
Relentful Strategic Reasoning in
Alternating-Time Temporal Logic1,2

Fabio Mogavero, Università degli Studi di Napoli Federico II, Napoli, Italy.

Aniello Murano, Università degli Studi di Napoli Federico II, Napoli, Italy.

Moshe Y. Vardi, Rice University, Houston, TX, U.S.A.

Abstract
Temporal logics are a well investigated formalism for the specification, verification, and synthesis of reactive systems.
Within this family, Alternating-Time Temporal Logic (ATL∗, for short) has been introduced as a useful generalization
of classical linear and branching-time temporal logics, by allowing temporal operators to be indexed by coalitions of
agents. Classically, temporal logics are memoryless: once a path in the computation tree is quantified at a given node,
the computation that has led to that node is forgotten. Recently, mCTL∗ has been defined as a memoryful variant
of CTL∗, where path quantification is memoryful. In the context of multi-agent planning, memoryful quantification
enables agents to “relent” and change their goals and strategies depending on the histories of evolutions.

In this paper, we introduce Relentful ATL∗(RATL∗, for short), a kind of temporally-memoryful extension of ATL∗,
in which a formula is satisfied at a certain node of a play by taking into account both its future and past. We study the
expressive power of RATL∗, its succinctness, as well as related decision problems. We investigate the relationship
between memoryful quantifications and past modalities and prove their equivalence. We also show that both the
relentful and the past extensions come without any computational price; indeed, we prove that both the satisfiability
and the model-checking problems are 2EXPTIME-COMPLETE, as for ATL∗.

Keywords: Alternating-Time Temporal Logics, Backward Modalities, Strategic Reasoning, Game Logics

1 Introduction
Multi-agent concurrent systems recently emerged as a new paradigm for better understanding
distributed systems [14, 50]. In such a formalization, different processes can interact in an
adversarial or cooperative manner in order to achieve a number of possibly different goals.
This setting can be seen as a multi-player game in the typical framework of game theory [39].

Classical branching-time temporal logics, such as CTL∗ [13], turn out to be of very limited
power when applied to multi-agent systems. For example, consider the property p: “processes
1 and 2 cooperate to ensure that a system (having more than two processes) never enters a
failure state”. It is well known that CTL∗ cannot express p [1]. Rather, CTL∗ can only say
whether the set of all agents can or cannot prevent the system from failing.

In order to allow the temporal-logic framework to work within the setting of multi-agent
systems, Alur, Henzinger, and Kupferman introduced Alternating-Time Temporal Logic (ATL∗,
for short) [1]. This is a generalization of CTL∗ obtained by replacing the path quantifiers,
“E” (there exists) and “A” (for all), with “cooperation modalities” of the form 〈〈A〉〉 and [[A]],
where A is a set of agents. These modalities can be used to represent the power that a coalition

1Work supported in part by FP7 EU project 600958-SHERPA and POR Embedded System Cup B25B09090100007, by NSF grants CNS 1049862 and
CCF-1139011, by NSF Expeditions in Computing project "ExCAPE: Expeditions in Computer Augmented Program Engineering", by BSF grant 9800096,
and by gift from Intel.

2This work is partially based on the paper [35], which appeared in LPAR’10.

1L. J. of Logic and Computation, Vol. 0 No. 0, pp. 1–33 0000 © Oxford University Press

2 Relentful Strategic Reasoning in Alternating-Time Temporal Logic

of agents has to achieve certain results. In particular, they can express selective quantifications
over those paths that are obtained as outcomes of the infinite game between the coalition and
its complement. ATL∗ formulas are interpreted over concurrent game structures (CGS, for
short) [1], closely related to systems in [14], which model a set of interacting processes. Given
a CGS G and a set A of agents, the ATL∗ formula 〈〈A〉〉ψ is satisfied at a state s of G iff there
exists a strategy for the team A such that, no matter the strategy the counterteam Ag \ A
executes, the resulting outcome of the interaction in G satisfies ψ at s. Coming back to the
previous example, it is easy to see that the property p can be expressed by the ATL∗ formula
〈〈{1, 2}〉〉G ¬fail , where G is the classic LTL temporal operator “globally”.

Traditionally, temporal logics are memoryless: once a path in the underlying structure
(usually a computation tree) is quantified at a given state, the computation that led to that state
is forgotten [25]. In the case of ATL∗, we have even more: the logic is also “relentless”, in
the sense that the agents are not able to formulate their strategies depending on the history
of the computation; when 〈〈A〉〉ψ is asserted in a state s, its truth is independent of the path
that led to s. Inspired by a work on strong cyclic planning [12], Pistore and Vardi proposed
a logic that can express the spectrum between strong goal Aψ and the weak goal Eψ in
planning [40]. A novel aspect of the Pistore-Vardi logic is that it is “memoryful”, in the sense
that the satisfiability of a formula at a state s depends on the future as well as on the past,
i.e., the trace starting from the initial state and leading to s. Nevertheless, this logic does not
have a standard temporal logical syntax (for example, it is not closed under conjunction and
disjunction). Also, it is less expressive than CTL∗. This has lead Kupferman and Vardi [25]
to introduce a memoryful variant of CTL∗ (mCTL∗, for short), which unifies in a common
framework both CTL∗ and the Pistore-Vardi logic. Syntactically, mCTL∗ is derived from CTL∗

by simply adding a special proposition present, which is needed to emulate the ability of CTL∗

to talk about the “present” time. Semantically, mCTL∗ is obtained from CTL∗ by reinterpreting
the path quantifiers of the logic to be memoryful.

Recently, ATL∗ has become a popular specification logic in the context of multi-agent
system planning [19, 45, 18]. In such a framework, a temporally-memoryful enhancement
of ATL∗, in the spirit of the above discussion, would enable “relentful” planning. This means
that, an agent can relent and change its goal, depending on its history1. In other words, when a
specific goal at a certain state is checked, agents may learn from the past to change their goals.
Note that this does not necessarily mean that agents change their strategy. As an example,
consider the ATL∗ formula [[Ag]]G 〈〈A〉〉ψ. In the relentful framework, this formula would be
satisfied by a CGS G (at a starting node s) iff agents in A can ensure that each possible trace
(history) can be extended in an evolution of G satisfying ψ from s.

To give more insight on the relentful reasoning, consider a planning situation in which a
team of agents wants to lay some objects on a table in a specific order (laying phase) and
later to come back to the original situation (reverse phase). Assume that such a target can
be represented by means of an LTL formula ψ. Also, suppose there is a configuration (i.e.,
a specific distribution of the objects on the table) that is met during both the laying and the
reverse phase. Clearly, by looking at this configuration without knowing the history, it is hard
to understand if we are in the first or second phase. Consequently, it is not immediate to see
how to formalize the strong cyclic planning specification related to the temporal goal ψ. In
order to solve this ambiguity, one can adopt two different approaches. A syntactic solution
would require injecting in the specification a considerable amount of information encoding the
specific phase. A semantic one, instead, would allow to avoid the complication of the previous

1In Middle English to relent means to melt. In modern English it is used only in the combination of “relentless”.

Relentful Strategic Reasoning in Alternating-Time Temporal Logic 3

solution by exploiting a suitable relentful semantics of the strategic modalities.
In this paper, we introduce and study the logic RATL∗, a relentful extension of ATL∗. Thus,

RATL∗ can be thought of as a fusion of mCTL∗ and ATL∗ in a common framework. Similarly
to mCTL∗, the syntax of RATL∗ is obtained from ATL∗ by simply adding a special proposition
present. Semantically, RATL∗ is obtained from ATL∗ by reinterpreting the strategy quantifiers
of the logic to be relentful, where present allows to identify the current moment. More
specifically, for a CGS G, the RATL∗ formula 〈〈A〉〉ψ holds at a state s of G if there is a strategy
for agents in A such that, no matter which is the strategy of the agents not in A, the resulting
outcome of the game, obtained by extending the execution trace of the system ending in s,
satisfies ψ. Observe that, although the semantics of ATL∗ and RATL∗ are radically different, we
can still express in the latter the classic ATL∗ specification 〈〈A〉〉ψ, by exploiting the present
proposition as follows: 〈〈A〉〉F (present ∧ ψ). Intuitively, we first reach the current moment in
the time starting from the initial one and then verify ψ.

To show the usefulness of the relentful reasoning, consider as a synthetic example the
situation in which the agents in a set A have the goal to eventually satisfy q and, if they see r,
they can also change their goal to eventually satisfy v. It is easy to formalize this property
in ATL∗ with the formula 〈〈A〉〉(F q) ∨ (F r) ∧ (G f), where f is r → 〈〈A〉〉(F v). Consider,
instead, the situation in which the agents in A have the goal to satisfy p until q holds, unless
they see r in which case they may change their goal to satisfy u until v holds. This is hard
to be handled in ATL∗, since the specification depends on the past due to the preconditions
p and u. On the other hand, it can be easily specified in RATL∗ by means of the formula
〈〈A〉〉(p U q) ∨ (F r) ∧ (G f), where f is r → 〈〈A〉〉(u U v).

As a more concrete application of RATL∗, consider the multi-agent planning scenario
depicted in Figure 1, consisting of two robots, R1 and R2, that compete on placing some
objects on their own pallets, P1 and P2, according to a specific goal. Apart from its own

S

C

C

Z1 Z2P1 P2

B

A

B

A

R1 R2

FIG. 1: A planning scenario in the block-world domain with two robots.

pallets, each robot Ri can access the auxiliary one Zi. Moreover, both may access to a shared
pallet S. The initial configuration comprises two C blocks piled on S and each Pi has a
block A over a B one. The goal of each robot is to get as many C as possible; think of a
situation in which the values of the blocks are ordered as follows: A < B < C. While
the two robots are competing, it can happen that either (i) one of them gets both blocks C
or (ii) only one of these blocks goes to each robot. In the first case, a backup goal for the
unfortunate robot is to switch the order of its own blocks A and B; think of a penalty. In the
second case, as it is considered a tie, the robots restore the original situation. As an additional
argument, consider unpredictable events, as classically compelled in nondeterministic planning.
In our specific example, they can refer to the fact that a robot fails to bring a block or that
a block is contended between the two robots (see Figure 2). One can model this kind of
unpredictability by means of a third agent N , which stand for Nature. The strong cyclic

4 Relentful Strategic Reasoning in Alternating-Time Temporal Logic

S

C

C

Z1 Z2

A A

P1 P2

B B

R1 R2

FIG. 2: Contention of a C block.

planning condition with respect to the above goals can be specified by means of the following
RATL∗ formula ϕ = [[{R1, R2, N}]]G (

∧2
i=1

∨3
j=1 η

j
i) with η1i = 〈〈Ri, N〉〉F G

(
C
C

)
i
, η2i =

〈〈Ri, N〉〉F G
(
B
A

)
i
, and η3i = 〈〈Ri, N〉〉F ((

(
A
C

)
i
∨
(
B
C

)
i
) ∧ F

(
A
B

)
i
), where

(
X
Y

)
i

is the atomic
proposition representing the situation in which a block X is placed over a Y one on the pallet
Pi. Specifically, ϕ ensures that, in each possible situation reached during a play, a robot Ri has
the ability to enforce an evolution of the partial play up to that moment (the history) to achieve
one of the three goals j previously described and formally represented by the subformula ηji ,
having the nature eventually behaving in a fair way. Observe that we cannot easily describe
this property in ATL∗, since the third goal η3i is not prefix independent. Indeed, by looking
only at the current state, we are not able to understand whether one of the two configurations(
A
C

)
i

and
(
B
C

)
i

is already reached.
Along the paper, we also consider an extension of RATL∗ with past operators (RPATL∗,

for short). As for classical temporal and modal logics, past operators allow reasoning about
the past in a computation [7, 6, 21, 22, 28, 29, 47]. In RPATL∗, we can further require
that coalitions of agents had a relentful goal in the past. In more details, we can write a
formula whose satisfaction, at a state s, depends on the trace starting from the initial state
and leading to a state s′ occurring before s. Coming back to the previous synthetic example,
by using P as the dual of F, we can change the alternative goal f of agents in A to be
r → P ((Ỹ f) ∧ 〈〈A〉〉(u U v)), which requires that once r occurs at a given moment of a play,
the subformula 〈〈A〉〉(u U v) holds in the past, starting from the beginning of the computation
which is reached by means of the apposite temporal operator Ỹ f.

As a direct consequence and important contribution of this work, we show for the first
time a clear and complete picture of the relationships among ATL∗ and its various extensions
with memoryful quantification and past modalities, which goes beyond the expressiveness
results obtained in [25] for mCTL∗. Since the relentful quantifiers refer to behaviors from the
start of the computation, which occurred in the past, they are intimately connected to the past
itself. Indeed, we prove this formally. We study the expressive power and the succinctness of
RATL∗ with respect to ATL∗, as well as the relentless fragment of RPATL∗ (i.e., the extension
of ATL∗ with past modalities), which we call PATL∗. We show that the three logics have the
same expressive power, but both RATL∗ and PATL∗ are at least exponentially more succinct
than ATL∗. As for R−ATL∗ (where the minus stands for the variant of the logic without the
present proposition, but the play interpretation is still relentful), we prove that it is strictly
less expressive than ATL∗. Conversely, we show that P−ATL∗ is equivalent to PATL∗, but
exponentially less succinct.

From an algorithmic point of view, we examine, for RPATL∗, the two classical decision
problems: model checking and satisfiability. We show that model checking is not easier
than satisfiability and in particular that are 2EXPTIME-COMPLETE, as for ATL∗. We recall

Relentful Strategic Reasoning in Alternating-Time Temporal Logic 5

that this is not the case for mCTL∗, where the model checking is EXPSPACE-COMPLETE,
while satisfiability is 2EXPTIME-COMPLETE. For the upper bounds, we follow an automata-
theoretic approach [26]. In order to develop a decision procedure for a logic with the tree-
model property, one first develops an appropriate notion of tree automata and studies their
emptiness problem. Then, the decision problem for the logic can be reduced to the emptiness
problem of such automata. To this aim, we introduce a new automaton model, namely the
symmetric alternating tree automata with satellites (SATAS, for short), which extends both
automata over concurrent game structures in [43] and alternating automata with satellites
in [25], in a common setting. For technical convenience, the states of the whole automaton are
partitioned into those regarding the satellite and the ones for the rest of the automaton, which
we call the main automaton. The complexity results then come from the fact that RPATL∗

formulas can be translated into a SATAS with an exponential number of states for the main
automaton and doubly exponential number of states for the satellite, and from the fact that the
emptiness problem for this kind of automata is solvable in EXPTIME with respect to both the
size of the main automaton and the logarithm of the size of the satellite.

Outline

In Section 2, we recall the basic notions regarding concurrent game structures and trees, tracks
and paths, strategies, plays, and unwinding. Then, we have Section 3, in which we introduce
RATL∗ by defining its syntax and semantics. In the following Section 4, we define the extension
RPATL∗, where the expressiveness and succinctness relationships of both the logics are studied.
In Section 5, we introduce the SATAS automaton model. Finally, in Section 6, we describe
how to solve the satisfiability and model-checking problems for both RATL∗ and RPATL∗.
Note that, in the accompanying Appendix A, we recall standard mathematical notation and
some basic definitions that are used in the paper. Furthermore, in Appendix B, we introduce
the full syntax and semantics of RPATL∗.

2 Preliminaries
A concurrent game structure (CGS, for short) [1] is a tuple G , 〈AP,Ag,Ac,St, λ, τ, s0〉,
where AP and Ag are finite non-empty sets of atomic propositions and agents, Ac and St are
enumerable non-empty sets of actions and states, s0 ∈ St is a designated initial state, and
λ : St → 2AP is a labeling function that maps each state to the set of atomic propositions
true in that state. Let Dc , AcAg be the set of decisions, i.e., functions from Ag to Ac
representing the choices of an action for each agent. Then, τ : St×Dc→ St is a transition
function mapping a pair of a state and a decision to a state. If the set of actions is finite, i.e.,
b = |Ac| < ω, we say that G is b-bounded, or simply bounded. If both the sets of actions and
states are finite, we say that G is finite.

Consider again the planning scenario of Figure 1. It can be simply formalized by means
of a CGS GP as follows. The atomic propositions in the set AP , {

(
X
Y

)
i

: X,Y ∈ B ∧
i ∈ {1, 2} ∧ Y = ⇒ X = } representing all situations in which a block X ∈ B is
placed over a Y ∈ B one on the pallet Pi with i ∈ {1, 2}, where B , {A,B,C, } is
the set of possible blocks also containing the empty space . Observe that the constraint
Y = ⇒ X = avoids to consider the propositions referring to the unfeasible situation
of placing of a real block over . The set of agents Ag , {R1, R2, N} just contains the
two robots and the nature. At each moment of a play, R1 and R2 can either do nothing

6 Relentful Strategic Reasoning in Alternating-Time Temporal Logic

S

C

C

Z1 Z2P1 P2

B

A

B

A

S

C

C

Z1 Z2

A

P1 P2

B B

A

S

C

Z1 Z2

A C

P1 P2

B B

A

S

C

Z1 Z2

C

P1 P2

B

A

B

A

S

C

C

Z1 Z2

A

P1 P2

B

A

B

S

C

Z1 Z2

C A

P1 P2

B

A

B

S

C

Z1 Z2

C

P1 P2

B

A

B

A

S

C

C

Z1 Z2

A A

P1 P2

B B

S

C

Z1 Z2

A

C

A

P1 P2

B B

S

C

Z1 Z2

A

C

P1 P2

B B

A

S

C

Z1 Z2

A

P1 P2

B

C

B

A

S

C

Z1 Z2

A A

P1 P2

B

C

B

S

C

Z1 Z2

A A

B

P1 P2

B

C

S

C

Z1 Z2

A

C

A

B

P1 P2

B

S

C

C

Z1 Z2

A

B

P1 P2

B

A

S

C

C

Z1 Z2

A

B

A

P1 P2

B

S

C

Z1 Z2

A A

C

P1 P2

B B

S

C

Z1 Z2

A

C

P1 P2

B

A

B

S

C

Z1 Z2

A

P1 P2

B

A

B

C

S

C

Z1 Z2

A A

P1 P2

B B

C

S

C

Z1 Z2

A

B

A

P1 P2

B

C

S

C

Z1 Z2

A

B

A

C

P1 P2

B

S

C

C

Z1 Z2

A

B

P1 P2

B

A

S

C

C

Z1 Z2

A A

B

P1 P2

B

S

C

C

Z1 Z2

A

B

A

B

P1 P2S

C

Z1 Z2

A

B

A

P1 P2

C B

S

C

Z1 Z2

A

B

A

B

P1 P2

C

S

C

Z1 Z2

A A

B

P1 P2

B C

S

C

Z1 Z2

A

B

A

B

P1 P2

C

SZ1 Z2

A

B

A

B

P1 P2

C

C

S

B

Z1 Z2

A

B

A

P1 P2

C

C

S

B

Z1 Z2

A

B

P1 P2

C

C

A

SZ1 Z2

A

B

P1 P2

C

C

A

B

SZ1 Z2

A

B

A

B

P1 P2

C

C

S

B

Z1 Z2

A A

B

P1 P2

C

C

S

B

Z1 Z2

A

B

P1 P2

A C

C

SZ1 Z2

A

B

P1 P2

A

B

C

C

SZ1 Z2

A

B

A

B

P1 P2

C C

SZ1 Z2

A A

P1 P2

C

B

C

B

FIG. 3: Partial view on the state space in the planning scenario.

Relentful Strategic Reasoning in Alternating-Time Temporal Logic 7

or transfer a block from a pallet to another one. Therefore, the related set of actions is
AcR , {I, P 7→ Z,Z 7→ P, P 7→ S, S 7→ P,Z 7→ S, S 7→ Z}, where I stands for the idle
action, while α 7→ β means that the block at the head of the stack on pallet α is moved to the
stack on pallet β. The nature, instead, can either approve a move of a robot via the symbol
X or hinder its attempt via the symbol ×. Therefore, we set AcN , {X,×} × {X,×}, where
the first component of the product is used to control the behavior of R1, while the second one
that of R2. Summing up, we have Ac , AcR ∪ AcN . Note that, due to the uniformity of
the CGS with respect to the usage of the actions by the agents, the robots can do a move also
if it is not applicable to the current state. They can even use those of the nature, which can
do the converse as well. As usual, these cumbersome situations can be suitable treated with
opportune ending states. However, since our aim is to focus on the application of our logic, we
avoid to deal with these non relevant facts. Every state s ∈ St of the game can be represented
by means of a finite function s : P→ B× B from the set of pallets P , {P1, P2, Z1, Z2, S}
to pairs of blocks indicating the corresponding stack, with the proviso that there are exactly
2 occurrences of each real block. In particular, the first component of the pair is the head of
the stack. Thus, the initial state is defined as follows: s0(Pi) , (A,B), s0(Zi) , (,), and
s0(S) , (C,C), for i ∈ {1, 2}. Finally, we set λ(s) , {

(
X
Y

)
i

: i ∈ {1, 2}∧s(Pi) = (X,Y)}
as labeling function.

In Figure 3, we depict a small part of the underlying transition graph, where all self loops are
omitted and the initial state s0, placed in the top center position, is denoted by the entering edge
without origin. To understand how to read this diagram, consider the situation in which, at s0,
both robots decide to take the action P 7→ Z and the nature is favorable to them by choosing the
action (X,X). Then, the system transits to the state s, with s(Pi) = (, B), s(Zi) = (, A),
and s(S) = (C,C), at the center of the figure. If, instead, the nature wants to hinder the will
of R1 by choosing the action (×,X), the system transits to the state s, with s(P1) = (A,B),
s(P2) = (, B), s(Z1) = (,), s(Z2) = (, A), and s(S) = (C,C), just on the right of the
initial state. Suppose now that, at the central state, the two robots simultaneously decide to
take a C block from the shared pallet by taking the action S 7→ Z. In this case, if the nature
is either favorable or wants to hinder both of them, the state does not change. Otherwise, in
dependence of the action (X,×) or (×,X), the system transits either to the state s on the left,
with s(Pi) = (, B), s(Z1) = (C,A), s(Z2) = (, A), and s(S) = (, C), or to the one on
the right, with s(Pi) = (, B), s(Z1) = (, A), s(Z2) = (C,A), and s(S) = (, C).

Given a set A ⊆ Ag of agents, a decision and a counterdecision for A are, respectively, two
functions dA ∈ AcA and dcA ∈ AcAg\A. By d , (dA, d

c
A) ∈ Dc we denote the composition

of dA and dcA, i.e., the total decision such that d�A = dA and d�(Ag\A) = dcA.
A track (resp., path) in a CGS G is a finite (resp., an infinite) sequence of states ρ ∈ St∗

(resp., π ∈ Stω) such that, for all i ∈ [0, |ρ| − 1[(resp., i ∈ N), there exists a decision
d ∈ Dc such that (ρ)i+1 = τ((ρ)i, d) (resp., (π)i+1 = τ((π)i, d)). A track ρ is non-trivial if
|ρ| > 0, i.e., ρ 6= ε. Trk ⊆ St+ (resp., Pth ⊆ Stω) denotes the set of all non-trivial tracks
(resp., paths). Moreover, Trk(s) , {ρ ∈ Trk : fst(ρ) = s} (resp., Pth(s) , {π ∈ Pth :
fst(π) = s}) indicates the subsets of tracks (resp., paths) starting at a state s ∈ St.

A strategy for G with respect to a set of agentsA ⊆ Ag is a partial function fA : Trk ⇀ AcA

that maps a non-empty trace ρ in its domain to a decision fA(ρ) of agents in A. Intuitively, a
strategy for agents in A is a combined plan that contains all choices of moves as a function of
the history of the current outcome. For a state s, we say that fA is s-total iff it is defined on
all non-trivial tracks starting in s that are reachable through fA itself, i.e., ρ · s′ ∈ dom(fA),
with ρ ∈ dom(fA), iff fst(ρ) = s and there is a counterdecision dcA ∈ AcAg\A for A such that

8 Relentful Strategic Reasoning in Alternating-Time Temporal Logic

τ(lst(ρ), (fA(ρ), dcA)) = s′. We use Str(A) (resp., Str(A, s) with s ∈ St) to indicate the set
of all strategies (resp., s-total strategies) of agents in A.

A path π in G starting at a state s is a play with respect to an s-total strategy fA (fA-play, for
short) iff, for all i ∈ N, there is a counterdecision dcA ∈ AcAg\A such that πi+1 = τ(πi, d),
where d = (fA(π≤i), d

c
A). Observe that π is an fA-play iff π≤i ∈ dom(fA), for all i ∈ N.

Intuitively, a play is the outcome of the game determined by all the agents participating to it.
By Play(fA) we denote the set of all fA-plays.

A concurrent game tree (CGT, for short) is a CGS T , 〈AP,Ag,Ac,St, λ, τ, ε〉, where (i)
St ⊆ ∆∗ is a ∆-tree for a given set ∆ of directions and (ii) if t · e ∈ St then there is a decision
d ∈ Dc such that τ(t, d) = t · e, for all t ∈ St and e ∈ ∆. Furthermore, T is a decision tree
(DT, for short) if (i) St=Dc∗ and (ii) if t · d∈St then τ(t, d)= t · d, for all t∈St and d∈Dc.

Given a CGS G, its unwinding is the DT GU , 〈AP,Ag,Ac,Dc∗, λ′, τ ′, ε〉 for which there
is a surjective function unw : Dc∗ → St such that (i) unw(ε) = s0, (ii) unw(τ ′(t, d)) =
τ(unw(t), d), and (iii) λ′(t) = λ(unw(t)), for all t ∈ Dc∗ and d ∈ Dc.

From now on, we use the name of a CGS as a subscript to extract the components from its
tuple-structure. Accordingly, if G = 〈AP,Ag,Ac,St, λ, τ, s0〉, we have AcG = Ac, λG = λ,
s0G = s0, and so on. Also, we use the same notational concept to make explicit to which CGS
the sets Dc, Trk, Pth, etc. are related to. Note that, we omit the subscripts if the structure can
be unambiguously individuated from the context.

3 Relentful Alternating-Time Temporal Logic
In this section, we introduce an extension of classic alternating-time temporal logic ATL∗ [1],
obtained by allowing the use of relentful quantification over plays, in a similar way it has been
done for the memoryful branching-time temporal logic mCTL∗ over paths [25].

3.1 Syntax

The relentful alternating-time temporal logic (RATL∗, for short) inherits from ATL∗ the
existential 〈〈A〉〉 and the universal [[A]] strategy quantifiers, where A denotes a set of agents.
We recall that these two quantifiers can be read as “there exists a collective strategy for agents
in A” and “for all collective strategies of agents in A”, respectively. The syntax of RATL∗ is
similar to that for ATL∗: there are two types of formulas, state and path formulas. Strategy
quantifiers can prefix an assertion composed of an arbitrary Boolean combination and nesting
of the linear-time operators X “next”, U “until”, and R “release”. The only syntactical
difference between the two logics is that RATL∗ formulas can refer to a special proposition
present, which enables us to refer to the present moment in the time. Readers familiar with
mCTL∗ can see RATL∗ as mCTL∗ where strategy quantifiers substitute path quantifiers. The
formal syntax of RATL∗ follows.
DEFINITION 3.1 (RATL∗ Syntax)
RATL∗ state (ϕ) and path (ψ) formulas are built inductively from the sets of atomic propositions
AP and agents Ag in the following way, where p ∈ AP and A ⊆ Ag:

1. ϕ ::= present | p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | 〈〈A〉〉ψ | [[A]]ψ;
2. ψ ::= ϕ | ¬ψ | ψ ∧ ψ | ψ ∨ ψ | X ψ | ψ U ψ | ψ R ψ.

RATL∗ is the set of all state formulas generated by the above grammar, in which the occurrences
of the special proposition present is in the scope of a strategy quantifier.

Relentful Strategic Reasoning in Alternating-Time Temporal Logic 9

We now introduce some auxiliary syntactical notation.
For a formula ϕ, we define the length lng(ϕ) of ϕ as for ATL∗ [1]. Formally, (i) lng(p) ,

1, for p ∈ AP ∪ {present}, (ii) lng(Op ψ) , 1 + lng(ψ), for all Op ∈ {¬,X}, (iii)
lng(ψ1Op ψ2) , 1 + lng(ψ1) + lng(ψ2), for all Op ∈ {∧,∨,U,R}, and (iv) lng(Qn ψ) ,
1 + lng(ψ), for all Qn ∈ {〈〈A〉〉, [[A]]}.

We also use cl(ψ) to denote a variation of the classical Fischer-Ladner closure [15] of ψ
defined recursively as for ATL∗ in the following way: (i) cl(p) , ∅, for p ∈ AP∪{present}, (ii)
cl(Op ψ) , cl(ψ), for all Op ∈ {¬,X}, (iii) cl(ψ1Op ψ2) , cl(ψ1) ∪ cl(ψ2), for all Op ∈
{∧,∨,U,R}, and (iv) cl(Qn ψ) , {Qn ψ} ∪ cl(ψ), for all Qn ∈ {〈〈A〉〉, [[A]]}. Intuitively,
cl(ϕ) is the set of all basic formulas that are subformulas of ϕ. Finally, by rcl(ψ) we denote
the reduced closure of ψ, i.e., the set of maximal basic formulas contained in ψ. Formally,
(i) rcl(ϕ) , {ϕ}, for all basic formulas ϕ = Qn ψ, with Qn ∈ {〈〈A〉〉, [[A]]}, (ii) rcl(Op ψ) ,
rcl(ψ) when Op ψ is a path formula, for all Op ∈ {¬,X}, and (iii) rcl(ψ1Op ψ2) , rcl(ψ1)∪
rcl(ψ2) when ψ1Op ψ2 is a path formula, for all Op ∈ {∧,∨,U,R}. It is immediate to see
that rcl(ψ) ⊆ cl(ψ) and |cl(ψ)| = O(lng(ψ)).

3.2 Semantics

As for ATL∗, the semantics of RATL∗ is defined with respect to concurrent game structures.
However, the two logics differ on interpreting state formulas. First, in RATL∗ the satisfaction
of a state formula is related to a specific track, while in ATL∗ it is related only to a state.
Moreover, a path quantification in RATL∗ ranges over paths that start at the initial state and
contain as prefix the track that lead to the present state. We refer to this track as the present
track. The whole concept is what we name relentful quantification. On the contrary, in ATL∗,
path quantifications range over paths that start at the present state. For example, consider the
formula ϕ = [[A]]G 〈〈B〉〉ψ. Considered as an ATL∗ formula, ϕ holds in the initial state of a
structure if the agents in B can force a path satisfying ψ from every state that can be reached
by a strategy of the agents in A. In contrast, considered as an RATL∗ formula, ϕ holds in the
initial state of the structure if the agents in B can extend to a path satisfying ψ every track
generated by a strategy of the agents in A. Thus, when evaluating path formulas in RATL∗

one cannot ignore the past, and satisfaction may depend on the events that preceded the point
of quantification. In ATL∗, state and path formulas are evaluated with respect to states and
paths in the structure, respectively. In RATL∗, instead, we add an additional parameter, the
present track, which is the track that lead from the initial state to the point of quantification.
Path formulas are again evaluated with respect to paths, but state formulas are now evaluated
with respect to tracks, which are viewed as partial executions.

We now formally define RATL∗ semantics with respect to a CGS G. For two non-empty
initial tracks ρ, ρp ∈ Trk(s0), where ρp is the present track, we write G, ρ, ρp |= ϕ to indicate
that the state formula ϕ holds at ρ, with ρp being the present. Similarly, for a path π ∈ Pth(s0),
a non-empty present track ρp ∈ Trk(s0) and a natural number k, we write G, π, k, ρp |= ψ
to indicate that the path formula ψ holds at the position k of π, with ρp denoting the present
moment. The semantics of RATL∗ state formulas involving ¬, ∧, and ∨, as well as that for
RATL∗ path formulas, except for the state formula case, is defined as usual in ATL∗. The
semantics of the remaining part, which involves the relentful feature, follows.

DEFINITION 3.2 (RATL∗ Semantics)
Given a CGS G = 〈AP,Ag,Ac,St, λ, τ, s0〉, two initial traces ρ, ρp ∈ Trk(s0), a path
π ∈ Pth(s0), and a number k ∈ N, it holds that:

10 Relentful Strategic Reasoning in Alternating-Time Temporal Logic

1. G, ρ, ρp |= present if ρ = ρp;
2. G, ρ, ρp |= p if p ∈ λ(lst(ρ)), with p ∈ AP;
3. G, ρ, ρp |= 〈〈A〉〉ψ if there exists a lst(ρ)-total strategy fA ∈ Str(A, lst(ρ)) such that, for

all plays π ∈ Play(fA), it holds that G, ρ · π≥1, 0, ρ |= ψ;
4. G, ρ, ρp |= [[A]]ψ if, for all lst(ρ)-total strategies fA ∈ Str(A, lst(ρ)), there exists a play
π ∈ Play(fA) such that G, ρ · π≥1, 0, ρ |= ψ;

5. G, π, k, ρp |= ϕ if G, π≤k, ρp |= ϕ.

Observe that the present track ρp is used in the above definition only at Item 1 and that formulas
of the form 〈〈A〉〉ψ and [[A]]ψ “set the new present”, i.e., their satisfaction with respect to ρ
and ρp is independent of ρp, and the present trace, for the path formula ψ, is set to ρ.

Let G be a CGS and ϕ be an RATL∗ formula. Then, G is a model for ϕ, in symbols G |= ϕ,
iff G, s0, s0 |= ϕ, where we recall that s0 is the initial state of G. In this case, we also say
that G is a model for ϕ on s0. A formula ϕ is said satisfiable iff there exists a model for it.
Moreover, it is an invariant for the two CGSs G1 and G2 iff either G1 |= ϕ and G2 |= ϕ or
G1 6|= ϕ and G2 6|= ϕ.

For all state formulas ϕ1 and ϕ2, we say that ϕ1 implies ϕ2, in symbols ϕ1 ⇒ ϕ2, iff,
for all CGS G and non-empty traces ρ, ρp ∈ Trk(G, s0), it holds that if G, ρ, ρp |= ϕ1 then
G, ρ, ρp |= ϕ2. Consequently, we say that ϕ1 is equivalent to ϕ2, in symbols ϕ1 ≡ ϕ2, iff
both ϕ1 ⇒ ϕ2 and ϕ2 ⇒ ϕ1 hold.

W.l.o.g., in the rest of the paper, we mainly consider formulas in existential normal form (enf,
for short), i.e., only existential strategy quantifiers occur. Indeed, all formulas can be linearly
translated in enf by using De Morgan’s laws together with the following equivalences, which
directly follow from the semantics of the logic: ¬X ϕ ≡ X ¬ϕ, ¬(ϕ1U ϕ2) ≡ (¬ϕ1)R (¬ϕ2),
and ¬〈〈x〉〉ϕ ≡ [[x]]¬ϕ.

As an example of the usefulness of RATL∗, consider now the CGS GP of Figure 3 for the
planning situation of Figure 1, together with the previously described RATL∗specification ϕ =
[[{R1, R2, N}]]G (

∧2
i=1

∨3
j=1 η

j
i) with η1i = 〈〈Ri, N〉〉F G

(
C
C

)
i
, η2i = 〈〈Ri, N〉〉F G

(
B
A

)
i
,

and η3i = 〈〈Ri, N〉〉F ((
(
A
C

)
i
∨
(
B
C

)
i
) ∧ F

(
A
B

)
i
). We recall that the aim of the game for each

robot is to collect as many C blocks as possible. In case both robots just get one C, it is a tie,
so they have to come back to the original configuration on their own pallets P . Conversely,
if one robot does not obtain a C, it loses the game, so it has to pay a penalty by switching
its own blocks A and B. Now, it is not hard to see that GP |= ϕ. Indeed, at each moment of
a given play, the two robots have the possibility to continue it, in a way to verify one of the
three requirements, once the nature does not persist in hindering their attempts. For example,
consider the situation in which an history of a play, i.e., a track, has reached the state s, with
s(Pi) = (B,C), s(Zi) = (, A), and s(S) = (,), at the lower middle place of Figure 3.
It is evident that the play is a tie, so, they have to restore the initial positions of the blocks
A and B, by simply undo their moves. Note that, to express the same property in ATL∗, one
has to heavily modify the formula ϕ in order to insert all the information needed to decide
whether a given state, such as the one just above the former, is reached either before or after
the verification of a tie situation. At the end of the next section, we show why this is actually
the case, by describing the translation of a simple RATL∗ formula similar to ϕ.

By induction on the syntactical structure of the sentences, it is easy to prove the following
two classical results. Note that these are the basic steps towards the automata-theoretic
approach we use to solve the model-checking and the satisfiability problems for RATL∗.

Relentful Strategic Reasoning in Alternating-Time Temporal Logic 11

THEOREM 3.3 (RATL∗ Unwinding Invariance)
RATL∗ is invariant under unwinding, i.e., for each CGS G and formula ϕ, it holds that ϕ is an
invariant for G and GU .

PROOF. Preliminary, let unwtrk : TrkGU (ε) → TrkG(s0G) and unwpth : PthGU (ε) →
PthG(s0G) be the two functions mapping tracks and paths of the unwinding GU into the
corresponding ones of the original model G, which satisfy the following properties: (i)
unwtrk(ε) = s0G , (ii) unwtrk(ρ · t) = unwtrk(ρ) · unw(t), for all ρ · t ∈ TrkGU (ε) with
t ∈ StGU , and (iii) (unwpth(π))≤i = unwtrk((π)≤i), for all π ∈ PthGU (ε) and i ∈ N. Note
that ε ∈ TrkGU (ε) is not the empty track, but the track of length 1 made by the root of the
tree only. Moreover, consider the following orderings between tracks and paths of GU : (i)
ρ < ρ′ iff there exists a track ρ′′ ∈ TrkGU such that ρ′ = ρ · ρ′′, for all ρ, ρ′ ∈ TrkGU (ε);
(ii) ρ < π iff there exists a path π′ ∈ PthGU such that π = ρ · π′, for all ρ ∈ TrkGU (ε) and
π ∈ PthGU (ε). Observe that < forms a strict partial order on tracks.

To prove the statement, we show that, for all state formulas ϕ and path formulas ψ, it holds
that (i) GU , ρ, ρp |= ϕ iff G, unwtrk(ρ), unwtrk(ρp) |= ϕ, for all ρ, ρp ∈ TrkGU (ε), such that
either ρ<ρp or ρ=ρp or ρp<ρ, and (ii) GU , π, k, ρp |= ψ iff G, unwpth(π), k, unwtrk(ρp) |=
ψ, for all π ∈ PthGU (ε), k ∈ SetN , and ρp ∈ TrkGU (ε), such that ρp < π.

By induction on the structure of formulas, we show the three cases of special proposition
present, atomic proposition p, and existential quantifier 〈〈A〉〉ψ. The remaining cases are
immediate or easily derivable by the former ones.

• (ϕ = present)
By the semantics definition, we have that GU , ρ, ρp |= present iff ρ=ρp and G, unwtrk(ρ),
unwtrk(ρp) |= present iff unwtrk(ρ) = unwtrk(ρp). Now, by the hypothesis ρ < ρp or
ρ = ρp or ρp < ρ on the tracks ρ and ρp, we have that ρ = ρp iff unwtrk(ρ) = unwtrk(ρp).
Therefore, GU , ρ, ρp |= present iff G, unwtrk(ρ), unwtrk(ρp) |= present.

• (ϕ = p)
By the definition of unwtrk, we have that lst(unwtrk(ρ)) = unw(lst(ρ)). Consequently, by
the definition of unwinding function unw, it holds that λG(lst(unwtrk(ρ))) = λGU (lst(ρ)).
Thus, we derive that GU , ρ, ρp |= p iff p ∈ λGU (lst(ρ)) iff p ∈ λG(lst(unwtrk(ρ))) iff
G, unwtrk(ρ), unwtrk(ρp) |=p. Hence, GU, ρ, ρp |=p iff G, unwtrk(ρ), unwtrk(ρp) |=p.

• (ϕ = 〈〈A〉〉ψ,⇒)
Suppose that GU , ρ, ρp |= 〈〈A〉〉ψ and let s , lst(ρ) ∈ StGU and s′ , unw(s) =
lst(unwtrk(ρ)) ∈ StG . Then, by the semantics definition, we have that there exists
an s-total strategy fA ∈ StrGU (A, s) such that, for all plays π ∈ PlayGU (fA), it holds that
GU , ρ · π≥1, 0, ρ |= ψ. Moreover, by the inductive hypothesis, it holds that G, unwpth(ρ ·
π≥1), 0, unwtrk(ρ) |= ψ. To prove the statement, it is left to show that there exists an
s′-total strategy f ′A ∈ StrG(A, s′) such that, for all plays π′ ∈ PlayG(f ′A), there exists a
play π ∈ PlayGU (fA) such that unwtrk(ρ) · π′≥1 = unwpth(ρ · π≥1). To do this, we first
define an auxiliary function h : TrkG(s′) ⇀ TrkGU (s) mapping back tracks of G into
corresponding tracks of GU . This function, can be inductively defined by means of the
following recursive properties:
1. s′ ∈ dom(h) and h(s′) , s;
2. for all ρ′ ∈ dom(h) and counterdecision dcA ∈ AcAg\A, it holds that ρ′ · t′ ∈ dom(h)

and h(ρ′ · t′) , h(ρ′) · t, where t′ , τG(lst(ρ′), d), t , τGU (lst(h(ρ′)), d), and d ,
(fA(h(ρ′)), dcA).

12 Relentful Strategic Reasoning in Alternating-Time Temporal Logic

Finally, the strategy f ′A ∈ StrG(A, s′) is defined as follows: f ′A(ρ′) , fA(h(ρ′)), for all
ρ′ ∈ dom(f ′A) , dom(h). By a simple induction on the length of the play π′, we can prove
that f ′A actually satisfies the required property. Hence, we obtain that if GU , ρ, ρp |= 〈〈A〉〉ψ
then G, unwtrk(ρ), unwtrk(ρp) |= 〈〈A〉〉ψ.

• (ϕ = 〈〈A〉〉ψ,⇐)
Suppose that G, unwtrk(ρ), unwtrk(ρp) |= 〈〈A〉〉ψ and let s , lst(ρ) ∈ StGU and s′ ,
unw(s) = lst(unwtrk(ρ)) ∈ StG . Then, by the semantics definition, we have that there
exists an s′-total strategy f ′A ∈ StrG(A, s′) such that, for all plays π′ ∈ PlayG(f ′A), it
holds that G, unwtrk(ρ) · π′≥1, 0, unwtrk(ρ) |= ψ. Let fA ∈ StrGU (A, s) be the strategy
defined as follows: fA(ρ) , f ′A(unwtrk(ρ)), for all ρ ∈ TrkGU (s). It is easy to see that,
for all plays π ∈ PlayGU (fA), it holds that unwpth(π) ∈ PlayG(f ′A). Thus, G, unwtrk(ρ) ·
unwpth(π)≥1, 0, unwtrk(ρ) |= ψ, i.e., G, unwpth(ρ · π≥1), 0, unwtrk(ρ) |= ψ. By the
inductive hypothesis, it holds that GU , ρ · π≥1, 0, ρ |= ψ. Therefore, we obtain that if
G, unwtrk(ρ), unwtrk(ρp) |= 〈〈A〉〉ψ then GU , ρ, ρp |= 〈〈A〉〉ψ.

As an immediate corollary, we obtain that RATL∗ also enjoys the tree model property.

COROLLARY 3.4 (RATL∗ Tree Model Property)
RATL∗ enjoys the tree model property.

PROOF. Consider a formula ϕ and suppose that it is satisfiable. Then, there is a CGS G such
that G |= ϕ. By Theorem 3.3, ϕ is satisfied at the root of the unwinding GU of G. Thus, since
GU is a CGT, we immediately have that ϕ is satisfied on a tree model.

4 Expressiveness and Succinctness
In this section, we compare RATL∗ with other logics derived from it. The basic comparisons
are in terms of expressiveness and succinctness.

Let L1 and L2 be two logics whose semantics are defined on the same kind of structure. We
say that L1 is as expressive L2 iff every formula in L2 is logically equivalent to some formula
in L1. If L1 is as expressive as L2, but there is a formula in L1 that is not logically equivalent
to any formula in L2, then L1 is more expressive than L2. If L1 is as expressive as L2 and vice
versa, then L1 and L2 are expressively equivalent. Note that, in the case L1 is more expressive
than L2, there are two sets of structures M1 and M2 and an L1 formula ϕ such that, for all
M1 ∈M1 andM2 ∈M2, it holds thatM1 |= ϕ andM2 6|= ϕ and, for all L2 formulas ϕ′, it
holds that there are two models M1 ∈M1 andM2 ∈M2 such thatM1 |= ϕ′ iffM2 |= ϕ′.
Intuitively, each L2 formula is not able to distinguish between two models that instead are
different with respect to L1.

We define now the comparison of the two logics L1 and L2 in terms of succinctness, which
measures the necessary blow-up when translating between them. Note that comparing logics
in terms of succinctness makes sense also when the logics are not expressively equivalent, by
focusing on their common fragment. In fact, a logic L1 can be more expressive than a logic
L2, but at the same time, less succinct than the latter. Formally, we say that L1 is (at least)
exponentially more succinct than L2 iff there exist two infinite lists of models {M1,M2, . . .}
and of L1 formulas {ϕ1, ϕ2, . . .}, withMi |= ϕi and lng(ϕi) = O(p1(i)), where p1(n) is a
polynomial, i.e., lng(ϕi) is polynomial in i ∈ N, such that, for all L2 formulas ϕ, it holds that
ifMi |= ϕ then lng(ϕ) ≥ 2p2(i), where p2(n) is another polynomial, i.e., lng(ϕ) is (at least)
exponential in i.

Relentful Strategic Reasoning in Alternating-Time Temporal Logic 13

We now discuss expressiveness and succinctness of RATL∗ with respect to ATL∗ as well
as some extensions/restrictions of RATL∗. In particular, we consider the logics RPATL∗ and
PATL∗ to be, respectively, RATL∗ and ATL∗ augmented with the past-time operators “previous”
and “since”, which dualize the future-time operators “next” and “until” as in pLTL [28]
and pCTL∗ [21, 22] (see Appendix B, for the full definition). Note that PATL∗ still contains
the present proposition and that, as for pCTL∗, the semantics of its quantifiers is as for ATL∗,
where the past is considered linear, i.e., deterministic. Moreover, we consider the logics
R−ATL∗, P−ATL∗, and RP−ATL∗ to be, respectively, the syntactical restriction of RATL∗, PATL∗,
and RPATL∗ in which the use of the distinguished atomic proposition present is not allowed.
On one hand, we have that all mentioned logics, but R−ATL∗ and RP−ATL∗, are expressively
equivalent. On the other hand, the ability to refer to the past makes all of them at least
exponentially more succinct than the corresponding ones without the past. For example, a
PATL∗ formula ϕ can be translated into an equivalent ATL∗ one ϕ?, but ϕ? may require a
non-elementary space in lng(ϕ) (shortly, we say that PATL∗ is non-elementary reducible to
ATL∗). Note that, to get a better complexity for this translation is not an easy question. Indeed,
it would improve the non-elementary reduction from first order logic to LTL, which is an
outstanding open problem [17]. All the discussed results are reported in the following theorem.
Observe that, to make clear the semantics we are using in the different points of the proof, we
distinguish between the classic and the relentful ones by means of the modeling relations |=C

and |=R, respectively.

THEOREM 4.1 (Reductions)
The following properties hold:

1. ATL∗ (resp., PATL∗) is linearly reducible to RATL∗ (resp., RPATL∗);

2. RPATL∗ (resp., RP−ATL∗) is linearly reducible to PATL∗ (resp., P−ATL∗);

3. RPATL∗ (resp., RP−ATL∗) is non-elementarily reducible to RATL∗ (resp., R−ATL∗);

4. PATL∗ is non-elementarily reducible to ATL∗;

5. R−ATL∗ and P−ATL∗ are at least exponentially more succinct than ATL∗;

6. R−ATL∗ is less expressive than ATL∗.

PROOF. To prove Items 1-4, we describe a recursive translation from the input logics to the
output ones, defined by structural induction on the formulas. For Items 5-6, instead, we
directly exhibit a family of specifications expressed in the formalisms under analysis, which
witnesses the asserted results.

Let ϕ and ϕ? be, respectively, the input and output formulas for the first four statements.
Moreover, consider the recursive syntactic modification · : RPATL∗ → RPATL∗ defined in
the following, where the internal function h : 2Ag × RPATL∗ → RPATL∗ has to be suitably
specified in dependence of the item of interest:

• present , present;

• p , p, for p ∈ AP;

• Op ϕ , Op ϕ, for Op ∈ {¬,X,Y, Ỹ};
• ϕ1Op ϕ2 , ϕ1Opϕ2 , for Op ∈ {∧,∨,U,S,R,B};
• [[A]]ψ , ¬〈〈A〉〉¬ψ ;

• 〈〈A〉〉ψ , h(A,ψ).

14 Relentful Strategic Reasoning in Alternating-Time Temporal Logic

Intuitively, the function · simply replaces each occurrence of a strategic modality 〈〈A〉〉 or [[A]]
of the original logic with an opportune equivalent formula of the resulting logic. In particular,
it does not introduce any additional present proposition or past-time operator, if the rewriting
done by h does the same. Furthermore, in case |h(A,ψ)| = O(|ψ|), we have that |ϕ| = O(|ϕ|).

By means of a standard inductive proof, one can easily show the first two results.

• Item 1: G |=C ϕ iff G |=R ϕ?, where ϕ? , ϕ with h(A,ψ) , 〈〈A〉〉F (present ∧ ψ).
Intuitively, we exploit the ability of RATL∗ (resp., RPATL∗) to determine the present
moment in order to simulate the classic interpretation of strategic modalities, in which the
LTL (resp., pLTL) formula2 ψ has to be verified from the current moment on.

• Item 2: G |=R ϕ iff G |=C ϕ?, where ϕ? , ϕ with h(A,ψ) , 〈〈A〉〉P ((Ỹ f) ∧ ψ), in
which P ψ′ is the corresponding past-time operator for F ψ′ and Ỹ ψ′ is the weak previous
time operator that is true if either ψ′ is true in the previous time-step or such a time-step
does not exist. Intuitively, we ensure that the temporal property ψ is verified from the
origin of the time, by coming back to this instant, from each possible moment, via the
past-time operator P and the formula Ỹ f that is true only at the initial state of a model.

Before continuing with the following two items, we need to introduce the auxiliary function
·̃ : RPATL∗ → RATL∗ defined as follows, which translates each formula of a suitable separated
normal form3 into an equivalent one without past-time operators. Note that the particular kind
of normal form later on specified depends on the semantics of the fragment under analysis.

• p̃resent , present;
• p̃ , p, for p ∈ AP;

• Õp ψ , Op ψ̃, for Op ∈ {¬,X, 〈〈A〉〉, [[A]]};

• ˜ψ1Op ψ2 , ψ̃1Opψ̃2 , for Op ∈ {∧,∨,U,R};
• Ỹ ψ , f;

• ˜̃Y ψ , t;

• ˜ψ1Op ψ2 , ψ̃2 , for Op ∈ {S,B}.

Intuitively, the function ·̃ eliminates all past-time operators by assuming that, due to the
specific semantics of the fragment, they are only evaluated at the starting moment. Thus, no
previous time-step exists. Therefore, Y and Ỹ are directly solved by replacing them with the
opportune truth value. The operators S and B, instead, to be verified at the beginning of the
model, necessarily require that their second argument is immediately checked.

Now, it only remains to introduce the two separated normal forms used to prove Items 3
and 4. Informally, for the former, starting from each possible strategic modality, we need
that a past-time operator is reached without passing through a future-time one. For the latter,
in addition to the previous constraint, we also require that there are no strategic modalities
containing a past-time operator. Formally, the followings hold.

• Item 3: G |=R ϕ iff G |=R ϕ
?, where ϕ? , ϕ̃ with h(A,ψ) , 〈〈A〉〉

∨
i∈I ψ

ps
i ∧ψ

pr
i ∧ψ

ft
i ,

in which
∨
i∈I ψ

ps
i ∧ψ

pr
i ∧ψ

ft
i is the pLTL formula in separated normal form obtained by

applying to ψ the well-known Separation Theorem (see Theorem 2.4 of [17]). Observe that

2Actually,ψ might not be an LTL (resp., pLTL) formula, but it can be seen as such by considering the internal state formulas as fresh atomic propositions.
3A pLTL formula is in separated normal form [17] if no past-time (resp., future-time) operator is in the scope of a future time (resp., past-time) one.

Relentful Strategic Reasoning in Alternating-Time Temporal Logic 15

ψpsi , ψpri , and ψfti are, respectively, pure-past, pure-present, and pure-future formulas4.
Intuitively, we first ensure that, in each strategic modality, all past-time operators are not in
the scope of a future-time one by means of the function ·. Then, since the related temporal
formulas are checked from the beginning of the model, we simply eliminate all past-time
operators via the function ·̃. Note that the non-elementary blow-up is due to the size of the
set of indexes I , which is inherited from the use of the Separation Theorem.

• The proof of Item 4 proceeds similarly to the translation of pCTL∗ into CTL∗ (see Lemma
3.3 and Theorem 3.4 of [21, 22]). However, here we have two important differences. First,
when we apply the Separation Theorem to ψ in order to obtain the equivalent path formula∨
i∈I ψ

ps
i ∧ ψ

pr
i ∧ ψ

ft
i in separated normal form, we need to evaluate the semantics of all

the occurrences of the present proposition by substituting them with f, in the pure-past and
pure-future formulas ψpsi and ψfti , and with t in the pure-present ones ψpri . In particular,
w.l.o.g., we require that each of the occurrences in ψpsi and ψfti is, respectively, in the scope
of a previous (Y or Ỹ) or next (X) time operator. Then, since the strategic modality 〈〈A〉〉
cannot be simply seen as existential due to the internal universal quantifications over paths,
we cannot push it directly in front of the pure-future formulas by commuting it with the
disjunction

∨
i∈I . Instead, we have to suitably determine which of the pure-past formulas

are verified and then push the modality in front of the disjunction of the corresponding pure-
present and pure-future formulas. Formally, we have that G |=C ϕ iff G |=C ϕ?, where
ϕ? , ϕ̃ with h(A,ψ) ,

∨I′ 6=∅
I′⊆I

(
(
∧
i∈I′ ψ

ps
i
′
) ∧ 〈〈A〉〉

∨
i∈I′ ψ

pr
i
′ ∧ ψfti

′)
, in which ψpsi

′,

ψpri
′, and ψfti

′
are, respectively, obtained from ψpsi , ψpri , and ψfti by replacing the present

proposition as described above. Intuitively, we first propagate out the past-time operators
from every strategic modalities via the function ·. Then, since they are immediately
checked at the root state of the model, before every strategic reasoning is evaluated, we
eliminate them by applying the function ·̃. As for the previous item, the origin of the
non-elementary blow-up resides in the Separation Theorem.

It only remains to prove the last two statements about succinctness and expressiveness.

• Item 5 is derived by applying the following reasoning. In [27], pLTL was proved to be
exponentially more succinct than LTL, by showing that every formulaψn , G (

∧n
i=1(pi ↔

P ((Ỹ f)∧pi))→ (p0 ↔ P ((Ỹ f)∧p0))) has only LTL equivalents with length Ω(2n) (see
Theorem 3.1). Now, since each ψn is equivalent to the pCTL∗ formula Aψn, which in turn
is equivalent to the P−ATL∗ formula ϕP , [[Ag]]ψn, we immediately derive that P−ATL∗ is
at least exponentially more succinct than ATL∗. To prove that the same holds for R−ATL∗,
first observe that ψn ensures every state agreeing with the initial one on the truth value of
p1, . . . , pn to also agree with it on p0. The comparison between the different states is done
in pLTL by referring to the root of the model via the past-time operator P and the formula
Ỹ f. Now, by exploiting the observation at the base of Item 2 in the reverse order, we can
simulate the comparison by means of the relentful semantics of R−ATL∗. Indeed, it is easy
to show that the R−ATL formula ϕR , [[Ag]]G (

∧n
i=1(pi ↔ [[Ag]]pi)→ (p0 ↔ [[Ag]]p0))

is equivalent to ϕP , i.e., G |=R ϕR iff G |=C ϕP . Thus, the result holds for R−ATL∗ too.
• Similarly to the previous item, the proof of Item 6 follows by exploiting a related result for a

fragment of R−ATL∗. Indeed, in [25], it was proved that the CTL formula EF (EX p∧EX ¬p)
has no m−CTL∗ equivalent (see Theorem 3.4). Now, consider a model in which there is

4A pure-past (resp., pure-future) formula contains only past-time (resp., future-time) operators. In addition, pure-present formulas do not contain any
temporal operator at all [17].

16 Relentful Strategic Reasoning in Alternating-Time Temporal Logic

just one agent. Then, it is evident that every CTL (resp., m−CTL∗) formula is equivalent
to the ATL (resp., R−ATL∗) one in which the two path quantifiers E and A are replaced by
the strategic modalities 〈〈Ag〉〉 and [[Ag]], respectively. Consequently, the ATL formula
〈〈Ag〉〉F ((〈〈Ag〉〉X p) ∧ (〈〈Ag〉〉X ¬p)) has no R−ATL∗ equivalent one.

As an immediate consequence of some combinations of the results shown into the previous
theorem, it is easy to prove the following corollary.

COROLLARY 4.2 (Expressiveness)
RATL∗, PATL∗, P−ATL∗, and RPATL∗ have the same expressive power of ATL∗. RP−ATL∗ has
the same expressive power of R−ATL∗, and both are less expressive than ATL∗. Moreover, all
of them are at least exponentially more succinct than ATL∗.

RATL∗

/

��

nelm
PPPPPPPP

((PPPPPPPP

lin **
RPATL∗nelm[3]oo

nelm

��

lin[2] // PATL∗

nelm

��

nelm[4]
nnnnnnnn

vvnnnnnnnn

lin[1]tt

ATL∗
lin[1]

__

lin

CC

lin

��

/[6]

��

/

��

lin

??

R−ATL∗

lin

HH

nelm[5]nnnnnnn

77nnnnnnnn

lin
44RP−ATL∗nelm[3]oo

nelm

DD

lin[2] // P−ATL∗

lin

OO

nelm[5]PPPPPPP

ggPPPPPPPP

/
jj

FIG. 4: Expressive power and succinctness hierarchy.

Figure 4 summarizes all the above results regarding expressiveness and succinctness. The
acronym “lin” (resp., “nelm”) means that the translation exists and it is linear (resp., non-
elementarily) in the size of the formula, and “/” means that such a translation is impossible.
The numbers in brackets represent the item of Theorem 4.1 in which the translation is shown.
We use no numbers when the translation is trivial or comes by a composition of existing ones.

We conclude this section by describing an example of reduction from RATL∗ and PATL∗ to
ATL∗. Consider the RATL∗ formula

ϕR , [[Ag]]G (p ∨ 〈〈A〉〉F (p1 ∧ F p2)),

which asserts that, in every state falsifying the condition p, the team of agents A has the ability
to enforce the play started at the initial state to reach first p1 and then p2. Observe that, due to
the relentful semantics, it does not matter if these two events happen before, in between, or
after the present moment. However, their relative order has to be respected. Before continuing,
one can easily note a similarity with the specification of the planning example previously
described, in which the atomic proposition p is in place of the formulas η1i and η2i , while
〈〈A〉〉F (p1 ∧ F p2) stands for η3i . By means of the construction of Item 2 of Theorem 4.1, we
immediately obtain the equivalent PATL∗ formula

ϕP , [[Ag]]G (p ∨ 〈〈A〉〉P ((Ỹ f) ∧ F (p1 ∧ F p2))),

in which the relentful semantics is simulated via the past-time operators (actually, this is
a simplification of what it is obtained by the construction, since we avoided to modify the
external part [[Ag]]G that is only verified at the initial state). At this point, by applying the

Relentful Strategic Reasoning in Alternating-Time Temporal Logic 17

Separation Theorem to P ((Ỹ f)∧F (p1∧F p2)), we obtain the equivalent formula in separated
normal form P (p2 ∧ P p1) ∨ (P p1 ∧ F p2) ∨ F (p1 ∧ F p2). Consequently, via the function ·
defined in Item 4 of Theorem 4.1, after few simplifications, we have that the formula

〈〈A〉〉P ((Ỹ f) ∧ F (p1 ∧ F p2))

is translated to

P (p2 ∧ P p1) ∨ (P p1 ∧ 〈〈A〉〉F p2) ∨ 〈〈A〉〉F (p1 ∧ F p2).

Thus, ϕP ≡ [[Ag]]ψ, where

ψ = G (p ∨ P (p2 ∧ P p1) ∨ (P p1 ∧ 〈〈A〉〉F p2) ∨ 〈〈A〉〉F (p1 ∧ F p2)).

Now, we can apply the same translation function to the external modality [[Ag]]ψ, which is
converted into ¬〈〈Ag〉〉¬ψ. First, note that

¬ψ ≡ F (¬p ∧ H (¬p2 ∨ H ¬p1) ∧ (H ¬p1 ∨ ¬〈〈A〉〉F p2) ∧ ¬〈〈A〉〉F (p1 ∧ F p2))

= F (ξ ∧ H (¬p2 ∨ H ¬p1) ∧ (H ¬p1 ∨ ζ)),

where ξ = ¬p ∧ ¬〈〈A〉〉F (p1 ∧ F p2) and ζ = ¬〈〈A〉〉F p2. So, by putting the internal part in
disjunctive normal form and then simplifying it, we obtain that

¬ψ ≡ F (ξ ∧ H ¬p1) ∨ F (η ∧ H (¬p2 ∨ H ¬p1)),

where η = ¬p ∧ ζ. By manipulating the two disjuncts through the Separation Theorem, we
have that

F (ξ ∧ H ¬p1) ≡ (H ¬p1) ∧ (¬p1)U (ξ ∧ ¬p1)

and

F (η ∧ H (¬p2 ∨ H ¬p1)) ≡ (H ¬p1) ∧ (¬p1)U (η ∧ ¬p1) ∨
∨ (H ¬p1) ∧ (¬p1)U (¬p2U (η ∧ ¬p2)) ∨
∨ H (¬p2 ∨ H ¬p1) ∧ (¬p2U (η ∧ ¬p2)).

So, by summing up the two obtained results and eliminating the first term of the second
equivalence that results to be redundant, we immediately derive

¬ψ ≡ (H ¬p1) ∧ (¬p1)U (ξ ∧ ¬p1) ∨
∨ (H ¬p1) ∧ (¬p1)U (¬p2U (η ∧ ¬p2)) ∨
∨ H (¬p2 ∨ H ¬p1) ∧ (¬p2U (η ∧ ¬p2)).

By applying again the function · defined in Item 4, after few simplifications, we have that the
formula ϕP ≡ ¬〈〈Ag〉〉¬ψ is translated to ¬((H ¬p1)∧〈〈Ag〉〉(ψ1∨ψ2)∨H (¬p2∨H ¬p1)∧
〈〈Ag〉〉ψ3), where

ψ1 = (¬p1)U (ξ ∧ ¬p1),

ψ2 = (¬p1)U (¬p2U (η ∧ ¬p2)),

ψ3 = (¬p2)U (η ∧ ¬p2).

18 Relentful Strategic Reasoning in Alternating-Time Temporal Logic

Finally, by eliminating the past-time operators trough the function ·̃, we obtain that the PATL∗

formula ϕP is definitively translated to

ϕC = ϕ̃P

≡ ¬((¬p1) ∧ 〈〈Ag〉〉(ψ1 ∨ ψ2) ∨ (¬p2) ∧ 〈〈Ag〉〉ψ3)

≡ (p1 ∨ [[Ag]](ψ′1 ∧ ψ′2)) ∧ (p2 ∨ [[Ag]]ψ′3),

where

ψ′1 = p1R (ξ′ ∨ p1),

ψ′2 = p1R (p2R (η′ ∨ p2)),

ψ′3 = p2R (η′ ∨ p2),

ξ′ = p ∨ 〈〈A〉〉F (p1 ∧ F p2),

η′ = p ∨ 〈〈A〉〉F p2,

which in turn is equivalent to

p1 ∧ p2 ∨ p1 ∧ [[Ag]]ψ′3 ∨ [[Ag]](ψ′1 ∧ ψ′2).

After this tour in the translation process of a RATL∗ formula into an ATL∗ equivalent one, it is
quite clear that there are properties whose description in the former logic is very easy, but that
in the latter one becomes quite intricate and difficult to understand. However, the problem
with ATL∗ does not reside only in the difficulty of writing and understanding of some formulas,
but also in their succinctness. Consider, for example, the RATL∗ formula

[[Ag]]G (p ∨ 〈〈A〉〉((F p1) ∧ (F p2)))

and its PATL∗ equivalent

[[Ag]]G (p ∨ 〈〈A〉〉P ((Ỹ f) ∧ (F p1) ∧ (F p2))),

which, differently from the previous case, do not require a predetermined order between
the two events p1 and p2. Now, by applying the Separation Theorem to the internal part
P ((Ỹ f) ∧ (F p1) ∧ (F p2)), we obtain the following formula in separated normal form

((P p1) ∧ (P p2)) ∨ (P p1 ∧ F p2) ∨ (P p2 ∧ F p1) ∨ ((F p1) ∧ (F p2)),

which describes all four possible ways to split the two events in between the present moment.
More in general, in case of n ∈ N events, the application of the theorem to the RATL∗ formula

[[Ag]]G (p ∨ 〈〈A〉〉
n∧
i=1

F qi)

would produce the pLTL formula∨
I⊆[1,n]

(
∧
i∈I

P qi) ∧ (
∧

i∈[1,n]\I

F qi),

whose length is exponential in n. Therefore, the ATL∗ equivalent would be exponential as
well.

Relentful Strategic Reasoning in Alternating-Time Temporal Logic 19

5 Alternating Tree Automata
In this section, we briefly introduce an automaton model used to solve efficiently the satis-
fiability and model-checking problems for RPATL∗, by reducing them, respectively, to the
emptiness and membership problems of the automaton. We recall that, in general, such an
approach is only possible once the logic satisfies the invariance under unwinding. In fact, this
property holds for RPATL∗, as it is stated in Theorem 3.3.

5.1 Classic automata

Alternating tree automata [36] are a generalization of nondeterministic tree automata. Intu-
itively, while a nondeterministic automaton that visits a node of the input tree sends exactly one
copy of itself to each of the successors of the node, an alternating automaton can send several
copies of itself to the same successor. Symmetric automata [20] are a variation of classical
(asymmetric) alternating automata in which it is not necessary to specify the direction (i.e., the
choice of the successors) of the tree on which a copy is sent. In fact, through two generalized
directions (existential and universal moves), it is possible to send a copy of the automaton,
starting from a node of the input tree, to one or all its successors. Hence, the automaton does
not distinguish between directions. As a generalization of symmetric alternating automata,
here we consider automata that can send copies to successor nodes, according to some entity
choice. These automata are a slight variation of automata over concurrent game structures
introduced in [43].

We now give the formal definition of symmetric and asymmetric alternating tree automata.

DEFINITION 5.1 (Symmetric Alternating Tree Automata)
A symmetric alternating tree automaton (SATA, for short) is a tuple A , 〈Σ,E,Q, δ, q0,
F〉, where Σ, E, and Q are non-empty finite sets of input symbols, entities, and states,
respectively, q0 ∈ Q is an initial state, F is an acceptance condition to be defined later, and
δ : Q × Σ → B+(D × Q) is an alternating transition function, where D = {3,2} × 2E

is an extended set of abstract directions, which maps each pair of states and input symbols
to a positive Boolean combination on the set of propositions, a.k.a. abstract moves, of the
following form: existential ((3, A), q) and universal ((2, A), q) propositions, with A ⊆ E
and q ∈ Q.

DEFINITION 5.2 (Asymmetric Alternating Tree Automata)
An asymmetric alternating tree automaton (AATA, for short) is a tuple A , 〈Σ,∆,Q, δ, q0,
F〉, where Σ, Q, q0, and F are defined as for the symmetric one, ∆ is a non-empty finite set
of real directions, and δ : Q × Σ → B+(∆ × Q) is an alternating transition function that
maps each pair of states and input symbols to a positive Boolean combination on the set of
propositions of the form (d, q) ∈ ∆×Q, a.k.a. real moves.

A nondeterministic tree automaton (NTA, for short) is a special AATA in which each
conjunction in the transition function δ has exactly one move (d, q) associated with each
direction d. In addition, a universal tree automaton (UTA, for short) is a special AATA in
which all the Boolean combinations that appear in δ are only conjunctions of moves.

In the following, we simply write ATA when we indifferently refer to its symmetric or
asymmetric version.

The semantics of ATAs is now given through the following related concepts of run.

20 Relentful Strategic Reasoning in Alternating-Time Temporal Logic

DEFINITION 5.3 (SATA Run)
A run of a SATA A = 〈Σ,E,Q, δ, q0,F〉 on a Σ-labeled BE-tree T = 〈T, v〉, for a given set
B, is a (Q× T)-labeled N-tree R , 〈R, r〉 such that (i) r(ε) = (q0, ε) and (ii) for all nodes
y ∈ R with r(y) = (q, x), there is a set of abstract moves S ⊆ D × Q with S |= δ(q, v(x))
such that, for all (z, q′) ∈ S, it holds that:

• if z = (3, A) then there exists a choice d ∈ BA such that, for all counterchoices
d′ ∈ BE\A, it holds that (q′, x · (d, d′)) ∈ labsuc(y);

• if z = (2, A) then, for all choices d ∈ BA, there exists a counterchoice d′ ∈ BE\A such
that (q′, x · (d, d′)) ∈ labsuc(y);

where (d, d′) ∈ BE denotes composition of d and d′, i.e., the function such that (d, d′)�A = d
and (d, d′)�(E\A) = d′ and labsuc(y) , {r(y · j) : j ∈ N ∧ y · j ∈ R} is the set of labels of
successors of the node y in the runR.

DEFINITION 5.4 (AATA Run)
A run of an AATA A = 〈Σ,∆,Q, δ, q0,F〉 on a Σ-labeled ∆-tree T = 〈T, v〉 is a (Q× T)-
labeled N-tree R , 〈R, r〉 such that (i) r(ε) = (q0, ε) and (ii) for all nodes y ∈ R with
r(y) = (q, x), there is a set of real moves S ⊆ ∆×Q with S |= δ(q, v(x)) such that, for all
(d, q′) ∈ S, there is an index j ∈ [0, |S|[for which it holds that y ·j ∈ R and r(y ·j) = (q′, x·d).

In the following, we consider ATAs along with the parity F = (F1, . . . ,Fk) ∈ (2Q)+ with
F1 ⊆ . . . ⊆ Fk = Q (APT, for short) acceptance condition (see [26], for more). The number
k of sets in F is called the index of the automaton. We also use ATAs with the Co-Büchi
acceptance condition F ⊆ Q (ACT, for short) that are APTs of index 2 in which the set of
final states is represented by F1 only.

LetR = 〈R, r〉 be a run of an ATA A on a tree T = 〈T, v〉 and R′ ⊆ R one of its branches.
Then, by inf(R′) , {q ∈ Q : |{y ∈ R′ : ∃x ∈ T . r(y) = (q, x)}| = ω} we denote the set
of states that occur infinitely often as labeling of the nodes in the branch R′. We say that a
branch R′ of T satisfies the parity acceptance condition F = (F1, . . . ,Fk) iff the least index
i ∈ [1, k] for which inf(R′) ∩ Fi 6= ∅ is even.

We now define the concept of language accepted by an ATA.

DEFINITION 5.5 (ATA Acceptance)
A SATA A = 〈Σ,E,Q, δ, q0,F〉 (resp., AATA A = 〈Σ,∆,Q, δ, q0,F〉) accepts a Σ-labeled
BE-tree (resp., ∆-tree) T iff there exists a runR of A on T such that all its infinite branches
satisfy the acceptance condition F, where the concept of satisfaction is dependent from of the
definition of F.

By L(A) we denote the language accepted by the ATA A, i.e., the set of trees T accepted by
A. Moreover, A is said to be empty if L(A) = ∅. The emptiness problem for A is to decide
whether L(A) = ∅.

In the sequel, we show how to reduce, for equivalence, a SATA to an AATA when it is a
priori known the structure of the trees of interest.

THEOREM 5.6 (SATA-AATA Reduction)
LetA = 〈Σ,E,Q, δ, q0,F〉 be a SATA and B be a finite set. Then there is an AATA A′ = 〈Σ,
BE,Q, δ′, q0,F〉 such that every Σ-labeled BE-tree is accepted by A iff it is accepted by A′.

PROOF. The transition function δ′ ofA′ is obtained from the one ofA by substituting each ex-
istential ((3, A), q′) and universal ((2, A), q′) move with the formulas

∨
d∈BA

∧
d′∈BE\A((d,

Relentful Strategic Reasoning in Alternating-Time Temporal Logic 21

d′), q′) and
∧
d∈BA

∨
d′∈BE\A((d, d′), q′), respectively. Directly from the Definition 5.3 of

SATA run, the thesis immediately follows.

5.2 Automata with satellite

As a generalization of ATA, here we also consider alternating tree automata with satellites
(ATAS, for short), in a similar way it has been done in [25]. The satellite is used to take a
bounded memory of the evaluated part of a path in a given structure and it is kept apart from
the main automaton as it allows to show a tight complexity for the decision problems. We
use symmetric ATAS (SATAS, for short) for the solution of the satisfiability problem and
asymmetric ATAS (AATAS, for short) for the model-checking one.

We now formally define this new type of automaton.

DEFINITION 5.7 (Alternating Tree Automata with Satellite)
A symmetric (resp., asymmetric) alternating tree automaton with satellite (SATAS (resp.,
AATAS), for short) is a tuple 〈A,S〉, where A , 〈Σ× P,E,Q, δ, q0,F〉 (resp., A , 〈Σ× P,
∆,Q, δ, q0,F〉) is a SATA (resp., AATA) and S , 〈Σ,P, ζ, p0〉 is a deterministic safety word
automaton5, a.k.a. satellite, where P is a non-empty finite set of states, p0 ∈ P is an initial
state, and ζ : P× Σ→ P is a deterministic transition function that maps a state and an input
symbol to a state. The sets Σ and E (resp., ∆) are, respectively, the alphabet and the entity set
(resp., direction sets) of the ATAS 〈A,S〉.

In the following definition, we formalize the concept of a language being accepted by an
ATAS.
DEFINITION 5.8 (ATAS Acceptance)
A Σ-labeled BE-tree (resp., ∆-tree) T is accepted by a SATAS (resp., AATAS) 〈A,S〉, where
A , 〈Σ× P,E,Q, δ, q0,F〉 (resp., A = 〈Σ× P,∆,Q, δ, q0,F〉) and S = 〈Σ,P, ζ, p0〉, iff it
is accepted by the product-automaton A? , 〈Σ,E,Q× P, δ?, (q0, p0),F?〉 (resp., A? , 〈Σ,
∆,Q× P, δ?, (q0, p0),F?〉) with δ?((q, p), σ) , δ(q, (σ, p))[q′ ∈ Q/(q′, ζ(p, σ))], where by
f [x ∈ X/y] we denote the formula in which all occurrences of x in f are replaced by y, and
F? is the acceptance condition directly derived from F.

In words, δ?((q, p), σ) is obtained by substituting in δ(q, (σ, p)) each occurrence of a state q′

with a tuple of the form (q′, p′), where p′ = ζ(p, σ) is the new state of the satellite. By L(〈A,
S〉) we denote the language accepted by the ATAS 〈A,S〉.

In the following, we mainly consider ATAS along with the parity acceptance condition
(APTS, for short), where F? , (F1 × P, . . . ,Fk × P).

Note that satellites are just a convenient way to describe an ATA in which the state space
can be partitioned into two components, one of which is deterministic, independent from the
other, and having no influence on the acceptance. Indeed, it is just a matter of technicality
to see that automata with satellites inherit all the closure properties of alternating automata.
In particular, we prove how to translate an AAPTS into an equivalent NPT with only an
exponential blow-up in the number of the main states.

THEOREM 5.9 (AAPTS Nondeterminization)
Let 〈A,S〉 be an AAPTS, where the main automaton A has n states and index k and the
satellite S has m states. Then, there is an NPT N ? with 2O((n·k)·log(n·k)+log(m)) states and
index O(n · k), such that L(N ?) = L(〈A,S〉).

5A safety word automaton is an automaton without acceptance condition, i.e., all words for which there exists a run are accepted.

22 Relentful Strategic Reasoning in Alternating-Time Temporal Logic

PROOF. To deduce the thesis, we use the Muller-Schupp exponential-time nondeterminization
procedure [37] that leads from the AAPT A to an NPT N , with 2O((n·k)·log(n·k)) states and
index O(n · k), such that L(N) = L(A). Since an NPT is a particular AAPT, we immediately
have that L(〈N ,S〉) = L(〈A,S〉). By taking the product-automaton between N and the
satellite S, as described in Definition 5.8 of ATAS acceptance, we obtain a new NPT N ?,
with 2O((n·k)·log(n·k)+log(m)) states and index O(n · k), such that L(N ?) = L(〈N ,S〉). Hence,
it is evident that L(N ?) = L(〈A,S〉).

The following theorem, directly derived by a proof idea of [25], shows how the separation
between A and S gives a tight analysis of the complexity of the relative emptiness problem.

THEOREM 5.10 (APTS Emptiness)
The emptiness problem for an APTS 〈A,S〉 with alphabet size h, where the main automa-
ton A has n states and index k and the satellite S has m states, can be decided in time
2O(log(h)+(n·k)·((n·k)·log(n·k)+log(m))).

PROOF. The proof proceeds in two steps, the first of which is used only if A is a SATA, in
order to translate it into an AATA. First, in order to obtain a linear translation from SATAs
to AATAs, we use a bounded model theorem (see Theorem 2 of [43]), which asserts that a
SATA A accepts a tree iff it accepts a |Z× E||E|-bounded tree, where Z is the set of abstract
moves used in its transition function. By Theorem 5.6, there is an AATA A′, with the same
set of states and acceptance condition of the original automaton A and a set Z × EE of
directions, such that L(A′) = ∅ iff L(A) = ∅. Hence, by the definition of ATAS, we obtain
that L(〈A′,S〉) = ∅ iff L(〈A,S〉) = ∅. Consequently, by Theorem 5.9, we obtain an NPT
N ?, with 2O((n·k)·log(n·k)+log(m)) states and index O(n · k), such that L(N ?) = L(〈A′,S〉).
The emptiness of N ? can be checked in polynomial running-time in its number of states,
exponential in its index, and linear in the alphabet size (see Theorem 5.1 of [24]). Overall,
with this procedure, we obtain that the emptiness problem for an APTS is solvable in time
2O(log(h)+(n·k)·((n·k)·log(n·k)+log(m))).

Finally, we show the computational complexity of verifying whether a given tree language,
represented by a safety NPT, is recognized by an APTS.

THEOREM 5.11 (APTS-NTA Intersection Emptiness)
The emptiness problem for the intersection of an APTS 〈A,S〉 with alphabet size h, where
the main automaton A has n states and index k and the satellite S has m states, and a
safety NTA N with g states, both running over BE-trees, can be decided in time gO(n·k) ·
2O(log(h)+(n·k)·((n·k)·log(n·k)+log(m))).

PROOF. As for Theorem 5.10, the proof proceeds in two steps. First, by Theorem 5.6, there
is an AATA A′, with the same set of states and acceptance condition of A and a set BE of
directions, such that L(A′) = L(A) and so, L(〈A′,S〉) = L(〈A,S〉). Now, by Theorem
5.9, we obtain an NPT N ?, with 2O((n·k)·log(n·k)+log(m)) states and index O(n · k), such
that L(N ?) = L(〈A′,S〉). Intersecting N ? with N , we obtain a new NPT N ′ such that
L(N ′) = L(〈A,S〉) ∩ L(N), with g · 2O((n·k)·log(n·k)+log(m)) states and same index of N ?.
Finally, we check the emptiness ofN ′ in time gO(n·k) ·2O(log(h)+(n·k)·((n·k)·log(n·k)+log(m))).

6 Decision Procedures
In this section, we finally study the satisfiability and model-checking problems directly for the
richer RPATL∗ logic, since we prove a tight 2EXPTIME upper bound for both of them.

Relentful Strategic Reasoning in Alternating-Time Temporal Logic 23

6.1 From path formulas to satellite

As mentioned before, a RPATL∗ path formula is satisfied at a certain node of a path by taking
into account both the future and the past. Although the past is unbounded, it only requires
a finite representation. This is due to the fact that LTL with past-time operators (pLTL, for
short) [17, 28] can be translated into automata on infinite words of bounded size [46]. Here,
we show how to build the satellite that represents the memory on the past in order to solve
satisfiability and model-checking for RPATL∗, of which pLTL represents the temporal path
core, as LTL is the corresponding one for ATL∗.

To this aim, we first introduce the following notation, where ϕ is a state formula in enf :
APϕ , AP ∪ cl(ϕ), APrϕ , AP ∪ rcl(ϕ), and APprsϕ , APrϕ ∪ {present}. Intuitively, we are
enriching the set of atomic propositions AP, to be used as input symbols of the automata, with
the basic formulas of ϕ and the special proposition present.

Before showing the full satellite construction, we first describe how to build it from a single
basic formula b = 〈〈Ab〉〉ψb. Let ψ̂b be the pLTL formula obtained by replacing in ψb all
occurrences of a direct basic subformula b′ ∈ rcl(b) with the fresh label b′ read as atomic
proposition. It is well known that every LTL formula can be translated into a nondeterministic
Büchi word automaton recognizing all infinite sequences over the sets of atomic propositions
that satisfy the formula itself [48]. An extended Vardi-Wolper construction can be done for
pLTL as well, as showed in [46]. Here, however, we need to build a universal automaton.
Therefore, instead of applying the construction directly to the pLTL formula ψ̂b, we do it for
its negation ¬ψ̂b and then interpret the resulting automaton as a universal co-Büchi one. In
this way, we translate ψ̂b into an automaton Ub = 〈2AP

prs
b ,Qb, δb,Q0b,Fb〉, with a number

of states at most exponential in lng(ψb), i.e., |Qb| = 2O(lng(ψb)), that accepts all and only
the infinite words on 2AP

prs
b that are models of ψ̂b. At this point, by applying the classical

subset construction to Ub [41], we obtain the satellite Db = 〈2APr
b , 2Qb , ζb,Q0b〉, where

ζb(p, σ) ,
⋃
q∈p δb(q, σ), for all states p ⊆ Qb and labels σ ⊆ APrb .

To better understand the usefulness of the satellite Db, consider Ub after a prefix ρ = $≤i
of an infinite word $ ∈ (2AP

r
b)ω is read. Since Ub is universal, there exists a number of active

states that are ready to continue with the evaluation of the remaining part $>i of the word
$. Consider now the satellite Db after that the same prefix ρ has been read. Since Db is
deterministic, there is only one active state that, by construction, is exactly the set of all the
active states of Ub. It is clear then that, using Db, we are able to maintain together all possible
parallel computations of Ub.

We now define the product-satellite that maintains, at the same time, a memory for all path
formulas ψb contained in a basic subformula b ∈ cl(ϕ) of the RPATL∗ formula ϕ of interest.

DEFINITION 6.1 (Memory Satellite)
The memory satellite for a state formula ϕ is the satellite Sϕ , 〈2APϕ ,Pϕ, ζϕ, p0ϕ〉 isomorph
to the product

∏
b∈cl(ϕ)Db, where:

• the states in Pϕ , {p ∈ cl(ϕ)→
⋃
b∈cl(ϕ) 2Qb : ∀b ∈ cl(ϕ). p(b) ⊆ Qb} are represented

by the functions assigning to each basic formula b in ϕ a subset of the states of the
associated co-Büchi word automaton Ub, in other words, a state of Db;

• p0ϕ(b) , Q0b, for all b ∈ cl(ϕ), i.e., the initial state simply maps each b to the initial
states of Db;

• ζϕ(p, σ)(b) , ζb(p(b), σ∩APrb), for all p ∈ Pϕ, σ ⊆ APϕ, and b ∈ cl(ϕ), i.e., ζϕ collects
the transition function ζb of Db, for each b.

24 Relentful Strategic Reasoning in Alternating-Time Temporal Logic

Intuitively, this satellite records the temporal evolution of the formula ϕ from the root of the
tree model by means of its states, which maps each basic subformula b ∈ cl(ϕ) to a set of
active states of the related word automaton Ub. Consequently, when we have to verify the
RPATL∗ subformula 〈〈Ab〉〉ψb at a given point of a model, we can just do what has to be done
in the case of an ATL∗ formula 〈〈Ab〉〉ψ′b, where ψ′b represents the part of ψb still to check
from that point onward, which can be identified by means of the active state of the satellite
Db contained into Sϕ. Note that the size of the latter is doubly-exponential in lng(ϕ), i.e., its
number of states is 22

O(lng(ϕ))

.
To illustrate the above construction, consider the RATL∗ formula ϕ , ¬〈〈Ag〉〉F (¬p ∧

¬〈〈A〉〉F (p1 ∧ F p2)) in enf, which is equivalent to the one used in the example of the previous
section. It is easy to see that cl(ϕ) = {b1, b2}, where b1 = 〈〈Ag〉〉F (¬p∧¬〈〈A〉〉F (p1∧F p2))

and b2 = 〈〈A〉〉F (p1 ∧ F p2), from which we derive ψ̂b1 = F (¬p ∧ ¬b2) and ψ̂b2 = F (p1 ∧
F p2). By applying to the latter formulas the variation of the Vardi-Wolper construction as
described before, we obtain the universal co-Büchi word automata Ub1 = 〈2AP

prs
b1 ,Qb1 , δb1 ,

Q0b1 ,Fb1〉 and Ub2 = 〈2AP
prs
b2 ,Qb2 , δb2 ,Q0b2 ,Fb2〉 defined as follows:

• AP = {p, p1, p2};
• APprsb1

= AP ∪ {b2, present}, Qb1 = {q0, q1}, and Q0b1 = Fb1 = {q0};

• δb1(q0, σ) =

{
q1, if p 6∈ σ and b2 6∈ σ;

q0, otherwise;

• δb1(q1, σ) = q1;
• APprsb2

= AP ∪ {present}, Qb2 = {q0, q1, q2}, Q0b2 = {q0}, and Fb2 = {q0, q1};

• δb2(q0, σ) =

q2, if p1 ∈ σ and p2 ∈ σ;

q1, if p1 ∈ σ and p2 6∈ σ;

q0, otherwise;

• δb2(q1, σ) =

{
q2, if p2 ∈ σ;

q1, otherwise;

• δb2(q2, σ) = q2.

Intuitively, by transiting to the state q1 not contained in the co-Büchi set Fb1 , the automaton
Ub1 checks for the existence of a letter σ ∈ 2AP

prs
b1 in the input word containing neither p

nor b2. Similarly, Ub2 transits to the state q2 not contained in Fb2 , when it finds in the input
word two, not necessarily distinct, consecutive letters σ1, σ2 ∈ 2AP

prs
b2 such that p1 ∈ σ1 and

p2 ∈ σ2. Observe that, due to the very simple nature of the LTL specifications ψ̂b1 and ψ̂b2 ,
the corresponding automata are deterministic. Consequently, the derived satellites Db1 and
Db2 are isomorph to Ub1 and Ub2 , respectively, modulo the absence of the special atomic
proposition present. Finally, we have that Sϕ is isomorph to Db1 ×Db2 .

6.2 Satisfiability

We now describe a satisfiability procedure for RPATL∗, which technically extends the one used
in [42] for ATL∗ along with that for mCTL∗ proposed in [25]. Such an extension is possible
since the relentful quantification has no direct interaction with the strategic feature of the
logic, because it only requires that the path property ψ of a basic formula 〈〈A〉〉ψ is verified

Relentful Strategic Reasoning in Alternating-Time Temporal Logic 25

starting from the root of the model. Indeed, as for ATL∗, every CGS satisfying a RPATL∗

formula ϕ can be transformed into an explicit CGT model of ϕ itself. Such a kind of structure
includes a certificate for both the truth of each basic subformula b ∈ cl(ϕ) in the respective
nodes of the tree and the strategy used by the agents in Ab to achieve the goal described by
the corresponding path formula ψb (see Section 3 of [42] for the formal definition). Observe
that this result can be shown by means of the same proof of Theorem 2 of [42]. The unique
difference here resides in the fact that the witness of a basic formula b does not start at the
node from which the path formula ψb needs to be satisfied, i.e., the root of the CGT, but from
the one in which the quantification is applied, i.e., the present node. Obviously, this difference
directly derives from the relentful feature of RPATL∗.

By exploiting the fact that a formula ϕ has a model iff it has an explicit model, we reduce
the verification of its satisfiability to the checking of the emptiness of a SATAS 〈Aϕ,Sϕ〉 that
recognizes all and only the explicit models of ϕ. The construction of this automaton follows
the one used in Theorem 4 of [42] and changes with respect to the use of the satellite Sϕ,
which supports the main automaton Aϕ whenever it needs to start with the verification of
a given path formula ψb, with b ∈ cl(ϕ). Indeed, by using the technique developed in [25],
Aϕ sends to the successors of a node x in the input tree labeled with b, all the states of the
universal Co-Büchi word automaton Ub that are active after that it has read the word starting at
the root of the tree and ending in x. Obviously, the set of active states is maintained by the
component Db of the satellite Sϕ.

Formally,Aϕ , A′ϕ ∧Aem ∧
∧
b∈cl(ϕ)Ab is built as the linear conjunction of the following

three types of automata.

• A′ϕ is a one-state deterministic safety automaton that checks whether the Boolean formula
ϕ̂ holds at the root of the input tree, where ϕ̂ is obtained from ϕ by replacing each direct
basic subformula b ∈ rcl(ϕ) with the corresponding fresh atomic proposition b.

• Aem is a universal safety automaton that checks whether the input tree is a well-formed
explicit model (see Lemma 5 of [42] for its definition).

• Ab is a universal co-Büchi automaton verifying that each node of the tree labeled by the
atomic proposition b actually satisfy the formula 〈〈Ab〉〉ψb ∈ cl(ϕ).

Each SATA Ab = 〈Σ?ϕ,Ag,Q?
b , δ

?
b , qb,F

?
b〉 is constructed by means of the universal co-Büchi

word automaton Ub = 〈2AP
prs
b ,Qb, δb,Q0b,Fb〉 as follows.

• The input symbols in Σ?ϕ , 2AP
?
ϕ × Pϕ are represented by the pairs of letters in 2AP

?
ϕ

and states of the satellite Sϕ, where the set of extended atomic proposition AP?ϕ ,
APϕ ∪ cl(ϕ) × {new, cont} is obtained by further enriching the original one with the
names of the basic subformulas of ϕ associated with a flag in {new, cont}. The latter are
used to ensure that the verifications of different instances of the formula 〈〈Ab〉〉ψb do not
overlap (this is required by the definition of explicit model [42]);

• The set of states Q?
b , {qb} ∪ Qb × {new, cont} is constituted by the initial state qb

together with the pairs of a state of Ub and a flag in {new, cont}.
• The co-Büchi states in F?b , Fb×{cont} are simply the co-Büchi states of Ub paired with

the flag cont.
• If b 6∈ σ then δ?b (qb, (σ, p)) , ((2,Ag), qb), i.e., when the current node is not labeled by
b, the automaton simply propagates the state qb on all its successors in order to continue
the testing on the remaining part of the tree.

26 Relentful Strategic Reasoning in Alternating-Time Temporal Logic

• If b ∈ σ then δ?b (qb, (σ, p)) , ((2,Ag), qb)∧
∧
q∈p(b)

∧
q′∈δb(q,σ∩APr

b∪{present})
((2,Ag),

(q′, new)), where p(b) is the state of the component Db in the satellite Sϕ. Intuitively, if
the current node is labeled by b, we have to verify that it satisfies the formula 〈〈Ab〉〉ψb,
assuming that the finite path going from the root to this node is the history of the play to
be extended. Consequently, the automaton starts the verification of the part of the formula
ψb that has still to be checked from the present moment onward. Observe that to identify
the current node as the present moment, we force the internal copy of the automaton Ub to
read the atomic proposition present.

• If (q, α) 6∈ σ then δ?b ((q, α), (σ, p)) , t, i.e., in case a state is not contained into the
labeling, we do not need to verify the corresponding property on the subtree rooted on the
current node.

• If (q, α) ∈ σ then δ?b ((q, α), (σ, p)) ,
∧
q′∈δb(q,σ∩APr

b)
((2,Ag), (q′, cont)), i.e., if a state

is contained in the labeling of the current node, we have to continue the verification process
by propagating on its successors all states derived from the transition function δb of Ub.

One can easily note that the construction of Ab is almost identical to the one described in
Lemma 6 of [42], but on the definition of δ?b (qb, (σ, p)) with b ∈ σ, which uses the satellite to
determine the states of Ub from which we have to start the verification of the path formula ψb.

To better understand how the above construction works, consider again the basic formula
b2 of the previous example, together with the associated automaton Ub2 and satellite Db2 .
Moreover, suppose that Ab2 is reading a node x labeled by b2, whose corresponding track
starting from the root determines a word over AP?ϕ having at least one occurrence of the atomic
proposition p1 but none of p2. Consequently, the satellite Db2 identifies q1 as the only active
state of Ub2 after that the previous word has been read. So, in dependence of the labeling of x,
Ab2 has to send to all of its successors one between the states (q1, new) and (q2, new).

Putting the above reasonings all together, we obtain the following result.

THEOREM 6.2 (RPATL∗ Satisfiability)
Given an RPATL∗ formula ϕ, we can build a Co-Büchi SATAS 〈Aϕ,Sϕ〉, where Aϕ and Sϕ
have, respectively, 2O(lng(ϕ)) and 22

O(lng(ϕ))

states, such that L(〈Aϕ,Sϕ〉) is exactly the set of
all the tree models of ϕ.

By using Theorems 6.2 and 5.10, we obtain that the check for the existence of a model for a
given RPATL∗ specificationϕ can be done in time 22

O(lng(ϕ))

, resulting in a 2EXPTIME algorithm
in the length of ϕ. Since RPATL∗ linearly subsumes mCTL∗, which has a 2EXPTIME-HARD
satisfiability problem [25], we then derive the following result.

THEOREM 6.3 (RPATL∗ Satisfiability Complexity)
The satisfiability problem for RPATL∗ is 2EXPTIME-COMPLETE.

6.3 Model checking

We finally propose a top-down model-checking algorithm for the new logic RPATL∗, which
checks whether the initial state of the CGS under examination satisfies the formula of interest.
In particular, our procedure is inspired to the one used for mCTL∗ in [25] and so, it differs
from that described in [1] for ATL∗, which is bottom-up and uses a global model-checking
approach.

With more details, by applying the standard translation of a model into an equivalent
automaton [26], from a CGS G and a RPATL∗ formula ϕ, we easily construct a safety NTA

Relentful Strategic Reasoning in Alternating-Time Temporal Logic 27

NG,ϕ that recognizes all the extended unwindings of G itself, in which each state is also labeled
by the basic subformulas b ∈ cl(ϕ) of ϕ that are true in that state. Observe that this automaton
is simply linear in the size of G. Then, by using Theorems 5.6 and 5.11, we calculate the
product of NG,ϕ with the SATAS of Theorem 6.2, obtaining in this way an automaton that is
empty iff the model G does not satisfy the specification ϕ.

Now, by a simple calculation, we derive that the whole procedure takes time ‖G‖2
O(lng(ϕ))

,
resulting in an algorithm that is in PTIME with respect to the size of G and in 2EXPTIME with
respect to the size of ϕ. Since, by Item 1 of Theorem 4.1, there is a linear translation from
ATL∗ to RPATL∗ and ATL∗ has a model-checking problem that is PTIME-HARD with respect
to G and 2EXPTIME-HARD with respect to ϕ [1], we then derive the following result.

THEOREM 6.4 (RPATL∗ Model Checking Complexity)
The RPATL∗ model checking problem is PTIME-COMPLETE with respect to the size of the
model and 2EXPTIME-COMPLETE with respect to the size of the specification.

7 Discussion, and Future Work
In this paper we have introduced RATL∗, a memoryful extension of ATL∗. We have studied
its expressive power and its succinctness, with respect to ATL∗, as well as its related decision
problems. Specifically, we have shown that RATL∗ is equivalent but at least exponentially
more succinct than ATL∗. Moreover, both the satisfiability and the model-checking problems
for RATL∗ are 2EXPTIME-COMPLETE, as they are for ATL∗. Thus, this useful extension
comes, in theory, at no cost. We have also investigated the extension of ATL∗ and RATL∗ with
past operators (i.e., backward modalities), respectively named PATL∗ and RPATL∗. We have
shown that PATL∗ (and thus RPATL∗) is equivalent to RATL∗ and, as the latter, it is at least
exponentially more succinct than ATL∗. Then, we have shown that the complexity results we
got for RATL∗ hold for RPATL∗ as well.

As for mCTL∗, the interesting properties shown for RATL∗ make this logic not only useful
at its own, but also advantageous to efficiently decide other logics (once it is shown a tight
reduction to it). In the case of mCTL∗, we recall that this logic is useful to decide the embedded
CTL∗ logic, recently introduced in [38]. This logic allows to quantify over good and bad
system executions. In [38], the authors also introduce a new model-checking methodology,
which allows to group the system executions as good and bad, with respect to the satisfiability
of a base LTL specification. By using an embedded CTL∗ specification, this model-checking
algorithm allows checking not only whether the base specification holds or fails to hold in a
system, but also how it does so. In [38], the authors use a polynomial translation of their logic
into mCTL∗ to solve efficiently its decision problems. In the context of coalition logics, the
use of an “embedded” framework seems even more interesting. In particular, an embedded
ATL∗ logic could allow to quantify coalition of agents over good and bad system executions.
Analogously to the CTL∗ case, one may show a polynomial translation from embedded ATL∗

to RATL∗ and use this result to efficiently solve the related decision problems.
In [5, 3, 4], Graded Computation-Tree Logic (GCTL, for short) has been introduced as a

modal logic that extends CTL by replacing the universal (A) and existential (E) quantifiers with
their graded versions A<n and E≥n. It has been shown that, despite such extension is strictly
more expressive than CTL, the satisfiability problem for GCTL is EXPTIME-COMPLETE, as it
is for CTL, even in the case that the graded numbers are coded in binary. Graded modalities
have been also investigated in case of backward modalities in [6, 7]. It would be interesting

28 Relentful Strategic Reasoning in Alternating-Time Temporal Logic

to lift the graded framework into RATL∗ and RPATL∗, and investigate both the expressive
power and the complexities of the classical decision problems for the extended logics. To
give an intuition, the graded extension of RATL∗ can be obtained by replacing the universal
([[A]]) and existential (〈〈A〉〉) strategy quantifiers of the logic with graded modalities of the
form [[A]]

<n and 〈〈A〉〉≥n. Informally speaking, these two operators have the meaning of
“there exists at least n different non-equivalent strategies ...” and “for all except at most n
non-equivalent strategies ...” respectively (see [] for some related material). Additionally, in
the past modalities, we can predicate with a number of non-equivalent strategies in the past.
Despite this extension is natural and most of the reasonings introduced in GCTL can be lifted
to the new logics, there is a deep work to do regarding the formalization of equivalence among
strategies.

Recently, a logic more expressive than ATL∗, named Strategy Logic (SL, for short), has
been introduced in [34]. The aim of this logic is to get a powerful framework for reasoning
explicitly about strategic behaviors [11] in multi-agent concurrent games, by using first-
order quantifications over strategies. Although SL model checking is non-elementary and
the satisfiability even undecidable, there is a useful syntactic fragment of this logic, named
One-Goal Strategy Logic (SL[1G], for short), which strictly subsumes ATL∗ and has both the
above mentioned decision problems 2EXPTIME-COMPLETE, thus not harder than those for
ATL∗ [30, 31, 32, 33]. Analogously to RATL∗, one can investigate memoryful extensions
of SL[1G]. Such extensions can translate to the multi-coalition framework, represented by
the alternation of strategy quantifiers, the advantages of having a memoryful verification of
temporal properties. This would be very important in the field of multi-agent planning and we
aim to investigate this as future work.

Related works

We report that the authors of [16] have considered a sublogic of Strategy Logic, named
ESL, which is orthogonal to SL[1G]. This logic uses a quantification over the history of the
game, in which it is embedded a concept of memoryful quantification. Their aim was to
propose a suitable framework for the synthesis of multi-player systems with rational agents.
However, it is worth noting that the semantics of ESL is quite different form that one we use
for RATL∗ and the two logics turn to be incomparable. In particular, ESL does not allow the
requantification over paths as instead RATL∗ does (e.g., ESL cannot express RATL∗ formulas
such as 〈〈A〉〉F [[B]]G p). In addition, RATL∗ is able to express in its framework the ESL history
quantification. For example, consider the property “for every history of the game, player 1 has
a strategy that forces player 2 to satisfy ψ”. Moreover, ESL requires to use a quantification
over history variables, while in RATL∗ this property simply becomes AG 〈〈1〉〉ψ. Finally, we
observe that in [16], it is only addressed and solved the synthesis problem, while here we
address and solve the satisfiability and the model-checking problems. Observe that their
algorithm does not imply any result about ESL satisfiability, since they do not provide any
bound on the width of ESL models. In particular, we can assert that such a bound in general
does not exit, since it does not exist for SL, as it has been shown in [34] and the proof used
there can be easily lifted to ESL. Consequently and similarly to SL, we can also assert that
ESL satisfiability is undecidable.

In [49] a first-order variant of RPATL∗ has been also introduced and named FORPATL∗.
As in our framework, this logic allows to assert that, given any finite system-event history,
no matter what future events are initiated by the an agent, the remaining agents are able

Relentful Strategic Reasoning in Alternating-Time Temporal Logic 29

to ensure that the history can be extended to an infinite trace that satisfies a given property.
Additionally, such a property is based on first order relations, with the aim to formalize a
privacy policy. Clearly, FORPATL∗ strongly extends RPATL∗ and sharply refines the notion of
strong compliance introduced in [2], by allowing agents to be either adversaries or cooperative.
Indeed, we recall that in the classic strong compliance, the former is not allowed.

Recently, in [9, 10] a “no-forget” variation of the semantics of ATL and ATL∗ has been
introduced. In a way similar to RATL∗, this semantics allows agents do not forget any of their
past observation in nested games. The two formalizations result to be equivalent as the past in
the no-forget semantics is used in a point by agents to choose the more appropriate strategies
to be used for the future evolution of the game, as we also do. This new semantics has been
named in [9] truly perfect recall as opposed to the perfect recall one, classically used for
ATL∗. It has been investigated under the perfect information setting, in which the agents can
observe the full state of the system (as we do), as well as under the imperfect information
scenario [44, 23], in which only a part of a state is visible to the agents. As for RATL∗, it
has been shown that, under the perfect information setting, the no-forget semantics and the
classical one coincide. Conversely, it has been shown that under the imperfect information
setting, the two semantics are incomparable. An important consequence of the latter result is
that the truly perfect recall semantics, by means of the imperfect information restriction, allows
to characterize a new interesting class of games as well as to formalize interesting properties
they hold. More precisely, in [10], the two semantics have been evaluated by comparing the
sets of validities they induce, that is, the general game properties they can specify. In the
validity reasoning, each formula is interpreted as a property of interaction between agents in a
CGS. Thus, validities are properties that universally hold on the game (see [8] for more on
this argument). By comparing validity sets of the classical and truly perfect recall semantics,
one can compare the general properties of the class of games induced by these two semantics.
Specifically, under the imperfect information, it has been shown in [10] that the truly perfect
recall formally describes the specific interesting class of ATL∗ games in which “players do not
forget the past”. A similar reasoning can be extended to RPATL∗ easily and therefore this logic
can be usefully used to represent and reasoning about that specific class of games. As a final
observation, we report that neither in [9] nor in [10] decision problems have been investigated.

A Mathematical Notation
In this short reference appendix, we report the classical mathematical notation and some
common definitions that are used along the whole work.

Classic objects We consider N as the set of natural numbers and [m,n] , {k ∈ N :
m ≤ k ≤ n}, [m,n[, {k ∈ N : m ≤ k < n},]m,n] , {k ∈ N : m < k ≤ n}, and]m,

n[, {k ∈ N : m < k < n} as its interval subsets, with m ∈ N and n ∈ N̂ , N∪{ω}, where
ω is the numerable infinity, i.e., the least infinite ordinal. Given a set X of objects, we denote
by |X| ∈ N̂ ∪ {∞} the cardinality of X, i.e., the number of its elements, where∞ represents
a more than countable cardinality, and by 2X , {Y : Y ⊆ X} the powerset of X, i.e., the set
of all its subsets.

Relations By R ⊆ X × Y we denote a relation between the domain dom(R) , X and
codomain cod(R) , Y, whose range is indicated by rng(R) , {y ∈ Y : ∃x ∈ X.(x, y) ∈ R}.
We use R−1 , {(y, x) ∈ Y ×X : (x, y) ∈ R} to represent the inverse of R itself. Moreover,
by S ◦ R, with R ⊆ X × Y and S ⊆ Y × Z, we denote the composition of R with S , i.e.,

30 Relentful Strategic Reasoning in Alternating-Time Temporal Logic

the relation S ◦ R , {(x, z) ∈ X × Z : ∃y ∈ Y. (x, y) ∈ R ∧ (y, z) ∈ S}. We also use
Rn , Rn−1 ◦ R, with n ∈ [1, ω[, to indicate the n-iteration of R ⊆ X × Y, where Y ⊆ X
and R0 , {(y, y) : y ∈ Y} is the identity on Y. With R+ ,

⋃<ω
n=1 R

n and R∗ , R+ ∪ R0

we denote, respectively, the transitive and reflexive-transitive closure of R. Finally, for an
equivalence relation R ⊆ X× X on X, we represent with (X/R) , {[x]R : x ∈ X}, where
[x]R , {x′ ∈ X : (x, x′) ∈ R}, the quotient set of X w.r.t. R, i.e., the set of all related
equivalence classes [·]R.

Functions We use the symbol YX ⊆ 2X×Y to denote the set of total functions f from X to
Y, i.e., the relations f ⊆ X × Y such that for all x ∈ dom(f) there is exactly one element
y ∈ cod(f) such that (x, y) ∈ f. Often, we write f : X → Y and f : X ⇀ Y to indicate,
respectively, f ∈ YX and f ∈

⋃
X′⊆X YX′

. Regarding the latter, note that we consider f as
a partial function from X to Y, where dom(f) ⊆ X contains all and only the elements for
which f is defined. Given a set Z, by f�Z , f ∩ (Z × Y) we denote the restriction of f to
the set X ∩ Z, i.e., the function f�Z : X ∩ Z ⇀ Y such that, for all x ∈ dom(f) ∩ Z, it holds
that f�Z(x) = f(x). Moreover, with ∅ we indicate a generic empty function, i.e., a function
with empty domain. Note that X ∩ Z = ∅ implies f�Z = ∅. Finally, for two partial functions
f, g : X ⇀ Y, we use f d g and f e g to represent, respectively, the union and intersection of
these functions defined as follows: dom(f d g) , dom(f)∪ dom(g) \ {x ∈ dom(f)∩ dom(g)
: f(x) 6= g(x)}, dom(f e g) , {x ∈ dom(f) ∩ dom(g) : f(x) = g(x)}, (f d g)(x) = f(x)
for x ∈ dom(f d g) ∩ dom(f), (f d g)(x) = g(x) for x ∈ dom(f d g) ∩ dom(g), and
(f e g)(x) = f(x) for x ∈ dom(f e g).

Words By Xn, with n ∈ N, we denote the set of all n-tuples of elements from X, by
X∗ ,

⋃<ω
n=0 Xn the set of finite words on the alphabet X, by X+ , X∗ \ {ε} the set of

non-empty words, and by Xω the set of infinite words, where, as usual, ε ∈ X∗ is the empty
word. The length of a word w ∈ X∞ , X∗ ∪ Xω is represented with |w| ∈ N̂. By (w)i
we indicate the i-th letter of the finite word w ∈ X+, with i ∈ [0, |w|[. Furthermore, by
fst(w) , (w)0 (resp., lst(w) , (w)|w|−1), we denote the first (resp., last) letter of w. In
addition, by (w)≤i (resp., (w)>i), we indicate the prefix up to (resp., suffix after) the letter
of index i of w, i.e., the finite word built by the first i + 1 (resp., last |w| − i − 1) letters
(w)0, . . . , (w)i (resp., (w)i+1, . . . , (w)|w|−1). We also set, (w)<0 , ε, (w)<i , (w)≤i−1,
(w)≥0 , w, and (w)≥i , (w)>i−1, for i ∈ [1, |w|[. Mutatis mutandis, the notations of i-th
letter, first, prefix, and suffix apply to infinite words too. Finally, by pfx(w1, w2) ∈ X∞ we
denote the maximal common prefix of two different words w1, w2 ∈ X∞, i.e., the finite word
w ∈ X∗ for which there are two words w′1, w

′
2 ∈ X∞ such that w1 = w · w′1, w2 = w · w′2,

and fst(w′1) 6= fst(w′2). By convention, we set pfx(w,w) , w.

Trees For a set ∆ of objects, called directions, a ∆-tree is a set T ⊆ ∆∗ closed under prefix,
i.e., if t · d ∈ T, with d ∈ ∆, then also t ∈ T. We say that it is complete if it holds that
t · d′ ∈ T whenever t · d ∈ T, for all d′ < d, where <⊆ ∆×∆ is an a priori fixed strict total
order on the set of directions that is clear from the context. Moreover, it is full if T = ∆∗.
The elements of T are called nodes and the empty word ε is the root of T. For every t ∈ T
and d ∈ ∆, the node t · d ∈ T is a successor of t in T. The tree is b-bounded if the maximal
number b of its successor nodes is finite, i.e., b = maxt∈T |{t · d ∈ T : d ∈ ∆}| < ω. A
branch of the tree is an infinite word w ∈ ∆ω such that (w)≤i ∈ T, for all i ∈ N. For a finite
set Σ of objects, called symbols, a Σ-labeled ∆-tree is a quadruple 〈Σ,∆,T, v〉, where T is a
∆-tree and v : T→ Σ is a labeling function. When ∆ and Σ are clear from the context, we

Relentful Strategic Reasoning in Alternating-Time Temporal Logic 31

call 〈T, v〉 simply a (labeled) tree.

B Full Definition of RPATL∗ Syntax and Semantics
The syntax of RPATL∗ is formally defined as follows.

DEFINITION B.1
RPATL∗ state (ϕ) and path (ψ) formulas are built inductively from the sets of atomic propo-
sitions AP and agents Ag using the following context-free grammar, where p ∈ AP and
A ⊆ Ag:

1. ϕ ::= present | p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | 〈〈A〉〉ψ | [[A]]ψ;
2. ψ ::= ϕ | ¬ψ | ψ ∧ ψ | ψ ∨ ψ | X ψ | Y ψ | Ỹ ψ | ψ U ψ | ψ S ψ | ψ R ψ | ψ B ψ.

The class of RPATL∗ formulas is the set of all the state formulas generated by the above
grammar, in which the occurrences of the special atomic proposition present is in the scope of
a strategy quantifier.

The semantics of RPATL∗ is formally defined as follows.

DEFINITION B.2
Given a CGS G = 〈AP,Ag,Ac,St, λ, τ, s0〉, two initial traces ρ, ρp ∈ Trk(s0), a path
π ∈ Pth(s0), and a number k ∈ N, it holds that:

1. G, ρ, ρp |= present iff ρ = ρp;
2. G, ρ, ρp |= p, for p ∈ AP, iff p ∈ λ(lst(ρ));
3. G, ρ, ρp |= ¬ϕ iff not G, ρ, ρp |= ϕ, that is G, ρ, ρp 6|= ϕ;
4. G, ρ, ρp |= ϕ1 ∧ ϕ2 iff G, ρ, ρp |= ϕ1 and G, ρ, ρp |= ϕ2;
5. G, ρ, ρp |= ϕ1 ∨ ϕ2 iff G, ρ, ρp |= ϕ1 or G, ρ, ρp |= ϕ2;
6. G, ρ, ρp |= 〈〈A〉〉ψ if there exists a lst(ρ)-total strategy fA ∈ Str(A, lst(ρ)) such that, for

all plays π ∈ Play(fA), it holds that G, ρ · π≥1, 0, ρ |= ψ;
7. G, ρ, ρp |= [[A]]ψ if, for all lst(ρ)-total strategies fA ∈ Str(A, lst(ρ)), there exists a play
π ∈ Play(fA) such that G, ρ · π≥1, 0, ρ |= ψ;

Moreover, for a path π, and a number k ∈ N, it holds that:

8. G, π, k, ρp |= ϕ iff G, π≤k, ρp |= ϕ;
9. G, π, k, ρp |= ¬ψ iff not G, π, k, ρp |= ψ, that is G, π, k, ρp 6|= ψ;

10. G, π, k, ρp |= ψ1 ∧ ψ2 iff G, π, k, ρp |= ψ1 and G, π, k, ρp |= ψ2;
11. G, π, k, ρp |= ψ1 ∨ ψ2 iff G, π, k, ρp |= ψ1 or G, π, k, ρp |= ψ2;
12. G, π, k, ρp |= X ψ iff G, π, k + 1, ρp |= ψ;
13. G, π, k, ρp |= Y ψ iff k > 0 and G, π, k − 1, ρp |= ψ;

14. G, π, k, ρp |= Ỹ ψ iff k = 0 or G, π, k − 1, ρp |= ψ;
15. G, π, k, ρp |= ψ1U ψ2 iff there is an index i, with k ≤ i, such that G, π, i, ρp |= ψ2 and,

for all indexes j, with k ≤ j < i, it holds G, π, j, ρp |= ψ1;
16. G, π, k, ρp |= ψ1S ψ2 iff there is an index i, with i ≤ k, such that G, π, i, ρp |= ψ2 and,

for all indexes j, with i < j ≤ k, it holds G, π, j, ρp |= ψ1;

32 Relentful Strategic Reasoning in Alternating-Time Temporal Logic

17. G, π, k, ρp |= ψ1R ψ2 iff for all indexes i, with k ≤ i, it holds that G, π, i, ρp |= ψ2 or
there is an index j, with k ≤ j < i, such that G, π, j, ρp |= ψ1;

18. G, π, k, ρp |= ψ1B ψ2 iff for all indexes i, with i ≤ k, it holds that G, π, i, ρp |= ψ2 or
there is an index j, with i < j ≤ k, such that G, π, j, ρp |= ψ1;

References
[1] R. Alur, T.A. Henzinger, and O. Kupferman. Alternating-Time Temporal Logic. Journal of the ACM, 49(5):672–

713, 2002.
[2] A. Barth, A. Datta, J.C. Mitchell, and H. Nissenbaum. Privacy and Contextual Integrity: Framework and

Applications. In IEEE Symposium on Security and Privacy’06, pages 184–198. IEEE Computer Society, 2006.
[3] A. Bianco, F. Mogavero, and A. Murano. Graded Computation Tree Logic. In IEEE Symposium on Logic in

Computer Science’09, pages 342–351. IEEE Computer Society, 2009.
[4] A. Bianco, F. Mogavero, and A. Murano. Graded Computation Tree Logic with Binary Coding. In EACSL

Annual Conference on Computer Science Logic’10, LNCS 6247, pages 125–139. Springer, 2010.
[5] A. Bianco, F. Mogavero, and A. Murano. Graded Computation Tree Logic. ACM Transactions On Computational

Logic, 13(3):25:1–53, 2012.
[6] P.A. Bonatti, C. Lutz, A. Murano, and M.Y. Vardi. The Complexity of Enriched µ-caluli. In ICALP (2), LNCS

4052, pages 540–551. Springer, 2006.
[7] P.A. Bonatti, C. Lutz, A. Murano, and M.Y. Vardi. The Complexity of Enriched Mu-Calculi. Logical Methods in

Computer Science, 4(3):1–27, 2008.
[8] N. Bulling and W. Jamroga. Comparing Variants of Strategic Ability: How Uncertainty and Memory Influence

General Properties of Games. Autonomous Agents and Multi-Agent Systems, 28(3):474–518, 2014.
[9] N. Bulling, W. Jamroga, and M. Popovici. Agents With Truly Perfect Recall in Alternating-Time Temporal

Logic. In Autonomous Agents and Multiagent Systems’14, pages 1561–1662, 2014.
[10] N. Bulling, W. Jamroga, and M. Popovici. ATL∗ With Truly Perfect Recall: Expressiveness and Validities. In

European Conference on Artificial Intelligence’14, page 6, 2014.
[11] K. Chatterjee, T.A. Henzinger, and N. Piterman. Strategy Logic. Information and Computation, 208(6):677–693,

2010.
[12] M. Daniele, P. Traverso, and M.Y. Vardi. Strong Cyclic Planning Revisited. In European Conference on

Planning’99, pages 35–48, 2000.
[13] E.A. Emerson and J.Y. Halpern. “Sometimes” and “Not Never” Revisited: On Branching Versus Linear Time.

Journal of the ACM, 33(1):151–178, 1986.
[14] R. Fagin, J.Y. Halpern, Y. Moses, and M.Y. Vardi. Reasoning about Knowledge. MIT Press, 1995.
[15] M.J. Fischer and R.E. Ladner. Propositional Dynamic Logic of Regular Programs. Journal of Computer and

System Science, 18(2):194–211, 1979.
[16] D. Fisman, O. Kupferman, and Y. Lustig. Rational Synthesis. In International Conference on Tools and

Algorithms for the Construction and Analysis of Systems’10, LNCS 6015, pages 190–204. Springer, 2010.
[17] D.M. Gabbay. The Declarative Past and Imperative Future: Executable Temporal Logic for Interactive Systems.

In Temporal Logic in Specification’87, LNCS 398, pages 409–448. Springer, 1987.
[18] X. Huang. Bounded Planning for Strategic Goals with Incomplete Information and Perfect Recall. In Autonomous

Agents and Multiagent Systems’13, pages 885–892, 2013.
[19] W. Jamroga. Strategic Planning Through Model Checking of ATL Formulae. In International Conference on

Artificial Intelligence and Soft Computing’04, LNCS 3070, pages 879–884. Springer, 2004.
[20] D. Janin and I. Walukiewicz. Automata for the Modal µ-Calculus and Related Results. In International

Symposiums on Mathematical Foundations of Computer Science’95, LNCS 969, pages 552–562. Springer, 1995.
[21] O. Kupferman and A. Pnueli. Once and For All. In IEEE Symposium on Logic in Computer Science’95, pages

25–35. IEEE Computer Society, 1995.
[22] O. Kupferman, A. Pnueli, and M.Y. Vardi. Once and For All. Journal of Computer and System Science,

78(3):981–996, 2012.
[23] O. Kupferman and M.Y. Vardi. Module Checking Revisited. In CAV, LNCS 1254, pages 36–47. Springer, 1997.
[24] O. Kupferman and M.Y. Vardi. Weak Alternating Automata and Tree Automata Emptiness. In ACM Symposium

on Theory of Computing’98, pages 224–233, 1998.

Relentful Strategic Reasoning in Alternating-Time Temporal Logic 33

[25] O. Kupferman and M.Y. Vardi. Memoryful Branching-Time Logic. In IEEE Symposium on Logic in Computer
Science’06, pages 265–274. IEEE Computer Society, 2006.

[26] O. Kupferman, M.Y. Vardi, and P. Wolper. An Automata Theoretic Approach to Branching-Time Model
Checking. Journal of the ACM, 47(2):312–360, 2000.

[27] F. Laroussinie, N. Markey, and P. Schnoebelen. Temporal Logic with Forgettable Past. In IEEE Symposium on
Logic in Computer Science’02, pages 383–392. IEEE Computer Society, 2002.

[28] O. Lichtenstein, A. Pnueli, and L.D. Zuck. The Glory of the Past. In Logic of Programs’85, pages 196–218,
1985.

[29] F. Mogavero. Branching-Time Temporal Logics (Theoretical Issues and a Computer Science Application).
Master’s thesis, Universitá degli Studi di Napoli ”Federico II”, Napoli, Italy, October 2007.

[30] F. Mogavero, A. Murano, G. Perelli, and M.Y. Vardi. Reasoning About Strategies: On the Model-Checking
Problem. Technical Report 1112.6275, arXiv, December 2011.

[31] F. Mogavero, A. Murano, G. Perelli, and M.Y. Vardi. A Decidable Fragment of Strategy Logic. Technical Report
1202.1309, arXiv, February 2012.

[32] F. Mogavero, A. Murano, G. Perelli, and M.Y. Vardi. What Makes ATL* Decidable? A Decidable Fragment of
Strategy Logic. In CONCUR, LNCS 7454, pages 193–208. Springer, 2012.

[33] F. Mogavero, A. Murano, G. Perelli, and M.Y. Vardi. Reasoning About Strategies: On the Model-Checking
Problem. ACM Transactions On Computational Logic, 15(4):34:1–42, 2014.

[34] F. Mogavero, A. Murano, and M.Y. Vardi. Reasoning About Strategies. In IARCS Annual Conference on
Foundations of Software Technology and Theoretical Computer Science’10, LIPIcs 8, pages 133–144, 2010.

[35] F. Mogavero, A. Murano, and M.Y. Vardi. Relentful Strategic Reasoning in Alternating-Time Temporal Logic.
In International Conference on Logic for Programming Artificial Intelligence and Reasoning’10, LNAI 6355,
pages 371–387. Springer, 2010.

[36] D.E. Muller and P.E. Schupp. Alternating Automata on Infinite Trees. Theoretical Computer Science, 54(2-
3):267–276, 1987.

[37] D.E. Muller and P.E. Schupp. Simulating Alternating Tree Automata by Nondeterministic Automata: New
Results and New Proofs of Theorems of Rabin, McNaughton, and Safra. Theoretical Computer Science,
141(1-2):69–107, 1995.

[38] P. Niebert, D. Peled, and A. Pnueli. Discriminative Model Checking. In Computer Aided Verification’08, LNCS
5123, pages 504–516. Springer, 2008.

[39] M.J. Osborne and A. Rubinstein. A Course in Game Theory. MIT Press, 1994.
[40] M. Pistore and M.Y. Vardi. The Planning Spectrum - One, Two, Three, Infinity. Journal of Artificial Intelligence

Research, 30:101–132, 2007.
[41] M.O. Rabin and D.S. Scott. Finite Automata and their Decision Problems. IBM Journal of Research and

Development, 3:115–125, 1959.
[42] S. Schewe. ATL* Satisfiability is 2ExpTime-Complete. In International Colloquium on Automata, Languages

and Programming’08, LNCS 5126, pages 373–385. Springer, 2008.
[43] S. Schewe and B. Finkbeiner. Satisfiability and Finite Model Property for the Alternating-Time µ-Calculus. In

EACSL Annual Conference on Computer Science Logic’06, LNCS 4207, pages 591–605. Springer, 2006.
[44] P.Y. Schobbens. Alternating-Time Logic with Imperfect Recall. ENTCS, 85(2):82–93, 2004.
[45] W. van der Hoek and M.J. Wooldridge. Tractable Multiagent Planning for Epistemic Goals. In Autonomous

Agents and Multiagent Systems’02, pages 1167–1174, 2002.
[46] M.Y. Vardi. A Temporal Fixpoint Calculus. In ACM SIGPLAN-SIGACT Symposium on Principles of Program-

ming Languages’88, pages 250–259, 1988.
[47] M.Y. Vardi. Reasoning about The Past with Two-Way Automata. In ICALP, LNCS 1443, pages 628–641.

Springer, 1998.
[48] M.Y. Vardi and P. Wolper. An Automata-Theoretic Approach to Automatic Program Verification. In IEEE

Symposium on Logic in Computer Science’86, pages 332–344. IEEE Computer Society, 1986.
[49] W.H. Winsborough, J. von Ronne, O. Chowdhury, J. Niu, and Md.S. Ashik. Towards Practical Privacy Policy

Enforcement. Technical Report CS-TR-2011-009, The University of Texas at San Antonio, 2011.
[50] M.J. Wooldridge. Introduction to Multiagent Systems. John Wiley & Sons, 2001.

Received ...

