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Abstract. This work focuses on investigating parking problems with
time constraints using a game-theoretic approach, specifically in a multi-
gate scenario. The cars are treated as agents in a multi-player game where
they compete for parking spots at entry gates that have no limit. We pro-
pose a priority-based algorithm for allocating parking spaces to address
the problem. This algorithm guarantees a Nash equilibrium solution in
quadratic time, which depends on the number of cars rather than on
the number of gates. Additionally, we compare the performance of the
proposed algorithm to a Greedy allocation method. The experimental
results indicate the effectiveness of the proposed algorithm. Overall, the
study highlights the potential of game-theoretic approaches for solving
parking problems.
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1 Introduction

The parking process is one of the serious social problems that daily involves
our cities, where the demand for parking spaces often exceeds the available sup-
ply [14]. In this process, drivers compete against each other in order to get a
parking slot, and parking problems in cities and urban areas are becoming in-
creasingly important and have been one of the most discussed topics by both
the general public and professionals. The difference between parking supply and
demand has been considered the main reason for metropolis parking problems,
and lacking it shows close relation with traffic congestion, traffic accidents, and
environmental pollution. Although an efficient parking system can improve ur-
ban transportation, the city environment, and the quality of life for citizens, the
problem is often overlooked in urban planning and transportation.

There are many causes for the deficit of available parking slots w.r.t. the
demand, including the high activity concentration with a high rate of cars in
the same area (such as commercial, medical, and governmental buildings) or
miscalculation of parking demand expected. Conventionally, in urban planning,
parking problems are solved with solutions based on different ideas, such as
planning solutions, in which the number of parking spaces is calculated by urban
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planners, or managed parks shared by buildings. Therefore, with the growth
of Artificial Intelligence applications to automotive and the increased request
for smart solutions to park, this problem is the inspiration for this work. In
particular, we investigate the multi-gate parking problem with time constraints
using a game-theoretic approach.

Related work The literature on smart parking solutions is extensive and varied.
In [20], we provide a large survey on smart parking modeling, solutions, and
technologies as well as identify challenges and open issues. Algorithmic solutions
have been also proposed in the VANET research field, see for example [5–8, 30–
33]. Less common is the use of game-theoretic approaches to address the parking
problem. An exception is [18], which is probably the closest to us, indeed we also
propose a parking solution based on the Nash equilibrium. However, differently
from us, they provide a numerical solution (rather than an algorithm or a tool),
and, more importantly, they consider a scenario with both private and public
parking slots, and the drivers’ payoffs strongly rely on such a topology. Smart
parking mechanisms based on a multi-agent game setting have been also pro-
posed in the literature. In [22], drivers’ behavior is simulated by modeling the
environment on the basis of cellular automata. In [9] the model is based on the
interaction between the user (driver) and the administrator, but focusing more
on the architecture rather than the model setting and the strategic reasoning.
Similarly, [15] provides an E-parking system, based on multi-agent systems aimed
to optimize several users’ preferences. In [28], the authors manage the parking
problem with a cooperative multi-agent system, by relying on a priority mecha-
nism. In [29], the authors also focus on an equilibrium notion, but they study the
Rosenthal equilibrium rather than the Nash one, which describes a probabilistic
choice model. Finally, [21] also considers the concept of Nash equilibrium applied
to cars, but it is used to talk about traffic rather than parking.

Also related to our research are the problems of multi-agent resource allo-
cation, which is a central matter when considering the distribution of resources
amongst agents that can influence the choice of allocation [13]. In particular, the
sequential allocation mechanism is a solution widely studied in the literature
[3, 4, 10, 16, 17, 19] and has been considered in several real-life applications (for
instance, to organize draft systems [11] and to allocate courses to students [12]).
In this work, we propose a solution for the multi-gate parking problem based on
the sequential allocation mechanism. We take advantage of the particularities of
the setting (e.g. the time constraints and the agents’ priorities) to provide an
algorithm that finds a Nash equilibrium on quadratic time.

In [26], the parking problem is analyzed as a competitive multiplayer game,
where each car is an interacting agent with the goal of finding an available slot
that meets its own constraints, the goal of the parking problem is to park as many
cars as possible while satisfying their requirements, such as parking in bounded
time, respecting one’s resilience, and obtains a Nash Equilibrium for the game.
But this work studies a scenario with one gate and proposes a solution for this
case, not considering that parking areas (e.g., for hospitals, offices, and malls)
have more gates than one. Thus, the multi-gate setting has not been considered.
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Our work is also related to the literature on multi-agent resource allocation
and sequential mechanisms. Allocation problems are a central matter in MAS
in which resources need to be distributed amongst several agents, who may also
influence the choice of allocation [13].

Our contribution This study builds upon the work [26], by extending it to
the multi-gate scenario. We employ a game-theoretic approach to model the
multi-agent parking problem, which enables the analysis of strategic solutions,
as demonstrated through the identification of Nash equilibrium. We then pro-
pose an algorithm based on agent resilience that can identify a Nash Equilibrium
for parking slot allocation in quadratic time, which depends only on the number
of cars and not on the number of gates. The performance of the algorithm is
compared to a Greedy solution, and the results show that the Nash algorithm
satisfies a higher number of parking requests and leads to higher social welfare,
indicating greater agent satisfaction. Specifically, the Nash-based algorithm out-
performs the Greedy solution when the number of cars is equal to the number
of parking slots (in this study, 20000). Therefore, we conclude that the proposed
algorithm is preferable for accommodating agents’ demands.

Outline We start by formally introducing the parking problem in Section 2. In
Section 3, we propose an algorithm for prioritized multi-agent parking selection
and analyze it in terms of complexity and a game theoretic solution concept. In
Section 4 we present experimental results. Section 5 concludes the paper.

2 Parking problem

We begin this section by presenting the Parking Game Structure model, PGS
for short, which forms the foundation for defining and examining our suggested
method to solve the parking issue. Formally the Parking Game Structure is
defined as follows:

Definition 1. The Parking Game Structure (PGS) is a tuple G = (G,Agt, S, F,
T,R), where:

– G = {g1, g2, ..., gn} is set of gates;
– Agt = {Agtk}k∈G, where Agtk = {a1, a2, ..., alk} be the set of agents at the

gate k ∈ G (i.e., the cars waiting for parking at k), with
⋂n

i=1 Ai = ∅. We
let lk = |Agtk| be the number of cars at the gate k; lk = |Agtk| be the number
of cars at the gate k;

– S = {s1, s2, ..., sm} is the set of parking slots;
– F = {Fk}k∈G, where Fk = (f1, f2, ..., flk) is the list of resilience values for

the agents in Agtk, with fi ∈ [0, 1] for each i ∈ Agtk;
– T = {Tk}k∈G, where Tk = (t1, t2, ..., tlk) is the list of time limits for the

agents in Agtk, where ti ∈ N represents the time the agent i has available
for parking starting from gate gk;



4 Noviello et al

– R = {Rk}k∈G, where Rk = (r1, r2, ..., rm) is the list of reaching-times for
the gate k, where ri ∈ N represents the time needed to reach the parking slot
i from gate gk, for each i ∈ S.

The resilience values for the agents have a twofold usage: first, they create
an ordering system among the agents, which is essential in determining their
prioritization; second, these indexes significantly impact the final preemption
order, which can have a significant effect on the overall outcome. The intuition
is that the higher the resilience the less the priority for the agent.

For the purpose of simplicity, we make the assumption that all the resilience
indexes are unique, meaning fi ̸= fj ,∀1 ≤ i < j ≤ n. The indexes in the set F
can either be manually set or automatically determined. In the case of agents,
the resilience index represents their capability. Therefore, a lower index value
indicates a higher priority.

A strategy for an agent involves choosing an appropriate slot. A strategy
profile is a set of n strategies, one for each player, represented as an n-tuple
s̄ = (s̄1, ..., s̄n). It is important to note that it is possible for multiple players to
choose the same strategy. Next, the costs associated with the strategy profile s̄
will be defined as a tuple of costs, denoted as c̄ = (c̄1, ..., c̄n). We let B > 0 be a
constant value denoting the highest cost any agent may have for parking.

Definition 2. Let ai ∈ Agt be an agent and s̄ = (s̄1, ..., s̄n) be a strategy profile.
The cost c̄ = (c̄1, ..., c̄n) is such that:

c̄i(s̄) =


fi(ti − ri); if (i)(ti − ri) ≥ 0 &

(ii)(∄k ̸= i : fk < fi ∧ sk = si ∧ (tk − rk) ≥ 0)

B, otherwise

The cost value ci is considered finite if agent ai has sufficient time to reach
the parking slot si and the slot has not been occupied by another agent ak with
lower resilience (fk < fi). In this case, the finite value of ci reflects the amount
of time remaining for the agent after reaching the assigned slot, relative to the
total amount of time available to him. On the other hand, if the cost value is
assigned as highest, B, it represents the worst outcome for agent ai, meaning
that they were unable to park at slot si. The utility of agent i for the strategy
profile s̄ is

ui(s̄) = B − s̄

That is, ui(s̄) is the difference between the highest cost B and her actual
cost ci given the strategies s̄. Finally, the social welfare is the sum of utilities of
among all agents in the system.

A strategy profile s is a Nash Equilibrium [27] if for all players i and each
alternate strategy s′i, we have that

ui(si, s−i) ≥ ui(s
′
i, s−i)

In other words, no player i can change his chosen strategy from si to s′i and
thereby improve his utility, assuming that all other players stick the strategies



3. NASH-BASED PARKING SELECTION 5

they have chosen in s. Observe that such a solution is self-enforcing in the sense
that once the players are playing such a solution, it is in every player’s best
interest to stick to his or her strategy.

Then, the total cost, denoted as π, of a strategy s̄ is defined as the sum of
all the cost values in the tuple c̄, that is π(s̄) =

∑
i ci. The i-th cost value in the

tuple is represented as πi.

Example 1. Let us now consider an example to illustrate the concepts and then
formally introduce the PGS. In Figure 1, we consider a parking lot with 9 avail-
able slots, placed at various places in the park, and 9 cars looking to park, where
ti indicate agent i’s available time to park, fi indicates her resilience, and the
values on slots indicate the reaching-time. For simplicity of the example, we
assume all slots have the same reaching time from all gates.

Fig. 1: Parking game with 3 gates, 9 cars waiting to park, and 9 available slots

3 Nash-based parking selection

We now describe the proposed algorithm for the parking slot selection game.
Algorithm 1, called nash, first creates an ordered list of cars by iterating on each
gate, appending in a local list priorityQueue the highest priority car of each gate.
Then, it calls the assign algorithm, Algorithm 2, to be used on this ordered list.

This works by selecting the highest priority car, the first in the list, setting
the outcome as B and, for each available slot evaluating the payoff with c(·),
which evaluates cost according to Definition 2.



6 Noviello et al

If the slot assignment must meet the cars’ time restriction, the outcome value
is updated and set as the best-computed cost, and the slot with the best result is
assigned to the car. Once assigned, the slot is removed from the set of available
ones.

Algorithm 1 nash(carsQueue, availableSlots)

Input: a vector of lists of cars carsQueue, a list of slots availableSlots
Output: a list of strategies (the strategic profile) strategy

1: repeat
2: prirorityQueue← ∅
3: for i← 1 to |carsQueue| do
4: if carsQueue[i] ̸= ∅ then
5: car ← priorityCar(carsQueue[i])
6: priorityQueue← append(prirorityQueue, car)
7: carsQueue[i]← remove(carsQueue[i], car)
8: end if
9: end for

10: until max(carsQueue) = 0
11: return assign(priorityQueue, availableSlots)

In the algorithms,max(v) is a function that returns max1≤i≤|v|(|v[i]|), that is,
the maximum size among the elements of the vector v. The function append(a, b)
(similarly remove(a, b)) returns the list a augmented with the element b (resp.
obtained by removing b). get(a, i) returns the i-th element of a list a.

Example 2. Let us recall the example introduced in Section 1. The cars would
have been associated with the slots by the Greedy algorithm as demonstrated
in Figure 3, resulting in parking for only 7 out of 9 cars. However as shown in
Figure 3, parking for all cars in the queue is provided by the proposed algorithm.

In this example we see that the Nash equilibrium-based algorithm performed
better in terms of social welfare, despite taking slightly longer to execute. Addi-
tionally, the Nash equilibrium-based algorithm was able to park the same number
of cars as the greedy algorithm, mitigating any potential disadvantages of the
longer computation time.

3.1 Algorithm Analysis

First, we show that Algorithm 1 always finds a strategy profile that is Nash
equilibrium.

Theorem 1. Algorithm 1 computes the Nash equilibrium for the game.

Proof. Assume by contradiction that s̄ = (s̄1, .., s̄n) is the solution provided
from our algorithm and it is not a Nash equilibrium. Next, for the definition of
Nash equilibrium, there must be an agent, say agent ai, whose strategy sj is not
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Algorithm 2 assign(carQueue, availableSlots)

Input: a vector of ready cars carQueue, a list of slots availableSlots
Output: a list of strategies (the strategic profile) strategy

1: strategy ← ∅
2: while carQueue ̸= ∅ and availableSlots¬∅ do
3: actualCar ← get(carQueue, 1)
4: outcome← B
5: tmpSlot← get(availableSlots, 1)
6: for i← 1 to |availableSlots| do
7: slot← get(availableSlots, i)
8: po← c(actualCar, slot)
9: if po ≥ 0 and po < outcome then

10: outcome← po.
11: tmpSlot← slot
12: end if
13: strategy ← append(strategy, assignSlot(actualCar, tmpSlot))
14: availableSlots← remove(availableSlots, tmpSlot).
15: carQueue← remove(carQueue, actualCar)
16: end for
17: end while
18: return strategy

optimal, with the strategies of the other players being fixed.
Hence, there exists another strategy s′j for the agent ai, such that the payoff of
s′j is better than the one for sj (given the same strategies for the other players).
But if this exists, then it would be found during execution of the algorithm and
it would be chosen as the final strategy for agent ai. But this contradicts the
hypothesis that s̄ = (s̄1, .., s̄n) is the solution provided, so this strategy is a Nash
Equilibrium.

Now, let us evaluate the complexity of the algorithm.

Theorem 2. The complexity of Algorithm 1 is quadratic with respect to the
number of agents involved in the game, in the worst case.

Proof. Let us take into account the worst possible scenario, by considering the
case in which no vehicle obtains a parking slot. For an arbitrary algorithm A,
we denote as C(A) as its computational complexity. The proof proceeds by
analysing the complexity of the most expensive operations, from the inner ones
to the outer ones.

In nash function, Algorithm 1, the ordering of cars is performed for each gate,
so many times as |G|, on total number of cars, |Agt|. Assuming that |G| = g
and |Agt| = n, we can deduce that C(nash) = O(g) × O(n) + C(assign) =
O(g×n)+C(assign). In assign function, Algorithm 2, the loop for assignment
of slot for each car is repeated many times as |S|×|Agt|. Assuming that |S| = m
and |Agt| = n and that in worst case m and n are of the same order, we can
deduce that C(assign) = O(m)×O(n) = O(n)×O(n) = O(n2).
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Fig. 2: Greedy solution for Example 1 Fig. 3: Nash solution for Example 1

Given that, C(nash) = O(g × n) +C(assign) = O(g × n) +O(n2) = O(n2).
In other words, the algorithm’s performance is proportional to the square of the
input size (cars’ number) and his growth factor will be influenced by the specific
number of gates present but will maintain a quadratic nature.

4 Experimental results

In the experiments, each setting was executed 100 times. The results presented
here are the average between those executions. All experiments have been exe-
cuted on an AMD Ryzen™ 7 5700U with Radeon™ Graphics CPU processor of
1,80 GHz, with 16 Gb RAM capacity.

The algorithm proposed in the previous section was compared with a greedy
selection of parking slots. In the Greedy algorithm, the cars in each gate park
according to their original order in the queue and select the first slot matching
their time requirements. This approach disregards the specific requirements and
constraints of the other parked vehicles. Thus, it may not lead to an optimal
allocation of parking spaces.

The experiments considered 20000 slots, a fixed number of agents, and a
variable number of gates ranging from from 5 to 50 gates, as indicated on the
x-axis of the graphs. In the graphs do not show Nash outperforming Greedy
in terms of parked cars, except for case agents equal to slot, because this is
consistent with previous results, which found that Nash results in either the
same or more parked cars compared to Greedy. However, the Nash algorithm is
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Fig. 4: Time to compute allocation for 1000 cars and 20000 slots

Fig. 5: Number of parked cars from an input of 20000 cars and 20000 slots

shown to park cars in a shorter time interval compared to the Greedy algorithm,
demonstrating that the algorithm is highly efficient. Nonetheless, as the number
of cars increases, so does the required time.

In the following, a comparison of the performance of two methods for solving
GPGs and PSGGs, respectively, is presented. The greedy solution and the algo-
rithm are executed 100 times, with random values for time limits and resilience.
The experiments considered 20000 slots, a fixed number of agents, and a vari-
able number of gates ranging, as indicated on the x-axis of the graphs below. It
should be noted that each graph is labeled to provide the necessary context and
avoid any ambiguity in interpreting the data. The presented results in Figure 4,
indicate that the Nash approach outperforms the Greedy approach in terms of
parking time, and takes hundreds of seconds to execute. Figure 5 presents the
case in which the numbers are the same for cars and slots, we see that Nash algo-
rithm outperforms the Greedy approach in terms of the number of successfully
parked cars and of taken time, as in Figure 6, because Nash takes less than half
a second whereas Greedy takes 0,65-0,70 s. In Figure 7, we can see that both
algorithms park the same number of cars (that is, 20000 cars) in 1,5s on the
average time for Nash and in 2-2,5s for Greedy. However, the Nash algorithm is
shown to park cars in a shorter time interval compared to the Greedy algorithm,
demonstrating that the algorithm is highly efficient.

In the same way as the number of parked cars was scored, we now display
the results for social welfare, for the case where the number of agents and slots
is equal to 20000. In Figure 8, it can be seen that the Nash algorithm obtained
higher social welfare than the Greedy one.

The results demonstrate that when there are one thousand cars intending to
park in twenty thousand slots, the Nash algorithm takes hundreds of seconds to
execute. However, with larger numbers of cars, the Nash algorithm is again better
in terms of the taken time, managing to park more cars in less time, although in
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Fig. 6: Time to compute allocation for 20000 cars and 20000 slots

Fig. 7: Time to compute the allocation for 50000 cars and 20000 slots

seconds or tens. This makes it clear that the Nash algorithm is preferable to the
Greedy algorithm, particularly in situations involving large numbers. Moreover,
the time used in the configurations is proportional only to the total number of
cars, not to the number of slots or gates present. In fact, as the number of gates
varies, the time does not vary significantly.

5 Conclusion

This work presents a game-theoretic approach to formalize the multi-agent park-
ing problem in a multi-gates scenario, allowing for the analysis of strategic so-
lutions using Nash equilibrium. In particular, the proposed approach incorpo-
rates time constraints to represent slots’ accessibility, and takes into account the
agents’ resilience in a competitive parking environment. We propose a multi-
player game model that aims to solve the parking problem, and we develop an
algorithm based on agent resilience and sequential allocation that aims to find
a Nash equilibrium. This algorithm finds a Nash equilibrium for the allocation
of parking slots in quadratic time and outperforms the Greedy solution in terms
of the number of parking requests satisfied and social welfare. Moreover, the
Nash algorithm is particularly effective when the number of cars is equal to the
number of slots, making it preferable for accommodating agent demands, with
performances significantly better. For future research, we aim to explore the use
of formal methods and strategic reasoning to evaluate solutions for the park-
ing problem [1, 2, 34]. Similar approaches have been considered in the context of
synthesis and verification of allocation mechanisms [23–25].
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Fig. 8: Social Welfare obtained by the solution for 20000 cars and 20000 slots
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