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Abstract

In modal logics, graded (world) modalities have been
deeply investigated as a useful framework for generalizing
standard existential and universal modalities in such a way
that they can express statements about a given number of
immediately accessible worlds. These modalities have been
recently investigated with respect to the µ-calculus, which
have provided succinctness, without affecting the satisfia-
bility of the extended logic, i.e., it remains solvable in EXP-
TIME. A natural question that arises is how logics that al-
low reasoning about paths could be affected by considering
graded path modalities. In this paper, we investigate this
question in the case of the branching-time temporal logic
CTL (GCTL, for short). We prove that, although GCTL
is more expressive than CTL, the satisfiability problem for
GCTL remains solvable in EXPTIME. This result is ob-
tained by exploiting an automata-theoretic approach. In
particular, we introduce the class of partitioning alternating
Büchi tree automata and show that the emptiness problem
for them is EXPTIME-COMPLETE. The satisfiability result
turns even more interesting as we show that GCTL is expo-
nentially more succinct than graded µ-calculus.

1 Introduction
Temporal logics are a special kind of modal logics that

provide a formal framework for qualitatively describing and
reasoning about how the truth values of assertions change
over time. First pointed out by Pnueli in 1977 [27], these
logics turn out to be particularly suitable for reasoning about
correctness of concurrent programs [28].

Depending on the view of the underlying nature of time,
two types of temporal logics are mainly considered [20].
In linear-time temporal logics, such as LTL [27], time is
treated as if each moment in time has a unique possible fu-
ture. Conversely, in branching-time temporal logics, such
as CTL [10] and CTL∗ [12], each moment in time may split
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into various possible futures and existential and universal
quantifiers are used to express properties along one or all
the possible futures. In modal logics, such as ALC [29] and
µ-calculus [17], these kinds of quantifiers have been gen-
eralized by means of graded (worlds) modalities [14, 31],
which allow to express properties such as “there exist at
least n accessible worlds satisfying a certain formula” or
“all but n accessible worlds satisfy a certain formula”. For
example, in a multitasking scheduling specification, we can
express properties such as every time a computation is in-
voked, immediately next there are at least two spaces avail-
able for the allocation of two tasks that take care of the com-
putation, without expressing exactly which spaces they are.
This generalization has been proved to be very powerful as
it allows to express system specifications in a very succinct
way. In some cases, the extension makes the logic much
more complex. An example is the guarded fragment of
the first order logic, which becomes undecidable when ex-
tended with a very weak form of counting quantifiers [15].
In some other cases, one can extend a logic with very strong
forms of “counting quantifiers” without increasing the com-
putational complexity of the obtained logic. For example,
this is the case for µALCQ (see [3] for a recent handbook)
and graded µ-calculus [18, 6], for which the decidability
problem is EXPTIME-COMPLETE.

Despite its high expressive power, the µ-calculus is con-
sidered in some sense a low-level logic, making it an “un-
friendly” logic for users, whereas simpler logics, such as
CTL, can naturally express complex properties of compu-
tation trees. Therefore, an interesting and natural ques-
tion that arises is how the extension of CTL with graded
modalities can affect its expressiveness and decidability.
There is a technical challenge involved in such an exten-
sion, which makes this task non-trivial: in the µ-calculus,
and other modal logics studied in the graded context so far,
the existential and universal quantifiers range over the set
of successors, thus it is easy to count the domain and its
elements. In CTL, on the other hand, the underlying ob-
jects are both states and paths. Thus, the concept of graded
must relapse on both of them. We solve this problem by
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introducing graded path modalities that extend to minimal
and conservative paths the generalization induced to suc-
cessor worlds by classical graded modalities, i.e., they allow
to express properties such as “there are at least n minimal
and conservative paths satisfying a formula”, for suitable
and well-formed concepts of minimality and conservative-
ness among paths. We call the introduced logic GCTL, for
short. Note that in this framework, a state can have only
one direct successor but more than one different path going
through it. This must be taken into account while satisfying
a given graded path property. To deal with this difficulty,
we use a combinatorial tool: the partitioning of a natural
number k, that is, we consider all possible decompositions
of k into summands (i.e., 3 = 3 + 0 = 2 + 1 = 1 + 1 + 1).
This is used to distribute k different paths emerging from a
state onto all its direct successors. Note that, while CTL lin-
early translates to µ-calculus, the above complication makes
the translation of GCTL to graded µ-calculus not easy at
all. Indeed, we show such a translation with an exponen-
tial blow-up, by taking into account the above path parti-
tioning. The minimality property allows to decide GCTL
formulas on a restricted but significant space domain, i.e.,
the set of paths of interest, in a very natural way. In more
detail, it is enough to consider only the part of a system be-
havior that is effectively responsible for the satisfiability of
a given formula, whenever each of its extensions satisfies
the formula as well. So, we only take into account a set
of non-comparable paths satisfying the same property us-
ing in practice a particular equivalence relation on the set of
all paths. Moreover, the minimality allows the graded path
modalities to subsume the graded world modalities intro-
duced for the µ-calculus. Indeed, if we drop the minimality,
it makes no sense to discuss the existence of a path in a
structure, where the existence of a non-minimal path satis-
fying a formula may induce also the existence of an infinite
number of paths satisfying it.

With GCTL it is possible to express properties of a num-
ber of (not immediate) successor worlds, in a very succinct
way, without explicitly stating properties of the intermedi-
ate worlds. As an example, consider the property “in a tree,
there exists a path in which everytime p holds at a given
node x, n grandchildren of x satisfy q”. This property can
easily be expressed in GCTL (linearly in n). Conversely,
a graded µ-calculus formula would require to consider all
possible children scenarios (i.e., all partitions of node suc-
cessors) of p, and therefore it needs a length exponential
in n. We also prove that this exponential blow-up is un-
avoidable. In particular, the idea of counting paths on a
tree, behind the previous example, is the core of the proof
we use. As another and more practical example of an ap-
plication of GCTL, consider again the above multitasking
scheduling, where we may want to check that every time a
non-elementary (i.e., non one-step) computation is required,

then there are at least n distinct (i.e., non completely equiv-
alent) non-redundant computational flows that can be ex-
ecuted. This property can be easily expressed in GCTL
thanks to the concepts of minimality and conservativeness.

The ability of GCTL to reason about numbers of paths
turns out to be suitable in several contexts. For example, it
can be useful to query XML documents [2, 21]. These doc-
uments, indeed, can be viewed as labeled unranked trees [4]
and GCTL allows reasoning about a number of links among
tags of descendant nodes, without naming any of the inter-
mediate ones, in a very succinct way. In particular, it is
possible to verify how-many minimal data-paths satisfying
a given query exist in an XML document. We also note that
our framework of graded path quantifiers has some simi-
larity with the concept of cyclomatic complexity, as it was
defined by McCabe in a seminal work in software engineer-
ing [22]. McCabe studied a way to measure the complexity
of a program, identifying it in the number of independent
instruction flows. From an intuitive point of view, since
graded path quantifiers allow to specify how many mini-
mal computational paths satisfying a given property reside
in a program, GCTL subsumes the cyclomatic complexity,
where for independent we replace minimal.

The introduced framework of graded path modalities
turns out to be very efficient in terms of expressiveness
and complexity. Indeed, we prove that GCTL is more ex-
pressive than CTL, it retains the tree and the finite model
properties, and its satisfiability problem is solvable in EX-
PTIME, therefore not harder than that for CTL [11]. This,
along with the fact that GCTL is exponentially more suc-
cinct than graded µ-calculus, makes GCTL even more ap-
pealing. The upper bound for the satisfiability complexity
result is obtained by exploiting an automata-theoretic ap-
proach [32, 19]. To develop a decision procedure for a logic
with the tree model property, one first develops an appro-
priate notion of tree automata and studies their emptiness
problem. Then, the satisfiability problem for the logic is
reduced to the emptiness problem of the automata. To this
aim, we introduce a new automaton model: partitioning al-
ternating tree automata (PATA). While a nondeterministic
automaton on visiting a node of the input tree sends exactly
one copy of itself to each successor of the node, an alternat-
ing automaton can send several copies of itself to the same
successor. In particular, in symmetric alternating automata
[16, 33] it is not necessary to specify the direction of the
tree on which a copy is sent. In [18], graded alternating
tree automata (GATA) are introduced as a generalization of
symmetric alternating tree automata, in such a way that the
automaton can send copies of itself to a given number n of
state successors, either in existential or universal way, with-
out specifying which successors these exactly are. PATA
further extend GATA in such a way that the automaton can
send copies of itself to a given number n of paths. As we
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show, for each GCTL formula ϕ, it is always possible to
build in linear time a PATA Aϕ along with a Büchi condition
(PABT) accepting all the tree models of ϕ. The major dif-
ficulty here is that whenever ϕ contains graded modalities
such as “there exist at least n minimal paths satisfying a path
property ψ”, Aϕ must accept trees in which there are at least
n distinct paths satisfying ψ, where some groups of those
paths can arbitrarily share the same (proper) prefixes, and
we ensure this by constraining the transition relation of the
automaton. We show an EXPTIME decision procedure for
the emptiness of PABT through an exponential translation
into non-deterministic Büchi tree automata (NBT). In more
detail, we use a variation of the Miyano and Hayashi tech-
nique [23] for tree automata [25], which has been deeply
used in the literature for translating alternating Büchi au-
tomata (on both words and trees) to nondeterministic ones.
Then, the result follows from the fact that the emptiness
problem for NBT is solvable in polynomial time [32].

Related work Our graded framework is fully based on
the concepts of minimality and conservativeness. However,
a version of graded CTL that does not use these concepts
in its semantics has been recently studied in [13]. There,
the authors consider overlapping paths (as we do) as well as
disjoint paths. They solve the model checking problem and
in particular, by opportunely extending the classical algo-
rithm for CTL [10], they show that, in case of overlapping
paths, the model checking problem is PTIME-COMPLETE
(thus not harder than CTL), while for disjoint paths, it
is in PSPACE and both NPTIME-HARD and CONPTIME-
HARD. We finally remark that, differently from [13], we
study the satisfiability problem and our automata-theoretic
approach is one of the major contribution of this paper.

The paper is self contained. However, detailed proofs
can be found on the accompanying Technical Report [5].

2 Preliminaries
Given a set X of objects (numbers, words, etc.), we de-

note by |X| the number of its elements, called the size of X,
and by 2X the powerset of X. In addition, by Xn we denote
the set of all n-tuples of elements from X, by X∗ =

S<ω

n=0 Xn

the set of finite words on the alphabet X, and by X+ the set
X∗ \ {ε}, where as usual, ω is the numerable infinity and ε

is the empty word. By |x| we denote the length of a word
x ∈X∗ and by {xi}n

i the ordered sequence (x1, . . . ,xn) ∈X+

of objects varying on the index i. As special sets, we con-
sider N and N+ = N\{0} as, respectively, the sets of natu-
ral numbers and positive natural numbers. Furthermore, by
N(n) and N(n)+ we denote the subsets {k ∈ N | k ≤ n} of N
and {k ∈ N+ | k ≤ n} of N+, where n ∈ N∪{ω}.

A structure S is an ordered tuple 〈X,R〉, where (i) X =
dom(S) is a non-empty and countable set of objects, called
the domain of S , and (ii) R ⊆ X×X is a binary relation

between objects. We denote the size |S | of S as the num-
ber |X| of objects of its domain. An infinite structure is a
structure of infinite size. When the relation R is clear from
the context, to refer to a structure we only use its domain.
A tree is a structure 〈X,R〉 in which the domain X, in the
following also referred to as the set of nodes, is a subset of
N∗ such that (i) if x · a ∈ X, with x ∈ N∗ and a ∈ N, then
also x ∈ X and (ii) (x,x′) ∈ R iff x′ = x ·a, for some a ∈ N.
The empty word ε is the root of the tree. A tree is full iff
x · a ∈ X, with a ∈ N, implies x · b ∈ X, for all b ∈ N(a). A
path is a tree 〈X,R〉 in which for all nodes x ∈ X there is at
most one a∈N such that x ·a∈X, i.e., the transitive closure
of the relation R is a linear (total) order on X. A Σ-labeled
structure S = 〈Σ,X,R,L〉 is a tuple in which (i) Σ is a finite
set of labels, (ii) 〈X,R〉 is a structure, and (iii) L : X 7→ Σ

is a labeling function that colors each object with a label.
When both Σ and R are clear from the context, we indicate
a labeled structure 〈Σ,X,R,L〉 with the shorter tuple 〈X,L〉.

Let S = 〈X,R〉 and S ′ = 〈X′,R′〉 be two structures. We
have that S ′ is a substructure of S , in symbols S ′ 4 S , iff (i)
X′ ⊆ X and (ii) R′ = R∩ (X′×X′) hold. Also, S and S ′ are
comparable iff (i) S 4 S ′ or (ii) S ′4 S holds, otherwise they
are incomparable. For a set of structures S, the set of mini-
mal substructures (antichain) mins(S) is the set containing
all and only the structures S ∈S such that for all S ′ ∈S, it
holds that (i) S 4 S ′, or (ii) S ′ is incomparable with S . Note
that all structures in mins(S) are pairwise incomparable. A
structure S is minimal w.r.t. a set S (or simply minimal,
when the context clarifies the set S) iff S ∈mins(S). A set
of structures S is minimal iff S = mins(S).

A Kripke structure K = 〈AP,W,R,L〉 is a 2AP-labeled
structure, where AP is a set of atomic propositions, W =
dom(K ) is a set of worlds (the domain of the structure), R
is a relation on W, and L : W 7→ 2AP is the labeling func-
tion that maps each world to a set of atomic propositions
true in that world. For a world w ∈W, we define the un-
winding of the structure K starting from w as the full and
possibly infinite 2AP-labeled (Kripke) tree UK

w = 〈AP,W′,
R′,L′〉 such that there is a function uf : W′ 7→ W, called
unwinding function, satisfying the following properties: (i)
uf(ε) = w and, for all w′,v′ ∈W′ and u ∈W, it holds that
(ii) L′(w′) = L(uf(w′)), (iii) if (w′,v′) ∈ R′, then (uf(w′),
uf(v′)) ∈ R, and, (iv) if (uf(v′),u) ∈ R, then there is one and
only one u′ ∈W′ such that uf(u′) = u and (v′,u′) ∈ R′. Note
that the unwinding function, and so the unwinding structure,
is unique up to isomorphisms. Given a Kripke structure K
and w ∈W = dom(K ), we define pth(K ,w) as the set of
paths of K starting from w. Formally, a path π is in pth(K ,
w) iff π4UK

w . In addition, we set pth(K ) =
S

w∈W pth(K ,
w). With π(·) we denote the function π : N(|π|−1) 7→W that
maps each number k ∈ N(|π|−1) to the world π(k) = uf(w′)
of K , which corresponds to the (k + 1)-st position on the
path π, where uf is the unwinding function relative to UK

w ,
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w′ ∈ dom(π), and |w′|= k. Note that π(0) = uf(ε) = w.
Finally, let n ∈ N+, we define the following two sets:

the set P(n) of all solutions {pi}n
i to the linear Diophantine

equation 1∗p1 +2∗p2 +. . .+n∗pn = n and the set CP(n) of
the cumulative solutions {cpi}n

i obtained by summing in-
creasing sets of elements from {pi}n

i . Formally, P(n) =
{{pi}n

i ∈ Nn | ∑n
i=1 i ∗ pi = n} and CP(n) = {{cpi}n

i ∈ Nn |
∃{pi}n

i ∈ P(n) ∀i ∈ N(n)+ : cpi = ∑
n
j=i p j}. Note that

|CP(n)| = |P(n)| and, since for each solution {pi}n
i of the

above Diophantine equation there is exactly one partition of
n, we have that |CP(n)| = p(n), where p(n) is the number
of partitions of n. By [1], we have that, for a constant α,
p(n) = Θ( 1

n 2α
√

n). So it follows that |CP(n)|= Θ( 1
n 2α
√

n).

3 The Graded CTL temporal logic
In this section, we introduce an extension of the classi-

cal branching-time temporal logics CTL with graded path
quantifiers. We show that this extension allows to gain ex-
pressiveness without paying any extra cost on deciding its
satisfiability. For technical convenience, we introduce this
logic through the state and path framework of CTL∗.

The graded computation tree logic (GCTL∗) extends
CTL∗ by using two special path quantifiers, the universal
A<g and the existential E≥g, where g denotes the corre-
sponding degree. As in CTL∗, these quantifiers can prefix a
linear-time formula composed of an arbitrary combination
and nesting of the temporal operators X (“effective next”),
X̃ (“hypothetical next”), U (“until”), and R (“release”).
The quantifiers A<g and E≥g can be respectively read as
“all but g minimal paths” and “there exist at least g mini-
mal paths”. The formal syntax of GCTL∗ follows.

Definition 3.1. (Syntax) GCTL∗ state (ϕ) and path (ψ)
formulas are built inductively from AP using the following
context-free grammar, where p ∈ AP and g ∈ N:

1. ϕ ::= p | ¬ϕ | ϕ∧ϕ | ϕ∨ϕ | A<gψ | E≥gψ,

2. ψ ::= ϕ | ¬ψ | ψ∧ψ | ψ∨ψ | Xψ | X̃ψ | ψUψ | ψRψ.

The class of GCTL∗ formulas is the set of state formulas
generated by the above grammar. In addition, the simpler
class of GCTL formulas is obtained by forcing each tempo-
ral operator, occurring in a formula, to be coupled with a
path quantifier, as in the classical definition of CTL.

For a state formula ϕ, we define the degree deg(ϕ) of
ϕ as the maximum natural number g occurring among the
degrees of all its path quantifiers. We assume that all such
degrees are coded in unary. Accordingly, the length of a
formula ϕ, denoted by |ϕ|, is defined inductively on the
structure of ϕ in a classical way, by considering |A<gψ| and
|E≥gψ| to be equal to g+1+ |ψ|. Clearly, deg(ϕ) = O(|ϕ|).

We now define the semantics of GCTL∗ w.r.t. a Kripke
structure K . For a world w ∈ dom(K ), we write K ,w |= ϕ

to indicate that a state formula ϕ holds at w, and, for a path
π ∈ pth(K ), we write K ,π,k |= ψ to indicate that a path
formula ψ holds on π at position k ∈ N(|π|−1). Note that,
the relation K ,π,k |= ψ does not hold for any point k ∈ N,
with k ≥ |π|. For a better readability, in the semantics defi-
nition of GCTL∗ we use the special set PA(K ,w,ψ) and its
dual PE(K ,w,ψ), with the following meaning: PA(K ,w,
ψ) contains every path π starting in w such that all its ex-
tensions π′ (including π) satisfy the path formula ψ. The
semantics of GCTL∗ state formulas of the form A<gψ and
E≥gψ follows. The semantics of the remaining GCTL∗ state
formulas and that of GCTL∗ path formulas is defined as
usual in CTL∗ and reported in Appendix A.

Definition 3.2. (Semantics of A<g and E≥g) Given a
Kripke structure K = 〈AP,W,R,L〉, a world w ∈W, a path
formula ψ, and a natural number g, it holds that:

1. K ,w |= A<gψ iff |mins(pth(K ,w)\PE(K ,w,ψ))|<g;

2. K ,w |= E≥gψ iff |mins(PA(K ,w,ψ))| ≥ g;

where PA(K ,w,ψ) = {π ∈ pth(K ,w) | ∀π′ ∈ pth(K ,w) :
π 4 π′ implies K ,π′,0 |= ψ} and PE(K ,w,ψ) = {π ∈
pth(K ,w) | ∃π′ ∈ pth(K ,w) : π4 π′ and K ,π′,0 |= ψ}.

Note that GCTL∗ (resp., GCTL) formulas with degrees
1 are CTL∗ (resp., CTL) formulas. Moreover, the above
definition of PA(K ,w,ψ) and PE(K ,w,ψ) formally states
that they are dual of each other, i.e., PA(K ,w,ψ) = pth(K ,
w) \PE(K ,w,¬ψ). Let K be a Kripke structure and ϕ be
a GCTL∗ formula. Then, K is a model for ϕ, denoted by
K |= ϕ, iff there is w∈ dom(K ) such that K ,w |= ϕ. In this
case, we also say that K is a model for ϕ on w. A GCTL∗

formula ϕ is said satisfiable iff there exists a model for it.
Moreover ϕ is invariant on the two Kripke structures K and
K ′ iff either K |= ϕ and K ′ |= ϕ or K 6|= ϕ and K ′ 6|= ϕ.

We now give the formal definition of conservativeness
and then, by means of two examples, we clarify the need of
the concepts of minimality and conservativeness. A path π

of K is conservative w.r.t. a path formula ψ iff, for all paths
π′ extending π, i.e., with π 4 π′, it holds that K ,π′,0 |= ψ.
Note that this concept of conservativeness is automatically
embedded in the definition of the set PA(K ,w,ψ), since we
consider only paths π ∈PA(K ,w,ψ) that, if extended, con-
tinue to satisfy the formula ψ. Now, for the minimality, con-
sider a finite tree T having just three nodes all labeled by
p, the root and two of its successors. Also, consider the for-
mula ϕ = E≥2F p. Because of the minimality, the two paths
of length two that satisfy F p collapse into the path contain-
ing just the root, hence T 6|= ϕ. For the conservativeness,
consider another tree T ′ equal to T , but with one of the two
root successors not labeled with p. Also, consider the for-
mula ϕ′ = E≥2G p. At this point, by the conservativeness,
we have that T ′ 6|= ϕ′ even if there are two paths satisfy-
ing the formula G p, since the path containing just the root
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is not conservative. Indeed, this path can be extended in a
path that does not satisfy G p.

For all state formulas ϕ1 and ϕ2 (resp., path formulas
ψ1 and ψ2), we say that ϕ1 is equivalent to ϕ2, formally
ϕ1 ≡ ϕ2, (resp., ψ1 is equivalent to ψ2, formally ψ1 ≡ ψ2)
iff for all Kripke structures K and worlds w ∈ dom(K ) it
holds that K ,w |= ϕ1 iff K ,w |= ϕ2 (resp., mins(PA(K ,w,
ψ1)) = mins(PA(K ,w,ψ2))).

In the rest of the paper, we only consider formulas in
existential normal form or in positive normal form, i.e., for-
mulas in which only existential quantifiers occur or nega-
tion is applied only to atomic propositions, respectively. In
fact, it is to this aim that we have considered in the syn-
tax of GCTL∗ both the connectives ∧ and ∨, the quantifiers
A<g and E≥g, and the dual operators X̃ and R . Indeed,
all formulas can be converted into existential or positive
normal form by using De Morgan’s laws and the follow-
ing equivalences, which directly follow from the seman-
tics of the logic. Let ψ, ψ1, and ψ2 be path formulas and
g ∈ N, it holds that ¬A<gψ ≡ E≥g¬ψ, ¬X ψ ≡ X̃¬ψ, and
¬(ψ1U ψ2) ≡ ¬ψ1R¬ψ2. To abbreviate formulas, we also
use the boolean values t (“true”) and f (“false”) and the
path quantifiers Eψ≡E≥1ψ (“there is a minimal path”) and
E>gψ≡ E≥g+1ψ (“there are more than g minimal paths”).

The following lemma shows interesting equivalences
among GCTL formulas that are useful to show important
properties on the introduced logic. In particular, we show
fixed point equivalences that extend to “graded” formulas
the well known analogous ones for “ungraded” formulas.

Lemma 3.3. Let ϕ1 and ϕ2 be state formulas, g > 1, and
ex(ψ,g) =

W
{hi}

g
i ∈CP(g)

Vg
i=1 E≥hiXE≥iψ. Then, the follow-

ing equivalences hold:
• Eϕ1U ϕ2 ≡ ϕ2∨ϕ1∧ ex(ϕ1U ϕ2,1) and E≥gϕ1U ϕ2 ≡
¬ϕ2∧ϕ1∧ ex(ϕ1Uϕ2,g)
• Eϕ1R ϕ2 ≡ ϕ2 ∧ (ϕ1 ∨ EX̃ f ∨ ex(ϕ1R ϕ2,1)) and

E≥gϕ1Rϕ2≡ϕ2∧¬ϕ1∧EXE¬(ϕ1Rϕ2)∧ ex(ϕ1Rϕ2,g)

The function ex(ψ,g) used in the above lemma allows to
partition g paths through h1 successor worlds, for a given
sequence {hi}g

i ∈ CP(g). Indeed, hi is the number of suc-
cessor worlds from which at least i paths satisfying ψ start.
Therefore, h1 is a sufficient bound on the number of suc-
cessor worlds we have to consider to ensure the satisfi-
ability of the formula. By a simple calculation, it also
follows that |ex(ψ,g)| = g ∗ (|ψ|+ g+11

2 ) ∗ |CP(g)| − 1 =
Θ((|ψ|+ g

2 ) ∗ 2α
√

g), for a constant α. Note that, for g =
1, Lemma 3.3 gives the two classical fixed point expan-
sions for CTL: E(ϕ1U ϕ2) ≡ ϕ2 ∨ϕ1 ∧EX E(ϕ1U ϕ2) and
E(ϕ1Rϕ2)≡ ϕ2∧ (ϕ1∨EX̃ f∨EXE(ϕ1Rϕ2)).

In the next theorem, we show an exponential reduction
of GCTL to the graded µ-calculus1. Some adding details of
the proof are reported in [5].

1The µ-calculus is a well-known modal logic augmented with fixed

Theorem 3.4. Given a GCTL formula ϕ there exists an
equivalent graded µ-calculus formula ϕ′ whose size is at
most exponential in the size of ϕ. Moreover, in some cases
the blow-up is unavoidable.

Proof. (Sketch) The equivalences shown in Lemma 3.3 sug-
gest a reduction of GCTL to graded µ-calculus. Since this
involves the use of the function ex(ψ,g) of exponential size,
we obtain an exponential translation. For the lower bound,
consider the property “in a tree, there exist just g grand-
children of the root labeled with p, while all other nodes
are not”. Such a property can be described by the GCTL
formula ϕ = (E≥gF p)∧¬p∧AX¬p∧AX AX AX AG¬p.
We claim that a graded µ-calculus formula ϕ′ requires ex-
ponential size to express the same property. Let L be the
set (of exponential size) of all the tree models of ϕ. For
each 1 ≤ i ≤ n, let Li be the set of trees having exactly i
root successors labeled with p and all remaining nodes not
labeled with p. For each Li, it is possible to find in ϕ′ a
graded µ-calculus subformula ϕ′i whose models are in Li.
Now, we recall that directly from the definition of GCTL
models, trees in L are made in such a way that the n nodes
labeled with p, present at the second level of it, are grouped
as children of root children, w.r.t. a possible partitioning of
n (i.e., a set in P(n)). As an example, L contains the tree
having two distinct root children x and y, where x has n−1
children labeled with p and y has just one node labeled with
p. One can see that a tree in L can have several subtrees
rooted at level 1 coming from different Lis. Moreover, to
get all trees in L, one has to consider all possible combi-
nation of trees from the sets Lis. Since each of these trees
correspond to a ϕ′i, it means that every ϕ′ requires an expo-
nential disjunction of combinations of ϕ′i.

By Theorem 3.4 and the fact that for graded µ-calculus
the satisfiability problem is solvable in EXPTIME [18], we
immediately get that the satisfiability problem for GCTL is
decidable and solvable in 2EXPTIME, as reported in the fol-
lowing corollary. However, in the next section we improve
this result by showing that the satisfiability problem for
GCTL is solvable in EXPTIME, by exploiting an automata-
theoretic approach that deeply makes use of the idea behind
the function ex(ψ,g) introduced in Lemma 3.3.

Corollary 3.5. The satisfiability problem for GCTL is de-
cidable and solvable in 2EXPTIME.

We conclude this section by showing some interesting
and simple properties about GCTL. First of all, by using a
proof by induction we show that this logic is invariant un-
der the unwinding of a model. Directly from this, we obtain
that GCTL also enjoys the tree model property. Moreover,
by the reduction to the graded µ-calculus (Theorem 3.4),

point operators [17]. The graded µ-calculus extends the µ-calculus with
graded state quantifiers [18, 6].
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we directly obtain that GCTL has the finite model prop-
erty.2. Straightforwardly, it also holds that GCTL is not
invariant under bisimulation among models, since counting
is not bisimular-invariant at all. Directly from this, we ob-
tain that GCTL is more expressive than CTL, since the latter
is invariant under bisimulation. All these properties are re-
ported in the following theorem.

Theorem 3.6. For GCTL it holds that (i) it is invariant un-
der unwinding; (ii) it has the tree model property; (iii) it has
the finite model property; (iv) is not invariant under bisim-
ulation; and (v) it is more expressive than CTL.

4 Partitioning Büchi Tree Automata
Nondeterministic automata on infinite trees are an ex-

tension of nondeterministic automata on infinite words and
finite trees (see [30] for an introduction). Alternating au-
tomata [26] are a generalization of nondeterministic au-
tomata that embody the same concept of alternation as Tur-
ing machines [7]. Intuitively, while a nondeterministic au-
tomaton that visits a node of the input tree sends exactly one
copy of itself to each of the successors of the node, an al-
ternating automaton can send several copies of itself to the
same successor. Symmetric automata [16, 33] are a varia-
tion of classical (asymmetric) alternating automata in which
it is not necessary to specify the direction (i.e., the choice of
the successors) of the tree on which a copy is sent. In fact,
through three generalized directions (ε-moves, existential
moves, and universal moves), it is possible to send a copy of
the automaton, starting from a node of the input tree, to the
same node, to some of its successors, or to all its successors.
Hence, the automaton does not distinguish directions. As a
generalization of symmetric automata, graded alternating
tree automata (GATA, for short) have also been introduced
[18]. In this framework, the automaton can send copies of
itself to a given number n of successors, either in existen-
tial or universal way, without specifying which successors
these exactly are. Moreover, a GATA can also send a copy
of itself to the reading node by pursuing an ε-move.

Here, we consider partitioning alternating tree automata
(PATA, for short) as a generalization of GATA in such a way
that the automaton can send copies of itself to a given num-
ber n of paths, starting from the current node. As we show
later, for each GCTL formula ϕ, it is possible to build a
PATA that accepts all and only the tree models of ϕ. The key
idea is to extend GATA’s runs by also labeling their nodes
with a natural number, with the aim of collecting “graded
path information”. We give an idea on how a PATA A works
w.r.t. the logic GCTL through an example.

2To the best of our knowledge, the proof of the finite model property
for the graded µ-calculus is not present in the literature. However, using
the reduction to the classical µ-calculus explained in [18] it is possible to
derive the property directly from that of the classical logic.

First, note that A uses as states all possible subformulas
of the considered formula3, as it is done classically in the
automata-theoretic approach to solve decidability problems
in logic [19]. Now, suppose that the automaton is in the
node x of an input tree T and in state E≥gψ, where ψ is also
a GCTL path formula. Then, in a state corresponding to ψ,
the automaton sends n ≤ g copies of itself to n successors
of x with degrees g1, . . . ,gn that sum to g. One can note
that this sequence of n degrees is a partition of the number
g. The degree gi associated to a successor xi of x denotes
that at least gi minimal paths starting from xi have to satisfy
ψ and the automaton takes care of it through the transition
function. In more details, we identify the set of n directions
relative to successors of x w.r.t. the degrees {g1, . . . ,gn} by
means of a decreasing chain {M1, . . . ,Mn+1}, such that for
each i, it holds that Mi \Mi+1 contains all directions of x
that are associated with a degree i. Clearly, there could be
different possible chains satisfying such a property and each
one induces a different run of A on T. As a particular case,
A sends g copies of itself to g distinct successors of x on
choosing |M1|= g and, for each i > 1, Mi = /0.

The formal definition of a PATA along with the Büchi
acceptance condition (PABT, for short) follows. In partic-
ular, we give a definition without any constraint on the use
of its labeling degrees, which allows to introduce a more
general class of automata, independently from the logic we
consider here. Note that by the definition we give, the au-
tomaton on its own cannot enforce that multiple successors
in which it is sent are all distinct. However, we can force
this by means of the transition function. First, we introduce
some extra notation. With B+(X) we denote the sets of pos-
itive Boolean formulas over X (i.e., Boolean formulas built
from elements in X using ∧ and ∨) where we also allow
the formulas t (true) and f (false). For a set X′ ⊆ X and a
formula φ ∈ B+(X), we say that X′ satisfies φ, X′ |= φ, iff
the assigning of true to elements in X′ and false to elements
in X \X′ makes φ true. With Db and Dε

b we denote the
sets {♦,�}×N(b)+ and Db∪{ε}, respectively. Intuitively,
these two sets represent the generalized directions that one
can use, through the transition function, to describe the be-
havior of the automaton. For brevity, we often write 〈g〉 and
[g] instead of (♦,g) and (�,g), respectively.

Definition 4.1. (PABT) A partitioning alternating Büchi
tree automaton is a tuple A = 〈Q,Σ,b,δ,q0,g0,F〉, where Q
is a finite set of states, Σ is a finite input alphabet, b∈N is a
counting branching bound, δ : Q×N(b)×Σ 7→ B+(Dε

b×Q)
is a transition function, q0 ∈ Q is an initial state, g0 ∈ N is
an initial branching degree, and F ⊆ Q×N(b) is a Büchi
acceptance condition, which is defined later.

The behavior of a PABT is described by means of a

3More precisely, the automaton uses, as states, an extended definition of
the Fischer-Ladner. See proof of Theorem 3 in [5] for a formal definition.
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run. As for classical alternating automata, given a PABT
A = 〈Q,Σ,b,δ,q0,g0,F〉 and a Σ-labeled tree 〈T, inp〉 in in-
put, a run 〈Tr, run〉 of A on 〈T, inp〉 is induced by the sets of
pairs S ⊆ Dε

b×Q satisfying its transition function δ. Here,
we first give an intuition of such a run through an exam-
ple. Suppose that A , while reading a node x of T labeled
with σ, is in a state q with degree g at the node y of the run,
and δ(q,g,σ) = (ε,q1)∧((〈3〉,q2)∨([2],q3). Also, suppose
that x has three successors {x · 0,x · 1,x · 2}. Consider now
S = {(ε,q1),(〈3〉,q2)} satisfying δ(q,g,σ). Accordingly, A
can send a copy of itself to node x in the state q1 (by per-
forming an ε-move) and three copies of itself in the state q2
to three paths through either one, two, or all successors of x.
Now, suppose that we want to send two copies of A through
one successor and one through another. This can be charac-
terized by taking M1 = {0,1}, M2 = {1}, and M3 = M4 = /0.
Consequently, the run has three successors {y ·0,y ·1,y ·2},
one labeled with (x,q1,0) (for the ε-move), another labeled
with (x ·0,q2,1), and the last one labeled with (x ·1,q2,2).

We now give the formal definition of a run. To this aim,
we first formally define the sets {Mi}g+1

i introduced above,
through a function spart, useful to define the required split-
ting among paths. Then, we introduce a function exec that
allows to construct all possible execution steps.

Definition 4.2. (Splitting partition function) A splitting
partition function spart : (D,d) ∈ 2N×Db 7→ spart(D,d) ∈
2(2N)+ maps a set D and a direction d into a set of decreas-
ing chains {Mi}i of subset of D (Mi ⊆ D and Mi ⊇ Mi+1)
such that:

1. if d = 〈g〉, then for all {Mi}g+1
i ∈ spart(D,d) ⊆

(2D)g+1, it holds that Mg+1 = /0 and there is a sequence
{hi}g

i ∈ CP(g) such that |M j|= h j, for all j ∈ N(g)+;

2. if d = [g], then for all {Mi}g+1
i ∈ spart(D,d) ⊆

(2D)g+1, it holds that M1 = D and for all sequences
{hi}g

i ∈CP(g) there is j ∈N(g)+ such that |M j+1|< h j.

Differently form GATA, one can see that in general the
sets spart(D,〈g〉) and spart(D, [g]) are not the dual of each
other. This is due to the fact that in PATA, for a considered
node x, we may want to check properties along paths start-
ing in x, instead of just looking at the successors of x, as it
is done in GATA. This induces, in the d = 〈g〉 case, to take
care of just g paths (on which we check that a certain prop-
erty holds), while in the d = [g] case we have to take care of
all paths (i.e., that in less than g paths the property may or
may not hold, while in all the remaining ones it must hold).

We now give the formal definition of the function exec.
Let Nε denote the set N∪{ε}.

Definition 4.3. (Execution function) An execution func-

tion exec : (S,D) ∈ 2Dε
b×Q×2Nε 7→ exec(S,D) ∈ 22

Nε×Q×N(b)

maps the two sets S and D into the set of all possible sub-
sets of Nε×Q×N(b), called configurations of the execution,

such that, for all sets E ∈ 2Nε×Q×N(b) we have E ∈ exec(S,
D) iff for all pairs (d,q) ∈ S it holds that:

1. if d = ε then (ε,q,0) ∈ E;

2. if either d = 〈g〉 or d = [g] then there is a sequence
{Mi}g+1

i ∈ spart(D,d) such that for all i ∈ N(g)+ and
direction x ∈Mi \Mi+1, it holds that (x,q, i) ∈ E.

The above function exec allows us to give the following
definition of PABT’s run in a very concise and elegant way.
First, we introduce some extra notations. Let X′ ⊆ X∗ be a
set of words on X and x∈X∗. Then, we denote by succX′(x)
the set of successor words of x in X′, i.e., succX′(x) = {x ·
a∈X′ | a∈N} and by dirX′(x) the set of direction of x in X′,
i.e., dirX′(x) = {a ∈ N | x · a ∈ X′}. Now, let f : X′ 7→ X′′.
We use inf( f ) to refer to the set {x ∈ X′′ | | f−1(x)| = ω},
i.e., the set of elements of X′′ that f uses infinitely often as
labels for elements in X′, and f|X′′′ to indicate the restriction
of f to X′′′, i.e., f|X′′′ : X′′′ 7→ X′′, where X′′′ ⊆ X′. In the
following we also write S |= δ(q,g,σ) to denote that S is a
set of tuples (d,q) ∈ Dε

b×Q that satisfies δ(q,g,σ).

Definition 4.4. (Run of a PABT) A run of a PABT A = 〈Q,
Σ,b,δ,q0,g0,F〉 on a Σ-labeled tree 〈T, inp〉 is a (T×Q×
N(b))-labeled full tree 〈Tr, run〉 such that:

1. run(ε) = (ε,q0,g0);

2. for all y ∈ Tr with run(y) = (x,q,g), there exist a
set S ⊆ Dε

b×Q, where S |= δ(q,g, inp(x)), and a set
E ∈ exec(S,dirT(x)) such that for all configurations
(d,q′,g′) ∈ E there is a node y′ ∈ succTr(y) such that
run(y′) = (x ·d,q′,g′).

The run 〈Tr, run〉 is accepting iff all its infinite paths satisfy
the acceptance condition, i.e., for all paths π 4 Tr, with
|π|= ω, it holds that inf(run|π)∩T×F 6= /0. A tree 〈T, inp〉
is accepted by A iff there is an accepting run of A on it. By
L(A) we denote the language accepted by the automaton
A , i.e., the set of all input trees that A accepts. A is said to
be empty if L(A) = /0. The emptiness problem for A is to
decide whether L(A) = /0.

By extending a construction given in [19], we obtain the
following result.

Theorem 4.5. Given a GCTL formula ϕ with degree b, we
can construct in time O(|ϕ|) a PABT Aϕ, with O(|ϕ|) states
and counting branching bound b, such that L(Aϕ) is exactly
the set of all tree models of ϕ.

Proof. (Sketch) The automaton Aϕ is defined as the tuple
〈ecl(ϕ),2AP,deg(ϕ),δ,ϕ,0,F〉, where ecl(ϕ) is the Fisher-
Ladner-closure extended in order to deal with graded path
modalities. The acceptance condition F is the set of all pairs
(〈ϕ1Rϕ2〉,1) and ([ϕ1Rϕ2],1) of ecl(ϕ)×N(b). The transi-
tion function extends that introduced in [19] for CTL, along
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with the extra graded path modalities. Its formal defini-
tion is reported in [5]. Here, we only give an intuition of
it through a couple of examples. Finally, a formal proof of
the correctness of the whole construction, also reported in
[5], follows naturally, by extending that (by induction on
the structure of the formula) used for CTL.

First, recall that δ is a function from ecl(ϕ)×N(b)×2AP

into B+(Dε

b × ecl(ϕ)). Consider now the state formula
ϕ = E≥gX ϕ′. This formula is true on a tree model rooted
at a node x having at least g distinct successors of x satis-
fying ϕ′. This is ensured through the δ in two successive
steps. First, starting from the state E≥gX ϕ′, the δ gives
the formula (〈g〉,〈ϕ′〉), which intends to send to g succes-
sors (not necessarily distinct) the check of the satisfaction
of ϕ′. Then, from state 〈ϕ′〉 we have to ensure that each of
such successor nodes, say y, contributes to the satisfiability
of exactly one ϕ′ (intuitively one degree of ϕ). Therefore,
on reading y, if the degree associated with the state 〈ϕ′〉
is greater then 1, the δ returns false, otherwise, with an ε-
move, we move to state ϕ′. Accordingly, in the δ we use as
counting branching positive numbers to indicate formulas’
degrees which have to be accomplished along paths and use
as a convention 0 if we have none to accomplish. In partic-
ular, ε-moves always give 0 as counting branching.

As another example, consider the state formula ϕ =
E≥g(ϕ1U ϕ2). This formula is true on a tree model rooted
at a node x having at least g distinct minimal paths satisfy-
ing ϕ1U ϕ2. As in CTL, the path formula ϕ1U ϕ2 is true on
a path if ϕ2 is immediately true, or ϕ1 is immediately true
and then the formula ϕ1U ϕ2 is satisfied on the successor
node. Moreover, the quantifier E≥g requires that there are
at least g of such (minimal) paths. Therefore, if g = 1 the δ

proceeds as in CTL. Conversely, if g > 1 we have to force
ϕ2 to not be immediately true (otherwise, we have less than
g minimal paths satisfying the formula). Thus, we use the
δ to ensure that ϕ1 is immediately true and that g succes-
sive paths (but not necessarily all distinct) satisfy ϕ1U ϕ2.
Iteratively, the δ keeps using the above idea up to all states
corresponding to the formula ϕ1Uϕ2 are sent to next nodes
with counting branching 1. This ensures that the considered
tree model has at least g minimal paths satisfying the for-
mula ϕ1U ϕ2. Note that if less than g of such paths exist in
the tree model, then the automaton keeps regenerating in-
finitely often the state corresponding to the until formula.
Such a tree is then not accepting as this state is not in F . It
is worth noting that, the above iteration upon the until states
inherits the fixed point idea of the function ex(ψ,g) intro-
duced in Lemma 3.3. In particular, we formally embed it
into the δ through the formula (〈1〉,〈ϕ1U ϕ2〉) (see the for-
mal definition of δ in [5] for details). This is a key step
in our construction, since it allows to treat the exponential
blow-up induced by the mentioned function by only using a
constant rule into the δ.

In the remaining part of this section, we illustrate how
the emptiness problem for PABT can be solved in EXP-
TIME. To gain this result, we use a technical extension
of the Miyano and Hayashi technique [23] for tree au-
tomata [25], which has been deeply used in the literature
for translating asymmetric alternating Büchi automata to
nondeterministic ones in exponential time. Here, we use
this technique to translate with the same blow-up a PABT
into nondeterministic Büchi tree automata (NBT, for short).
Roughly speaking, this means that we manage to combine
the exponential blow-up induced by the alternation and that
induced by the permutations of all possible splitting degrees
in only one exponential blow-up. This technique is illus-
trated in the next theorem.

Theorem 4.6. Let A be a PABT with n states and count-
ing branching bound b. Then, there exists a NBT A ′ with
22n∗(b+1) states and n∗b(b+1)/2 directions such that A is
not empty iff A ′ is not.

Proof. (Sketch) The NBT A ′ guesses a subset construction
applied to a run of the PABT. At a given node x of a run of
A ′, it keeps in its memory the set of states in which the vari-
ous copies of A visit the node x in the guessed run. In order
to make sure that every infinite path visits accepting states in
F infinitely often, A ′ keeps track of states that “owe” a visit
to F . The fact that PABT are symmetric, however, requires
further non-trivial work, indeed, differently from the classi-
cal approach, we have to convert the symmetric automaton
A into a nondeterministic one. This is because, while for
symmetric automata there is bijective correspondence be-
tween direction of both the input and output automaton, in
our case we have to build this correspondence by looking
at the δ of the input automaton. The extra problems are:
(i) A can perform ε-moves and (ii) A does not have an up-
per bound on the number of directions it uses. The first
problem is solved by using in A ′ an apposite direction that
collects all states of A sent through ε-moves during a given
execution. We face the second problem by using the fol-
lowing property of PABT’s: if A accepts a tree T, it must
accept also a tree T′ with branching degree at most equal to
d′ = n ∗ b(b + 1)/2. This holds since, in each state q and
degree g at a node x of the input tree, a set S that satisfies
the δ(q,g, inp(x)) can contain at most |Q×N(b)+| pairs of
the kind (〈g′〉,q′). So, we can split each of such a pair in at
most g′ nodes of degree 1 and then, for each state q′, we can
have at most b(b+1)/2 distinct successors of x. Therefore,
it is possible to construct a relative run of A ′ by restrict-
ing our attention only to trees with degree at most d′. The
full construction of A ′ is reported in [5]. We conclude this
proof sketch by only giving some intuition for the transition
relation of A ′.

Suppose A = 〈{q0,q1},{a},2,δ,q0,0,F〉, where the δ

contains δ(q0,0,a) = (ε,q0)∧ (〈2〉,q1). Hence, the degree
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bound d′ for A is 6. Also, suppose that A ′ is in the state (H,
H ′), with H = {(q0,0)} and H ′ = /0. Now, as in the clas-
sical case, the set {{(ε,q0),(〈2〉,q1)}} satisfies the relation
δ for all states in H, but in our construction we can not use
this set directly to build δ′, since all these tuples contain
an additional information (the degree) that we must use to
split (H,H ′) in all possible successors. Accordingly to this
fact indeed, we have the following two possibilities: either
A ′ sends a copy of itself to one child with degree 2 or to
two children with degree 1. Moreover, in both cases A ′ also
sends a witness of the ε-move to direction d′.

Recall that for the NBT A ′ with Q′ as state set and
branching degree d′ the emptiness problem is solvable in
PTIME [32] and, precisely, in O(|Q′|2d′) (we directly con-
sider the one-letter automaton associated to A ′). Then, by
Theorem 4.6, the following result follows.

Theorem 4.7. The emptiness problem for a PABT A with
n states and counting branching bound b can be decided in
time 2O(n2∗b3).

By Theorems 4.5 and 4.7, and by n = |ecl(ϕ)| = O(|ϕ|)
and b = deg(ϕ) = O(|ϕ|), we get that the satisfiability prob-
lem for GCTL is in EXPTIME and precisely solvable in time
2O(|ϕ|5). Since GCTL subsumes CTL, the following holds.

Theorem 4.8. The satisfiability problem for GCTL is
EXPTIME-COMPLETE.

5 Discussion
Graded modalities refine classical existential and univer-

sal quantifiers by specifying the number of elements for
which the existential requirement should hold/universal re-
quirement may not hold. Earlier work studied the extension
of the µ-calculus by graded modalities and shown that the
complexity of the satisfiability problem stays EXPTIME in
the graded setting. In this paper, we have introduced and in-
vestigated a (semantic) fragment of the graded µ-calculus,
that is GCTL, which extends CTL with graded path quanti-
fiers under a suitable concept of minimality and conserva-
tiveness over paths. In particular, we have shown an expo-
nential translation from GCTL to graded µ-calculus, and we
have proved that in some cases this blow-up is unavoidable,
making GCTL even more appealing in practice.

One of the main features of this logic is the capability to
express properties that are weaker than those definable with
the universal quantifications Aψ and stronger than those de-
finable with the existential quantifications Eψ. In “planning
in nondeterministic domain” [9, 8], for examples, the use of
strong planning (i.e., all the goals have to be satisfied by all
the computations) and weak planning (i.e., all the goals have
to be satisfied by some computation) are two extreme ways
to achieve a given purpose. With our logic, we are able to

express “graded specification” that can be considered as a
compromise between strong and weak planning, which are
also forced to be minimal (succinct).

As interesting results about GCTL, we have shown that
although this logic is more expressive than CTL, it retains
an EXPTIME satisfiability procedure. This result has been
achieved by exploiting an automata-theoretic approach via
the introduction of a new automata model, that is PATA. As
an immediate consequence, by using a classical product-
automata construction [19] through PATA’s, one can also
get that the model checking problem is as easy as CTL, i.e.
it stays in PTIME. We postpone this to future work. How-
ever, we recall that model checking for GCTL without the
concepts of minimality and conservativeness has been al-
ready solved in [13].

Other directions for future work regard the investigation
of graded path modalities along with more complex logics,
such as CTL∗, i.e., to investigate GCTL∗. We believe that
it is not hard to extend to this logic the properties shown
for GCTL in Theorem 3.6 (expressiveness, tree and finite
model properties). On the contrary, to solve the satisfiabil-
ity problem for GCTL∗ is less than immediate as the au-
tomata model we have considered in this paper for GCTL is
not appropriate. Indeed, by using a theoretic-automata ap-
proach similar to that one used for GCTL, we can reduce the
satisfiability problem for GCTL∗ to the emptiness problem
of PATA, but with an acceptance condition stronger than
Büchi, such as the parity one [25]. Unfortunately, the tech-
nique we have shown to translate PABT into NBT is not
appropriate for parity automata. However, by using a tech-
nique based on promises and strategies, as it was done in
[18], we conjecture that PATA along with a parity condition
can be translated in exponential-time into an alternating par-
ity tree automaton. Then, by using the fact that for the lat-
ter the emptiness problem is solvable in exponential-time,
we get that the satisfiability problem for GCTL∗ is solvable
in 2EXPTIME, thus not harder than that for CTL∗. By ex-
ploiting a similar idea of that used for graded µ-calculus,
one could also show that GCTL∗ is equivalent to CTL∗ aug-
mented with graded world modalities (Counting-CTL∗ [24])
and we conjecture that GCTL∗ is exponentially more suc-
cinct than Counting-CTL∗ (for GCTL and Counting-CTL,
this result holds by simply applying the same idea used for
the translation from GCTL to the graded µ-calculus). This
result is important as it was shown in [24] that Counting-
CTL∗ is equivalent to monadic path logic, which is MSO
with set quantifications restricted to paths.
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A Full semantics of GCTL
Given a Kripke structure K = 〈AP,W,R,L〉 and w ∈ W, for

all GCTL∗ state formulas ϕ, the relation K ,w |= ϕ, is inductively
defined as follows.

1. K ,w |= p, with p ∈ AP, iff p ∈ L(w).
2. For state formulas ϕ, ϕ1, and ϕ2, it holds:

(a) K ,w |= ¬ϕ iff not K ,w |= ϕ, that is K ,w 6|= ϕ;
(b) K ,w |= ϕ1∧ϕ2 iff K ,w |= ϕ1 and K ,w |= ϕ2;
(c) K ,w |= ϕ1∨ϕ2 iff K ,w |= ϕ1 or K ,w |= ϕ2.

3. For a path formula ψ and a natural number g, it holds:
(a) K ,w |= A<gψ iff |mins(pth(K ,w)\PE(K ,w,ψ))|< g;
(b) K ,w |= E≥gψ iff |mins(PA(K ,w,ψ))| ≥ g;
where PA(K ,w,ψ) = {π ∈ pth(K ,w) | ∀π′ ∈ pth(K ,w) :
π 4 π′ implies K ,π′,0 |= ψ} and PE(K ,w,ψ) = {π ∈
pth(K ,w) | ∃π′ ∈ pth(K ,w) : π 4 π′ and K ,π′,0 |= ψ}.

For all GCTL∗ path formulas ψ, paths π ∈ pth(K ), and natural
numbers k < |π|, the relation K ,π,k |= ψ is inductively defined as
follows.

4. K ,π,k |= ϕ, with ϕ state formula, iff K ,π(k) |= ϕ.
5. For path formulas ψ, ψ1, and ψ2, it holds:

(a) K ,π,k |=¬ψ iff not K ,π,k |=ψ, that is K ,π,k 6|=ψ;
(b) K ,π,k |=ψ1∧ψ2 iff K ,π,k |=ψ1 and K ,π,k |=ψ2;
(c) K ,π,k |= ψ1 ∨ψ2 iff K ,π,k |= ψ1 or K ,π,k |= ψ2. (d)
K ,π,k |= Xψ iff k < |π|−1 and K ,π,(k +1) |= ψ;
(e) K ,π,k |= X̃ψ iff k = |π|−1 or K ,π,(k +1) |= ψ;
(f) K ,π,k |= ψ1Uψ2 iff there is an index i, with k ≤ i < |π|,
such that K ,π, i |= ψ2 and, for all indexes j with k ≤ j < i,
it holds K ,π, j |= ψ1;
(g) K ,π,k |= ψ1Rψ2 iff for all indexes i, with k ≤ i < |π|, it
holds K ,π, i |= ψ2 or there is an index j with k≤ j < i, such
that K ,π, j |= ψ1.
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B Proof of Lemma 3.3

For all state formulas ϕ1 and ϕ2 (resp., path formulas
ψ1 and ψ2), we say that ϕ1 implies ϕ2, formally ϕ1 ⇒
ϕ2, (resp., ψ1 implies ψ2, formally ψ1 ⇒ ψ2) iff for all
Kripke structures K and worlds w ∈ dom(K ) it holds that
if K ,w |= ϕ1 then K ,w |= ϕ2 (resp., mins(PA(K ,w,ψ1))⊆
mins(PA(K ,w,ψ2))). It is obvious that, ϕ1 is equivalent to
ϕ2 (resp., ψ1 is equivalent to ψ2) iff ϕ1⇒ ϕ2 and ϕ2⇒ ϕ1
(resp., ψ1⇒ ψ2 and ψ2⇒ ψ1).

The following two propositions are immediately derived
from the semantics of GCTL∗.

Proposition B.1. For all state formulas ϕ, path formulas ψ,
finite sequences of path formulas {ψi}n

i , and degree g ∈N+
it holds that: (i) E≥0ψ≡ t, (ii) E>gψ⇒ E≥gψ, (iii) Eϕ≡ ϕ,
(iv) E>gϕ≡ f, (v) E≥g(ϕ∧ψ)≡ ϕ∧E≥gψ, (vi) E(ϕ∨ψ)≡
ϕ∨ Eψ, (vii) E>g(ϕ∨ψ) ≡ ¬ϕ∧ E>gψ, (viii) E

V
i ψi ⇒V

i Eψi, (ix) E
W

i ψi≡
W

i Eψi, (x) E>g W
i ψi⇒

W
i E

<gψi, (xi)
EX̃ψ≡ EX̃ f ∨EXψ, and (xii) E>gX̃ψ≡ E>gXψ∧EX¬ψ.

Proposition B.2. For all path formulas ψ, ψ1, and ψ2, it
holds that: (i) X̃ψ ≡ X̃ f∨X ψ, (ii) ψ1U ψ2 ≡ ψ2 ∨ψ1 ∧
X (ψ1Uψ2), and (iii) ψ1Rψ2 ≡ ψ2∧ (ψ1∨ X̃ (ψ1Rψ2)).

Let X be a set of objects and R ⊆ X×X be an equiv-
alence relations on X, i.e., R is reflexive, symmetric, and
transitive. Then, it is possible to split the set X into a par-
tition of equivalence classes induced by the relation R. Let
us denote by ER(X) the set of all these equivalence classes,
i.e., for all C1,C2 ∈ ER(X), with C1 6= C2, it holds that (i)
/0 6= C1 ⊆ X and (ii) for all elements x,y ∈C1 and z ∈C2, it
holds that (x,y)∈R and (x,z) 6∈R. It is important to remind
that for a partition of a set X the following two properties
hold: (i)

S
C∈ER(X)C = X and (ii) for all C1,C2 ∈ ER(X),

with C1 6= C2, it holds that C1∩C2 = /0.

Definition B.3. (i-step congruence relation) Let K be a
Kripke structure and P be a set of paths in pth(K ) such
that there is i ∈ N for which π ∈ P implies |π| > i. Then,
for all paths π,π′ ∈P, we say that π is i-step congruent to
π′, denoting this by π �i π′, iff for all j ∈ N(i) it holds that
π( j) = π′( j), i.e., the two paths are identical up to the i-th
position.

Definition B.4. (n-size 1-step classes set) Let E�1(P) be
the set of 1-step congruence classes on P. Then, by In(P)
we denote the set of all paths in P that are in a congruence
class of P itself with cardinality n, i.e., In(P) = {π ∈ P |
∃C ∈ E�1(P), |C|= n : π ∈C}.

Lemma B.5. For all finite sets P it holds that { |In(P)|
n }|P|n ∈

P(|P|).

Proof. Since P is finite, it holds that E�1(P) is finite as
well. Consequently, the sets of equivalence classes given by

Qn = {C ∈ E�1(P) | |C| = n} satisfy |Qn| < ω, i.e., there
exists a number kn ∈ N such that |Qn| = kn. Then, since
In(P) =

S
C∈Qn C, it is obvious that |In(P)| = kn ∗ n. By

Definition B.4, it follows that {In(P)}|P|n is a partition of
P, so we have that ∑

|P|
n=1 |In(P)| = |P|, and then ∑

|P|
n=1 n ∗

|In(P)|
n = |P|. Now, by the previous observation, we have

that for all numbers n ∈N, it holds |In(P)|
n = kn ∈N. Hence,

the sequence { |In(P)|
n }|P|n is a solution of the Diophantine

equation 1 ∗ p1 + 2 ∗ p2 + . . . + |P| ∗ p|P| = |P| and thus

{ |In(P)|
n }|P|n ∈ P(|P|).

Let π ∈ pth(K ) and n ∈ N(|π|−1). With π≥n we denote
the suffix of π starting at position n. Formally, (i) |π≥n| =
|π| − n and (ii) for all indexes i ∈ N(|π|−n−1), it holds that
π(n+ i) = π≥n(i).

Lemma B.6. Let K = 〈AP,W,R,L〉 be a Kripke structure,
w,w′ ∈W be two worlds such that (w,w′) ∈ R, and ψ be a
GCTL∗ path formula. Then, it holds that PA(K ,w′,ψ) =
{π≥1 ∈ pth(K ,w′) | π ∈PA(K ,w,Xψ)}.

Proof. By definition, we have that π ∈ PA(K ,w′,ψ) iff
for all paths π′ ∈ pth(K ,w′) such that π 4 π′ it holds that
K ,π′,0 |= ψ. Since (w,w′) ∈ R, for all π,π′ ∈ pth(K ,
w′) there exist π′′,π′′′ ∈ pth(K ,w) such that π = π′′≥1 and
π′ = π′′′≥1, so we have that π ∈ PA(K ,w′,ψ) iff for all
paths π′′′ ∈ pth(K ,w) such that π′′≥1 4 π′′′≥1 it holds that
K ,π′′′≥1,0 |= ψ, thus K ,π′′′,1 |= ψ and then K ,π′′′,0 |= Xψ.
Now, we can observe that, since π′′,π′′′ ∈ pth(K ,w), it
holds that π′′ 4 π′′′ iff π′′≥1 4 π′′′≥1, thus we obtain that
π ∈PA(K ,w′,ψ) iff for all paths π′′′ ∈ pth(K ,w) such that
π′′ 4 π′′′ it holds that K ,π′′′,0 |= X ψ, i.e., π′′ ∈ PA(K ,
w,X ψ), where π = π′′≥1. Finally, π ∈ PA(K ,w′,ψ) iff
π′′≥1 = π ∈ pth(K ,w′), with π′′ ∈ PA(K ,w,X ψ), i.e., π ∈
{π′′≥1 ∈ pth(K ,w′) | π′′ ∈PA(K ,w,Xψ)}.

Lemma B.7. Let ex(ψ,g) =
W
{hi}

g
i ∈CP(g)

Vg
i=1 E≥hiXE≥iψ.

Then, for all GCTL∗path formulas ψ it holds that:

i) E≥gXψ≡ ex(ψ,g);

ii) E≥gX̃ψ≡

{
EX̃ f ∨EXEψ, if g = 1;
EXE¬ψ∧ ex(ψ,g), otherwise.

Proof. Item (i), (⇒). First, assume that K = 〈AP,W,
R,L〉 is a model for E≥gX ψ in w ∈ W. Then, by defi-
nition of the semantic for existential quantifiers, there ex-
ists a subset P of mins(PA(K ,w,X ψ)), with |P| = g. We
want to show that, let hi = ∑

g
n=i
|In(P)|

n , it holds K ,w |=Vg
i=1 E≥hiX E≥iψ. For each number n ∈ N(g)+, consider

the partition Qn = E�1(In(P)) = {C ∈E�1(P) | |C|= n} of
In(P) in kn = |In(P)|

n sets. For a fixed n ∈ N+, we indicate
all these classes with the sequence {Cn,k}kn

k . Since Cn,k ⊆
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P⊆mins(PA(K ,w,Xψ)), it is obvious that all its elements
are incomparable minimal paths. Moreover, it is possible
to associate a world wn,k to each class Cn,k such that for all
π∈Cn,k it holds that π(1) = wn,k. By Lemma B.6, since (w,
wn,k) ∈ R, we have that PA(K ,wn,k,ψ) = {π′≥1 ∈ pth(K ,
wn,k) | π′ ∈PA(K ,w,Xψ)}, so, for all π∈Cn,k, it holds that
π≥1 ∈ mins(PA(K ,wn,k,ψ)). Indeed, π ∈ P ⊆ PA(K ,w,
X ψ) and π≥1 ∈ pth(K ,wn,k), thus π≥1 ∈ PA(K ,wn,k,ψ).
Moreover, since π is minimal in PA(K ,w,X ψ), also π≥1
is minimal in PA(K ,wn,k,ψ), because otherwise if there is
π′ ∈ pth(K ,w), π′ 6= π, such that π′≥1 4 π≥1 we have π′ 4 π

, which contradicts the fact that π is minimal. Now, |Cn,k|=
n and {π≥1 ∈ pth(K ,wn,k) | π ∈Cn,k} ⊆mins(PA(K ,wn,k,
ψ)), thus |mins(PA(K ,wn,k,ψ))| ≥ n. Then, for each i,n ∈
N(g)+, with i ≤ n, and for all k ∈ N(kn)+, it holds that
K ,wn,k |= E≥iψ, so for all π∈Q′n = {π′ ∈ pth(K ,w) | |π′|=
2, ∃k ∈ N(kn)+ : π(1) = wn,k} we have K ,π(1) |= E≥iψ

that is K ,π,1 |= E≥iψ and then K ,π,0 |= X E≥iψ. This
means that for all π ∈

Sg
n=i Q′n we have K ,π,0 |= XE≥iψ.

Observe now that, since each world wn,k is the character-
istic world for the equivalence class Cn,k ∈ E�1(P), there
is a different world wn,k for each class Cn,k, so we have
that all the sets in {Q′n}

g
n are disjoint and |Q′n| = kn. It

is obvious then that
Sg

n=i Q′n ⊆ mins(PA(K ,w,X E≥iψ))
so |mins(PA(K ,w,X E≥iψ))| ≥ |

Sg
n=i Q′n| = ∑

g
n=i |Q′n| =

∑
g
n=i kn = ∑

g
n=i
|In(P)|

n = hi. Trivially, it follows that K ,w |=
E≥hiXE≥iψ and then K ,w |=

Vg
i=1 E≥hiXE≥iψ. Now, by

Lemma B.5, we have { |In(P)|
n }g

n ∈ P(g), and then, by the
definition of the set CP(g), it holds {hi}g

i ∈ CP(g). Hence,
we get the thesis for this direction.

Item (i), (⇐). Assume now that K is a model forW
{hi}

g
i ∈CP(g)

Vg
i=1 E≥hiXE≥iψ in w ∈W. Then, there is a se-

quence {hi}g
i ∈ CP(g) such that K ,w |=

Vg
i=1 E≥hiXE≥iψ.

Thus, for all indexes i ∈ N(g)+, it holds that |mins(PA(K ,

w,X E≥iψ))| ≥ hi, since K ,w |= E≥hiX E≥iψ. Let
ki = hi − hi+1, for i ∈ N(g−1)+, and kg = hg. Since
{hi}g

i ∈ CP(g), it is obvious that {ki}g
i ∈ P(g). Now,

since |mins(PA(K ,w,X E≥gψ)))| ≥ hg = kg, we can con-
struct a set Pg ⊆ mins(PA(K ,w,X E≥gψ)), with |Pg| =
kg. Moreover, for all i ∈ N(g−1)+, let Pi ⊆ mins(PA(K ,

w,X E≥iψ)) \
Sg

j=i+1 P j, with |Pi| = hi − |
Sg

j=i+1 P j| ≤
|(mins(PK wXE≥iψ) \

Sg
j=i+1 P j)|. It is evident that all

the sets Pi are disjoint. Furthermore, each of them has just
ki elements. Indeed, by construction we have that |Pg| =
kg, and, if all sets P j, with j > i, have cardinality ki, it
holds that |Pi|= hi−|

Sg
j=i+1 P j|= hi−∑

g
j=i+1 |P j|= hi−

∑
g
j=i+1 k j = hi−hi+1 = ki. Since for all i ∈ N it holds that

mins(PA(K ,w,XE≥iψ))⊇mins(PA(K ,w,XE≥i+1ψ)), we
have P′ =

Sg
i=1 Pi ⊆mins(PA(K ,w,XE≥1ψ)), so all paths

in P′ are incomparable, i.e. P′ = mins(P′). For sim-
plicity, for all i ∈ N(g)+, we denote with the sequence

{πi, j}ki
j all the paths into the set Pi. Note that all

paths πi, j have length 2. Indeed by definition, PA(K ,w,
XE≥1ψ) is equal to {π∈ pth(K ,w) | ∀π′ ∈ pth(K ,w) : π4
π′ implies K ,π′,0 |= XE≥1ψ}, so, since K ,π′,0 |= XE≥1ψ

implies K ,π′(1) |= E≥1ψ and π(1) = π′(1), we have PA(K ,
w,X E≥1ψ) = {π ∈ pth(K ,w) | K ,π(1) |= E≥1ψ}. Then,
applying the minimal structures function to the above sets,
we obtain that P′ ⊆mins(PA(K ,w,XE≥1ψ)) = mins({π ∈
pth(K ,w) | K ,π(1) |= E≥1ψ}) = {π ∈ pth(K ,w) | |π| =
2, K ,π(1) |= E≥1ψ}. Now, for all indexes i ∈ N(g)+,
j ∈ N(ki)+, set wi, j = πi, j(1). Since all the paths πi, j are
incomparable paths of length 2 and πi, j(0) = w, we de-
rive that all the worlds wi, j are different. Moreover, since
K ,πi, j(1) |= E≥iψ it holds also that K ,wi, j |= E≥iψ and
then |mins(PA(K ,wi, j,ψ))| ≥ i. Thus, since (w,wi, j) ∈
R, by Lemma B.6 we obtain that |mins({π≥1 ∈ pth(K ,
wi, j) | π ∈ PA(K ,w,X ψ)})| ≥ i. At this point, π′≥1 ∈
mins({π≥1 ∈ pth(K ,wi, j) | π ∈ PA(K ,w,X ψ)}) implies
that π′ is minimal, i.e., π′ ∈ mins(PA(K ,w,X ψ)). Indeed,
if this is not the case, there is π′′ ∈ pth(K ,w), π′′ 6= π′, such
that π′′ 4 π′, and then π′′≥1 4 π′≥1 that contradicts the fact
that π′≥1 is minimal. Then, let Pi, j = {π′ ∈ pth(K ,w) |
π′≥1 ∈ mins({π≥1 ∈ pth(K ,wi, j) | π ∈ PA(K ,w,X ψ)})},
we have Pi, j ⊆mins(PA(K ,w,Xψ)). Furtermore, |Pi, j|=
i. Let now P =

Sg
i=1

Ski
j=1 Pi, j. It is evident that P ⊆

mins(PA(K ,w,X ψ)) and then |mins(PA(K ,w,X ψ))| ≥
|P|. Moreover, |P| = ∑

g
i=1 ∑

ki
j=1 |Pi, j| = ∑

g
i=1 ∑

ki
j=1 i =

∑
g
i=1 i∗ki. Since, as we have previously noted, {ki}g

i ∈P(g),
it holds that |P| = g, so |mins(PA(K ,w,X ψ))| ≥ g. The
thesis for the other direction follows immediately.

Item (ii). At the formula E≥gX̃ψ we can apply in se-
quence either the equivalence (xi) of Proposition B.1, if
g = 1, or the equivalence (xii) of the same proposition and
then the item (i) of this lemma, obtaining the thesis.

Now, we are able to prove Lemma 3.3.

Proof. To show the equivalence (i), it is possible to apply, at
the formula E≥g(ϕ1Uϕ2), the following sequence of equiva-
lences: item (ii) of Proposition B.2, either item (vi), if g = 1,
or item (vii) of Proposition B.1 otherwise, item (v) of Propo-
sition B.1, and, finally, item (i) of Lemma B.7.

At the same way, to show the equivalence (ii), it is possi-
ble to apply, at the formula E≥g(ϕ1R ϕ2), the following se-
quence of equivalences: item (iii) of Proposition B.2, item
(v) of Proposition B.1, either item (vi), if g = 1, or item
(vii) of Proposition B.1 otherwise, and, finally, item (ii) of
Lemma B.7.

C Proof of the upper bound in Theorem 3.4

Proof. Given a GCTL formula ϕ, we proceed as follows.
First we show a fixed point form of the formula derived
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by the equivalences shown in 3.3 and then we propose a
translation which allows us to obtain an equivalent graded
µ-calculus formula.

By Lemma 3.3, we notice that E≥g(ϕ1U ϕ2) and
E≥g(ϕ1R ϕ2) formulas are definable in a fixed point form.
This can be obtained by putting the equivalences written
in lemma in terms of functions, that is in a more for-
mal way, we can write E≥g(ϕ1Uϕ2)≡ eu(E≥g(ϕ1Uϕ2),ϕ1,
ϕ2,g) and E≥g(ϕ1R ϕ2) ≡ er(E≥g(ϕ1R ϕ2),ϕ1,ϕ2,g), for
two suitable fixed point functions eu(·, ·, ·, ·) and er(·, ·, ·,
·) such that until formulas with degree g do not occur into
eu(·, ·, ·,g) nor the release ones with degree g into er(·, ·,
·,g). For example, when g > 1, we have that eu(X ,ϕ1,ϕ2,
g) =¬ϕ2∧ϕ1∧ex′(ϕ1Uϕ2,g)∧EXX and er(X ,ϕ1,ϕ2,g) =
ϕ2 ∧¬ϕ1 ∧EXE¬(ϕ1R ϕ2)∧ ex′(ϕ1R ϕ2,g)∧EX X , where
ex′(ψ,g) =

W
{hi}

g
i ∈CP′(g)

Vg−1
i=1 E≥hiX E≥iψ, with CP′(g) =

CP(g) \ {{hi}g
i | hg = 1}. Note that |ex′(ψ,g)| = Θ((|ψ|+

g
2 ) ∗ 2α

√
g), so we have |eu(X ,ϕ1,ϕ2,g)| = |er(X ,ϕ1,ϕ2,

g)|= Θ(|ϕ1|+ |ϕ2|+g∗2α
√

g).
Now, w.l.o.g we assume that ϕ is in existential normal

form (we recall that any GCTL formula can be linearly
translated in this form). Thanks to the above fixed point
functions, we can now conclude the proof by showing a
translation function “trn(·) : GCTL 7→ graded µ-calculus”
which allows to get the desired graded µ-calculus formula
ϕ′ = trn(ϕ) equivalent to ϕ. The function trn(·) is induc-
tively defined as follows: (i) trn(p) = p with p ∈ AP; (ii)
trn(¬ϕ) =¬trn(ϕ); (iii) trn(E≥0ψ) = t; (iv) trn(E≥gXϕ) =
¬ end ∧ 〈g− 1〉 trn(ϕ); (v) trn(E≥1X̃ϕ) = end ∨ ¬ end ∧
〈0〉 trn(ϕ); (vi) trn(E>gX̃ϕ) = ¬ end ∧ 〈0〉 trn(¬ϕ) ∧
〈g〉 trn(ϕ); (vii) trn(E≥g(ϕ1U ϕ2)) = µX .trn(eu(X ,ϕ1,ϕ2,
g)); (viii) trn(E≥g(ϕ1R ϕ2)) = νX .trn(er(X ,ϕ1,ϕ2,g)),
where g ∈ N+.

By induction on the structure of the formula, it is not
hard to see that, for each model K = 〈AP,W,R,L〉 of ϕ

the structure K ′ = 〈AP∪{end},W,R,L′〉 is a model of ϕ′,
where, let W′ = {w ∈W | @w′ ∈W : (w,w′) ∈ R}, for all
w ∈W \W′ and w′ ∈W′, it holds that L′(w) = L(w) and
L′(w′) = L(w′)∪{end}. Moreover, from a model K = 〈AP,
W,R,L〉 of ϕ′, it is possible to extract one for ϕ by simply
substituting the relation R with a new relation R′ defined as
follows: for all w,w′ ∈W, it holds that (w,w′) ∈ R′ iff (w,
w′) ∈ R and end 6∈ L(w).

D Proof of Theorem 3.6

Consider two Kripke structures K = 〈AP,W,R,L〉 and
K ′= 〈AP′,W′,R′,L′〉. We say that K is bisimilar to K ′, de-
noting this by K ∼ K ′ iff there exists a non-empty relation
B⊆W×W′, called relation of bisimulation, such that for all
pairs of worlds (w,w′) ∈ B it holds that: (i) L(w) = L′(w′);
(ii) (w,v) ∈ R implies that there exists a world v′ ∈W′ such

that (v,v′) ∈ B and (w′,v′) ∈ R′; (iii) (w′,v′) ∈ R′ implies
that there exists a world v ∈ W such that (v,v′) ∈ B and
(w,v) ∈ R. Note that also B−1 = {(w′,w) ∈W′×W | (w,
w′) ∈ B} is a relation of bisimulation.

It is easy to see that an unwinding function is a particular
relation of bisimulation.

Proof. Item (i) Let K = 〈AP,W,R,L〉 be a Kripke struc-
ture. We show that for each GCTL formula ϕ and world
w ∈W, it holds that K ,w |= ϕ if and only if UK

w ,ε |= ϕ.
The proof procedes by mutual induction on the structure
of the formula ϕ (external induction) and on the structure
of all path formulas it contains (internal induction). Let us
start with the external induction. The base step for atomic
propositions and the boolean combination cases are easy
and left to the reader. Therefore, let us consider the case
where ϕ is of the form E≥gψ, for g ∈ N. The proof pro-
ceeds by internal induction on the path formula ψ. As base
case, ψ does not contain any quantifier (i.e., ψ is a temporal
operators defined on combinations of atomic propositions).
First, note that UK

w is also an unwinding of itself, so for the
construction of pth(K ,w) and pth(UK

w ,ε) we can choose
the same unwinding, obtaining that for all worlds w ∈W, it
holds pth(K ,w) = pth(UK

w ,ε). Now we show that for all
paths π ∈ pth(K ,w) it holds that K ,π,0 |= ψ if and only
if UK

w ,π,0 |= ψ. Indeed, if ψ is a state formula, by the ex-
ternal inductive hypothesis, we obtain the above statement.
Then, by induction on the structure of ψ, it is easy to show
that the above statement holds for all path formulas. By def-
inition of the satisfiability path set, it follows that PA(K ,w,
ψ) = PA(UK

w ,ε,ψ). Therefore, by the semantics of the ex-
istential quantifiers, we have that K ,w |= E≥gψ if and only
if UK

w ,ε |= E≥gψ. Now, let us consider the case where ψ

contains n > 0 nested quantifiers. For the internal inductive
step, we have K ,w |= E≥gψ′ if and only if UK

w ,ε |= E≥gψ′,
where ψ′ contains n− 1 nested quantifiers. For reasoning
analogous to the internal base case, we obtain that PA(K ,
w,ψ) = PA(UK

w ,ε,ψ), where we recall that ψ contains n
nested quantifiers, and then K ,w |= E≥gψ if and only if
UK

w ,ε |= E≥gψ. So we have done with the proof.
Item (ii) Consider a GCTL formula ϕ and suppose that

it is satisfiable. Then, there is a model K for ϕ in a world
w ∈ dom(K ). By item (i), ϕ is satisfied at the root of the
unwinding UK

w . Thus, since UK
w is a tree, immediately fol-

lows that ϕ is satisfied on a tree model.
Item (iii) Since the µ-calculus has the finite model prop-

erty and there is a translation [18] from graded µ-calculus
to µ-calculus that, with the use of a finite number of fresh
atomic propositions, transform the graded modalities into
the ungraded ones, we obtain that also the graded µ-calculus
satisfies the same property. At this point, using the transla-
tion between GCTL and graded µ-calculus of Theorem 3.4,
we directly derive the finite model property for our logic.
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Item (iv) We show that GCTL distinguishes between
bisimilar models. Consider the two trees T and T ′ such
as T contains only the root node and one successor, while
T ′ contains also another successor. Formally, T = 〈AP,W,
R,L〉, with AP = /0, W = {ε,0}, and R = {(ε,0)}, and T ′ =
〈AP,W′,R′,L〉, with W′ = W∪{1}, and R′ = R∪{(ε,1)}.
From the definition of bisimulation, it immediately follows
that K ∼K ′. Now, consider the GCTL formula ϕ = E>1Xt.
Then, we have that PA(T ,ε,X t) = {π}, with π(1) = 0, and
PA(T ′,ε,X t) = {π,π′}, with π′(1) = 1. Since π and π′

are incomparable, it holds that {π}= mins(PA(T ,ε,Xt)) 6=
mins(PA(T ′,ε,X t)) = {π,π′}, so T ,ε 6|= ϕ, but T ′,ε |= ϕ,
and then T 6|= ϕ but T ′ |= ϕ, i.e., ϕ is not an invariant on K
and K ′.

Item (v) Consider the above two bisimilar tree models
T and T ′. Since CTL is invariant under bisimulation, it can-
not distinguish between them. Moreover, CTL is a sublogic
of GCTL, so we have that the latter can characterize more
models than those characterizable by the former logic. So,
we have that GCTL is more expressive than CTL.

E Construction of the automaton in Theorem
4.5

First, we recall the classical definition of Fischer-Ladner
closure cl(ϕ) of ϕ, i.e., the set of all state formulas con-
tained in ϕ (including ϕ). Let g ∈ N+, Qnt ∈ {E≥g,A<g},
Op ∈ {∧,∨}, Op ′ ∈ {X , X̃} and Op ′′ ∈ {U ,R } we have:
(i) ϕ ∈ cl(ϕ), (ii) if ϕ1Op ϕ2 ∈ cl(ϕ) then ϕ1,ϕ2 ∈ cl(ϕ),
(iii) if Qnt Op ′ϕ′ ∈ cl(ϕ) then ϕ′ ∈ cl(ϕ), and (iv) if
Qnt (ϕ1Op ′′ϕ2) ∈ cl(ϕ) then ϕ1,ϕ2 ∈ cl(ϕ). Let \ϕ′ de-
note the GCTL formula in positive normal form equivalent
to ¬ϕ′. The extended closure ecl(ϕ) satisfies all the above
properties of cl(ϕ) and additionally it satisfies the follow-
ing: for all g ∈ N+, Op ∈ {X , X̃}, and ψ until or release
GCTL path formula, it holds that (i) if E≥gOpϕ′ ∈ ecl(ϕ)
then 〈ϕ′〉,〈\ϕ′〉 ∈ ecl(ϕ), (ii) if A<gOp ϕ′ ∈ ecl(ϕ) then
[ϕ′], [\ϕ′] ∈ ecl(ϕ), (iii) if E≥gψ ∈ ecl(ϕ) then 〈ψ〉,〈\ψ〉 ∈
ecl(ϕ), (iv) if A<gψ ∈ ecl(ϕ) then [ψ], [\ψ] ∈ ecl(ϕ), (v) if
〈ϕ1U ϕ2〉 or [ϕ1R ϕ2] are in ecl(ϕ) then \ϕ2 ∈ ecl(ϕ), and
(iv) if 〈ϕ1Rϕ2〉 or [ϕ1Uϕ2] are in ecl(ϕ) then \ϕ1 ∈ ecl(ϕ).
It is obvious that |ecl(ϕ)|= O(|ϕ|).

The formal definition of the δ follows. For all σ ∈ 2AP

and g,h ∈ N(b)+, with h 6= 1, we set:
• δ(t,0,σ) = t

• δ(f,0,σ) = f

• δ(p,0,σ) = (p ∈ σ)
• δ(¬p,0,σ) = (p 6∈ σ)
• δ(ϕ1∧ϕ2,0,σ) = (ε,ϕ1)∧ (ε,ϕ2)
• δ(ϕ1∨ϕ2,0,σ) = (ε,ϕ1)∨ (ε,ϕ2)
• δ(E≥gXϕ,0,σ) = (〈g〉,〈ϕ〉)
• δ(A<gX̃ϕ,0,σ) = ([g], [ϕ])
• δ(EX̃ϕ,0,σ) = ([1], f)∨ (〈1〉,〈ϕ〉)
• δ(AXϕ,0,σ) = (〈1〉, t)∧ ([1], [ϕ])

• δ(E≥hX̃ϕ,0,σ) = (〈1〉,〈\ϕ〉)∧(〈h〉,〈ϕ〉)
• δ(A<hXϕ,0,σ) = ([1], [\ϕ])∨([h], [ϕ])
• δ(〈ϕ〉,1,σ) = (ε,ϕ)
• δ([ϕ],1,σ) = (ε,ϕ)
• δ(〈ϕ〉,h,σ) = f

• δ([ϕ],h,σ) = t

• δ(E≥g(ϕ1Uϕ2),0,σ) = δ(〈ϕ1Uϕ2〉,g,σ)
• δ(A<g(ϕ1Uϕ2),0,σ) = δ([ϕ1Uϕ2],g,σ)
• δ(E≥g(ϕ1Rϕ2),0,σ) = δ(〈ϕ1Rϕ2〉,g,σ)
• δ(A<g(ϕ1Rϕ2),0,σ) = δ([ϕ1Rϕ2],g,σ)
• δ(〈ϕ1Uϕ2〉,1,σ) = (ε,ϕ2)∨ (ε,ϕ1)∧ (〈1〉,〈ϕ1Uϕ2〉)
• δ(〈ϕ1Uϕ2〉,h,σ) = (ε, \ϕ2)∧ (ε,ϕ1)∧ (〈h〉,〈ϕ1Uϕ2〉)
• δ([ϕ1Uϕ2],1,σ) = (ε,ϕ2)∨ (ε,ϕ1)∧ (〈1〉, t)∧

∧ ([1], [ϕ1Uϕ2])
• δ([ϕ1Uϕ2],h,σ) = (ε,ϕ2)∨ (ε, \ϕ1)∨ ([1], [\(ϕ1Uϕ2)])∨

∨ ([h], [ϕ1Uϕ2])
• δ(〈ϕ1Rϕ2〉,1,σ) = (ε,ϕ2)∧ ((ε,ϕ1)∨ ([1], f)∨

∨ (〈1〉,〈ϕ1Rϕ2〉))
• δ(〈ϕ1Rϕ2〉,h,σ) = (ε,ϕ2)∧ (ε, \ϕ1)∧ (〈1〉,〈\(ϕ1Rϕ2)〉)∧

∧ (〈h〉,〈ϕ1Rϕ2〉)
• δ([ϕ1Rϕ2],1,σ) = (ε,ϕ2)∧ ((ε,ϕ1)∨ ([1], [ϕ1Rϕ2]))
• δ([ϕ1Rϕ2],h,σ) = (ε, \ϕ2)∨ (ε,ϕ1)∨ ([h], [ϕ1Rϕ2])

F Construction of the automaton in Theorem
4.6

Definition F.1. (Satisfiability function) A satisfiability

function sat : (H,σ) ∈ 2Q×N(b) × Σ 7→ sat(H,σ) ∈ 22Dε
b×Q

maps a set H and a label σ into a set of subset of Dε

b×Q
such that for all S ⊆ Dε

b×Q it holds that S ∈ sat(H,σ) iff
S |=

V
(q,g)∈H δ(q,g,σ).

Definition F.2. (Develop function) A develop func-
tion dev : (H,σ,d) ∈ 2Q×N(b) × Σ× N 7→ dev(H,σ,d) ∈
22

Nε×Q×N(b) maps a set H, a label σ, and a number d into
a set of subset of Nε × Q× N(b) such that for all E ⊆
Nε×Q×N(b) it holds that E ∈ dev(H,σ,d) iff there exists
S ∈ sat(H,σ) such that E ∈ exec(S,N(d)).

Definition F.3. (Pair develop function) A pair develop
function pairdev : (H,H ′,σ,d) ∈ (2Q×N(b))2 × Σ × N 7→
pairdev(H,H ′,σ,d) ∈ 2(2

Nε×Q×N(b) )2
maps the two sets H

and H ′, a label σ, and a number d into a pair of sets of sub-
set of Nε×Q×N(b) such that for all E,E ′ ⊆ Nε×Q×N(b)
it holds that (E,E ′) ∈ pairdev(H,H ′,σ,d) iff E ′ ⊆ E, E ∈
dev(H,σ,d), and if H ′ = /0 then E ′ = E otherwise E ′ ∈
dev(H ′,σ,d).

Proof. Here, we give the construction of the nondeterminis-
tic automaton A ′ from a partitioning alternating automaton
A . By using a non trivial proof, it can be shown that L(A) 6=
/0 iff L(A ′) 6= /0. A proof of correctness can be found in the
accompanying Technical Report [5]. For a PABT A = 〈Q,
Σ,b,δ,q0,g0,F〉we construct an NBT A ′ = 〈Q′,Σ,d′,δ′,q′0,
F ′〉 as follows:
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1. Q′ = (2Q×N(b))2;

2. d′ = n∗b(b+1)/2;

3. q′0 = ({(q0,g0)}, /0);

4. F ′ = 2Q×N(b) ×{ /0};

5. δ′ : Q′×Σ 7→ 2Q′(d
′+1)

is such that for all H ⊆Q×N(b),
H ′ ⊆ H and σ ∈ Σ, we have:

δ
′((H,H ′),σ) =

[
(E,E′)∈

pairdev(H,H′ ,σ,d′−1)

{(
d′−1

∏
d=0

(Ed ,E ′d \F))× (Eε,E ′ε \F)}

with Ed = {(q,g) ∈ Q×N(b) | (d,q,g) ∈ E}.
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