: |{i ∈ N : ∃d ∈ ∆.(w)i = (d, q)}| = ω} we denote the set of states that occur infinitely often as
the second component of the letters along the branch w. Moreover, we say that w satisfies the parity
acceptance condition ℵ=(F1, . . . ,Fk) if the least index i∈ [1, k] for which inf(w) ∩ Fi 6= ∅ is even.

At this point, we can define the concept of language accepted by an ATA.

Definition 5.3 (ATA Acceptance). An ATA A = 〈Σ,∆,Q, δ, q0,ℵ〉 accepts a Σ-labeled ∆-tree
T iff is there exists a run R of A on T such that all its infinite branches satisfy the acceptance
condition ℵ.

By L(A) we denote the language accepted by the ATA A, i.e., the set of trees T accepted by A.
Moreover, A is said to be empty if L(A) = ∅. The emptiness problem for A is to decide whether
L(A) = ∅.

We finally show a simple but useful result about the APT direction projection. To do this, we first
need to introduce an extra notation. Let f ∈ B(P) be a Boolean formula on a set of propositions
P. Then, by f [p/q |p ∈ P′] we denote the formula in which all occurrences of the propositions
p ∈ P′ ⊆ P in f are replaced by the proposition q belonging to a possibly different set.

THEOREM 5.4 (APT DIRECTION PROJECTION). Let A , 〈Σ ×∆,∆,Q, δ, q0,ℵ〉 be an APT
over a set of m directions with n states and index k. Moreover, let d0 ∈ ∆ be a distinguished
direction. Then, there exists an NPT N d0 , 〈Σ,∆,Q′, δ′, q′0,ℵ′〉 with m · 2O(k·n·logn) states and
index O(k · n · log n) such that, for all Σ-labeled ∆-tree T , 〈T, v〉, it holds that T ∈ L(N d0) iff
T ′ ∈ L(A), where T ′ is the (Σ×∆)-labeled ∆-tree 〈T, v′〉 such that v′(t) , (v(t), lst(d0 · t)), for
all t ∈ T.

PROOF. As first step, we use the well-known nondeterminization procedure for APTs [Muller
and Schupp 1995] in order to transform the APT A into an equivalent NPT N = 〈Σ × ∆,∆,
Q′′, δ′′, q′′0 ,ℵ′′〉 with 2O(k·n·logn) states and index k′ = O(k · n · log n). Then, we transform the
latter into the new NPT N d0 , 〈Σ,∆,Q′, δ′, q′0,ℵ′〉 with m · 2O(k·n·logn) states and same index k′,
where Q′ , Q′′ ×∆, q′0 , (q′′0 , d0), ℵ′ , (F1 ×∆, . . . ,Fk′ ×∆) with ℵ′′ , (F1, . . . ,Fk′), and
δ′((q, d), σ) , δ′′(q, (σ, d))[(d′, q′)/(d′, (q′, d′))|(d′, q′) ∈ ∆×Q′′], for all (q, d) ∈ Q′ and σ ∈ Σ.
Now, it easy to see that N d0 satisfies the declared statement.

5.2. SL Model Checking
A first step towards our construction of an algorithmic procedure for the solution of the SL model-
checking problem is to define, for each possible formula ϕ, an alternating parity tree automaton AGϕ
that recognizes a tree encoding T of a CGS G, containing the information on an assignment χ on the
free variables/agents of ϕ, iff G is a model of ϕ under χ. The high-level idea at the base of this con-
struction is an evolution and merging of those behind the translations of QPTL and LTL, respectively,
into nondeterministic [Sistla et al. 1987] and alternating [Muller et al. 1988] Büchi automata.

To proceed with the formal description of the model-checking procedure, we have to introduce a
concept of encoding for the assignments of a CGS.

Definition 5.5 (Assignment-State Encoding). Let G be a CGS, s ∈ StG one of its states, and
χ ∈ AsgG(V, s) an assignment defined on the set V ⊆ Var∪Ag. Then, a (ValAcG (V)×StG)-labeled
StG-tree T , 〈T, u〉, where T , {ρ≥1 : ρ ∈ TrkG(s)}, is an assignment-state encoding for χ if it
holds that u(t) , (χ̂(s · t), lst(s · t)), for all t ∈ T.

Observe that there is a unique assignment-state encoding for each given assignment.
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In the next lemma, we prove the existence of an APT for each CGS and SL formula that is able to
recognize all the assignment-state encodings of an a priori given assignment, made the assumption
that the formula is satisfied on the CGS under this assignment.

LEMMA 5.6 (SL FORMULA AUTOMATON). Let G be a CGS and ϕ an SL formula. Then, there
exists an APT AGϕ , 〈ValAcG (free(ϕ))×StG ,StG ,Qϕ, δϕ, q0ϕ,ℵϕ〉 such that, for all states s ∈ StG
and assignments χ ∈ AsgG(free(ϕ), s), it holds that G, χ, s |= ϕ iff T ∈ L(AGϕ), where T is the
assignment-state encoding for χ.

PROOF. The construction of the APT AGϕ is done recursively on the structure of the formula ϕ,
which w.l.o.g. is supposed to be in enf, by using a variation of the transformation, via alternating tree
automata, of the S1S and SkS logics into nondeterministic Büchi word and tree automata recognizing
all models of the formula of interest [Büchi 1962; Rabin 1969].

The detailed construction of AGϕ, by a case analysis on ϕ, follows.

— If ϕ ∈ AP, the automaton has to verify if the atomic proposition is locally satisfied or not. To do this,
we set AGϕ , 〈ValAcG (∅) × StG ,StG , {ϕ}, δϕ, ϕ, ({ϕ})〉, where δϕ(ϕ, (v, s)) , t, if ϕ ∈ λG(s),
and δϕ(ϕ, (v, s)) , f, otherwise. Intuitively, AGϕ only verifies that the state s in the labeling of the
root of the assignment-state encoding of the empty assignment ∅ satisfies ϕ.

— The boolean case ϕ = ¬ϕ′ is treated in the classical way, by simply dualizing the automaton
AGϕ′ = 〈ValAcG (free(ϕ′))× StG ,StG ,Qϕ′ , δϕ′ , q0ϕ′ ,ℵϕ′〉 [Muller and Schupp 1987].

— The boolean cases ϕ = ϕ1Op ϕ2, with Op ∈ {∧,∨}, are treated in a way that is similar to
the classical one, by simply merging the two automata AGϕ1

= 〈ValAcG (free(ϕ1)) × StG ,StG ,

Qϕ1 , δϕ1 , q0ϕ1 ,ℵϕ1〉 and AGϕ2
= 〈ValAcG (free(ϕ2)) × StG ,StG ,Qϕ2 , δϕ2 , q0ϕ2 ,ℵϕ2〉 into the

automaton AGϕ , 〈ValAcG (free(ϕ))× StG ,StG ,Qϕ, δϕ, q0ϕ,ℵϕ〉, where the following hold:
— Qϕ , {q0ϕ} ∪Qϕ1

∪Qϕ2
, with q0ϕ 6∈ Qϕ1

∪Qϕ2
;

— δϕ(q0ϕ, (v, s)) , δϕ1
(q0ϕ1

, (v�free(ϕ1), s)) Op δϕ2
(q0ϕ2

, (v�free(ϕ2), s)), for all (v, s) ∈
ValAcG (free(ϕ))× StG ;

— δϕ(q, (v, s)) , δϕ1(q, (v�free(ϕ1), s)), if q ∈ Qϕ1 , and δϕ(q, (v, s)) , δϕ2(q, (v�free(ϕ2), s)),
otherwise, for all q ∈ Qϕ1

∪Qϕ2
and (v, s) ∈ ValAcG (free(ϕ))× StG ;

— ℵϕ , (F1ϕ, . . . ,Fkϕ), where (i) ℵϕ1
, (F1ϕ1

, . . . ,Fk1ϕ1
) and ℵϕ2

, (F1ϕ2
, . . . ,Fk2ϕ2

),
(ii) h = min{k1, k2} and k = max{k1, k2}, (iii) Fiϕ , Fiϕ1 ∪ Fiϕ2 , for i ∈ [1, h], (iv)
Fiϕ , Fiϕj , for i ∈ [h+ 1, k − 1] with kj = k, and (v) Fkϕ , Qϕ.

— The case ϕ = X ϕ′ is solved by running the automatonAGϕ′ = 〈ValAcG (free(ϕ′))×StG ,StG ,Qϕ′ ,

δϕ′ , q0ϕ′ ,ℵϕ′〉 on the successor node of the root of the assignment-state encoding in the direction
individuated by the assignment itself. To do this, we use the automaton AGϕ , 〈ValAcG (free(ϕ))×
StG ,StG ,Qϕ, δϕ, q0ϕ,ℵϕ〉, where the following hold:
— Qϕ , {q0ϕ} ∪Qϕ′ , with q0ϕ 6∈ Qϕ′ ;
— δϕ(q0ϕ, (v, s)) , (τG(s, v�Ag), q0ϕ′), for all (v, s) ∈ ValAcG (free(ϕ))× StG ;
— δϕ(q, (v, s)) , δϕ′(q, (v�free(ϕ′), s)), for all q ∈ Qϕ′ and (v, s) ∈ ValAcG (free(ϕ))× StG ;
— ℵϕ , (F1ϕ′ , . . . ,Fkϕ′ ∪ {q0ϕ}), where ℵϕ′ , (F1ϕ′ , . . . ,Fkϕ′).

— To handle the case ϕ = ϕ1U ϕ2, we use the automaton AGϕ , 〈ValAcG (free(ϕ)) × StG ,StG ,
Qϕ, δϕ, q0ϕ,ℵϕ〉 that verifies the truth of the until operator using its one-step unfolding equiv-
alence ϕ1U ϕ2 ≡ ϕ2 ∨ ϕ1 ∧ X ϕ1U ϕ2, by appropriately running the two automata AGϕ1

=

〈ValAcG (free(ϕ1)) × StG ,StG ,Qϕ1
, δϕ1

, q0ϕ1
,ℵϕ1

〉 and AGϕ2
= 〈ValAcG (free(ϕ2)) × StG ,StG ,

Qϕ2
, δϕ2

, q0ϕ2
,ℵϕ2

〉 for the inner formulas ϕ1 and ϕ2. The definitions of AGϕ components follows:
— Qϕ , {q0ϕ} ∪Qϕ1

∪Qϕ2
, with q0ϕ 6∈ Qϕ1

∪Qϕ2
;
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— δϕ(q0ϕ, (v, s)) , δϕ2
(q0ϕ2

, (v�free(ϕ2), s)) ∨ δϕ1
(q0ϕ1

, (v�free(ϕ1), s)) ∧ (τG(s, v�Ag), q0ϕ), for
all (v, s) ∈ ValAcG (free(ϕ))× StG ;

— δϕ(q, (v, s)) , δϕ1(q, (v�free(ϕ1), s)), if q ∈ Qϕ1 , and δϕ(q, (v, s)) , δϕ2(q, (v�free(ϕ2), s)),
otherwise, for all q ∈ Qϕ1

∪Qϕ2
and (v, s) ∈ ValAcG (free(ϕ))× StG ;

— ℵϕ , (F1ϕ, . . . ,Fkϕ), where (i) ℵϕ1
, (F1ϕ1

, . . . ,Fk1ϕ1
) and ℵϕ2

, (F1ϕ2
, . . . ,Fk2ϕ2

), (ii)
h = min{k1, k2} and k = max{k1, k2}, (iii) Fiϕ , {q0ϕ} ∪ Fiϕ1 ∪ Fiϕ2 , for i ∈ [1, h], (iv)
Fiϕ , {q0ϕ} ∪ Fiϕj , for i ∈ [h+ 1, k − 1] with kj = k, and (v) Fkϕ , Qϕ.

It is important to observe that the initial state q0ϕ is included in all sets of the parity acceptance
condition, in particular in F1ϕ, in order to avoid its regeneration for an infinite number of times.

— To handle the case ϕ = ϕ1R ϕ2, we use the automaton AGϕ , 〈ValAcG (free(ϕ)) × StG ,StG ,
Qϕ, δϕ, q0ϕ,ℵϕ〉 that verifies the truth of the release operator using its one-step unfolding equiv-
alence ϕ1R ϕ2 ≡ ϕ2 ∧ (ϕ1 ∨ X ϕ1R ϕ2), by appropriately running the two automata AGϕ1

=

〈ValAcG (free(ϕ1)) × StG ,StG ,Qϕ1
, δϕ1

, q0ϕ1
,ℵϕ1

〉 and AGϕ2
= 〈ValAcG (free(ϕ2)) × StG ,StG ,

Qϕ2
, δϕ2

, q0ϕ2
,ℵϕ2

〉 for the inner formulas ϕ1 and ϕ2. The definitions of AGϕ components follows:
— Qϕ , {q0ϕ} ∪Qϕ1

∪Qϕ2
, with q0ϕ 6∈ Qϕ1

∪Qϕ2
;

— δϕ(q0ϕ, (v, s)) , δϕ2
(q0ϕ2

, (v�free(ϕ2), s))∧(δϕ1
(q0ϕ1

, (v�free(ϕ1), s))∨(τG(s, v�Ag), q0ϕ)), for
all (v, s) ∈ ValAcG (free(ϕ))× StG ;

— δϕ(q, (v, s)) , δϕ1(q, (v�free(ϕ1), s)), if q ∈ Qϕ1 , and δϕ(q, (v, s)) , δϕ2(q, (v�free(ϕ2), s)),
otherwise, for all q ∈ Qϕ1

∪Qϕ2
and (v, s) ∈ ValAcG (free(ϕ))× StG ;

— ℵϕ , (F1ϕ, . . . ,Fkϕ), where (i) ℵϕ1 , (F1ϕ1 , . . . ,Fk1ϕ1) and ℵϕ2 , (F1ϕ2 , . . . ,Fk2ϕ2), (ii)
h = min{k1, k2} and k = max{k1, k2}, (iii) F1ϕ , F1ϕ1 ∪ F1ϕ2 , (iv) Fiϕ , {q0ϕ} ∪ Fiϕ1 ∪
Fiϕ2 , for i∈ [2, h], (iv) Fiϕ,{q0ϕ}∪Fiϕj , for i∈ [h+ 1, k− 1] with kj=k, and (v) Fkϕ,Qϕ.

It is important to observe that, differently from the case of the until operator, the initial state q0ϕ is
included in all sets of the parity acceptance condition but F1ϕ, in order to allow its regeneration for
an infinite number of time.

— The case ϕ = (a, x)ϕ′ is solved by simply transforming the transition function of the automaton
AGϕ′ = 〈ValAcG (free(ϕ′)) × StG ,StG ,Qϕ′ , δϕ′ , q0ϕ′ ,ℵϕ′〉, by setting the value of the valuations
in input w.r.t. the agent a to the value of the same valuation w.r.t. the variable x. The definitions
of the transition function for AGϕ , 〈ValAcG (free(ϕ)) × StG ,StG ,Qϕ′ , δϕ, q0ϕ′ ,ℵϕ′〉 follows:
δϕ(q, (v, s)) , δϕ′(q, (v

′, s)), where v′ = v[a 7→ v(x)]�free(ϕ′), if a ∈ free(ϕ′), and v′ = v,
otherwise, for all q ∈ Qϕ′ and (v, s) ∈ ValAcG (free(ϕ))× StG .

— To handle the case ϕ = 〈〈x〉〉ϕ′, assuming that x ∈ free(ϕ′), we use the operation of existential
projection for nondeterministic tree automata. To do this, we have first to nondeterminize the APT

AGϕ′ , by applying the classic transformation [Muller and Schupp 1995]. In this way, we obtain
an equivalent NPT N Gϕ′ = 〈ValAcG (free(ϕ′))× StG ,StG ,Qϕ′ , δϕ′ , q0ϕ′ ,ℵϕ′〉. Now, we make the
projection, by defining the new NPTAGϕ , 〈ValAcG (free(ϕ))×StG ,StG ,Qϕ′ , δϕ, q0ϕ′ ,ℵϕ′〉where
δϕ(q, (v, s)) ,

∨
c∈AcG

δϕ′(q, (v[x 7→ c], s)), for all q ∈ Qϕ′ and (v, s) ∈ ValAcG (free(ϕ))×StG .

At this point, it only remains to prove that, for all states s ∈ StG and assignments χ ∈
AsgG(free(ϕ), s), it holds that G, χ, s |= ϕ iff T ∈ L(AGϕ), where T is the assignment-state
encoding for χ. The proof can be developed by a simple induction on the structure of the formula ϕ
and is left to the reader as a simple exercise.

We now have the tools to describe the recursive model-checking procedure on nested subsentences
for SL and its fragments under the general semantics.

To proceed, we have first to prove the following theorem that represents the core of our automata-
theoretic approach.
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THEOREM 5.7 (SL SENTENCE AUTOMATON). Let G be a CGS, s ∈ StG one of its states, and
ϕ an SL sentence. Then, there exists an NPT N G,sϕ such that G,∅, s |= ϕ iff L(N G,sϕ ) 6= ∅.

PROOF. To construct the NPT N G,sϕ we apply Theorem 5.4 of APT direction projection with
distinguished direction s to the APT AGϕ derived by Lemma 5.6 of SL formula automaton. In this
way, we can ensure that the state labeling of nodes of the assignment-state encoding is coherent with
the node itself. Observe that, since ϕ is a sentence, we have that free(ϕ) = ∅, and so, the unique
assignment-state encoding of interest is that related to the empty assignment ∅.

[Only if]. Suppose that G,∅, s |= ϕ. Then, by Lemma 5.6, we have that T ∈ L(AGϕ), where T is
the dependence-state encoding for ∅. Hence, by Theorem 5.4, it holds that L(N G,sϕ ) 6= ∅.

[If]. Suppose that L(N G,sϕ ) 6= ∅. Then, by Theorem 5.4, there exists an ({∅} × StG)-labeled
StG-tree T such that T ∈ L(AGϕ). Now, it is immediate to see that T is the assignment-state encoding
for ∅. Hence, by Lemma 5.6, we have that G,∅, s |= ϕ.

Before continuing, we define the length lng(ϕ) of an SL formula ϕ as the number |sub(ϕ)| of its
subformulas. We also introduce a generalization of the Knuth’s double arrow notation in order to
represents a tower of exponentials: a ↑↑b 0 , b and a ↑↑b (c+ 1) , aa↑↑bc, for all a, b, c ∈ N.

At this point, we prove the main theorem about the non-elementary complexity of SL model-
checking problem.

THEOREM 5.8 (SL MODEL CHECKING). The model-checking problem for SL is PTIME-
COMPLETE w.r.t. the size of the model and NONELEMENTARY w.r.t. the size of the specification.

PROOF. By Theorem 5.7 of SL sentence automaton, to verify that G,∅, s |= ϕ, we simply
calculate the emptiness of the NPT N G,sϕ having |StG | · (2 ↑↑m m) states and index 2 ↑↑m m, where
m = O(lng(ϕ)·log lng(ϕ)). It is well-known that the emptiness problem for such a kind of automaton
with n states and index h is solvable in time O(nh) [Kupferman and Vardi 1998]. Thus, we get that
the time complexity of checking whether G,∅, s |= ϕ is |StG |2↑↑mm. Hence, the membership of
the model-checking problem for SL in PTIME w.r.t. the size of the model and NONELEMENTARY
w.r.t. the size of the specification directly follows. Finally, by getting the relative lower bound on the
model from the same problem for ATL∗ [Alur et al. 2002], the claim is proved.

Finally, we show a refinement of the previous result, when we consider sentences of the SL[NG]
fragment.

THEOREM 5.9 (SL[NG] MODEL CHECKING). The model-checking problem for SL[NG] is
PTIME-COMPLETE w.r.t. the size of the model and (k + 1)-EXPTIME w.r.t. the maximum alter-
nation k of the specification.

PROOF. By Theorem 5.7 of SL sentence automaton, to verify that G,∅, s |= ℘ψ, where ℘ψ is an
SL[NG] principal sentence without proper subsentences, we can simply calculate the emptiness of the
NPT N G,s℘ψ having |StG | · (2 ↑↑m k) states and index 2 ↑↑m k, where m = O(lng(ψ) · log lng(ψ))

and k = alt(℘ψ). Thus, we get that the time complexity of checking whether G,∅, s |= ℘ψ is
|StG |2↑↑mk. At this point, since we have to do this verification for each possible state s ∈ StG
and principal subsentence ℘ψ ∈ psnt(ϕ) of the whole SL[NG] specification ϕ, we derive that
the bottom-up model-checking procedure requires time |StG |2↑↑lng(ϕ)k, where k = max{alt(℘ψ) :
℘ψ ∈ psnt(ϕ)}. Hence, the membership of the model-checking problem for SL in PTIME w.r.t.
the size of the model and (k + 1)-EXPTIME w.r.t. the maximum alternation k of the specifica-
tion directly follows. Finally, by getting the relative lower bound on the model from the same
problem for ATL∗ [Alur et al. 2002], the thesis is proved.
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5.3. SL[1G] Model Checking
We now show how the concept of behavioral of Skolem dependence functions over strategies can
be used to enormously reduce the complexity of the model-checking procedure for the SL[1G]
fragment. The idea behind our approach is to avoid the use of projections used to handle the strategy
quantifications, by reducing them to action quantifications, which can be managed locally on each
state of the model without a tower of exponential blow-ups.

To start with the description of the ad-hoc procedure for SL[1G], we first prove the existence of a
UCT for each CGS and SL[1G] goal [ψ that recognizes all the assignment-state encodings of an a priori
given assignment, made the assumption that the goal is satisfied on the CGS under this assignment.

LEMMA 5.10 (SL[1G] GOAL AUTOMATON). Let G be a CGS and [ψ an SL[1G] goal without
principal subsentences. Then, there exists an UCT UG[ψ , 〈ValAcG (free([ψ))× StG ,StG ,Q[ψ, δ[ψ,

q[ψ,ℵ[ψ〉 such that, for all states s ∈ StG and assignments χ ∈ AsgG(free([ψ), s), it holds that
G, χ, s |= [ψ iff T ∈ L(UG[ψ), where T is the assignment-state encoding for χ.

PROOF. A first step in the construction of the UCT UG[ψ is to consider the UCW Uψ , 〈2AP,Qψ,

δψ,Q0ψ,ℵψ〉 obtained by dualizing the NBW resulting from the application of the classic Vardi-
Wolper construction to the LTL formula ¬ψ [Vardi and Wolper 1986]. Observe that L(Uψ) = L(ψ),
i.e., Uψ recognizes all infinite words on the alphabet 2AP that satisfy the LTL formula ψ. Then, define
the components of UG[ψ , 〈ValAcG (free([ψ))× StG ,StG ,Q[ψ, δ[ψ, q0[ψ,ℵ[ψ〉 as follows:

— Q[ψ , {q0[ψ} ∪Qψ , with q0[ψ 6∈ Qψ;
— δ[ψ(q0[ψ, (v, s)) ,

∧
q∈Q0ψ

δ[ψ(q, (v, s)), for all (v, s) ∈ ValAcG (free([ψ))× StG ;

— δ[ψ(q, (v, s)),
∧
q′∈δψ(q,λG(s))(τG(s, v◦ζ[), q′), for all q∈Qψ and (v, s)∈ValAcG (free([ψ))×StG ;

— ℵ[ψ , ℵψ .

Intuitively, the UCT UG[ψ simply runs the UCW Uψ on the branch of the encoding individuated
by the assignment in input. Thus, it is easy to see that, for all states s ∈ StG and assignments
χ ∈ AsgG(free([ψ), s), it holds that G, χ, s |= [ψ iff T ∈ L(UG[ψ), where T is the assignment-state
encoding for χ.

Now, to describe our modified technique, we introduce a new concept of encoding regarding the
behavioral Skolem dependence functions over strategies.

Definition 5.11 (Behavioral Dependence-State Encoding). Let G be a CGS, s ∈ StG one of its
states, and θ ∈ BSDFStrG(s)(℘) a behavioral Skolem dependence function over strategies for a
quantification prefix ℘ ∈ Qnt(V) over the set V ⊆ Var. Then, a (SDFAcG (℘) × StG)-labeled
StG-tree T , 〈T, u〉, where T , {ρ≥1 : ρ ∈ TrkG(s)}, is a behavioral dependence-state encoding
for θ if it holds that u(t) , (θ̃(s · t), lst(s · t)), for all t ∈ T.

Observe that there exists a unique behavioral dependence-state encoding for each behavioral Skolem
dependence function over strategies.

In the next lemma, we show how to handle locally the strategy quantifications on each state of the
model, by simply using a quantification over actions, which is modeled by the choice of an action
Skolem dependence function. Intuitively, we guess in the labeling what is the right part of the Skolem
dependence function over strategies for each node of the tree and then verify that, for all assignments
of universal variables, the corresponding complete assignment satisfies the inner formula.

LEMMA 5.12 (SL[1G] SENTENCE AUTOMATON). Let G be a CGS and ℘[ψ an SL[1G] principal
sentence without principal subsentences. Then, there exists a UCT UG℘[ψ , 〈SDFAcG (℘)×StG ,StG ,

Q℘[ψ, δ℘[ψ, q0℘[ψ,ℵ℘[ψ〉 such that, for all states s ∈ StG and behavioral Skolem dependence func-
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tions over strategies θ ∈ BSDFStrG(s)(℘), it holds that G, θ(χ), s |=B [ψ, for all χ ∈ AsgG([[℘]], s),
iff T ∈ L(UG℘[ψ), where T is the behavioral dependence-state encoding for θ.

PROOF. By Lemma 5.10 of SL[1G] goal automaton, there is an UCT UG[ψ = 〈ValAcG (free([ψ))×
StG ,StG ,Q[ψ, δ[ψ, q0[ψ,ℵ[ψ〉 such that, for all states s∈StG and assignments χ∈AsgG(free([ψ), s),
it holds that G, χ, s |= [ψ iff T ∈ L(UG[ψ), where T is the assignment-state encoding for χ.

Now, transform UG[ψ into the new UCT UG℘[ψ , 〈SDFAcG (℘) × StG ,StG ,Q℘[ψ, δ℘[ψ, q0℘[ψ,

ℵ℘[ψ〉, with Q℘[ψ , Q[ψ, q0℘[ψ , q0[ψ, and ℵ℘[ψ , ℵ[ψ, which is used to handle the quantifi-
cation prefix ℘ atomically, where the transition function is defined as follows: δ℘[ψ(q, (θ, s)) ,∧

v∈ValAcG ([[℘]]) δ[ψ(q, (θ(v), s)), for all q ∈ Q℘[ψ and (θ, s) ∈ SDFAcG (℘)×StG . Intuitively, UG℘[ψ
reads an action Skolem dependence function θ on each node of the input tree T labeled with a state s
of G and simulates the execution of the transition function δ[ψ(q, (v, s)) of UG[ψ, for each possible
valuation v = θ(v′) on free([ψ) obtained from θ by a universal valuation v′ ∈ ValAcG ([[℘]]). It is
important to observe that we cannot move the component set SDFAcG (℘) from the input alphabet
to the states of UG℘[ψ, by making a related guessing of the Skolem dependence function θ in the
transition function, since we have to ensure that all states in a given node of the tree T , i.e., in each
track of the original model G, make the same choice for θ.

Finally, it remains to prove that, for all states s ∈ StG and behavioral Skolem dependence function
over strategies θ ∈ BSDFStrG(s)(℘), it holds that G, θ(χ), s |=B [ψ, for all χ ∈ AsgG([[℘]], s), iff
T ∈ L(UG℘[ψ), where T is the behavioral dependence-state encoding for θ.

[Only if]. Suppose that G, θ(χ), s |=B [ψ, for all χ ∈ AsgG([[℘]], s). Since ψ does not contain
principal subsentences, we have that G, θ(χ), s |= [ψ. So, due to the property of UG[ψ, it follows
that there exists an assignment-state encoding Tχ ∈ L(UG[ψ), which implies the existence of an
(StG×Q[ψ)-tree Rχ that is an accepting run for UG[ψ on Tχ. At this point, let R ,

⋃
χ∈AsgG([[℘]],s) Rχ

be the union of all runs. Then, due to the particular definition of the transition function of UG℘[ψ , it is
not hard to see that R is an accepting run for UG℘[ψ on T . Hence, T ∈ L(UG℘[ψ).

[If]. Suppose that T ∈ L(UG℘[ψ). Then, there exists an (StG×Q℘[ψ)-tree R that is an accepting run
for UG℘[ψ on T . Now, for each χ ∈ AsgG([[℘]], s), let Rχ be the run for UG[ψ on the assignment-state
encoding Tχ for θ(χ). Due to the particular definition of the transition function of UG℘[ψ , it is easy to
see that Rχ ⊆ R. Thus, since R is accepting, we have that Rχ is accepting as well. So, Tχ ∈ L(UG[ψ).
At this point, due to the property of UG[ψ, it follows that G, θ(χ), s |= [ψ. Now, since ψ does not
contain principal subsentences, we have that G, θ(χ), s |=B [ψ, for all χ ∈ AsgG([[℘]], s).

At this point, we can prove the following theorem that is at the base of the elementary model-
checking procedure for SL[1G].

THEOREM 5.13 (SL[1G] SENTENCE AUTOMATON). Let G be a CGS, s ∈ StG one of its states,
and ℘[ψ an SL[1G] principal sentence without principal subsentences. Then, there exists an NPT

N G,s℘[ψ such that G,∅, s |= ℘[ψ iff L(N G,s℘[ψ) 6= ∅.

PROOF. As in the general case of SL sentence automaton, we have to ensure that the state labeling
of nodes of the behavioral dependence-state encoding is coherent with the node itself. To do this,
we apply Theorem 5.4 of APT direction projection with distinguished direction s to the UPT UG℘[ψ
derived by Lemma 5.12 of the SL[1G] sentence automaton, thus obtaining the required NPT N G,s℘[ψ .

[Only if]. Suppose that G,∅, s |= ℘[ψ. By Corollary 4.21 of SL[1G] behavioral, it means that
G,∅, s |=B ℘[ψ. Then, by Definition 4.10 of SL[NG] behavioral semantics, there exists an be-
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havioral Skolem dependence function θ ∈ BSDFStrG(s)(℘) such that G, θ(χ), s |=B [ψ, for all
χ ∈ AsgG([[℘]], s). Thus, by Lemma 5.12, we have that T ∈ L(UG℘[ψ), where T is the behavioral

dependence-state encoding for θ. Hence, by Theorem 5.4, it holds that L(N G,s℘[ψ) 6= ∅.
[If]. Suppose that L(N G,s℘[ψ) 6= ∅. Then, by Theorem 5.4, there exists an (SDFAcG (℘) × StG)-

labeled StG-tree T such that T ∈ L(UG℘[ψ). Now, it is immediate to see that there is an behavioral
Skolem dependence function θ ∈ BSDFStrG(s)(℘) for which T is the behavioral dependence-
state encoding. Thus, by Lemma 5.12, we have that G, θ(χ), s |=B [ψ, for all χ ∈ AsgG([[℘]], s).
By Definition 4.10 of SL[NG] behavioral semantics, it holds that G,∅, s |=B ℘[ψ. Hence, by
Corollary 4.21 of SL[1G] behavioral, it means that G,∅, s |= ℘[ψ.

Finally, we show in the next fundamental theorem the precise complexity of the model-checking
for SL[1G].

THEOREM 5.14 (SL[1G] MODEL CHECKING). The model-checking problem for SL[1G] is
PTIME-COMPLETE w.r.t. the size of the model and 2EXPTIME-COMPLETE w.r.t. the size of the
specification.

PROOF. By Theorem 5.13 of SL[1G] sentence automaton, to verify that G,∅, s |= ℘[ψ, we simply
calculate the emptiness of the NPT N G,s℘[ψ. This automaton is obtained by the operation of direction
projection on the UCT UG℘[ψ, which is in turn derived by the UCT UG[ψ. Now, it is easy to see that

the number of states of UG[ψ, and consequently of UG℘[ψ, is 2O(lng(ψ)). So, N G,s℘[ψ has |StG | · 22O(lng(ψ))

states and index 2O(lng(ψ)).
The emptiness problem for such a kind of automaton with n states and index h is solvable in time

O(nh) [Kupferman and Vardi 1998]. Thus, we get that the time complexity of checking whether
G,∅, s |= ℘[ψ is |StG |2

O(lng(ψ))

. At this point, since we have to do this verification for each possible
state s ∈ StG and principal subsentence ℘[ψ ∈ psnt(ϕ) of the whole SL[1G] specification ϕ, we
derive that the whole bottom-up model-checking procedure requires time |StG |2

O(lng(ϕ))

. Hence, the
membership of the model-checking problem for SL[1G] in PTIME w.r.t. the size of the model and
2EXPTIME w.r.t. the size of the specification directly follows. Finally the thesis is proved, by getting
the relative lower bounds from the same problem for ATL∗ [Alur et al. 2002].

6. CONCLUSION
Finding the right logic for reasoning about games is an important and intriguing task. Current
proposals for infinite games on state-transition systems follow two main directions, either extending
first-order temporal logics with a mechanism for quantifying over plays built by two alternating
(coalitions of) players, or restricting monadic second-order logic (MSOL) to speak about infinite
trees with respect to outcomes of the strategies they encode rather than about their internal structure.
Both approaches are unsatisfactory: alternating-time logics are computationally acceptable, but they
lack expressiveness, whereas MSOL or µ-calculus-based formalisms tend to be expressive, but of
non-elementary complexity, due to the unbounded nesting of quantifiers. This paper combines the
two approaches leading to a logic that is strongly expressive and overly complex in its full version,
but which admits a fragment of acceptable computational complexity that is expressive enough to
counter some of the criticisms brought to alternating-time logics.

Specifically, in this paper, we have introduced and studied SL as a very powerful logic formalism
to reasoning about strategic behaviors of multi-agent concurrent games. In particular, we have
proved that this new logic subsumes the classical temporal and game logics not using explicit
fix-points. As one of the main results about SL, we have shown that the relative model-checking
problem is decidable but non-elementary hard. As further and interesting practical results, we have
investigated several of its syntactic fragments. The most appealing one is SL[1G], which is obtained
by restricting SL to deal with one temporal goal at a time. Interestingly, SL[1G] strictly extends ATL∗,
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while maintaining all its positive properties. In fact, the model-checking problem is 2EXPTIME-
COMPLETE, hence not harder than the one for ATL∗. Moreover, although for the sake of space it is
not reported in this paper, we shown that it is invariant under bisimulation and decision-unwinding,
and consequently, it has the decision-tree model property. The main reason why SL[1G] has all
these positive properties is that it satisfies a special model property, which we name “behavioral”.
Informally, this property asserts that all strategy quantifications in a sentence can be reduced to a
set of quantifications over actions, which turn out to be easier to handle. We remark that among all
SL fragments we investigated, SL[1G] is the only one that satisfies this property. Thus, SL[1G] is the
first significant proper extension of ATL∗ having an elementary model-checking problem, and even
more, with the same computational complexity. All these positive aspects make us strongly believe
that SL[1G] is a valid alternative to ATL∗ to be used in the field of formal verification for multi-agent
concurrent systems.

As another interesting fragment we investigated in this paper, we recall SL[BG]. This logic allows
us to express important game-theoretic properties, such as Nash equilibrium, which cannot be defined
in SL[1G]. Unfortunately, we do not have an elementary model-checking procedure for it, neither
we can exclude it. We conjecture that, although it does not have the behavioral property, its model-
checking problem has an elementary complexity. On the other hand, in [Mogavero et al. 2013] it has
been proved that the logic fragment having only conjunctions of goals has the behavioral property
and then its model-checking problem is 2EXPTIME-COMPLETE.

An important aspect of the logic SL is that its ability in the strategic reasoning is independent from
the temporal logic setting used to specify goals, but rather intrinsic in the skeleton of the logic itself.
To give an evidence of this claim, we report that in a recent paper [Mogavero et al. 2014b] it has been
proposed a revisit of this logic under a game-theoretic framework. Specifically, the new formalization
has been obtained by adopting the general guidelines of game-theory, which requires the definition
of solution concepts (i.e., the pure strategic reasoning) to abstract away the underlying cost-benefit
analysis (together with the temporal constraints used to determine it). The proposed framework,
besides gaining in modularity and applicability, shows that all principal concepts and properties
related to SL (including the behavioral property) are independent from the specific formalism used to
express goals.

Last but not least, from a theoretical point of view, we are convinced that our framework can be
used as a unifying basis for logic reasonings about strategic behaviors in multi-agent scenarios and
their relationships. In particular, it can be used to study variations and extensions of SL[1G] in a
way similar as it has been done in the literature for ATL∗. For example, it could be interesting to
investigate relentful SL[1G], by inheriting and extending the “relentful” concept used for ATL∗ and
CHP-SL and investigated in [Mogavero et al. 2010b] and [Fisman et al. 2010], respectively. Also,
we recall that this concept implicitly allows to deal with backwards temporal modalities. As another
example, it would be interesting to investigate the graded extension of SL[1G], in a way similar as it
has been done in [Bianco et al. 2009; 2010; 2012] and [Kupferman et al. 2002; Bonatti et al. 2008]
for CTL and µCALCULUS, respectively. We recall that graded quantifiers in branching-time temporal
logics allow to count how many equivalent classes of paths satisfy a given property. This concept
in SL[1G] would further allow the counting of strategies and so to succinctly check the existence
of more than one nonequivalent winning strategy for a given agent, in one shot. We hope to lift to
graded SL[1G] questions left open about graded branching-time temporal logic, such as the precise
satisfiability complexity of the graded full computation tree logic (GCTL∗, for short) [Bianco et al.
2012].

ELECTRONIC APPENDIX
The electronic appendix for this article can be accessed in the ACM Digital Library.
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A. MATHEMATICAL NOTATION
In this short reference appendix, we report the classical mathematical notation and some common
definitions that are used along the whole work.

Classic objects. We consider N as the set of natural numbers and [m,n] , {k ∈ N : m ≤ k ≤ n},
[m,n[ , {k ∈ N : m ≤ k < n}, ]m,n] , {k ∈ N : m < k ≤ n}, and ]m,n[ , {k ∈ N :

m < k < n} as its interval subsets, with m ∈ N and n ∈ N̂ , N ∪ {ω}, where ω is the numerable
infinity, i.e., the least infinite ordinal. Given a set X of objects, we denote by |X| ∈ N̂ ∪ {∞}
the cardinality of X, i.e., the number of its elements, where∞ represents a more than countable
cardinality, and by 2X , {Y : Y ⊆ X} the powerset of X, i.e., the set of all its subsets.

Relations. By R ⊆ X×Y we denote a relation between the domain dom(R) , X and codomain
cod(R) , Y, whose range is indicated by rng(R) , {y ∈ Y : ∃x ∈ X. (x, y) ∈ R}. We use
R−1 , {(y, x) ∈ Y × X : (x, y) ∈ R} to represent the inverse of R itself. Moreover, by S ◦ R,
with R ⊆ X × Y and S ⊆ Y × Z, we denote the composition of R with S , i.e., the relation
S ◦ R , {(x, z) ∈ X× Z : ∃y ∈ Y. (x, y) ∈ R ∧ (y, z) ∈ S}. We also use Rn , Rn−1 ◦ R, with
n ∈ [1, ω[, to indicate the n-iteration of R ⊆ X× Y, where Y ⊆ X and R0 , {(y, y) : y ∈ Y} is
the identity on Y. With R+ ,

⋃<ω
n=1 R

n and R∗ , R+ ∪ R0 we denote, respectively, the transitive
and reflexive-transitive closure of R. Finally, for an equivalence relation R ⊆ X × X on X, we
represent with (X/R) , {[x]R : x ∈ X}, where [x]R , {x′ ∈ X : (x, x′) ∈ R}, the quotient set of
X w.r.t. R, i.e., the set of all related equivalence classes [·]R.

Functions. We use the symbol YX ⊆ 2X×Y to denote the set of total functions f from X to Y,
i.e., the relations f ⊆ X× Y such that for all x ∈ dom(f) there is exactly one element y ∈ cod(f)
such that (x, y) ∈ f. Often, we write f : X → Y and f : X ⇀ Y to indicate, respectively, f ∈ YX

and f ∈
⋃

X′⊆X YX′ . Regarding the latter, note that we consider f as a partial function from X to
Y, where dom(f) ⊆ X contains all and only the elements for which f is defined. Given a set Z, by
f�Z , f ∩ (Z×Y) we denote the restriction of f to the set X ∩ Z, i.e., the function f�Z : X ∩ Z ⇀ Y
such that, for all x ∈ dom(f) ∩ Z, it holds that f�Z(x) = f(x). Moreover, with ∅ we indicate a
generic empty function, i.e., a function with empty domain. Note that X ∩ Z = ∅ implies f�Z = ∅.
Finally, for two partial functions f, g : X ⇀ Y, we use f d g and f e g to represent, respectively, the
union and intersection of these functions defined as follows: dom(f d g) , dom(f)∪ dom(g) \ {x ∈
dom(f) ∩ dom(g) : f(x) 6= g(x)}, dom(f e g) , {x ∈ dom(f) ∩ dom(g) : f(x) = g(x)},
(f d g)(x) = f(x) for x ∈ dom(f d g) ∩ dom(f), (f d g)(x) = g(x) for x ∈ dom(f d g) ∩ dom(g),
and (f e g)(x) = f(x) for x ∈ dom(f e g).

Words. By Xn, with n ∈ N, we denote the set of all n-tuples of elements from X, by X∗ ,⋃<ω
n=0 Xn the set of finite words on the alphabet X, by X+ , X∗ \ {ε} the set of non-empty words,
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and by Xω the set of infinite words, where, as usual, ε ∈ X∗ is the empty word. The length of a
word w ∈ X∞ , X∗ ∪ Xω is represented with |w| ∈ N̂. By (w)i we indicate the i-th letter of the
finite word w ∈ X+, with i ∈ [0, |w|[ . Furthermore, by fst(w) , (w)0 (resp., lst(w) , (w)|w|−1),
we denote the first (resp., last) letter of w. In addition, by (w)≤i (resp., (w)>i), we indicate the
prefix up to (resp., suffix after) the letter of index i of w, i.e., the finite word built by the first
i + 1 (resp., last |w| − i − 1) letters (w)0, . . . , (w)i (resp., (w)i+1, . . . , (w)|w|−1). We also set,
(w)<0 , ε, (w)<i , (w)≤i−1, (w)≥0 , w, and (w)≥i , (w)>i−1, for i ∈ [1, |w|[ . Mutatis
mutandis, the notations of i-th letter, first, prefix, and suffix apply to infinite words too. Finally, by
pfx(w1, w2) ∈ X∞ we denote the maximal common prefix of two different words w1, w2 ∈ X∞,
i.e., the finite word w ∈ X∗ for which there are two words w′1, w

′
2 ∈ X∞ such that w1 = w · w′1,

w2 = w · w′2, and fst(w′1) 6= fst(w′2). By convention, we set pfx(w,w) , w.

Trees. For a set ∆ of objects, called directions, a ∆-tree is a set T ⊆ ∆∗ closed under prefix,
i.e., if t · d ∈ T, with d ∈ ∆, then also t ∈ T. We say that it is complete if it holds that t · d′ ∈ T
whenever t · d ∈ T, for all d′ < d, where <⊆ ∆×∆ is an a priori fixed strict total order on the set
of directions that is clear from the context. Moreover, it is full if T = ∆∗. The elements of T are
called nodes and the empty word ε is the root of T. For every t ∈ T and d ∈ ∆, the node t · d ∈ T is
a successor of t in T. The tree is b-bounded if the maximal number b of its successor nodes is finite,
i.e., b = maxt∈T |{t · d ∈ T : d ∈ ∆}| < ω. A branch of the tree is an infinite word w ∈ ∆ω such
that (w)≤i ∈ T, for all i ∈ N. For a finite set Σ of objects, called symbols, a Σ-labeled ∆-tree is a
quadruple 〈Σ,∆,T, v〉, where T is a ∆-tree and v : T→ Σ is a labeling function. When ∆ and Σ
are clear from the context, we call 〈T, v〉 simply a (labeled) tree.

B. PROOFS OF SECTION 4
In this appendix, we report the proofs of lemmas needed to prove the behavioral of SL[1G]. Before
this, we describe two relevant properties that link together Skolem dependence functions of a given
quantification prefix with those of the dual one. These properties report, in the Skolem dependence
functions framework, what is known to hold, in an equivalent way, for first and second order logic.
In particular, they result to be two key points towards a complete understanding of the strategy
quantifications of our logic.

The first of these properties enlighten the fact that two arbitrary dual Skolem dependence functions
θ and θ always share a common valuation v. To better understand this concept, consider for instance
the functions θ1 and θ6 of the examples illustrated just after Definition 4.4 of Skolem dependence
functions. Then, it is easy to see that the valuation v ∈ ValD(V) with v(x) = v(y) = 1 and v(z) = 0
resides in both the ranges of θ1 and θ6, i.e., v ∈ rng(θ1) ∩ rng(θ6).

LEMMA B.1 (DEPENDENCE INCIDENCE). Let ℘ ∈ Qnt(V) be a quantification prefix over a
set of variables V ⊆ Var and D a generic set. Moreover, let θ ∈ SDFD(℘) and θ ∈ SDFD(℘)
be two Skolem dependence functions. Then, there exists a valuation v ∈ ValD(V) such that v =
θ(v�[[℘]]) = θ(v�[[℘]]).

PROOF. W.l.o.g., suppose that ℘ starts with an existential quantifier. If this is not the case, the
dual prefix ℘ necessarily satisfies the above requirement, so, we can simply shift our reasoning on it.

The whole proof proceeds by induction on the alternation number alt(℘) of ℘. As base case, if
alt(℘) = 0, we define v , θ(∅), since [[℘]] = ∅. Obviously, it holds that v = θ(v�[[℘]]) = θ(v�[[℘]]),
due to the fact that v�[[℘]] = ∅ and v�[[℘]] = v. Now, as inductive case, suppose that the statement is
true for all prefixes ℘′ ∈ Qnt(V′) with alt(℘′) = n, where V′ ⊂ V. Then, we prove that it is true for
all prefixes ℘ ∈ Qnt(V) with alt(℘) = n+ 1 too. To do this, we have to uniquely split ℘ = ℘′ · ℘′′
into the two prefixes ℘′ ∈ Qnt(V′) and ℘′′ ∈ Qnt(V \V′) such that alt(℘′) = n and alt(℘′′) = 0.
At this point, the following two cases can arise.
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— If n is even, it is immediate to see that 〈〈℘′′〉〉 = ∅. So, consider the Skolem dependence functions
θ′ ∈ SDFD(℘′) and θ′ ∈ SDFD(℘′) such that θ′(v�[[℘′]]) = θ(v)�V′ and θ′(v) = θ(v)�V′ , for all
valuations v ∈ ValD([[℘]]) and v ∈ ValD([[℘]]) = ValD([[℘′ ]]). By the inductive hypothesis, there
exists a valuation v′ ∈ ValD(V′) such that v′ = θ′(v′�[[℘′]]) = θ′(v′

�[[℘′ ]]
). So, set v , θ(v′�[[℘]]).

— If n is odd, it is immediate to see that [[℘′′]] = ∅. So, consider the Skolem dependence functions
θ′ ∈ SDFD(℘′) and θ′ ∈ SDFD(℘′) such that θ′(v) = θ(v)�V′ and θ′(v�[[℘′ ]]) = θ(v)�V′ , for all
valuations v ∈ ValD([[℘]]) = ValD([[℘′]]) and v ∈ ValD([[℘]]). By the inductive hypothesis, there
exists a valuation v′ ∈ ValD(V′) such that v′ = θ′(v′�[[℘′]]) = θ′(v′

�[[℘′ ]]
). So, set v , θ(v′�[[℘]]).

Now, it is easy to see that in both cases the valuation v satisfies the thesis, i.e., v = θ(v�[[℘]]) =

θ(v�[[℘]]).

The second property we are going to prove describes the fact that, if all Skolem dependence
functions θ of a given prefix ℘, for a dependent specific universal valuation v, share a given property
then there is a dual Skolem dependence functions θ that has the same property, for all universal
valuations v. To have a better understanding of this idea, consider again the examples reported just
after Definition 4.4 and let P , {(0, 0, 1), (0, 1, 0)} ⊂ ValD(V), where the triple (l,m, n) stands
for the valuation that assigns l to x, m to y, and n to z. Then, it is easy to see that all ranges of the
Skolem dependence functions θi for ℘ intersect P, i.e., for all i ∈ [0, 3], there is v ∈ ValD([[℘]]) such
that θi(v) ∈ P. Moreover, consider the dual Skolem dependence functions θ2 for ℘. Then, it is not
hard to see that θ2(v) ∈ P, for all v ∈ ValD([[℘]]).

LEMMA B.2 (DEPENDENCE DUALIZATION). Let ℘ ∈ Qnt(V) be a quantification prefix over
a set of variables V ⊆ Var, D a generic set, and P ⊆ ValD(V) a set of valuations of V over D.
Moreover, suppose that, for all Skolem dependence functions θ ∈ SDFD(℘), there is a valuation
v ∈ ValD([[℘]]) such that θ(v) ∈ P. Then, there exists a Skolem dependence function θ ∈ SDFD(℘)
such that, for all valuations v ∈ ValD([[℘]]), it holds that θ(v) ∈ P.

PROOF. The proof easily proceeds by induction on the length of the prefix ℘. As base case, when
|℘| = 0, we have that SDFD(℘) = SDFD(℘) = {∅}, i.e., the only possible Skolem dependence
functions is the empty function, which means that the statement is vacuously verified. As inductive
case, we have to distinguish between two cases, as follows.

— ℘ = 〈〈x〉〉 · ℘′.
As first thing, note that [[℘]] = [[℘′]] and, for all elements e ∈ D, consider the projection Pe ,
{v′ ∈ ValD(V(℘′)) : v′[x 7→ e] ∈ P} of P on the variable x with value e.

Then, by hypothesis, we can derive that, for all e ∈ D and θ′ ∈ SDFD(℘′), there exists v′ ∈
ValD([[℘′]]) such that θ′(v′) ∈ Pe. Indeed, let e ∈ D and θ′ ∈ SDFD(℘′), and build the function
θ : ValD([[℘]])→ ValD(V) given by θ(v′) , θ′(v′)[x 7→ e], for all v′ ∈ ValD([[℘]]) = ValD([[℘′]]).
It is immediate to see that θ ∈ SDFD(℘). So, by the hypothesis, there is v′ ∈ ValD([[℘]]) such that
θ(v′) ∈ P, which implies θ′(v′)[x 7→ e] ∈ P, and so, θ′(v′) ∈ Pe.

Now, by the inductive hypothesis, for all elements e ∈ D, there exists θ′e ∈ SDFD(℘′) such
that, for all v′ ∈ ValD([[℘′ ]]), it holds that θ′e(v′) ∈ Pe, i.e., θ′e(v′)[x 7→ e] ∈ P.

At this point, consider the function θ : ValD([[℘]]) → ValD(V) given by θ(v) ,
θ′v(x)(v�[[℘′ ]])[x 7→ v(x)], for all v ∈ ValD([[℘]]). Then, it is possible to verify that θ ∈ SDFD(℘).
Indeed, for each y ∈ [[℘]] and v ∈ ValD([[℘]]), we have that θ(v)(y) = θ′v(x)(v�[[℘′ ]])[x 7→
v(x)](y). Now, if y = x then θ(v)(y) = v(y). Otherwise, since θ′v(x) is a Skolem dependence
function, it holds that θ(v)(y) = θ′v(x)(v�[[℘′ ]])(y) = v�[[℘′ ]](y) = v(y). So, Item 1 of Def-
inition 4.4 of Skolem dependence functions is verified. It only remains to prove Item 2. Let
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y ∈ 〈〈℘〉〉 and v1 , v2 ∈ ValD([[℘]]), with v1�Dep(℘,y) = v2�Dep(℘,y). It is immediate to see that
x ∈ Dep(℘, y), so, v1(x) = v2(x), which implies that θ′v1 (x) = θ′v2 (x). At this point, again
for the fact that θ′v(x) is a Skolem dependence function, for each v ∈ ValD([[℘]]), we have that
θ′v1 (x)(v1�[[℘′ ]])(y) = θ′v2 (x)(v2�[[℘′ ]])(y). Thus, it holds that θ(v1)(y) = θ′v1 (x)(v1�[[℘′ ]])[x 7→
v1(x)](y) = θ′v2 (x)(v2�[[℘′ ]])[x 7→ v2(x)](y) = θ(v2)(y).

Finally, it is enough to observe that, by construction, θ(v) ∈ P, for all v ∈ ValD([[℘]]), since
θ′v(x)(v�[[℘′ ]]) ∈ Pv(x). Thus, the thesis holds for this case.

— ℘ = [[x]] · ℘′.
We first show that there exists e ∈ D such that, for all θ′ ∈ SDFD(℘′), there is v′ ∈ ValD([[℘′]])
for which θ′(v′) ∈ Pe holds, where the set Pe is defined as above.

To do this, suppose by contradiction that, for all e ∈ D, there is a θ′e ∈ SDFD(℘′) such that,
for all v′ ∈ ValD([[℘′]]), it holds that θ′e(v

′) 6∈ Pe. Also, consider the function θ : ValD([[℘]]) →
ValD(V) given by θ(v) , θ′v(x)(v�[[℘′]])[x 7→ v(x)], for all v ∈ ValD([[℘]]). Then, is possible
to verify that θ ∈ SDFD(℘). Indeed, for each y ∈ [[℘]] and v ∈ ValD([[℘]]), we have that
θ(v)(y) = θ′v(x)(v�[[℘′]])[x 7→ v(x)](y). Now, if y = x then θ(v)(y) = v(y). Otherwise, since θ′v(x)

is a Skolem dependence function, it holds that θ(v)(y) = θ′v(x)(v�[[℘′]])(y) = v�[[℘′]](y) = v(y).
So, Item 1 of Definition 4.4 of Skolem dependence functions is verified. It only remains to prove
Item 2. Let y ∈ 〈〈℘〉〉 and v1, v2 ∈ ValD([[℘]]), with v1�Dep(℘,y) = v2�Dep(℘,y). It is immediate
to see that x ∈ Dep(℘, y), so, v1(x) = v2(x), which implies that θ′v1(x) = θ′v2(x). At this point,
again for the fact that θ′v(x) is a Skolem dependence function, for each v ∈ ValD([[℘]]), we have
that θ′v1(x)(v1�[[℘′]])(y) = θ′v2(x)(v2�[[℘′]])(y). Thus, it holds that θ(v1)(y) = θ′v1(x)(v1�[[℘′]])[x 7→
v1(x)](y) = θ′v2(x)(v2�[[℘′]])[x 7→ v2(x)](y) = θ(v2)(y). Now, by the contradiction hypothesis,
we have that θ(v) 6∈ P, for all v ∈ Val([[℘]]), since θ′v(x)(v�[[℘′]]) 6∈ Pv(x), which is in evident
contradiction with the hypothesis.

At this point, by the inductive hypothesis, there exists θ′ ∈ SDFD(℘′) such that, for all
v′ ∈ ValD([[℘′ ]]), it holds that θ′(v′) ∈ Pe, i.e., θ′(v′)[x 7→ e] ∈ P.

Finally, build the function θ : ValD([[℘]]) → ValD(V) given by θ(v) , θ′(v)[x 7→ e], for
all v ∈ ValD([[℘]]) = ValD([[℘′ ]]). It is immediate to see that θ ∈ SDFD(℘). Moreover, for all
valuations v ∈ ValD([[℘]]), it holds that θ(v) ∈ P. Thus, the thesis holds for this case too.

Hence, we have done with the proof of the lemma.

At this point, we are able to give the proofs of Lemma 4.8 of adjoint Skolem dependence functions,
Lemma 4.17 of dependence-vs-valuation duality, and Lemma 4.19 of encasement characterization.

LEMMA B.3 (ADJOINT SKOLEM DEPENDENCE FUNCTIONS). Let ℘ ∈ Qnt(V) be a quantifi-
cation prefix over a set of variables V ⊆ Var, D and T two generic sets, and θ : ValT→D([[℘]])→
ValT→D(V) and θ̃ : T → (ValD([[℘]]) → ValD(V)) two functions such that θ̃ is the adjoint of θ.
Then, θ ∈ SDFT→D(℘) iff, for all t ∈ T, it holds that θ̃(t) ∈ SDFD(℘).

PROOF. To prove the statement, it is enough to show, separately, that Items 1 and 2 of Defini-
tion 4.4 of Skolem dependence functions hold for θ if the θ̃(t) satisfies the same items, for all t ∈ T,
and vice versa.

[Item 1, if]. Assume that θ̃(t) satisfies Item 1, for each t ∈ T, i.e., θ̃(t)(v)�[[℘]] = v, for all
v ∈ ValD([[℘]]). Then, we have that θ̃(t)(ĝ(t)) = ĝ(t), so, θ̃(t)(ĝ(t))(x) = ĝ(t)(x), for all
g ∈ ValT→D([[℘]]) and x ∈ [[℘]]. By hypothesis, we have that θ(g)(x)(t) = θ̃(t)(ĝ(t))(x), thus
θ(g)(x)(t) = ĝ(t)(x) = g(x)(t), which means that θ(g)�[[℘]] = g, for all g ∈ ValT→D([[℘]]).
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[Item 1, only if]. Assume now that θ satisfies Item 1, i.e., θ(g)�[[℘]] = g, for all g ∈ ValT→D([[℘]]).
Then, we have that θ(g)(x)(t) = g(x)(t), for all x ∈ [[℘]] and t ∈ T. By hypothesis, we have
that θ̃(t)(ĝ(t))(x) = θ(g)(x)(t), so, θ̃(t)(ĝ(t))(x) = g(x)(t) = ĝ(t)(x), which means that
θ̃(t)(ĝ(t))�[[℘]] = ĝ(t). Now, since for each v ∈ ValD([[℘]]), there is an g ∈ ValT→D([[℘]]) such that
ĝ(t) = v, we obtain that θ̃(t)(v)�[[℘]] = v, for all v ∈ ValD([[℘]]) and t ∈ T.

[Item 2, if]. Assume that θ̃(t) satisfies Item 2, for each t ∈ T, i.e., θ̃(t)(v1)(x) = θ̃(t)(v2)(x),
for all v1, v2 ∈ ValD([[℘]]) and x ∈ 〈〈℘〉〉 such that v1�Dep(℘,x) = v2�Dep(℘,x). Then, we have
that θ̃(t)(ĝ1(t))(x) = θ̃(t)(ĝ2(t))(x), for all g1, g2 ∈ ValT→D([[℘]]) such that g1�Dep(℘,x) =

g2�Dep(℘,x). By hypothesis, we have that θ(g1)(x)(t) = θ̃(t)(ĝ1(t))(x) and θ̃(t)(ĝ2(t))(x) =

θ(g2)(x)(t), thus θ(g1)(x)(t) = θ(g2)(x)(t). Hence, θ(g1)(x) = θ(g2)(x), for all g1, g2 ∈
ValT→D([[℘]]) and x ∈ 〈〈℘〉〉 such that g1�Dep(℘,x) = g2�Dep(℘,x).

[Item 2, only if]. Assume that θ satisfies Item 2, i.e., θ(g1)(x) = θ(g2)(x), for all g1, g2 ∈
ValT→D([[℘]]) and x ∈ 〈〈℘〉〉 such that g1�Dep(℘,x) = g2�Dep(℘,x). Then, we have that θ(g1)(x)(t) =

θ(g2)(x)(t), for all t ∈ T. By hypothesis, we have that θ̃(t)(ĝ1(t))(x) = θ(g1)(x)(t) and
θ(g2)(x)(t) = θ̃(t)(ĝ2(t))(x), hence θ̃(t)(ĝ1(t))(x) = θ̃(t)(ĝ2(t))(x). Now, since for each v1, v2 ∈
ValD([[℘]]), with v1�Dep(℘,x) = v2�Dep(℘,x), there are g1, g2 ∈ ValT→D([[℘]]) such that ĝ1(t) = v1

and ĝ2(t) = v2, with g1�Dep(℘,x) = g2�Dep(℘,x), we obtain that θ̃(t)(v1)(x) = θ̃(t)(v2)(x), for all
v1, v2 ∈ ValD([[℘]]) and x ∈ 〈〈℘〉〉 such that v1�Dep(℘,x) = v2�Dep(℘,x).

LEMMA B.4 (DEPENDENCE-VS-VALUATION DUALITY). Let G be a CGS, s ∈ St one of its
states, P ⊆ Pth(s) a set of paths, ℘ ∈ Qnt(V) a quantification prefix over a set of variables
V ⊆ Var, and [ ∈ Bnd(V) a binding. Then, player even wins the TPG H(G, s,P, ℘, [) iff player odd
wins the dual TPG H(G, s,Pth(s) \ P, ℘, [).

PROOF. Let A and A be, respectively, the two TPAs A(G, s, ℘, [) and A(G, s, ℘, [). It is easy
to observe that PoseA = PoseA = Trk(s). Moreover, it holds that PosoA = {ρ · (lst(ρ), θ) :

ρ ∈ Trk(s) ∧ θ ∈ SDFAc(℘)} and PosoA = {ρ · (lst(ρ), θ) : ρ ∈ Trk(s) ∧ θ ∈ SDFAc(℘)}. We
now prove, separately, the two directions of the statement.

[Only if]. Suppose that player even wins the TPG H(G, s,P, ℘, [). Then, there exists an even
scheme se ∈ ScheA such that, for all odd schemes so ∈ SchoA, it holds that mtcA(se, so) ∈ P. Now,
to prove that odd wins the dual TPG H(G, s,Pth(s) \ P, ℘, [), we have to show that there exists an
odd scheme so ∈ SchoA such that, for all even schemes se ∈ ScheA , it holds that mtcA(se , so) ∈ P.

To do this, let us first consider a function z : SDFAc(℘) × SDFAc(℘) → ValAc(V) such that
z(θ, θ) = θ(z(θ, θ)�[[℘]]) = θ(z(θ, θ)�[[℘]]), for all θ ∈ SDFAc(℘) and θ ∈ SDFAc(℘). The existence
of such a function is ensured by Lemma B.1 on the dependence incidence.

Now, define the odd scheme so ∈ SchoA inA as follows: so(ρ·(lst(ρ), θ)) , τ(lst(ρ), z(θ, θ)◦ζ[),
for all ρ ∈ Trk(s) and θ ∈ SDFAc(℘), where θ ∈ SDFAc(℘) is such that se(ρ) = (lst(ρ), θ).
Moreover, let se ∈ ScheA be a generic even scheme in A and consider the derived odd scheme
so ∈ SchoA in A defined as follows: so(ρ · (lst(ρ), θ)) , τ(lst(ρ), z(θ, θ) ◦ ζ[), for all ρ ∈ Trk(s)
and θ ∈ SDFAc(℘), where θ ∈ SDFAc(℘) is such that se(ρ) = (lst(ρ), θ).

At this point, it remains only to prove that $ = $ , where $ , mtcA(se, so) and $ ,
mtcA(se , so). To do this, we proceed by induction on the prefixes of the matches, i.e., we show that
($)≤i = ($)≤i, for all i ∈ N. The base case is immediate by definition of match, since we have that
($)≤0 = s = ($)≤0. Now, as inductive case, suppose that ($)≤i = ($)≤i, for i ∈ N. By the defini-
tion of match, we have that ($)i+1 = so(($)≤i · se(($)≤i)) and ($)i+1 = so(($)≤i · se(($)≤i)).
Moreover, by the inductive hypothesis, it follows that so(($)≤i ·se(($)≤i)) = so(($)≤i ·se(($)≤i)).
At this point, let θ ∈ SDFAc(℘) and θ ∈ SDFAc(℘) be two quantification Skolem dependence
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functions such that se(($)≤i) = (($)i, θ) and se(($)≤i) = (($)i, θ). Consequently, by substi-
tuting the values of the even schemes se and se , it holds that ($)i+1 = so(($)≤i · (($)i, θ)) and
($)i+1 = so(($)≤i · (($)i, θ)). Furthermore, by the definition of the odd schemes so and so , it
follows that so(($)≤i · (($)i, θ)) = τ(($)i, z(θ, θ) ◦ ζ[) = so(($)≤i · (($)i, θ)). Thus, we have
that ($)i+1 = ($)i+1, which implies ($)≤i+1 = ($)≤i+1.

[If]. Suppose that player odd wins the dual TPG H(G, s,Pth(s) \ P, ℘, [). Then, there exists an
odd scheme so ∈ SchoA such that, for all even schemes se ∈ ScheA , it holds that mtcA(se , so) ∈ P.
Now, to prove that even wins the TPG H(G, s,P, ℘, [), we have to show that there exists an even
scheme se ∈ ScheA such that, for all odd schemes so ∈ SchoA, it holds that mtcA(se, so) ∈ P.

To do this, let us first consider the two functions g : Trk(s) → 2ValAc(V) and h : Trk(s) → 2St

such that g(ρ) , {θ(v) : θ ∈ SDFAc(℘)∧v ∈ ValAc([[℘]])∧so(ρ·(lst(ρ), θ)) = τ(lst(ρ), θ(v)◦ζ[)}
and h(ρ) , {so(ρ · (lst(ρ), θ)) : θ ∈ SDFAc(℘)}, for all ρ ∈ Trk(s). Now, it is easy to see that, for
each ρ ∈ Trk(s) and θ ∈ SDFAc(℘), there is v ∈ ValAc([[℘]]) such that θ(v) ∈ g(ρ). Consequently,
by Lemma B.2 on dependence dualization, for all ρ ∈ Trk(s), there is θρ ∈ SDFAc(℘) such that,
for each v ∈ ValAc([[℘]]), it holds that θρ(v) ∈ g(ρ), and so, τ(lst(ρ), θρ(v) ◦ ζ[) ∈ h(ρ).

Now, define the even scheme se ∈ ScheA in A as follows: se(ρ) , (lst(ρ), θρ), for all ρ ∈ Trk(s).
Moreover, let so ∈ ScheA be a generic odd scheme in A and consider the derived even scheme
se ∈ ScheA inA defined as follows: se(ρ) , (lst(ρ), θρ), for all ρ ∈ Trk(s), where θρ ∈ SDFAc(℘)

is such that so(ρ · (lst(ρ), θρ)) = so(ρ · (lst(ρ), θρ)). The existence of such a Skolem dependence
function is ensure by the previous membership of the successor of lst(ρ) in h(ρ).

At this point, it remains only to prove that $ = $ , where $ , mtcA(se, so) and $ ,
mtcA(se , so). To do this, we proceed by induction on the prefixes of the matches, i.e., we show
that ($)≤i = ($)≤i, for all i ∈ N. The base case is immediate by definition of match, since
we have that ($)≤0 = s = ($)≤0. Now, as inductive case, suppose that ($)≤i = ($)≤i,
for i ∈ N. By the definition of match, we have that ($)i+1 = so(($)≤i · se(($)≤i)) and
($)i+1 = so(($)≤i · se(($)≤i)). Moreover, by the inductive hypothesis, it follows that so(($)≤i ·
se(($)≤i)) = so(($)≤i · se(($)≤i)). Now, by substituting the values of the even schemes se and se ,
we have that ($)i+1 = so(($)≤i · (($)i, θ($)≤i)) and ($)i+1 = so(($)≤i · (($)i, θ$≤i)).
At this point, due to the choice of the Skolem dependence function θ($)≤i , it holds that
so(($)≤i · (($)i, θ($)≤i)) = so(($)≤i · (($)i, θ($)≤i)). Thus, we have that ($)i+1 = ($)i+1,
which implies ($)≤i+1 = ($)≤i+1.

LEMMA B.5 (ENCASEMENT CHARACTERIZATION). Let G be a CGS, s ∈ St one of its states,
P ⊆ Pth(s) a set of paths, ℘ ∈ Qnt(V) a quantification prefix over a set of variables V ⊆ Var, and
[ ∈ Bnd(V) a binding. Then, the following hold:

(i) player even winsH(G, s,P, ℘, [) iff P is an encasement w.r.t. ℘ and [;
(ii) if player odd winsH(G, s,P, ℘, [) then P is not an encasement w.r.t. ℘ and [;

(iii) if P is a Borelian set and it is not an encasement w.r.t. ℘ and [ then player odd wins
H(G, s,P, ℘, [).

PROOF. [Item i, only if]. Suppose that player even wins the TPG H(G, s,P, ℘, [). Then, there
exists an even scheme se ∈ Sche such that, for all odd schemes so ∈ Scho, it holds that mtc(se, so) ∈
P. Now, to prove the statement, we have to show that there exists a behavioral Skolem dependence
function θ ∈ BSDFStr(s)(℘) such that, for all assignments χ ∈ Asg([[℘]], s), it holds that play(θ(χ)◦
ζ[, s) ∈ P.

To do this, consider the function w : Trk(s)→ SDFAc(℘) constituting the projection of se on the
second component of its codomain, i.e., for all ρ ∈ Trk(s), it holds that se(ρ) = (lst(ρ),w(ρ)). By
Lemma 4.8 on adjoint Skolem dependence functions, there exists a behavioral Skolem dependence
function θ ∈ BSDFStr(s)(℘) for which w is the adjoint, i.e., w = θ̃. Moreover, let χ ∈ Asg([[℘]], s)
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be a generic assignment and consider the derived odd scheme so ∈ Scho defined ad follows:
so(ρ · (lst(ρ), θ′)) = τ(lst(ρ), θ′(χ̂(ρ)) ◦ ζ[), for all ρ ∈ Trk(s) and θ′ ∈ SDFAc(℘).

At this point, it remains only to prove that π = $, where π , play(θ(χ) ◦ ζ[, s) and $ ,
mtc(se, so). To do this, we proceed by induction on the prefixes of both the play and the match, i.e., we
show that (π)≤i = ($)≤i, for all i ∈ N. The base case is immediate by definition, since we have that
(π)≤0 = s = ($)≤0. Now, as inductive case, suppose that (π)≤i = ($)≤i, for i ∈ N. On one hand,
by the definition of match, we have that ($)i+1 = so(($)≤i ·se(($)≤i)), from which, by substituting
the value of the even scheme se, we derive ($)i+1 = so(($)≤i · (($)i, θ̃(($)≤i))). On the other
hand, by the definition of play, we have that (π)i+1 = τ((π)i, θ̃((π)≤i)(χ̂((π)≤i))◦ζ[), from which,
by using the definition of the odd scheme so, we derive (π)i+1 = so((π)≤i · ((π)i, θ̃((π)≤i))). Then,
by the inductive hypothesis, we have that ($)i+1 = so(($)≤i · (($)i, θ̃(($)≤i))) = so((π)≤i ·
((π)i, θ̃((π)≤i))) = (π)i+1, which implies ($)≤i+1 = (π)≤i+1.

[Item i, if]. Suppose that P is an encasement w.r.t. ℘ and [. Then, there exists a behavioral Skolem
dependence function θ ∈ BSDFStr(s)(℘) such that, for all assignments χ ∈ Asg([[℘]], s), it holds
that play(θ(χ) ◦ ζ[, s) ∈ P. Now, to prove the statement, we have to show that there exists an even
scheme se ∈ Sche such that, for all odd schemes so ∈ Scho, it holds that mtc(se, so) ∈ P.

To do this, consider the even scheme se ∈ Sche defined as follows: se(ρ),(lst(ρ), θ̃(ρ)), for all
ρ ∈ Trk(s). Observe that, by Lemma 4.8 on adjoint Skolem dependence functions, the definition is
well-formed. Moreover, let so ∈ Scho be a generic odd scheme and consider a derived assignment χ ∈
Asg([[℘]], s) satisfying the following property: χ̂(ρ) ∈ {v ∈ ValAc([[℘]]) : so(ρ · (lst(ρ), θ̃(ρ))) =

τ(lst(ρ), θ̃(v) ◦ ζ[)}, for all ρ ∈ Trk(s).
At this point, it remains only to prove that π = $, where π , play(θ(χ) ◦ ζ[, s) and $ ,

mtc(se, so). To do this, we proceed by induction on the prefixes of both the play and the match, i.e.,
we show that (π)≤i = ($)≤i, for all i ∈ N. The base case is immediate by definition, since we
have that (π)≤0 = s = ($)≤0. Now, as inductive case, suppose that (π)≤i = ($)≤i, for i ∈ N. On
one hand, by the definition of match, we have that ($)i+1 = so(($)≤i · se(($)≤i)), from which,
by the definition of the even scheme se, we derive ($)i+1 = so(($)≤i · (($)i, θ̃(($)≤i))). On the
other hand, by the definition of play, we have that (π)i+1 = τ((π)i, θ̃((π)≤i)(χ̂((π)≤i)) ◦ ζ[), from
which, by the choice of the assignment χ, we derive (π)i+1 = so((π)≤i · ((π)i, θ̃((π)≤i))). Then,
by the inductive hypothesis, we have that ($)i+1 = so(($)≤i · (($)i, θ̃(($)≤i))) = so((π)≤i ·
((π)i, θ̃((π)≤i))) = (π)i+1, which implies ($)≤i+1 = (π)≤i+1.

[Item ii]. If player odd wins the TPG H(G, s,P, ℘, [), we have that player even does not win the
same game. Consequently, by Item i, it holds that P is not an encasement w.r.t. ℘ and [.

[Item iii]. If P is not an encasement w.r.t. ℘ and [, by Item i, we have that player even does not
win the TPG H(G, s,P, ℘, [). Now, since P is Borelian, by the determinacy theorem [Martin 1975;
1985], it holds that player odd wins the same game.
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