
Graded Computation Tree Logic

ALESSANDRO BIANCO, FABIO MOGAVERO, and ANIELLO MURANO
Universitá degli Studi di Napoli "Federico II", Napoli, Italy

In modal logics, graded (world) modalities have been deeply investigated as a useful framework
for generalizing standard existential and universal modalities in such a way that they can express
statements about a given number of immediately accessible worlds. These modalities have been
recently investigated with respect to the µCalculus, which have provided succinctness, without
a�ecting the satis�ability of the extended logic, i.e., it remains solvable in ExpTime. A natural
question that arises is how logics that allow reasoning about paths could be a�ected by considering
graded path modalities. In this paper, we investigate this question in the case of the branching-time
temporal logic CTL (GCTL, for short). We prove that, although GCTL is more expressive than
CTL, the satis�ability problem for GCTL remains solvable in ExpTime, even in the case that the
graded numbers are coded in binary. This result is obtained by exploiting an automata-theoretic
approach, which involves a model of alternating automata with satellites. The satis�ability result
turns out to be even more interesting as we show that GCTL is at least exponentially more
succinct than graded µCalculus.

Categories and Subject Descriptors: F.3.1 [Logics and Meanings of Programs]: Specifying and Verifying and
Reasoning about Programs—Specification techniques; F.4.1 [Mathematical Logic and Formal Languages]:
Mathematical Logic—Modal logic; Temporal logic; G.2.1 [Discrete Mathematics]: Combinatorics—Counting
problems

General Terms: Theory, Speci�cation, Veri�cation.

Additional Key Words and Phrases: Branching temporal logics, Satis�ability, Graded modalities.

August 1, 2011

1. INTRODUCTION

Temporal logics are a special kind of modal logics that provide a formal framework for
qualitatively describing and reasoning about how the truth values of assertions change over
time. First pointed out by Pnueli [Pnueli 1977], these logics turn out to be particularly
suitable for reasoning about correctness of concurrent programs [Pnueli 1981].

Depending on the view of the underlying nature of time, two types of temporal logics are
mainly considered [Lamport 1980]. In linear-time temporal logics, such as LTL [Pnueli
1977], time is treated as if each moment in time has a unique possible future. Conversely,
in branching-time temporal logics, such as CTL [Clarke and Emerson 1981] and CTL*
[Emerson and Halpern 1986], each moment in time may split into various possible futures
and existential and universal quantifiers are used to express properties along one or all the

This work is based on the papers [Bianco et al. 2009; 2010], which appeared in LICS’09 and CSL’10, respectively.
Permission to make digital/hard copy of all or part of this material without fee for personal or classroom use
provided that the copies are not made or distributed for profit or commercial advantage, the ACM copyright/server
notice, the title of the publication, and its date appear, and notice is given that copying is by permission of the
ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific
permission and/or a fee.
© 20? ACM 1529-3785/20?/0700-0001 $5.00

ACM Transactions on Computational Logic, Vol. ?, No. ?, ? 20?, Pages 1–56.

2 · Alessandro Bianco et al.

possible futures. In modal logics, such as ALC [Schmidt-Schauß and Smolka 1991] and
µCALCULUS [Kozen 1983], these kinds of quantifiers have been generalized by means of
graded (worlds) modalities [Fine 1972; Tobies 2001], which allow to express properties
such as “there exist at least n accessible worlds satisfying a certain formula” or “all but
n accessible worlds satisfy a certain formula”. For example, in a multitasking scheduling
specification, we can express properties such as every time a computation is invoked,
immediately next there are at least two empty records in the task allocation table available
for the allocation of two tasks that take care of the computation, without expressing exactly
which records they are. This generalization has been proved to be very powerful as it allows
to express system specifications in a very succinct way. In some cases, the extension makes
the logic much more complex. An example is the guarded fragment of the first order logic,
which becomes undecidable when extended with a very weak form of counting quantifiers
[Grädel 1999]. In some other cases, one can extend a logic with very strong forms of
counting quantifiers without increasing the computational complexity of the obtained logic.
For example, this is the case for µALCQ (see [Baader et al. 2003] for a recent handbook)
and GµCALCULUS [Kupferman et al. 2002; Bonatti et al. 2008], for which the decidability
problem is EXPTIME-COMPLETE.

Despite its high expressive power, the µCALCULUS is considered in some sense a low-
level logic, making it “unfriendly” for users, whereas simpler logics, such as CTL, can
naturally express complex properties of computation trees. Therefore, an interesting and
natural question that arises is how the extension of CTL with graded modalities can affect
its expressiveness and decidability. There is a technical challenge involved in such an
extension, which makes this task non-trivial. In the µCALCULUS, and other modal logics
studied in the graded context so far, the existential and universal quantifiers range over the
set of successors, thus it is easy to count the domain and its elements. In CTL, on the other
hand, the underlying objects are both states and paths. Thus, the concept of graded must
relapse on both of them. We solve this problem by introducing graded path modalities that
extend to classes of paths the generalization induced to successor worlds by classical graded
modalities, i.e., they allow to express properties such as “there are at least n classes of paths
satisfying a formula” and “all but at most less than n classes of paths satisfy a formula”.
We call the logic CTL extended with graded path modalities GCTL, for short.

A point that requires few considerations here is how we count paths along the model.
We address this question by embedding in our framework a generic equivalence relation
on the set of paths, but satisfying specific consistency properties. Therefore, the decisional
algorithm we propose is very general and can be applied to different definitions of GCTL,
along with different ways to identify the classes of paths. Along this line, one can observe
that a state in a model can have only one direct successor, but possibly different paths going
through it. This must be taken into account while satisfying a given graded path property.
To deal this difficulty, we introduce a combinatorial tool which applies to a wide class of
interesting equivalences. The tool is the partitioning of a natural number, i.e., we consider all
possible decompositions of a number into its summands (e.g., 3 = 3+0 = 2+1 = 1+1+1).
This is used to distribute a set of different paths emerging from a state onto all its direct
successors. Note that, while CTL linearly translates to µCALCULUS, the above complication
makes the translation of GCTL to GµCALCULUS not easy at all. Indeed, we show such
a translation with a double-exponential blow-up, by taking into account the above path
partitioning.

ACM Transactions on Computational Logic, Vol. ?, No. ?, ? 20?.

Graded Computation Tree Logic · 3

As a special equivalence class over paths, we also consider that one induced by the
minimality and conservativeness requirements along the paths [Mogavero 2007; Bianco
et al. 2009; 2010]. The minimality property allows to decide GCTL formulas on a restricted
but significant space domain, i.e., the set of paths of interest, in a very natural way. In
more detail, it is enough to consider only the part of a system behavior that is effectively
responsible for the satisfiability of a given formula, whenever each of its extensions satisfies
the formula as well. So, we only take into account a set of non-comparable paths satisfying
the same property using in practice a particular equivalence relation on the set of all paths.
Moreover, if we drop the minimality, it may happen that to discuss the existence of a path in
a structure does not make sense anymore. This is the case, for example, when the existence
of a non-minimal path satisfying a formula may induce also the existence of an infinite
number of paths satisfying it.

The ability of GCTL to reason about numbers of paths turns out to be suitable in several
contexts. For example, it can be useful to query XML documents [Arenas et al. 2007; Libkin
and Sirangelo 2008]. These documents, indeed, can be viewed as labeled unranked trees
[Barceló and Libkin 2005] and GCTL allows reasoning about a number of links among
tags of descendant nodes, in a very succinct way, without naming any of the intermediate
ones. We also note that our framework of graded path quantifiers has some similarity with
the concept of cyclomatic complexity, as it was defined by McCabe in a seminal work in
software engineering [McCabe 1976]. McCabe studied a way to measure the complexity
of a program, identifying it in the number of independent instruction flows. From an
intuitive point of view, since graded path quantifiers allow to specify how many classes of
computational paths satisfying a given property reside in a program, GCTL subsumes the
cyclomatic complexity, where the independence concept can be embedded into an apposite
equivalence class. As another and more practical example of an application of GCTL,
consider again the above multitasking scheduling, where we may want to check that every
time a non-atomic (i.e., non one-step) computation is required, then there are at least n
distinct (i.e., non completely equivalent) computational flows that can be executed. This
property can be easily expressed in GCTL. There are also several other practical examples
that show the usefulness of GCTL and we refer to [Ferrante et al. 2008; 2009] for a list of
them.

The introduced framework of graded path modalities turns out to be very efficient in
terms of expressiveness and complexity. Indeed, we prove that GCTL is more expressive
than CTL, it retains the tree and the finite model properties, and its satisfiability problem
is solvable in EXPTIME, therefore not harder than that for CTL [Emerson and Halpern
1985]. This, along with the fact that GCTL is at least exponentially more succinct than
GµCALCULUS, makes GCTL even more appealing. The upper bound for the satisfiability
complexity result is obtained by exploiting an automata-theoretic approach [Kupferman
et al. 2000]. To develop a decision procedure for a logic with the tree model property, one
first develops an appropriate notion of tree automata and studies their emptiness problem.
Then, the satisfiability problem for the logic is reduced to the emptiness problem of the
automata.

In [Bianco et al. 2009], we have first addressed the specific case of GCTL where numbers
are coded in unary. In particular, it has first shown that unary GCTL indeed has the tree
model property, by showing that any formula ϕ is satisfiable on a Kripke structure iff it has
a tree model whose branching degree is polynomial in the size of ϕ. Then, a corresponding

ACM Transactions on Computational Logic, Vol. ?, No. ?, ? 20?.

4 · Alessandro Bianco et al.

tree automaton model named partitioning alternating Büchi tree automata (PABT) has
been introduced and shown that, for each unary GCTL formula ϕ, it is always possible
to build in linear time a PABT accepting all tree models of ϕ. Then, by using a nontrivial
extension of the Miyano and Hayashi technique [Miyano and Hayashi 1984] it has been
shown an exponential translation of a PABT into a non-deterministic Büchi tree automata
(NBT). Since the emptiness problem for NBT is solvable in polynomial time (in the size
of the transition function that is polynomial in the number of states and exponential in the
width of the tree in input) [Vardi and Wolper 1986], we obtain that the satisfiability problem
for unary GCTL is solvable in EXPTIME.

A detailed analysis on the above technique shows two points where it fails to give a single
exponential-time algorithm when applied to binary GCTL. First, the tree model property
shows for binary GCTL the necessity to consider also tree models with a branching degree
exponential in the highest degree of the formula. Second, the number of states of the NBT
derived from the PABT is double-exponential in the coding of the highest degree g of the
formula. These two points reflect directly in the transition relation of the NBT, which turns
to be double exponential in the coding of the degree g. To take care of the first point, we
develop a sharp binary encoding of each tree model. In practice, for a given model T of
ϕ we build a binary encoding TD of T , called delayed generation tree, such that, for each
node x in T having m+ 1 children x · 0, . . . , x ·m, there is a corresponding node y of x in
TD and nodes y · 0i having x · i as right child and y · 0(i+1) as left child, for 0 ≤ i ≤ m.
To address the second point, we exploit a careful construction of the alternating automaton
accepting all models of the formula, in a way that the graded numbers do not give any
exponential blow-up in the translation of the automaton in an NBT.

We now describe the main idea behind the automata construction. Basically, we use
alternating tree automata enriched with satellites (ATAS) as an extension of that introduced
in [Kupferman and Vardi 2006]. In particular, we use the Büchi acceptance condition
(ABTS). The satellite is a nondeterministic tree automaton and is used to ensure that the tree
model satisfies some structural properties along its paths and it is kept apart from the main
automaton. This separation, as it has been proved in [Kupferman and Vardi 2006], allows
to solve the emptiness problem for Büchi automata in a time exponential in the number
of states of the main automaton and polynomial in the number of states of the satellite.
Then, we obtain the desired complexity by forcing the satellite to take care of the graded
modalities and by noting that the main automaton is polynomial in the size of the formula.

The achieved result is even more appealing as we also show here that binary GCTL is
much more succinct than GµCALCULUS. In particular, the best known translation from
GCTL to GµCALCULUS is double-exponential in the degree of the formula [Bianco et al.
2010].

Related works. Graded modalities along with CTL have been also studied in [Ferrante
et al. 2008; 2009], but under a different semantics. There, the authors consider overlapping
paths (as we do) as well as disjoint paths, but they neither consider the general framework
of equivalence classes over paths nor the particular concepts of minimality and conservative-
ness, which we deeply analyze in our paper. In [Ferrante et al. 2008] the model-checking
problem for non-minimal and non-conservative unary GCTL has been investigated. In
particular, by opportunely extending the classical algorithm for CTL [Clarke and Emerson
1981], they show that, in the case of overlapping paths, the model-checking problem is
PTIME-COMPLETE (thus not harder than CTL), while in the case of disjoint paths, it is in
ACM Transactions on Computational Logic, Vol. ?, No. ?, ? 20?.

Graded Computation Tree Logic · 5

PSPACE and both NPTIME-HARD and CONPTIME-HARD. The work continues in [Ferrante
et al. 2009], by showing a symbolic model-checking algorithm for the binary coding and,
limited to the unary case, a satisfiability procedure. Regarding the comparison between
GCTL and graded CTL with overlapping paths studied in [Ferrante et al. 2008], it can be
shown that they are equivalent by using an exponential reduction in both ways, whereas
we do not know whether any of the two blow-ups can be avoid. However, it is important
to note that our general technique can be also adapted to obtain an EXPTIME satisfiability
procedure for the binary graded CTL under the semantics proposed in [Ferrante et al. 2008].
Indeed, it is needed only to slightly modify the transition function of the main automaton
(w.r.t. until and release formulas), without changing the structure of the whole satellite.
Moreover, it can be used to prove that, in the case of unary GCTL, the complexity of
the satisfiability problem is only polynomial in the degree. Finally, our method can be
also applied to the satisfiability of the GµCALCULUS while the technique developed in
[Kupferman et al. 2002] cannot be used for GCTL.

Outline. In Section 2, we recall the basic notions regarding Kripke structures and trees,
bisimulation, unwinding, and numeric partitions. Then, we have Section 3, in which we
introduce GCTL* and define its syntax and semantics, followed by Sections 4 and 5, in
which there are studied the main properties of path equivalence relations and the particular
case of the prefix path equivalence based on the concepts of minimality and conservativeness.
In Section 6, we describe the ATAS automaton model. Finally, in Section 7 we construct
the binary tree encoding of a Kripke structure and in Section 8 we describe the procedure
used to solve the related satisfiability problem. Note that in the accompanying Appendix A
we recall the classical mathematical notation and some basic definitions that are used along
the whole paper.

2. PRELIMINARIES

Kripke structures. A Kripke structure (KS, for short) is a tuple K , 〈AP,W,R, L, w0〉,
where AP is a finite non-empty set of atomic propositions, W is an enumerable non-empty
set of worlds,w0 ∈W is a designated initial world, R ⊆W×W is a transition relation, and
L : W→ 2AP is a labeling function that maps each world to the set of atomic propositions
true in that world. A KS is said total iff it has a total transition relation R, i.e., for all
w ∈W, there is w′ ∈W such that (w,w′) ∈ R. By ‖K‖ , |R| ≤ |W|2 we denote the size
of K, which also corresponds to the size of the transition relation. A finite KS is a structure
of finite size.

Kripke trees. A Kripke tree (KT, for short) is a KS T , 〈AP,W,R, L, ε〉, where (i)
W ⊆ ∆∗ is a ∆-tree for a given set ∆ of directions and (ii), for all t ∈ W and d ∈ ∆, it
holds that t · d ∈W iff (t, t · d) ∈ R.

Tracks and paths. A track in K is a finite sequence of worlds ρ ∈ W∗ such that, for
all i ∈ [0, |ρ| − 1[, it holds that ((ρ)i, (ρ)i+1) ∈ R. Furthermore, a path in K is a finite
or infinite sequence of worlds π ∈ W∞ such that, for all i ∈ [0, |π| − 1[, it holds that
((π)i, (π)i+1) ∈ R and if |π| <∞ then there is no world w ∈W such that (lst(π), w) ∈ R,
i.e., it is maximal. Intuitively, tracks and paths of a KS K are legal sequences of reachable
worlds inK that can be seen as a partial or complete description of the possible computations
of the system modeled by K. A track ρ is said non-trivial iff |ρ| > 0, i.e., ρ 6= ε. We use
Trk(K) ⊆W+ and Pth(K) ⊆W∞ to indicate, respectively, the sets of all non-trivial tracks

ACM Transactions on Computational Logic, Vol. ?, No. ?, ? 20?.

6 · Alessandro Bianco et al.

and paths of the KS K. Moreover, by Trk(K, w) ⊆ Trk(K) and Pth(K, w) ⊆ Pth(K) we
denote the subsets of tracks and paths starting at the world w.

Bisimulation. LetK1 = 〈AP,W1,R1, L1, w01
〉 andK2 = 〈AP,W2,R2, L2, w02

〉 be two
KSs. Then, K1 and K2 are bisimilar iff there is a relation ∼⊆W1 ×W2 between worlds,
called bisimulation relation, such that w01

∼ w02
and if w1∼ w2 then (i) L1(w1) = L2(w2),

(ii) for all v1 ∈ W1 such that (w1, v1) ∈ R1, there is v2 ∈ W2 such that (w2, v2) ∈ R2

and v1∼ v2, and (iii) for all v2 ∈W2 such that (w2, v2) ∈ R2, there is v1 ∈W1 such that
(w1, v1) ∈ R1 and v1∼ v2.

Unwinding. Let K = 〈AP,W,R, L, w0〉 be a KS. Then, the unwinding of K is the KT
KU , 〈AP,W′,R′, L′, ε〉, where (i) W is the set of directions, (ii) the states in W′ , {ρ ∈
W∗ : w0 · ρ ∈ Trk(K)} are the suffixes of the tracks starting in w0, (iii) (ρ, ρ · w) ∈ R′

iff (lst(w0 · ρ), w) ∈ R, and (iv) there is a surjective function unw : W′ → W, called
unwinding function, such that (iv.i) unw(ρ) , lst(w0 · ρ) and (iv.ii) L′(ρ) , L(unw(ρ)), for
all ρ ∈ W′ and w ∈ W. It is easy to note that a KS is always bisimilar to its unwinding,
since the unwinding function is a particular relation of bisimulation.

Numeric partitions. Let n ∈ [1, ω[. We define P(n) as the set of all partition solutions
p ∈ Nn of the linear Diophantine equation 1 · (p)1 + 2 · (p)2 + . . .+ n · (p)n = n
and C(n) as the set of all the cumulative solutions c ∈ Nn+1 obtained by summing
increasing sets of elements from p. Formally, P(n) , {p ∈ Nn :

∑n
i=1 i · (p)i = n}

and C(n) , {c ∈ Nn+1 : ∃p ∈ P(n). ∀i ∈ [1, n + 1]. (c)i =
∑n
j=i(p)j}. It is easy

to verify that all cumulative solutions satisfy the simple equation (c)1 + (c)2 + . . .+
(c)n = n. Moreover, (c)i ≥ (c)i+1, for all i ∈ [1, n], and (c)n+1 = 0. Hence, there
is just one cumulative solution c ∈ C(n), with (c)i = 1, for all i ∈ [1, n], which also
corresponds to the unique solution p ∈ P(n), with (p)n = 1. We use to define the
cumulative solutions to be tuples of n+ 1 and not only of n elements only to simplify the
notation when we use this concept. As an example of these sets, consider the case n = 4.
Then, we have that P(n) = {(4, 0, 0, 0), (2, 1, 0, 0), (0, 2, 0, 0), (1, 0, 1, 0), (0, 0, 0, 1)} and
C(n) = {(4, 0, 0, 0, 0), (3, 1, 0, 0, 0), (2, 2, 0, 0, 0), (2, 1, 1, 0, 0), (1, 1, 1, 1, 0)}. Note that
|C(n)| = |P(n)| and, since for each solution p of the above Diophantine equation there is
exactly one partition of n, we have that |C(n)| = p(n), where p(n) is function returning
the number of partitions of n. By [Apostol 1976] (see also [Sloane and Plouffe 1995]), it
holds that p(n)→ k1

n · 2
k2·
√
n, where k1 = 4 ·

√
3 and k2 =

√
2/3 · π · log e, for n→∞.

Hence, |C(n)| = Θ(1
n · 2

k2·
√
n).

3. GRADED COMPUTATION TREE LOGICS

In this section, we introduce a class of extensions of the classical branching-time temporal
logics CTL [Clarke and Emerson 1981] with graded path quantifiers. We show, in the
next sections, that these extensions allow to gain expressiveness without paying any extra
cost on deciding their satisfiability. To formally define the extended logics, we use the
CTL* [Emerson and Halpern 1986] state and path formulas framework.

3.1 Syntax

The graded full computation tree logic (GCTL*, for short) extends CTL* by using two
special path quantifiers, the existential E≥g and the universal A<g , where the finite or infinite
number g ∈ N̂ denotes the corresponding degree. As in CTL*, these quantifiers can prefix a
ACM Transactions on Computational Logic, Vol. ?, No. ?, ? 20?.

Graded Computation Tree Logic · 7

linear-time formula composed of an arbitrary Boolean combination and nesting of temporal
operators X“next”, U“until”, and R“release” together with their weak version X̃, Ũ, and
R̃. The quantifiers E≥g and A<g can be informally read as “there are at least g paths” and

“all but less than g paths”, respectively. The formal syntax of GCTL* follows.

DEFINITION 3.1 (GCTL* SYNTAX). GCTL* state (ϕ) and path (ψ) formulas are built
inductively from the sets of atomic propositions AP in the following way, where p ∈ AP and
g ∈ N̂:

(1) ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | E≥gψ | A<gψ;
(2) ψ ::= ϕ | ¬ψ | ψ ∧ ψ | ψ ∨ ψ | X ψ | ψ U ψ | ψ R ψ | X̃ ψ | ψ Ũ ψ | ψ R̃ ψ.

The class of GCTL* formulas is the set of state formulas generated by the above grammar.
In addition, the simpler class of GCTL formulas is obtained by forcing each temporal
operator occurring into a formula to be coupled with a path quantifier, as in the classical
case of CTL.

We now introduce some auxiliary syntactical notation. For a formula ϕ, we define the
degree ϕ̊ of ϕ as the maximum natural number g occurring among the degrees of all its path
quantifiers. Formally, (i) p̊ , 0, for p ∈ AP, (ii) ˚(Op ψ) , ψ̊, for all Op ∈ {¬,X, X̃}, (iii)

˚(ψ1Op ψ2) , max {ψ̊1, ψ̊2}, for all Op ∈ {∧,∨,U,R, Ũ, R̃}, (iv) ˚(Qn ψ) , max {g, ψ̊},
for all Qn ∈ {E≥g,A<g} with g ∈ N, and (v) ˚(Qn ψ) , ψ̊ , for all Qn ∈ {E≥ω,A<ω}.
We assume that the degree is coded in binary. The length of ϕ, denoted by |ϕ|, is defined
as for CTL* and does not consider the degrees at all. Formally, (i) |p| , 1, for p ∈ AP,
(ii) |Op ψ| , 1 + |ψ|, for all Op ∈ {¬,X, X̃}, (iii) |ψ1Op ψ2| , 1 + |ψ1| + |ψ2|, for all
Op ∈ {∧,∨,U,R, Ũ, R̃}, and (iv) |Qnψ| , 1 + |ψ|, for all Qn ∈ {E≥g,A<g}. Accordingly,
the size of ϕ, denoted by ‖ϕ‖, is defined in the same way of the length, by considering
‖E≥gψ‖ and ‖A<gψ‖ to be equal to 1 + dlog(g)e+ ‖ψ‖, for g ∈ [1, ω[, and to 1 + ‖ψ‖,
otherwise. Clearly, it holds that dlog(ϕ̊)e ≤ ‖ϕ‖ and |ϕ| ≤ ‖ϕ‖. We also use cl(ψ)
to denote the classical Fischer-Ladner closure [Fischer and Ladner 1979] of ψ defined
recursively as for CTL* in the following way: cl(ϕ) , {ϕ} ∪ cl′(ϕ), for all state formulas
ϕ and cl(ψ) , cl′(ψ), for all path formulas ψ, where (i) cl′(p) , ∅, for p ∈ AP, (ii)
cl′(Op ψ) , cl(ψ), for all Op ∈ {¬,X, X̃}, (iii) cl′(ψ1Op ψ2) , cl(ψ1) ∪ cl(ψ2), for all
Op ∈ {∧,∨,U,R, Ũ, R̃}, and (iv) cl′(Qn ψ) , cl(ψ), for all Qn ∈ {E≥g,A<g}. Intuitively,
cl(ϕ) is the set of all the state formulas that are subformulas of ϕ. Finally, by rcl(ψ) we
denote the reduced closure of ψ, i.e., the set of the maximal states formulas contained in ψ.
Formally, (i) rcl(ϕ) , {ϕ}, for all state formulas ϕ, (ii) rcl(Op ψ) , rcl(ψ) when Op ψ is
a path formula, for all Op ∈ {¬,X, X̃}, and (iii) rcl(ψ1Op ψ2) , rcl(ψ1) ∪ rcl(ψ2) when
ψ1Op ψ2 is a path formula, for all Op ∈ {∧,∨,U,R, Ũ, R̃}. It is immediate to see that
rcl(ψ) ⊆ cl(ψ) and |cl(ψ)| = O(|ψ|).

3.2 Semantics

We now define the semantics of GCTL* w.r.t. a KS K = 〈AP,W,R, L, w0〉. For a world
w ∈W, we write K, w |= ϕ to indicate that a state formula ϕ holds on K at w. Moreover,
for a path π ∈ Pth(K), we write K, π |= ψ to indicate that a path formula ψ holds on π.
The semantics of GCTL* state formulas simply extends that of CTL* and is reported in the
following. In particular, for the definition of graded quantifiers, we deeply make use of a
generic equivalence relation ≡ψK on the set of paths Pth(K) that may depend on both the

ACM Transactions on Computational Logic, Vol. ?, No. ?, ? 20?.

8 · Alessandro Bianco et al.

KS K and the path formula ψ. This equivalence is used to reasonably count the number of
ways a structure has to satisfy a path formula starting from a given node, w.r.t. an a priori
fixed criterion. The semantics of the GCTL* path formulas is defined as usual for LTL on
both finite and infinite paths and, for sake of simplicity, is omitted here. We recall that the
weak temporal operators are used to deal with finite paths on which their strong version
may result unsatisfiable (see [Eisner et al. 2003] and Appendix B for a full definition of the
LTL semantics with strong and weak temporal operators).

DEFINITION 3.2 (GCTL* SEMANTICS). Given a KS K = 〈AP,W,R, L, w0〉, for all
GCTL* state formulas ϕ and worlds w ∈W, the relation K, w |= ϕ is inductively defined
as follows.

(1) K, w |= p iff p ∈ L(w), with p ∈ AP.
(2) For all state formulas ϕ, ϕ1, and ϕ2, it holds that:

(a) K, w |= ¬ϕ iff not K, w |= ϕ, that is K, w 6|= ϕ;
(b) K, w |= ϕ1 ∧ ϕ2 iff K, w |= ϕ1 and K, w |= ϕ2;
(c) K, w |= ϕ1 ∨ ϕ2 iff K, w |= ϕ1 or K, w |= ϕ2.

(3) For a number g ∈ N̂ and a path formula ψ, it holds that:
(a) K, w |= E≥gψ iff |(Pth(K, w, ψ)/≡ψK)| ≥ g;
(b) K, w |= A<gψ iff |(Pth(K, w,¬ψ)/≡¬ψK)| < g;
where Pth(K, w, ψ) , {π ∈ Pth(K, w) : K, π |= ψ} is the set of paths of K starting
in w that satisfy the path formula ψ and (Pth(K, w, ψ)/≡ψK) denotes the quotient
set of Pth(K, w, ψ) w.r.t. the equivalence relation ≡ψK, i.e., the set of all the related
equivalence classes.

For all GCTL* path formulas ψ and paths π ∈ Pth(K), the relation K, π |= ψ is defined
as follows.

(4) K, π |= ψ iff $K,ψ(π) |= ψ, where ψ is considered as an LTL formula over its
restricted closure rcl(ψ) and $K,ψ(π) ∈ (2rcl(ψ))|π| is the trace such that ϕ ∈
($K,ψ(π))k iff K, (π)k |= ϕ, for all ϕ ∈ rcl(ψ) and k ∈ [0, |π|[.

Intuitively, by using the graded existential quantifier E≥gψ, we can count how many different
equivalence classes w.r.t. ≡ψK there are over the set Pth(K, w, ψ) of paths satisfying ψ. The
universal quantifier A<gψ is simply the dual of E≥gψ and it allows to count how many
classes w.r.t. ≡¬ψK there are over the set Pth(K, w,¬ψ) of paths not satisfying ψ. It is
important to note that, since (Pth(K, w, ψ)/≡ψK) 6= ∅ and (Pth(K, w,¬ψ)/≡¬ψK) 6= ∅)
are equivalent to Pth(K, w, ψ) 6= ∅ and Pth(K, w,¬ψ) 6= ∅, respectively, it holds that all
GCTL* formulas with degree 1 are CTL* formulas too, and vice versa.

Observe that, in the definition of the semantics, we introduced a transformation $K,ψ(·),
for each path formula ψ, that maps each path π of the KSK to a trace$K,ψ(π) ∈ (2rcl(ψ))|π|

given by the sequence of sets of state formulas in rcl(ψ) satisfied at the worlds of π. Hence,
we interpret the path formula ψ on AP evaluated on π as an LTL formula on rcl(ψ) evaluated
on $K,ψ(π).

Let K be a KS and ϕ be a GCTL* formula. Then, K is a model for ϕ, in symbols K |= ϕ,
iff K, w0 |= ϕ, where we recall that w0 is the initial state of K. In this case, we also say
that K is a model for ϕ on w0. A formula ϕ is said satisfiable iff there exists a model for
it. Moreover, it is an invariant for the two KSs K1 and K2 iff either K1 |= ϕ and K2 |= ϕ

ACM Transactions on Computational Logic, Vol. ?, No. ?, ? 20?.

Graded Computation Tree Logic · 9

or K1 6|= ϕ and K2 6|= ϕ. For all state formulas ϕ1 and ϕ2, we say that ϕ1 implies ϕ2, in
symbols ϕ1 ⇒ ϕ2, iff, for all KS K, it holds that if K |= ϕ1 then K |= ϕ2. Consequently,
we say that ϕ1 is equivalent to ϕ2, in symbols ϕ1 ≡ ϕ2, iff ϕ1 ⇒ ϕ2 and ϕ2 ⇒ ϕ1. In
the following, when we say that two GCTL* paths formulas ψ1 and ψ2 are equivalent, in
symbols ψ1 ≡ ψ2, we mean that they are equivalent if considered as LTL formulas over the
union rcl(ψ1) ∪ rcl(ψ2) of their restricted closures.

For technical reasons, we also define the relation of satisfiability of path formulas on
tracks, by simply setting K, ρ |= ψ iff $K,ψ(ρ) |= ψ, for all ρ ∈ Trk(K). We now show
the basic properties of the satisfiability relation |= on paths and tracks directly inherited by
the LTL semantics.

PROPOSITION 3.1 (PATH SATISFIABILITY PROPERTIES). Let ϕ be a state formula, ψ,
ψ1, and ψ2 be path formulas, and π ∈ (Pth(K, w)∪Trk(K, w)) be a path/track starting at
the worldw of the KSK. Then, the following properties hold: (i) if ψ1 ≡ ψ2 thenK, π |= ψ1

iff K, π |= ψ2; (ii) K, w |= ϕ iff K, π |= ϕ; (iii) K, π |= ψ1 ∧ ψ2 iff K, π |= ψ1 and
K, π |= ψ2; (iv) K, π |= ψ1 ∨ψ2 iff K, π |= ψ1 or K, π |= ψ2; (v) K, π |= X ψ iff π≥1 6= ε

and K, π≥1 |= ψ; (vi) K, π |= X̃ ψ iff π≥1 = ε or K, π≥1 |= ψ; (vii) K, π |= ψ1U ψ2 iff
K, π |= ψ2 ∨ ψ1 ∧ X ψ1U ψ2; (viii) K, π |= ψ1R ψ2 iff K, π |= ψ2 ∧ (ψ1 ∨ X ψ1R ψ2);
(ix) K, π |= ψ1 Ũ ψ2 iff K, π |= ψ2 ∨ ψ1 ∧ X̃ ψ1 Ũ ψ2; (x) K, π |= ψ1 R̃ ψ2 iff K, π |=
ψ2 ∧ (ψ1 ∨ X̃ ψ1 R̃ ψ2).

PROOF. First note that in this proof, we make use of a slightly more general map of
$K,ψ(·) that associates each path in K with the sequence of state formulas, belonging
to a given set Z, satisfied at the worlds of π. Formally, by $K,Z(π) we denote the trace
in (2Z)|π| such that, for all ϕ ∈ Z and k ∈ [0, |π|[, it holds that ϕ ∈ ($K,Z(π))k iff
K, (π)k |= ϕ. Observe that, for every GCTL* path formula ψ and set Z of state formulas
containing rcl(ψ), when ψ is interpreted as an LTL formula on rcl(ψ), it is satisfied on a
trace $K,ψ(π) iff it is satisfied on all traces $K,Z(π) as well. We can now start with the
proofs of all items.

i. Let Z = rcl(ψ1) ∪ rcl(ψ2). For i ∈ {1, 2}, if K, π |= ψi, then $K,ψi(π) |= ψi.
Now, since rcl(ψi) ⊆ Z, we have that $K,Z(π) |= ψi. By the equivalence ψ1 ≡
ψ2, we obtain then that $K,Z(π) |= ψ3−i. So, since rcl(ψ3−i) ⊆ Z, we have that
$K,ψ3−i

(π) |= ψ3−i and consequently K, π |= ψ3−i.

ii. Since ϕ is a state formula, by definition of the transformation map $K,ϕ(·), we have
that K, w |= ϕ iff ϕ ∈ ($K,ϕ(π))0 and so $K,ϕ(π) |= ϕ, from which we derive
K, π |= ϕ and vice versa.

iii. Let ψ = ψ1 ∧ ψ2. Then, it holds that K, π |= ψ iff $K,ψ(π) |= ψ, which is equivalent
to $K,ψ(π) |= ψi, for i ∈ {1, 2}. At this point, since rcl(ψi) ⊆ rcl(ψ), we have
that K, π |= ψ is equivalent to $K,ψi

(π) |= ψi, for i ∈ {1, 2}. Hence, K, π |= ψ iff
K, π |= ψ1 and K, π |= ψ2.

iv. Mutatis mutandis, the proof is the same of the previous item.

v. Note that rcl(X ψ) = rcl(ψ). Then, it holds that K, π |= X ψ iff $K,ψ(π) |= X ψ,
which is equivalent to ($K,ψ(π))≥1 6= ε, i.e., π≥1 6= ε, and ($K,ψ(π))≥1 |= ψ, i.e.,
$K,ψ(π≥1) |= ψ. Hence, K, π |= X ψ iff π≥1 6= ε and K, π≥1 |= ψ.

vi. Mutatis mutandis, the proof is the same of the previous item.
ACM Transactions on Computational Logic, Vol. ?, No. ?, ? 20?.

10 · Alessandro Bianco et al.

vii-x. These items can be directly derived by Item i and the classical LTL one step unfolding
equivalences ψ1U ψ2 ≡ ψ2 ∨ ψ1 ∧ X ψ1U ψ2, ψ1R ψ2 ≡ ψ2 ∧ (ψ1 ∨ X ψ1R ψ2),
ψ1 Ũ ψ2 ≡ ψ2 ∨ ψ1 ∧ X̃ ψ1 Ũ ψ2, and ψ1 R̃ ψ2 ≡ ψ2 ∧ (ψ1 ∨ X̃ ψ1 R̃ ψ2).

In the rest of the paper, we only consider formulas in positive normal form (pnf, for
short), i.e., the negation is applied only to atomic propositions. In fact, it is to this aim
that we have considered in the syntax of GCTL* both the Boolean connectives ∧ and
∨, the path quantifiers A<g and E≥g, and temporal operators X, U, and R together with
their weak version X̃, Ũ, and R̃. Indeed, all formulas can be linearly translated in pnf by
using De Morgan’s laws and the following equivalences, which directly follow from the
semantics of the logic: ¬E≥gψ ≡ A<g¬ψ; ¬X ψ ≡ X̃ ¬ψ; ¬(ψ1U ψ2) ≡ (¬ψ1)R̃(¬ψ2);
¬(ψ1R ψ2) ≡ (¬ψ1)Ũ(¬ψ2). Under this assumption, we consider ¬ϕ as the pnf formula
equivalent to the negation of ϕ. Finally, as abbreviations we use the Boolean values t
(“true”) and f (“false”) and the path quantifiers E>gψ , E≥g+1ψ (“there exist more than
g paths”), A≤gψ , A<g+1ψ (“all but at most g paths”), E=gψ , E≥gψ ∧ ¬E>gψ (“there
exist just g paths”), and A=gψ , A≤gψ ∧ ¬A<gψ (“all but exactly g paths”), with g ∈ [0,
ω[.

We now report some basic equivalences that are directly derived from the definition of
the logic and Proposition 3.1, and are independent from the particular path equivalence
relation ≡·· considered.

PROPOSITION 3.2 (BASIC EQUIVALENCES). Let ϕ and ψ be a state and a path for-
mula, respectively, and g ∈ N̂. Then, the following equivalences hold: (i) E≥0ψ ≡ t;
(ii) E≥1ϕ ≡ ϕ; (iii) E≥1(ϕ ∧ ψ) ≡ ϕ ∧ E≥1ψ; (iv) E≥1(ϕ ∨ ψ) ≡ ϕ ∨ E≥1ψ; (v)
E≥1X ψ ≡ E≥1X E≥1ψ; (vi) E≥1 X̃ ψ ≡ E≥1 X̃ f ∨ E≥1X ψ; (vii) E>gψ ⇒ E≥gψ; (viii)
A<0ψ ≡ f; (ix) A<1ϕ ≡ ϕ; (x) A<1(ϕ ∧ ψ) ≡ ϕ ∧ A<1ψ; (xi) A<1(ϕ ∨ ψ) ≡ ϕ ∨ A<1ψ;
(xii) A<1X ψ ≡ A<1X t ∧ A<1 X̃ ψ; (xiii) A<1 X̃ ψ ≡ A<1 X̃ A<1ψ; (xiv) A<gψ ⇒ A≤gψ.

Finally, we list the classical CTL fixpoint equivalences embedded in the GCTL frame-
work, for the four binary temporal operators U, R, Ũ, and R̃.

PROPOSITION 3.3 (CTL FIXPOINT EQUIVALENCES). Let ϕ1 and ϕ2 be two state for-
mulas. Then, the following hold:

i. E≥1ϕ1U ϕ2 ≡ ϕ2 ∨ ϕ1 ∧ E≥1X E≥1ϕ1U ϕ2;
ii. E≥1ϕ1R ϕ2 ≡ ϕ2 ∧ (ϕ1 ∨ E≥1X E≥1ϕ1R ϕ2);

iii. E≥1ϕ1 Ũ ϕ2 ≡ ϕ2 ∨ ϕ1 ∧ (E≥1 X̃ f ∨ E≥1X E≥1ϕ1 Ũ ϕ2);
iv. E≥1ϕ1 R̃ ϕ2 ≡ ϕ2 ∧ (ϕ1 ∨ E≥1 X̃ f ∨ E≥1X E≥1ϕ1 R̃ ϕ2);
v. A<1ϕ1U ϕ2 ≡ ϕ2 ∨ ϕ1 ∧ (A<1X t ∧ A<1 X̃ A<1ϕ1U ϕ2);

vi. A<1ϕ1R ϕ2 ≡ ϕ2 ∧ (ϕ1 ∨ A<1X t ∧ A<1 X̃ A<1ϕ1R ϕ2);
vii. A<1ϕ1 Ũ ϕ2 ≡ ϕ2 ∨ ϕ1 ∧ A<1 X̃ A<1ϕ1 Ũ ϕ2;

viii. A<1ϕ1 R̃ ϕ2 ≡ ϕ2 ∧ (ϕ1 ∨ A<1 X̃ A<1ϕ1 R̃ ϕ2).

4. PATH EQUIVALENCE PROPERTIES

In the definition of GCTL* semantics, we make use of an arbitrary equivalence relation on
paths. It is useful to investigate what properties can make such an equivalence a reasonable
one for our purposes. In this section, we present a detailed exposition of its principal
properties. Note that, in order to be not too repetitive, when we talk about “number of
ACM Transactions on Computational Logic, Vol. ?, No. ?, ? 20?.

Graded Computation Tree Logic · 11

paths”, we always mean the number of equivalence classes of paths w.r.t. a path formula,
which is clear from the context. Moreover, every equivalence concerning the universal
quantifier, if not otherwise specified, is obtained through the dualization (A<gψ ≡ ¬E≥g¬ψ)
of the related existential one.

To help the reader in following the exposition of the several properties we are going to
introduce, we now give an outline of this section. First, in Subsection 4.1, we introduce
two basic properties of equivalences on paths, namely syntax independence and state focus.
In Subsection 4.2, we further give the properties of next consistency, along with its weak
form, and that of source dependence. From this we derive two fundamental expansion
constructions that allow to generalize, to the case of graded quantifiers, the classical CTL*
expansion equivalences EX ψ ≡ EX Eψ and AX̃ ψ ≡ AX̃ Aψ. In Subsection 4.3, we
introduce two consistency properties on the Boolean connectives ∧ and ∨ and a satisfiability
constraint. Finally, in Subsection 4.4, we define the concept of adequacy of an equivalence
on paths and use it to show a set of fixpoint equivalences for GCTL, which are used, in
Section 5, to prove the existence of a translation of a fragment of GCTL into GµCALCULUS.

4.1 Elementary requirements

Suppose we have two equivalent path formulas ψ1 and ψ2. Then, we would like to have
them to be exchangeable in a GCTL* path quantification, obtaining in this way that two
state formulas Qn ψ1 and Qn ψ2 are equivalent, for all Qn ∈ {E≥n,A<n} and n ∈ N̂.
Hence, what we need to require is that, whenever two paths are equivalent w.r.t. ψ1, they
are equivalent w.r.t. ψ2, too. Before introducing the formal definition of this concept, we
want to enlighten on the equivalence relation between path formulas we consider here is not
just the classical LTL equivalence ≡, but rather a generic equivalence ∼=w

K that may depend
on both a KS and one of its worlds. More motivations for this choice are given in the next
subsection.

DEFINITION 4.1 (SYNTAX INDEPENDENCE). An equivalence relation ≡ ·K on paths is
said syntax independent iff, for all pairs of equivalent path formulas ψ1 and ψ2 w.r.t ∼=w

K, it
holds that π1 ≡ψ1

K π2 iff π1 ≡ψ2

K π2, for all π1, π2 ∈ Pth(K, w).

THEOREM 4.1 (EQUIVALENT QUANTIFICATIONS). Let ≡ ·· be a syntax-independent
equivalence relation. Moreover, let ψ1 and ψ2 be two equivalent path formulas and g ∈ N̂.
Then, the following holds: (i) E≥gψ1 ≡ E≥gψ2 and (ii) A<gψ1 ≡ A<gψ2.

PROOF. Let K be a KS and w0 its initial world. Since ψ1 ≡ ψ2, by Item i of Proposi-
tion 3.1, it is immediate to see that Pth(K, w0, ψ1) = Pth(K, w0, ψ2) and consequently
(Pth(K, w0, ψ1)/≡ψ1

K) = (Pth(K, w0, ψ2)/≡ψ1

K). Now, by the syntax-independence prop-
erty, we have that π1 ≡ψ1

K π2 iff π1 ≡ψ2

K π2, for all π1, π2 ∈ Pth(K). Thus, we have that
(Pth(K, w0, ψ2)/≡ψ1

K) = (Pth(K, w0, ψ2)/≡ψ2

K). Hence the thesis.

The following corollary is directly derived by using the classical LTL equivalences for the
four binary temporal operators.

COROLLARY 4.1 (ONE STEP UNFOLDING). Let ≡ ·· be a syntax-independent equiva-
lence relation. Moreover, let ψ1 and ψ2 be two path formulas and g ∈ N̂. Then, the following
equivalences hold: (i) E≥gψ1U ψ2 ≡ E≥g(ψ2 ∨ ψ1 ∧ X ψ1U ψ2); (ii) E≥gψ1R ψ2 ≡
E≥g(ψ2 ∧ (ψ1 ∨ X ψ1R ψ2)); (iii) E≥gψ1 Ũ ψ2 ≡ E≥g(ψ2 ∨ ψ1 ∧ X̃ ψ1 Ũ ψ2); (iv)
E≥gψ1 R̃ ψ2 ≡ E≥g(ψ2∧(ψ1∨ X̃ ψ1 R̃ ψ2)); (v) A<gψ1U ψ2 ≡ A<g(ψ2∨ψ1∧X ψ1U ψ2);

ACM Transactions on Computational Logic, Vol. ?, No. ?, ? 20?.

12 · Alessandro Bianco et al.

(vi) A<gψ1R ψ2 ≡ A<g(ψ2 ∧ (ψ1 ∨ X ψ1R ψ2)); (vii) A<gψ1 Ũ ψ2 ≡ A<g(ψ2 ∨ ψ1 ∧
X̃ ψ1 Ũ ψ2); (viii) A<gψ1 R̃ ψ2 ≡ A<g(ψ2 ∧ (ψ1 ∨ X̃ ψ1 R̃ ψ2)).

Consider now a state formula ϕ on which we have to verify the equivalence between
paths. Then, we may want to have that, when a world satisfies ϕ, all paths starting from that
world are counted just once. This is because, after all, we have only one way to practically
satisfy the formula.

DEFINITION 4.2 (STATE FOCUS). An equivalence relation ≡ ·K is said state focused iff,
given a state formula ϕ, if K, w |= ϕ then π1 ≡ϕK π2, for all π1, π2 ∈ Pth(K, w).

THEOREM 4.2 (STATE QUANTIFICATION). Let ≡ ·· be a state-focused equivalence re-
lation. Moreover, let ϕ be a state formula and g ∈ [2, ω]. Then, the following holds: (i)
E≥gϕ ≡ f and (ii) A<gϕ ≡ t.

PROOF. Suppose by contradiction that E≥gϕ 6≡ f, i.e., that there is a KS K such that
K, w0 |= E≥gϕ, where w0 is the initial world of K. This means that |(Pth(K, w0, ϕ)/≡ϕK)|
≥ g, so Pth(K, w0, ϕ) 6= ∅ and then, by Item ii of Proposition 3.1, it holds that K, w0 |= ϕ.
Now, by the state-focus property, we have that π1 ≡ϕK π2, for all paths π1, π2 ∈ Pth(K, w0).
Hence, |(Pth(K, w0, ϕ)/≡ϕK)| = 1 < g, but this contradict the hypothesis.

4.2 Temporal requirements

Consider a path formula ψ. We would like that the number of paths satisfying X ψ at a
world w is equal to the sum of the number of paths that satisfy ψ on all successor worlds w′

of w. This requires that two paths π1 and π2 are distinct w.r.t. X ψ iff the paths (π1)≥1 and
(π2)≥1 are also distinct w.r.t. ψ.

DEFINITION 4.3 (NEXT CONSISTENCY). An equivalence relation ≡ ·Kon paths is said
next consistent iff it holds that π1 ≡X ψ

K π2 iff (π1)≥1 ≡ψK (π2)≥1, for all π1, π2 ∈ Pth(K,
w).

By the state focus and next-consistency properties, it is immediate to derive the following
first accessory lemma.

LEMMA 4.1 (NEXT EQUIVALENCE I). Let ≡ ·K be a state-focused and next-consistent
equivalence relation. Moreover, let π1, π2 ∈ Pth(K, w) be two paths starting in a common
world w and ϕ be a state formula. Then, (π1)1 = (π2)1 = w′ and K, w′ |= ϕ imply
π1 ≡X ϕ

K π2.

PROOF. By the state-focus property, it holds that (π1)≥1 ≡ϕK (π2)≥1. Now, by the
next-consistency property, we obtain that π1 ≡X ϕ

K π2.

For a X̃ ψ formula, the only difference w.r.t. X ψ is that the formula can be satisfied on
a path because there are no successor worlds. In such a situation there is only one path
satisfying the formula. In the other cases X̃ ψ behaves just like X ψ, hence, we would like
the first to satisfy a similar property w.r.t. the latter. However, when ψ is a tautology, we
have that X̃ ψ, differently from X ψ, is equivalent to t, i.e., the formula is always satisfied.
For this reason all choices are indifferent and may be regarded as equivalent.

However, there may be other reasons to consider a given path formula ψ as tautological:
one may consider that at w in K, there are some “physical boundaries” on what paths
starting from w can achieve. Then, it makes sense to take into account such limitations
ACM Transactions on Computational Logic, Vol. ?, No. ?, ? 20?.

Graded Computation Tree Logic · 13

when evaluating whether a path formulas is tautological or not. For example, there may be a
three-valued property, which is encoded by means of two binary variables a and b. However,
the two binary variables actually encode a four-valued property. Then, it makes sense to
assume, as hypothesis in the system, that one of the value, say ¬a ∧ ¬b, is never assumed
by a KS. In such a case, the formula ¬(¬a ∧ ¬b) can be considered equivalent to true. As a
further example there may be an world w modeling an end state with a property end and a
self loop. In such a case, the formula G end can be considered equivalent to true too.

We highlight the tautological nature of a path formula by means of a generalization of the
LTL equivalence relation that depends also on the context the formulas are evaluated in, i.e.,
on a particular KS K and on one of its world w. Two path formulas should be equivalent at
K, w only if they cannot distinguish paths in Pth(K, w).

We now formally define the general notion of equivalence among path formulas.

DEFINITION 4.4 (EQUIVALENCE STRUCTURE). An equivalence structure ∼=·· is a para-
metric equivalence relation among path formulas depending on a KS K and one of its
worlds w such that, for all path formulas ψ1 and ψ2, (i) ψ1 ≡ ψ2 implies that ψ1

∼=w
K ψ2

and (ii) ψ1
∼=w
K ψ2 implies that K, π |= ψ1 iff K, π |= ψ2, for all π ∈ Pth(K, w).

Observe that the LTL equivalence relation ≡ is a particular equivalence structure ∼=w
K that

does not depend on the KS K and world w.
At this point, we are ready to define a generic tautology.

DEFINITION 4.5 (TAUTOLOGY STRUCTURE). Given a KS K and one of its worlds w,
a path formula ψ is a ∼=w

K-tautology iff ψ ∼=w
K t.

Using the above concept we can state the consistency property required by the weak next
operator.

DEFINITION 4.6 (WEAK NEXT CONSISTENCY). An equivalence relation≡·Kon paths

is said weak next consistent w.r.t. an equivalence structure ∼=·K iff it holds that π1 ≡X̃ ψ
K π2

iff X̃ ψ is an ∼=w
K-tautology or (π1)≥1 ≡ψK (π2)≥1, for all π1, π2 ∈ Pth(K, w).

By the next and weak next-consistency properties, we can derive the simplification theorem
for the quantifications of the weak next temporal operator.

THEOREM 4.3 (WEAK NEXT SIMPLIFICATION). Let≡··be a next-consistent and weak
next-consistent equivalence relation w.r.t. ∼=··. Moreover, let K be a KS, ψ be a path formula
and g ∈ [2, ω]. Then, the following holds: (i) K |= E≥g X̃ ψ iff X̃ ψ is not an ∼=w0

K -tautology
and K |= E≥gX ψ and (ii) K |= A<gX ψ iff ¬X ψ is an ∼=w0

K -tautology or K |= A<g X̃ ψ,
where w0 is the initial world of K.

PROOF. By hypotheses, it holds that π1 ≡X̃ ψ
K π2 iff X̃ ψ is an∼=w0

K -tautology or π1 ≡X ψ
K

π2, for all π1, π2 ∈ Pth(K, w0), where w0 is the initial world of K.
[Only if]. If K, w0 |= E≥g X̃ ψ then |(Pth(K, w0, X̃ ψ)/≡X̃ ψ

K)| ≥ g. Since there are at

least two different classes w.r.t. ≡X̃ ψ
K and so, at least two non-equivalent paths starting inw0,

it holds that X̃ ψ cannot be an ∼=w0

K -tautology. Consequently, we have that π1 ≡X̃ ψ
K π2 iff

π1 ≡X ψ
K π2, for all π1, π2 ∈ Pth(K, w0). Moreover, since w0 has necessarily a successor,

by Items v and vi of Proposition 3.1, it holds that Pth(K, w0, X̃ ψ) = Pth(K, w0,X ψ).
Thus, we obtain that (Pth(K, w0, X̃ ψ)/≡X̃ψ

K) = (Pth(K, w0,X ψ)/≡Xψ
K). Hence, the

thesis holds.
ACM Transactions on Computational Logic, Vol. ?, No. ?, ? 20?.

14 · Alessandro Bianco et al.

[If]. If K, w0 |= E≥gX ψ then |(Pth(K, w0,X ψ)/≡X ψ
K)| ≥ g. Since there are at least

two different classes w.r.t. ≡X ψ
K , w0 has necessarily a successor and so, by Items v and vi of

Proposition 3.1, it holds that Pth(K, w0,X ψ) = Pth(K, w0, X̃ ψ). Moreover, X̃ ψ is not
an ∼=w0

K -tautology. Consequently, we have that π1 ≡X ψ
K π2 iff π1 ≡X̃ ψ

K π2, for all π1, π2 ∈
Pth(K, w0). Thus, we obtain that (Pth(K, w0,X ψ)/≡X ψ

K) = (Pth(K, w0, X̃ ψ)/≡X̃ ψ
K).

Hence, the thesis holds.

In general, there are no GCTL* formulas expressing the fact that X̃ ψ and ¬X ψ are
or are not an ∼=w0

K -tautology. However, in the case that a particular ∼=w0

K -tautology of
the previous formulas can be expressed with the two apposite formulas ϕX̃ ψ and ϕ¬X ψ,
we can easily state E≥g X̃ ψ ≡ (E≥gX ψ) ∧ ¬ϕX̃ ψ and A<gX ψ ≡ (A<g X̃ ψ) ∨ ϕ¬X ψ,
for g ∈ [2, ω]. Moreover, we recall that Items vi and xii of Proposition 3.2 assert that
E≥g X̃ ψ ≡ E≥1 X̃ f ∨ E≥1X ψ and A<gX ψ ≡ A<1X t ∧ A<1 X̃ ψ, for g = 1. Then, we
introduce the two macros EX̃(g, ψ, ϕ) and AX(g, ψ, ϕ), defined below, to represent in short
the expansion formula for EX̃ and AX .

—EX̃(g, ψ, ϕ) ,

{
E≥1 X̃ f ∨ E≥1X ψ, if g = 1;

(E≥gX ψ) ∧ ϕ, otherwise.

—AX(g, ψ, ϕ) ,

{
A<1X t ∧ A<1 X̃ ψ, if g = 1;

(A≥g X̃ ψ) ∨ ϕ, otherwise.

It is immediate to see that |EX̃(g, ψ, ϕ)| = |AX(g, ψ, ϕ)| = Θ(|ϕ|+ |ψ|).
The above properties for the next and the weak next operators allow us to say that the

number of paths that satisfy X ψ or X̃ ψ at world w is equal to the number of paths that
satisfy ψ on some successor world w′ of w. Since two paths π1 and π2 passing through
two distinct successors may represent two different ways to satisfy X ψ, we would like to
consider them as distinct w.r.t. X ψ. So, we should have that the two paths (π1)≥1 and
(π2)≥1 are not-equivalent just because they start from different nodes. Consequently, we
may want to ensure that paths starting at different successors are never counted just as one.

DEFINITION 4.7 (SOURCE DEPENDENCE). An equivalence relation ≡ ·K on paths is
said source-dependent iff π1 ≡ψK π2 implies (π1)0 = (π2)0, for all π1, π2 ∈ Pth(K).

At this point, by the next-consistency and source-dependence properties it is immediate to
derive the following second accessory lemma.

LEMMA 4.2 (NEXT EQUIVALENCE II). Let ≡ ·K be a next-consistent and source-de-
pendent equivalence relation. Moreover, let π1, π2 ∈ Pth(K, w) be two paths starting in a
common world w. Then, π1 ≡X ψ

K π2 implies (π1)1 = (π2)1.

PROOF. By the next-consistency property, it holds that (π1)≥1 ≡ψK (π2)≥1. Now, by the
source-dependence property, we obtain that (π1)1 = (π2)1.

Before continuing with the discussion of the remaining properties, we have to make an
important remark on our choice to define the semantics of GCTL* on both finite and
infinite paths and, consequently, to have both the strong and weak versions of the temporal
operators (see also [Eisner et al. 2003], for further non-technical motivations for logics over
the so-called truncated paths). Suppose, for a moment, to define the GCTL* semantics only
ACM Transactions on Computational Logic, Vol. ?, No. ?, ? 20?.

Graded Computation Tree Logic · 15

on infinite paths, i.e., to consider only total KS. Under this assumption, it is immediate to
see that strong and weak temporal operators are equivalent, i.e., X ψ ≡ X̃ ψ, ψ1U ψ2 ≡
ψ1 Ũ ψ2, and ψ1R ψ2 ≡ ψ1 R̃ ψ2. In particular, it holds that X t ≡ t and so, for the syntax-
independence and state-focus (specifically, here we need only that all paths are equivalent
w.r.t. t) properties, we obtain that π1 ≡X t

K π2, for all π1, π2 ∈ Pth(K). Hence, if we
want to preserve the syntax independence, we are not able to simply count the number of
successors of a given world, by using the formula E≥gX t, without asserting any stronger
property. However, all the classical graded logics, such as the GµCALCULUS, allow such
a counting. Moreover, consider two paths π1, π2 ∈ Pth(K, w) such that (π1)1 6= (π2)1.
By the previous lemma, we have that π1 6≡X t

K π2, reaching in this way a contradiction.
Hence, it is evident that it is impossible to cast together the three properties of syntax
independence, next consistency, and source dependence in the framework of logics on
infinite paths only. If we want to restrict ourselves to such a framework, we have to drop at
least one property between the last two, changing completely the semantics of the logic and
indirectly the interesting relationship with the GµCALCULUS shown in the next section. We
can now return to the main track of thought of this section. In particular, we can enunciate a
fundamental result on the loss of the bisimulation invariance, since the operation of counting
is not bisimilar invariant at all, and, consequently, on the more expressiveness of the graded
w.r.t. the related ungraded logics.

ε

0

ε

0 1

Fig. 1. The KTs T1 and T2.

THEOREM 4.4 (BISIMILARITY VARIANCE). Let≡ ··
be a next-consistent and source-dependent equivalence
relation. Then GCTL and GCTL* are not invariant
under bisimilarity. Moreover, they are more expressive
than CTL and CTL*, respectively.

PROOF. We show that GCTL distinguishes between bisimilar models. Consider the
two KTs T1 and T2 such as T1 contains only the root and one successor, while T2 contains
also another successor of the root (see Figure 1). Formally, T1 = 〈AP,W1,R1, L1, ε〉,
with AP = ∅, W1 = {ε, 0}, and R1 = {(ε, 0)}, and T2 = 〈AP,W2,R2, L2, ε〉, with
W2 = W1 ∪ {1}, and R2 = R1 ∪ {(ε, 1)}. By the definition of bisimilarity, it is immediate
to see that T1 and T2 are bisimilar. Now, consider the formula ϕ = E≥2X t. It is evident
that Pth(T1, ε,X t) = {π1} with π1 = ε · 0, so |(Pth(T1, ε,X t)/≡X t

T1
)| = 1 and then

T1 6|= ϕ. On the contrary, Pth(T2, ε,X t) = {π1, π2} with π2 = ε · 1. Since (π1)1 6=
(π2)2, by Lemma 4.2, we have that π1 6≡X t

T2
π2, so |(Pth(T2, ε,X t)/≡X t

T2
)| = 2 and then

T2 |= ϕ. Hence, ϕ is not an invariant for the two KTs T1 and T2 and so, it can distinguish
between bisimilar models. Now, it is known that both CTL and CTL* are invariant under
bisimulation, so, they cannot distinguish between T1 and T2. Moreover, CTL and CTL* are
sublogics of GCTL and GCTL*, respectively. Thus, we have that the latter can characterize
more models than those characterizable by the former logic. Consequently, the theses
hold.

As third and last accessory lemma, we derive an important and completely general combi-
natorial property on the dimension of groupings of equivalence classes depending on their
size.

LEMMA 4.3 (CLASSES COUNTING). Let ≡ be an equivalence relation on a finite set
S. Moreover, let Mn = {D ∈ (S/≡) : |D| = n} be the set of equivalence classes w.r.t. ≡

ACM Transactions on Computational Logic, Vol. ?, No. ?, ? 20?.

16 · Alessandro Bianco et al.

having size n, for each n ∈ [1, |S|]. Then, there is a partition solution p ∈ P(|S|) such that
|Mn| = (p)n, for each n ∈ [1, |S|].

PROOF. First note that, by definition, Mn1
∩Mn2

= ∅, for all n1, n2 ∈ [1, |S|] with
n1 6= n2. Moreover, for all D1,D2 ∈ Mn with D1 6= D2, it holds that D1 ∩D2 = ∅, since
they are different equivalence classes. Furthermore, it is evident that S =

⋃|S|
n=1

⋃
D∈Mn

D.

So, we have that |S| = |
⋃|S|
n=1

⋃
D∈Mn

D| =
∑|S|
n=1

∑
D∈Mn

|D| =
∑|S|
n=1

∑
D∈Mn

n =∑|S|
n=1 n · |Mn|. Hence, by the definition of partition solution, the thesis holds.

Finally, we can enunciate two theorems that generalize to the case of graded quantifiers
the classical CTL* expansion equivalences EX ψ ≡ EX Eψ and AX̃ ψ ≡ AX̃ Aψ. The first
property is of crucial importance for the characterization of GCTL, without quantifiers with
infinite degrees (i.e., without E≥ωψ and A<ωψ), as a fragment of the GµCALCULUS, as
showed in the next section.

THEOREM 4.5 (NEXT EXPANSION I). Let ≡ ·· be a state-focused, next-consistent, and
source-dependent equivalence relation. Moreover, let ψ be a path formula and g ∈ [1, ω[.
Then, the following equivalences hold: (i) E≥gX ψ ≡

∨
c∈C(g)

∧g
i=1 E

≥(c)iX E≥iψ and (ii)

A<g X̃ ψ ≡
∨
c∈C(g−1)

∧g
i=1 A

≤(c)i X̃ A<iψ.

PROOF. [Only if]. If K, w0 |= E≥gX ψ then |(Pth(K, w0,X ψ)/≡X ψ
K)| ≥ g, where

K = 〈AP,W,R, L, w0〉. Thus, there is a set S ⊆ Pth(K, w0,X ψ) of g non-equivalent
paths w.r.t. ≡X ψ

K . Each path in S is a representative of a different class, so |S| = |(S/
≡X ψ
K)| = g.
Let now

succ≡ be the equivalence relation on Pth(K) such that π1
succ≡ π2 iff (π1)1 =

(π2)1. Moreover, let Mn , {D ∈ (S/
succ≡) : |D| = n} be the set of equivalence classes

w.r.t.
succ≡ having size n ∈ [1, g]. By Lemma 4.3, there is a partition solution p ∈ P(g) such

that |Mn| = (p)n, for all n ∈ [1, g]. At this point, we can write Mn = {Dn,1, . . . ,Dn,(p)n}.
Furthermore, we can associate to each class Dn,j a different successor wn,j of the initial
world w0 such that wn,j = (π)1, for all π ∈ Dn,j .

Since Dn,j ⊆ S, we have that K, π |= X ψ and so, by Item v of Proposition 3.1,
K, π≥1 |= ψ, for all π ∈ Dn,j . Hence, let D′n,j , {π≥1 : π ∈ Dn,j}, we obtain that D′n,j ⊆
Pth(K, wn,j , ψ). Note that |D′n,j | = |Dn,j | = n. Moreover, by the next-consistency
property, since π1 6≡X ψ

K π2, for all π1, π2 ∈ Dn,j with π1 6= π2, we obtain that (π1)≥1 6≡ψK
(π2)≥1 and so |(D′n,j/≡

ψ
K)| = |D′n,j | = n. Thus, we have that |(Pth(K, wn,j , ψ)/≡ψK)| ≥

n. Hence, K, wn,j |= E≥iψ, for all i ∈ [1, n]. By Items ii and v of Proposition 3.1, the last
statement implies that K, π |= X E≥iψ, for all π ∈ Dn,j with n ∈ [i, g] and j ∈ [1, (p)n].

By Lemma 4.1, it holds that π1 ≡X E≥iψ
K π2, for all π1, π2 ∈ Dn,j , and thus |(Dn,j/

≡X E≥iψ
K)| = 1. On the contrary, by Lemma 4.2, for all π1 ∈ Dn1,j1 and π2 ∈ Dn2,j2 with

n1 6= n2 or j1 6= j2, since (π1)1 = wn1,j1 6= wn2,j2 = (π2)1, it holds that π1 6≡X E≥iψ
K π2

and thus ((Dn1,j1 ∪Dn2,j2)/≡X E≥iψ
K) = (Dn1,j1/≡

X E≥iψ
K) ∪ (Dn2,j2/≡

X E≥iψ
K).

Now, we can estimate the number of equivalence classes w.r.t. ≡X E≥iψ
K of the set of

paths Pth(K, w0,X E≥iψ). Since, as previously proved,
⋃g
n=i

⋃(p)n
j=1 Dn,j⊆Pth(K, w0,X

E≥iψ), we have that |(Pth(K, w0,X E≥iψ)/≡X E≥iψ
K)| ≥ |((

⋃g
n=i

⋃(p)n
j=1 Dn,j)/≡X E≥iψ

K)|
ACM Transactions on Computational Logic, Vol. ?, No. ?, ? 20?.

Graded Computation Tree Logic · 17

= |
⋃g
n=i

⋃(p)n
j=1 (Dn,j/≡X E≥iψ

K)| =
∑g
n=i

∑(p)n
j=1 |(Dn,j/≡X E≥iψ

K)| =
∑g
n=i

∑(p)n
j=1 1 =∑g

n=i(p)n. Let now c ∈ Nn be the vector such that (c)i =
∑g
n=i(p)n. At this point, it is

immediate to see that K, w0 |= E≥(c)iX E≥iψ. Since the previous reasoning can be done
for every i ∈ [1, g], we also have K, w0 |=

∧g
i=1 E

≥(c)iX E≥iψ. Now, by definition of
cumulative-partition solution, we have that c ∈ C(g). So, K, w0 |=

∨
c∈C(g)

∧g
i=1 E

≥(c)i

X E≥iψ.
[If]. If K, w0 |=

∨
c∈C(g)

∧g
i=1 E

≥(c)iX E≥iψ then there is a cumulative-partition so-
lution c ∈ C(g) such that, for all i ∈ [1, g], it holds that K, w0 |= E≥(c)iX E≥iψ and so
|(Pth(K, w0,X E≥iψ)/≡X E≥iψ

K)| ≥ (c)i, where K = 〈AP,W,R, L, w0〉. Let now p ∈ Nn
be a vector such that (p)g = (c)g and (p)i = (c)i − (c)i+1, for all i ∈ [1, g[. By definition
of cumulative-partition solution, it is immediate to see that p is a partition solution, i.e.,
p ∈ P(g).

First note that the set Vi , {w ∈W : (w0, w) ∈ R ∧ K, w |= E≥iψ} of successors of
the initial world w0 satisfying E≥iψ has cardinality greater than or equal to (c)i. Indeed,
let π1, π2 ∈ Pth(K, w0,X E≥iψ) be two paths such that π1 6≡X E≥iψ

K π2. Then, by Lemma
4.1, we have that (π1)1 6= (π2)1. So, since, as shown before, there exist at least (c)i non-
equivalent paths w.r.t. ≡X E≥iψ

K , we obtain that there are at least (c)i different successors of
w0.

Now, for each i ∈ [1, g[, let Ui ⊆ Vi be a set of (p)i worlds such that Ui ∩Uj = ∅, for
all j ∈]i, g]. By finite induction, it is immediate to see that we can effectively construct
such sets, since |Vi \

⋃g
j=i+1 Uj | ≥ (c)i −

∑g
j=i+1 |Uj | = (c)i −

∑g
j=i+1(p)j = (c)i −

(c)i+1 = (p)i. At this point, we can write Ui = {wi,1, . . . , wi,(p)i}. Furthermore, since
K, wi,j |= E≥iψ, we can associate to each world wi,j a set D′i,j ⊆ Pth(K, wi,j , ψ) of
i non-equivalent paths w.r.t. ≡ψK. Now, let Di,j , {π ∈ Pth(K, w0) : π≥1 ∈ D′i,j}.
By Item v of Proposition 3.1, Di,j ⊆ Pth(K, w0,X ψ). Note that |Di,j | = |D′i,j | = i.
By the next-consistency property, since (π1)≥1 6≡ψK (π2)≥1, for all π1, π2 ∈ Dn,j with
π1 6= π2, we obtain that π1 6≡X ψ

K π2 and so |(Di,j/≡X ψ
K)| = |Di,j | = i. Moreover,

by Lemma 4.2, for all π1 ∈ Di1,j1 and π2 ∈ Di2,j2 with i1 6= i2 or j1 6= j2, since
(π1)1 = wi1,j1 6= wi2,j2 = (π2)1, it holds that π1 6≡X ψ

K π2 and thus ((Di1,j1 ∪ Di2,j2)/

≡X ψ
K) = (Di1,j1/≡

X ψ
K) ∪ ((Di2,j2/≡

X ψ
K)).

Now, we can estimate the number of equivalence classes w.r.t. ≡X ψ
K of the set of paths

Pth(K, w0,X ψ). Since, as previously proved,
⋃g
i=1

⋃(p)i
j=1Di,j ⊆ Pth(K, w0,X ψ), we

have that |(Pth(K, w0,X ψ)/≡X ψ
K)| ≥ |((

⋃g
i=1

⋃(p)i
j=1 Di,j)/≡X ψ

K)| = |
⋃g
i=1

⋃(p)i
j=1(Di,j

/≡X ψ
K)| =

∑g
i=1

∑(p)i
j=1 |(Di,j/≡X ψ

K)| =
∑g
i=1

∑(p)i
j=1 i =

∑g
i=1 i · (p)i = g. The last

equality is due to the fact that p is a partition solution. Hence, we have that K, w0 |=
E≥gX ψ.

THEOREM 4.6 (NEXT EXPANSION II). Let≡ ·· be a state-focused, next-consistent, and
source-dependent equivalence relation. Moreover, let ψ be a path formula. Then, the
following equivalences hold: (i) E≥ωX ψ ≡ E≥ωX E≥1ψ∨E≥1X E≥ωψ and (ii) A<ω X̃ ψ ≡
A<ω X̃ A<1ψ ∧ A<1 X̃ A<ωψ.

PROOF. [Only if]. If K, w0 |= E≥ωX ψ then |(Pth(K, w0,X ψ)/≡X ψ
K)| ≥ ω, where

K = 〈AP,W,R, L, w0〉. Thus, there is an infinite set S ⊆ Pth(K, w0,X ψ) of non-
equivalent paths w.r.t. ≡X ψ

K .
ACM Transactions on Computational Logic, Vol. ?, No. ?, ? 20?.

18 · Alessandro Bianco et al.

Let now
succ≡ be the equivalence relation on Pth(K) such that π1

succ≡ π2 iff (π1)1 =

(π2)1. Moreover, let M , (S/
succ≡). To each class D ∈ M we can associate a different

successor wD of the initial world w0 such that wD = (π)1, for all π ∈ D.

Since D ⊆ S, we have thatK, π |= X ψ and so, by Item v of Proposition 3.1,K, π≥1 |= ψ,
for all π ∈ D. Hence, let D′ , {π≥1 : π ∈ D}, we obtain that D′ ⊆ Pth(K, wn,j , ψ).
Note that |D′| = |D|. Moreover, by the next-consistency property, since π1 6≡X ψ

K π2, for
all π1, π2 ∈ D with π1 6= π2, we obtain that (π1)≥1 6≡ψK (π2)≥1 and so |(D′/≡ψK)| = |D′|.
Consequently, it holds that |(Pth(K, wD, ψ)/≡ψK)| ≥ |D|. Thus, K, wD |= E≥|D|ψ. The
last statement implies that K, π |= X E≥|D|ψ, for all π ∈ D.

At this point, we have two possibilities, each implying the truth of one of the two disjuncts
in the formula E≥ωX E≥1ψ ∨ E≥1X E≥ωψ: either |M| = ω or |M| < ω.

In the first case, each class D ∈ M may be finite, so we can assert at most that
|D| ≥ 1, which implies K, π |= X E≥1ψ, for all π ∈ D. By Lemma 4.2, for all
π1 ∈ D1 and π2 ∈ D2 with D1 6= D2, since (π1)1 = wD1 6= wD2 = (π2)1, it holds that
π1 6≡X E≥1ψ

K π2 and thus ((D1 ∪D2)/≡X E≥1ψ
K) = (D1/≡X E≥1ψ

K) ∪ (D2/≡X E≥1ψ
K). Now,

since
⋃

D∈M D ⊆ Pth(K, w0,X E≥1ψ), we have that |(Pth(K, w0,X E≥1ψ)/≡X E≥1ψ
K)|≥

|((
⋃

D∈M D)/≡X E≥1ψ
K)| = |

⋃
D∈M(D/≡X E≥1ψ

K)| =
∑

D∈M |(D/≡
X E≥1ψ
K)| ≥

∑
D∈M 1

= |M| = ω. Hence, K, w0 |= E≥ωX E≥1ψ.

In the second case, since S =
⋃

D∈M D and so |S| =
∑

D∈M |D|, we have that there is a
class D ∈ M such that |D| = ω. Thus, K, π |= X E≥ωψ, for all π ∈ D. This implies that
|Pth(K, w0,X E≥ωψ)| ≥ 1 and so |(Pth(K, w0,X E≥ωψ)/≡X E≥ωψ

K)| ≥ 1, which means
that K, w0 |= E≥1X E≥ωψ.

[If]. On one hand, ifK, w0 |= E≥ωX E≥1ψ then |(Pth(K, w0,X E≥1ψ)/≡X E≥1ψ
K)| ≥ ω,

where K = 〈AP,W,R, L, w0〉. Now, let V , {w ∈ W : (w0, w) ∈ R ∧ K, w |= E≥1ψ}
be the set of successors of the initial world w0 satisfying E≥1ψ. It is immediate to see that
|V| = ω. Indeed, let π1, π2 ∈ Pth(K, w0,X E≥1ψ) be two paths such that π1 6≡X E≥1ψ

K π2.
Then, by Lemma 4.1, we have that (π1)1 6= (π2)1. So, since there exist infinite non-
equivalent paths w.r.t. ≡X E≥1ψ

K , we obtain that there are infinite different successors of w0.
At this point, by Item v of Proposition 3.1, we can associate a path πw ∈ Pth(K, w0,X ψ)
with (πw)1 = w to each world w ∈ V. Let D , {πw : w ∈ V} be the set of all such paths.
It is evident that |D| = |V| = ω. Now, by Lemma 4.2, for all πw1 , πw2 ∈ D with w1 6= w2,
it holds that πw1

6≡X ψ
K πw2

and thus |(D/≡X ψ
K)| = |D|. Since D ⊆ Pth(K, w0,X ψ), we

have that |(Pth(K, w0,X ψ)/≡X ψ
K)| ≥ |(D/≡X ψ

K)| = |D| = ω. Hence, K, w0 |= E≥ωX ψ.

On the other hand, if K, w0 |= E≥1X E≥ωψ, by Items ii and v of Proposition 3.1, there
is a successor w ∈W with (w0, w) ∈ R of the initial world w0 satisfying E≥ωψ. Hence,
|(Pth(K, w, ψ)/≡ψK)| ≥ ω. Moreover, let D′ ⊆ Pth(K, w, ψ) be a set of infinite of non-
equivalent paths w.r.t. ≡ψK and D , {π ∈ Pth(K, w0) : π≥1 ∈ D′} be the set of their
extensions with w0. It is evident that |D| = |D′| = ω. By the next-consistency property,
since (π1)≥1 6≡ψK (π2)≥1, for all π1, π2 ∈ D with π1 6= π2, we obtain that π1 6≡X ψ

K π2

and so |(D/≡X ψ
K)| = |D|. Now, by Item v of Proposition 3.1, D ⊆ Pth(K, w0,X ψ).

Thus, we have that |(Pth(K, w0,X ψ)/≡X ψ
K)| ≥ |(D/≡X ψ

K)| = |D| = ω. Hence, K, w0 |=
E≥ωX ψ.
ACM Transactions on Computational Logic, Vol. ?, No. ?, ? 20?.

Graded Computation Tree Logic · 19

In the following, we use the four expressions EX(g, ψ), AX̃(g, ψ), EX′(g, ψ), and AX̃′(g,
ψ) defined below to represent in short the expansion formulas for the X and X̃ temporal
operators derived in the previous two theorems.

—EX(g, ψ) ,

{∨
c∈C(g)

∧g
i=1 E

≥(c)iX E≥iψ, if g < ω;

E≥ωX E≥1ψ ∨ E≥1X E≥ωψ, otherwise.

—AX̃(g, ψ) ,

{∨
c∈C(g−1)

∧g
i=1 A

≤(c)i X̃ A<iψ, if g < ω;

A<ωX A<1ψ ∧ A<1X A<ωψ, otherwise.

—EX′(g, ψ) ,

{∨(c)g=0

c∈C(g)

∧g−1
i=1 E≥(c)iX E≥iψ, if g < ω;

E≥ωX E≥1ψ, otherwise.

—AX̃′(g, ψ) ,

{∨
c∈C(g−1)

∧g−1
i=1 A≤(c)i X̃ A<iψ, if g < ω;

A<ωX A<1ψ, otherwise.

In this way, we obtain that E≥gX ψ ≡ EX(g, ψ) ≡ EX′(g, ψ)∨E≥1X E≥gψ and A<g X̃ ψ ≡
AX̃(g, ψ) ≡ AX̃′(g, ψ) ∧ A<1 X̃ A<gψ, for all g ∈ N̂. For the existential case, the sec-
ond equivalence for finite degree is due to the fact that, when (c)g = 1, it holds that∧g
i=1 E

≥(c)iX E≥iψ =
∧g
i=1 E

≥1X E≥iψ ≡ E≥1X E≥gψ. For the universal case, instead,
the same equivalence is derived by the observation that, since (c)g = 0, each disjunct
necessarily contains the conjunct A≤0 X̃ A<gψ.

Now, it is interesting to note that, for finite degrees, the formula EX(g, ψ) allows to
partition at least g paths through c1 ≤ g successor worlds, for a given vector c ∈ C(g).
Indeed, ci is the number of successor worlds from which at least i paths satisfying ψ start.
Therefore, c1 is a sufficient bound on the number of successor worlds we have to consider
to ensure the satisfiability of the formula. A similar dual reasoning can be done for the
universal formula AX̃(g, ψ).

Observe that EX(1, ψ) and AX̃(1, ψ) are equal to the classical CTL* expansions EX Eψ
and AX̃ Aψ, respectively.

By a simple calculation, it follows that (g−1)·(|C(g)|−1)·(|ψ|+4)−1 = |EX′(g, ψ)| <
|EX(g, ψ)| = g · |C(g)| ·(|ψ|+4)−1 and (g−1) · |C(g−1)| ·(|ψ|+4)−1 = |AX̃′(g, ψ)| <
|AX̃(g, ψ)| = g ·|C(g−1)|·(|ψ|+4)−1. So, both the lengths of EX(g, ψ) and EX′(g, ψ) are
Θ((|ψ|+ 4) · 2k·

√
g), while those of AX̃(g, ψ) and AX̃′(g, ψ) are Θ((|ψ|+ 4) · 2k·

√
g−1), for

a constant k. Furthermore, the degree of EX(g, ψ), AX̃(g, ψ), EX′(g, ψ), and AX̃′(g, ψ) is
max{g, ψ̊}. As an example, consider the formula ϕ = E≥gX X p. It is evident that |ϕ| = 4,
ϕ̊ = g, and ‖ϕ‖ = 4 + dlog(g)e. Moreover, |EX(g,X p)| = Θ(2k·

√
g) = Θ(2k·

√
2‖ϕ‖−4

).
Hence, the length of an expansion EX(g, ψ) can be, in general, double exponential in the
size of the original formula, also in the case its length is constant. The same thing happens
for the expansion AX̃(g, ψ).

4.3 Boolean requirements

At this point, we can reason about the properties that an equivalence has to satisfy w.r.t. the
positive Boolean combination of formulas.

Suppose we have two path formulas ψ1 and ψ2. We would like to have that, from a given
world, both the number of paths that satisfy ψ1 and ψ2 are not less than those satisfying their
conjunction. Hence, we need that paths equivalent w.r.t. both ψ1 and ψ2 are equivalent w.r.t.

ACM Transactions on Computational Logic, Vol. ?, No. ?, ? 20?.

20 · Alessandro Bianco et al.

ψ1 ∧ ψ2 too, otherwise, each equivalence class for ψ1 and ψ2 may provide more than one
equivalence class for ψ1 ∧ ψ2 allowing the latter formula to have more paths. Moreover, we
would like that, among the paths that satisfy ψ1 (resp., ψ2), the number of those satisfying
ψ2 (resp., ψ1) is equal to those satisfying ψ1 ∧ ψ2. Hence, we need that paths equivalent
w.r.t. ψ1 ∧ ψ2 are also equivalent w.r.t. both ψ1 and ψ2.

DEFINITION 4.8 (CONJUNCTION CONSISTENCY). An equivalence relation ≡ ·K on
paths is said conjunction consistent iff it holds that π1 ≡ψ1∧ψ2

K π2 iff π1 ≡ψ1

K π2 and
π1 ≡ψ2

K π2, for all π1, π2 ∈ Pth(K).

By the state-focus and conjunction-consistency properties, we can derive an equivalence
on the existential quantification of a conjunction between a state and a path formula that
allow to extract the first one from the scope of the quantifier. Similarly, we can extract
a state formula from a universal quantification of a disjunction between this and a path
formula. This property is simply an extension of what we have in the case of ungraded
quantifications.

THEOREM 4.7 (LOCAL CONJUNCTION QUANTIFICATION). Let≡·· be a state-focused
and conjunction-consistent equivalence relation. Moreover, let ϕ and ψ be a state and a path
formula, respectively, and g ∈ [1, ω]. Then, the following holds: (i) E≥g(ϕ∧ψ) ≡ ϕ∧E≥gψ
and (ii) A<g(ϕ ∨ ψ) ≡ ϕ ∨ A<gψ.

PROOF. [Only if]. IfK, w0 |= E≥gϕ∧ψ then |(Pth(K, w0, ϕ ∧ ψ)/≡ϕ∧ψK)| ≥ g, where
w0 is the initial world of K. The inequality implies Pth(K, w0, ϕ ∧ ψ) 6= ∅, so, by Item iii
of Proposition 3.1, there is a path π ∈ Pth(K, w0) such that K, π |= ϕ and, by Item ii of
the same proposition, this means that K, w0 |= ϕ. Then, again by Item iii of Proposition 3.1,
it is immediate to see that Pth(K, w0, ϕ ∧ ψ) = Pth(K, w0, ψ). Moreover, by the state-
focus property, we have that π1 ≡ϕK π2, for all paths π1, π2 ∈ Pth(K, w0). Now, by the
conjunction-consistency property, we obtain that π1 ≡ϕ∧ψK π2 iff π1 ≡ψK π2. At this point,
(Pth(K, w0, ϕ ∧ ψ)/≡ϕ∧ψK) = (Pth(K, w0, ψ)/≡ϕ∧ψK) = (Pth(K, w0, ψ)/≡ψK). Hence,
K, w0 |= E≥gψ and consequently K, w0 |= ϕ ∧ E≥gψ.

[If]. If K, w0 |= ϕ ∧ E≥gψ, we have that K, w0 |= ϕ and |(Pth(K, w0, ψ)/≡ψK)| ≥ g.
Then, by Items ii and iii of Proposition 3.1, it is immediate to see that Pth(K, w0, ψ) =
Pth(K, w0, ϕ ∧ ψ). Moreover, by the state-focus property, we have that π1 ≡ϕK π2, for all
paths π1, π2 ∈ Pth(K, w0). Now, by the conjunction-consistency property, we obtain that
π1 ≡ϕ∧ψK π2 iff π1 ≡ψK π2. At this point, (Pth(K, w0, ψ)/≡ψK)=(Pth(K, w0, ϕ ∧ ψ)/≡ψK)

= (Pth(K, w0, ϕ ∧ ψ)/≡ϕ∧ψK). Hence, K, w0 |= E≥gϕ ∧ ψ.

It is interesting to note that, in order to prove the previous result, we do not need the
full power of the conjunction consistency but a weaker property, which we denote local
conjunction consistency, that only links the equivalence w.r.t. a conjunction of a state and a
path formula to the equivalences w.r.t. the conjuncts. However, as we show later, we need
the full power of the property when we have to reason about complex CTL* path formulas.

Consider again the two path formulas ψ1 and ψ2. We would like that, from a given world,
the sum of the number of paths that satisfy ψ1 together with that satisfying ψ2 is not less
than the number of paths that satisfy their disjunction. Suppose that there are only two paths
that satisfy ψ1 (resp., ψ2) and are equivalent w.r.t. the same formula. Then, the two paths
need to be equivalent w.r.t. ψ1 ∨ ψ2, too. Hence, one way to ensure such a property is to
ACM Transactions on Computational Logic, Vol. ?, No. ?, ? 20?.

Graded Computation Tree Logic · 21

ask that, whenever two paths are equivalent w.r.t. one formula, they are also equivalent w.r.t.
its disjunctions. Moreover, we would like that both the number of paths that satisfy ψ1 and
ψ2 are not greater than those satisfying ψ1 ∨ ψ2. Hence, we need that paths satisfying ψ1

(resp., ψ2) and equivalent w.r.t. ψ1 ∨ ψ2 are also equivalent w.r.t. ψ1 (resp., ψ2). So, we
would like that two paths are equivalent w.r.t. a disjunction iff they are equivalent w.r.t. one
of the two disjuncts.

DEFINITION 4.9 (DISJUNCTION CONSISTENCY). An equivalence relation ≡ ·K on
paths is said disjunction consistent iff it holds that π1 ≡ψ1∨ψ2

K π2 iff π1 ≡ψ1

K π2 or
π1 ≡ψ2

K π2, for all π1, π2 ∈ Pth(K).

In general, however, such a property contradicts the syntax-independence, state-focus, and
the next- and weak next-consistency properties. Indeed, let ψ1 = X p and ψ2 = ¬ X p, for
an atomic proposition p ∈ AP. Then, ψ1 ∨ ψ2 is equivalent to t. Consider now two paths
π1, π2 ∈ Pth(K, w) such that K, (π1)1 |= p and K, (π2)1 6|= p, and so (π1)1 6= (π2)1.
Since the two paths have, in their second position, different successors of the origin, they
are distinct w.r.t. ψ1 and ψ2 but they are identical w.r.t. ψ1 ∨ ψ2, because of the state-focus
and syntax-independence properties. In this example, the contradiction rises from the
fact that the disjunction turns out to be a weaker property (a tautology) than the two base
formulas. Hence, the formula is always satisfied and, since all choices over the paths are
indifferent, they may be regarded as equivalent. Now, one may think that this is a problem
related only to tautologies that rise from the disjunction. Unfortunately, this is not the case.
Indeed, the disjunction may contain an hidden tautology that reveals itself only at some
later points on the paths. For example, let ψ1 = X X p and ψ2 = X ¬ X p. Their disjunction
is not a tautology, because it is not satisfied on paths of length 1. Consider now two paths
π1, π2 ∈ Pth(K, w) such that (π1)1 = (π2)1, K, (π1)2 |= p, and K, (π2)2 6|= p. The two
paths are distinct w.r.t. ψ1 and ψ2 because they have distinct third nodes, but they are
identical w.r.t. ψ1 ∨ ψ2 ≡ X t. It is easy to believe that the hidden tautology may be found
arbitrary deeper in the formula, that is why the disjunction-consistency cannot hold in its
entirety.

Since it is not possible to define in general an easy property that relates the equivalence
on a disjunction to the equivalence on the component formulas, we restrict our observations
to a case where the tautology derived from the disjunction can appear only at the first node
of paths. Hence, we consider only disjunctions between a state ϕ and a path formula ψ. In
such a case, two paths equivalent w.r.t. the disjunction ϕ ∨ ψ ≡ ϕ ∨ ¬ϕ ≡ t are equivalent
w.r.t. one of the two state formulas, too. In the next section, we actually prove that this
property does not contradict the previous ones.

DEFINITION 4.10 (LOCAL DISJUNCTION CONSISTENCY). An equivalence relation
≡ ·K on paths is said local disjunction consistent iff it holds that π1 ≡ϕ∨ψK π2 iff π1 ≡ϕK π2

or π1 ≡ψK π2, for all π1, π2 ∈ Pth(K), where ϕ is a state formula.

We further discuss an incidental property.
Consider a path formula ψ. Since in the semantics we only consider paths satisfying ψ

when evaluating the truth nature of an existential or universal quantification, it is pointless
to compare two paths if one of them does not satisfy ψ. However, suppose that there exist
two paths π1 and π2 that do not satisfy a state formula ϕ, but that are equivalent w.r.t. ϕ.
Also suppose that these paths satisfy a path formula ψ, but they are not equivalent w.r.t.
ψ. Then, by local disjunction consistency the two paths would be equivalent w.r.t. ϕ ∨ ψ,

ACM Transactions on Computational Logic, Vol. ?, No. ?, ? 20?.

22 · Alessandro Bianco et al.

but it is unreasonable that there is only one path satisfying the disjunction while ϕ is not
satisfied on them and there are two paths satisfying the formula ψ. In order to avoid such a
problem, we may want to require that two paths are equivalent w.r.t. a formula only if they
both satisfy it.

DEFINITION 4.11 (SATISFIABILITY CONSTRAINT). An equivalence relation ≡ ·K on
paths is said satisfiability constrained iff it holds that if π1 ≡ψK π2 then K, π1 |= ψ and
K, π2 |= ψ, for all π1, π2 ∈ Pth(K).

By the state-focus, local disjunction-consistency, and satisfiability-constraint properties,
we can derive an equivalence on the quantification of a disjunction between a state and
a path formula that allow to extract in a negated form the first one from the scope of the
quantifier. Similarly, we can extract a negated state formula from a universal quantification
of a conjunction between this and a path formula. Note that this property is not an extension
of what we have in the case of ungraded quantifications.

THEOREM 4.8 (LOCAL DISJUNCTION QUANTIFICATION). Let≡ ·· be a state-focused,
local disjunction-consistent, and satisfiability-constrained equivalence relation. Moreover,
let ϕ and ψ be a state and a path formula, respectively, and g ∈ [2, ω]. Then, the following
holds: (i) E≥g(ϕ ∨ ψ) ≡ ¬ϕ ∧ E≥gψ and (ii) A<g(ϕ ∧ ψ) ≡ ¬ϕ ∨ A<gψ.

PROOF. [Only if]. IfK, w0 |= E≥gϕ∨ψ then |(Pth(K, w0, ϕ ∨ ψ)/≡ϕ∨ψK)| ≥ g, where
w0 is the initial world of K. Suppose now by contradiction that K, w0 |= ϕ. Then, by
the state-focus property, we have that π1 ≡ϕK π2, for all paths π1, π2 ∈ Pth(K, w0).
So, by the local disjunction-consistency property, we obtain that π1 ≡ϕ∨ψK π2 and then
that |(Pth(K, w0, ϕ ∨ ψ)/≡ϕ∨ψK)| = 1 < g, but this contradict the hypothesis. Hence,
K, w0 6|= ϕ, i.e., K, w0 |= ¬ϕ. Then, by Item iv of Proposition 3.1, it is immediate to
see that Pth(K, w0, ϕ ∨ ψ) = Pth(K, w0, ψ). Moreover, by the satisfiability-constraint
property, we have that π1 6≡ϕK π2, for all paths π1, π2 ∈ Pth(K, w0). Now, again by the
local disjunction-consistency property, we obtain that π1 ≡ϕ∨ψK π2 iff π1 ≡ψK π2. At this
point, (Pth(K, w0, ϕ ∨ ψ)/≡ϕ∨ψK) = (Pth(K, w0, ψ)/≡ϕ∨ψK) = (Pth(K, w0, ψ)/≡ψK).
Hence, K, w0 |= E≥gψ and consequently K, w0 |= ¬ϕ ∧ E≥gψ.

[If]. If K, w0 |= ¬ϕ ∧ E≥gψ, we have that K, w0 6|= ϕ and |(Pth(K, w0, ψ)/≡ψK)| ≥
g. Then, by Item iv of Proposition 3.1, it is immediate to see that Pth(K, w0, ψ) =
Pth(K, w0, ϕ ∨ ψ). Moreover, by the satisfiability-constraint property, we have that
π1 6≡ϕK π2, for all paths π1, π2 ∈ Pth(K, w0). Now, by the local disjunction-consistency
property, we obtain that π1 ≡ϕ∨ψK π2 iff π1 ≡ψK π2. At this point, (Pth(K, w0, ψ)/≡ψK)=

(Pth(K, w0, ϕ ∨ ψ)/≡ψK)=(Pth(K, w0, ϕ ∨ ψ)/≡ϕ∨ψK). Hence, K, w0 |= E≥gϕ ∨ ψ.

4.4 Main properties

We now summarize all the previous properties in the single concept of adequacy.

DEFINITION 4.12 (ADEQUACY). An equivalence relation ≡ ·K on paths is said ade-
quate w.r.t. an equivalence structure ∼=·· iff it holds that it is (i) syntax independent, (ii) state
focused, (iii) next consistent, (iv) weak next consistent w.r.t. ∼=··, (v) source dependent, (vi)
conjunction consistent, (vii) local disjunction consistent, and (viii) satisfiability constrained.

Next theorem shows four exponential fixpoint expressions that extend to graded formulas
the corresponding well-known results for ungraded ones. These interesting equivalences
ACM Transactions on Computational Logic, Vol. ?, No. ?, ? 20?.

Graded Computation Tree Logic · 23

among GCTL formulas are useful to describe important properties of its semantics.

THEOREM 4.9 (GCTL FIXPOINT EQUIVALENCES). Let ≡ ·· be an adequate equiva-
lence relation. Moreover, let ϕ1 and ϕ2 be two state formulas and g ∈ [2, ω]. Then, the
following equivalences hold:

i. E≥gϕ1U ϕ2 ≡ ¬ϕ2 ∧ ϕ1 ∧ (EX′(g, ϕ1U ϕ2) ∨ E≥1X E≥gϕ1U ϕ2);
ii. E≥gϕ1R ϕ2 ≡ ϕ2 ∧ ¬ϕ1 ∧ (EX′(g, ϕ1R ϕ2) ∨ E≥1X E≥gϕ1R ϕ2);

iii. A<gϕ1 Ũ ϕ2 ≡ ϕ2 ∨ ¬ϕ1 ∨ AX̃′(g, ϕ1 Ũ ϕ2) ∧ A<1 X̃ A<gϕ1 Ũ ϕ2;
iv. A<gϕ1 R̃ ϕ2 ≡ ¬ϕ2 ∨ ϕ1 ∨ AX̃′(g, ϕ1 R̃ ϕ2) ∧ A<1 X̃ A<gϕ1 R̃ ϕ2.

PROOF. To show Item i (resp., ii), it is possible to apply to the formula E≥gϕ1U ϕ2

(resp., E≥gϕ1R ϕ2) the following chain of equivalences: Item i (resp., ii) of Corollary 4.1
and Theorems 4.8 (resp., 4.7), 4.7 (resp., 4.8), 4.5, and 4.6. At the same way, to show Item
iii (resp., iv), it is possible to apply to the formula A<gϕ1 Ũ ϕ2 (resp., A<gϕ1 R̃ ϕ2) the
following sequence of equivalences: Item vii (resp., viii) of Corollary 4.1, and Theorems
4.7 (resp., 4.8), 4.8 (resp., 4.7), 4.5, and 4.6.

In the following, we use the four macros EU(g, ϕ1, ϕ2, Y), ER(g, ϕ1, ϕ2, Y), AŨ(g, ϕ1,
ϕ2, Y), and AR̃(g, ϕ1, ϕ2, Y) defined below, to represent in short the expansion formulas
for the existential U and R and the universal Ũ and R̃ temporal operators derived in the
previous theorem and in Items i, ii, vii, and viii of Proposition 3.3.

—EU(g, ϕ1, ϕ2, Y) ,

{
ϕ2 ∨ ϕ1 ∧ E≥1X Y, if g = 1;

¬ϕ2 ∧ ϕ1 ∧ (EX′(g, ϕ1U ϕ2) ∨ E≥1X Y), otherwise.

—ER(g, ϕ1, ϕ2, Y) ,

{
ϕ2 ∧ (ϕ1 ∨ E≥1X Y), if g = 1;

ϕ2 ∧ ¬ϕ1 ∧ (EX′(g, ϕ1R ϕ2) ∨ E≥1X Y), otherwise.

—AŨ(g, ϕ1, ϕ2, Y) ,

{
ϕ2 ∨ ϕ1 ∧ A<1X Y, if g = 1;

ϕ2 ∨ ¬ϕ1 ∨ AX̃′(g, ϕ1 Ũ ϕ2) ∧ A<1X Y, otherwise.

—AR̃(g, ϕ1, ϕ2, Y) ,

{
ϕ2 ∧ (ϕ1 ∨ A<1X Y), if g = 1;

¬ϕ2 ∨ ϕ1 ∨ AX̃′(g, ϕ1 R̃ ϕ2) ∧ A<1X Y, otherwise.

It is immediate to see that |EU(g, ϕ1, ϕ2, Y)| = |ER(g, ϕ1, ϕ2, Y)| = Θ(|Y | + (|ϕ1| +
|ϕ2|+ 5) · 2k·

√
g) and |AŨ(g, ϕ1, ϕ2, Y)| = |AR̃(g, ϕ1, ϕ2, Y)| = Θ(|Y |+ (|ϕ1|+ |ϕ2|+

5) · 2k·
√
g−1), for a constant k. Moreover, for all g ∈ [1, ω], it holds that

—E≥gϕ1U ϕ2 ≡ EU(g, ϕ1, ϕ2,E
≥gϕ1U ϕ2),

—E≥gϕ1R ϕ2 ≡ ER(g, ϕ1, ϕ2,E
≥gϕ1R ϕ2),

—A<gϕ1 Ũ ϕ2 ≡ AŨ(g, ϕ1, ϕ2,A
<gϕ1 Ũ ϕ2),

—A<gϕ1 R̃ ϕ2 ≡ AR̃(g, ϕ1, ϕ2,A
<gϕ1 R̃ ϕ2).

Differently from the previous cases, we cannot hope to obtain similar general fixpoint
equivalences for the existential Ũ and R̃ and the universal U and R temporal operators. This
is due to the fact that we do not have general equivalences between the quantifications of
X ψ and those of X̃ ψ. The next theorem shows the four exponential fixpoint properties we
are able to derive for these cases.

ACM Transactions on Computational Logic, Vol. ?, No. ?, ? 20?.

24 · Alessandro Bianco et al.

THEOREM 4.10 (GCTL ALMOST FIXPOINT EQUIVALENCES). Let ≡··be an adequate
equivalence relation w.r.t. the equivalence structure ∼=··. Moreover, let K be a KS, w0 its
initial world, ϕ1 and ϕ2 be two state formulas, and g ∈ [2, ω]. Then, the following hold:

i. K |= E≥gϕ1 Ũ ϕ2 iff K |= ¬ϕ2 ∧ ϕ1 ∧ (EX′(g, ϕ1 Ũ ϕ2) ∨ E≥1X E≥gϕ1 Ũ ϕ2) and
X̃ ϕ1 Ũ ϕ2 is not an ∼=w0

K -tautology;
ii. K |= E≥gϕ1 R̃ ϕ2 iff K |= ϕ2 ∧ ¬ϕ1 ∧ (EX′(g, ϕ1 R̃ ϕ2) ∨ E≥1X E≥gϕ1 R̃ ϕ2) and

X̃ ϕ1 R̃ ϕ2 is not an ∼=w0

K -tautology;
iii. K |= A<gϕ1U ϕ2 iff K |= ϕ2 ∨ ¬ϕ1 ∨ AX̃′(g, ϕ1U ϕ2) ∧ A<1 X̃ A<gϕ1U ϕ2 or
¬X ϕ1U ϕ2 is an ∼=w0

K -tautology;
iv. K |= A<gϕ1R ϕ2 iff K |= ¬ϕ2 ∨ ϕ1 ∨ AX̃′(g, ϕ1R ϕ2) ∧ A<1 X̃ A<gϕ1R ϕ2 or
¬X ϕ1R ϕ2 is an ∼=w0

K -tautology.

PROOF. To show Item i (resp., ii), it is possible to apply to the formula E≥gϕ1 Ũ ϕ2

(resp., E≥gϕ1 R̃ ϕ2) the following chain of equivalences: Item iii (resp., iv) of Corollary 4.1,
and Theorems 4.8 (resp., 4.7), 4.7 (resp., 4.8), 4.3, 4.5, and 4.6. At the same way, to show
Item iii (resp., iv), it is possible to apply to the formula A<gϕ1U ϕ2 (resp., A<gϕ1R ϕ2) the
following sequence of equivalences: Item v (resp., vi) of Corollary 4.1, and Theorems 4.7
(resp., 4.8), 4.8 (resp., 4.7), 4.3, 4.5, and 4.6.

As for the previous cases, in the following, we use the macros EŨ(g, ϕ1, ϕ2, Y, ϕ), ER̃(g,
ϕ1, ϕ2, Y, ϕ), AU(g, ϕ1, ϕ2, Y, ϕ), and AR(g, ϕ1, ϕ2, Y, ϕ) defined below, to represent in
short the expansion formulas for the existential Ũ and R̃ and the universal U and R temporal
operators derived in the previous theorem and in Items iii, iv, v, and vi of Proposition 3.3.

—EŨ(g, ϕ1, ϕ2, Y, ϕ) ,

{
ϕ2 ∨ ϕ1 ∧ (E≥1 X̃ f ∨ E≥1X Y), if g = 1;

¬ϕ2 ∧ ϕ1 ∧ (EX′(g, ϕ1 Ũ ϕ2) ∨ E≥1X Y) ∧ ϕ, otherwise.

—ER̃(g, ϕ1, ϕ2, Y, ϕ) ,

{
ϕ2 ∧ (ϕ1 ∨ E≥1 X̃ f ∨ E≥1X Y), if g = 1;

ϕ2 ∧ ¬ϕ1 ∧ (EX′(g, ϕ1 R̃ ϕ2) ∨ E≥1X Y) ∧ ϕ, otherwise.

—AU(g, ϕ1, ϕ2, Y, ϕ) ,

{
ϕ2 ∨ ϕ1 ∧ A<1X t ∧ A<1X Y, if g = 1;

ϕ2 ∨ ¬ϕ1 ∨ AX̃′(g, ϕ1U ϕ2) ∧ A<1 X̃ Y ∨ ϕ, otherwise.

—AR(g, ϕ1, ϕ2, Y, ϕ) ,

{
ϕ2 ∧ (ϕ1 ∨ A<1X t ∧ A<1X Y), if g = 1;

¬ϕ2 ∨ ϕ1 ∨ AX̃′(g, ϕ1R ϕ2) ∧ A<1 X̃ Y ∨ ϕ, otherwise.

It is immediate to see that |EŨ(g, ϕ1, ϕ2, Y, ϕ)| = |ER̃(g, ϕ1, ϕ2, Y, ϕ)| = Θ(|Y |+ |ϕ|+
(|ϕ1| + |ϕ2| + 5) · 2k·

√
g) and |AU(g, ϕ1, ϕ2, Y, ϕ)| = |AR(g, ϕ1, ϕ2, Y, ϕ)| = Θ(|Y | +

|ϕ|+ (|ϕ1|+ |ϕ2|+ 5) ·2k·
√
g−1), for a constant k. As yet noted above, there are no general

equivalences that directly link the formulas E≥gϕ1 Ũ ϕ2, E≥gϕ1 R̃ ϕ2, A<gϕ1U ϕ2, and
A<gϕ1R ϕ2 with their expansions EŨ(g, ϕ1, ϕ2,E

≥gϕ1 Ũ ϕ2, ϕ), ER̃(g, ϕ1, ϕ2,E
≥gϕ1 R̃

ϕ2, ϕ), AU(g, ϕ1, ϕ2,A
<gϕ1U ϕ2, ϕ), and AR(g, ϕ1, ϕ2,A

<gϕ1R ϕ2, ϕ). Note that here
the metavariable ϕ can be used at the same way of that of the macro EX̃(g, ψ, ϕ).

Finally, we show a fundamental equivalence that allows us to extract all state formulas
from the scope of a quantification of a generic GCTL* path formula.

THEOREM 4.11 (GCTL* PATH EXPANSION EQUIVALENCE). Let ≡ ·· be a syntax-in-
dependent, state-focused, conjunction-consistent, local disjunction-consistent, and satisfia-
bility-constrained equivalence relation. Moreover, let ϕi and ψi be, respectively, k state

ACM Transactions on Computational Logic, Vol. ?, No. ?, ? 20?.

Graded Computation Tree Logic · 25

and path formulas, Opi ∈ {X, X̃}, and g ∈ [1, ω]. Then, the following equivalences hold,
where ψ =

∧k
i=1(ϕi∨Opiψi), ϕI =

∧
i∈I ϕi∧

∧
i∈[1,k]\I ¬ϕi and ψI = Op

∧
i∈[1,k]\I ψi

with Op ∈ {X, X̃} and Op = X iff there is i ∈ [1, k] \ I such that Opi = X .

(1) E≥gψ ≡
∨
I⊆[1,k] ϕI ∧ E≥gψI ;

(2) A<g¬ψ ≡
∨
I⊆[1,k] ϕI ∧ A<g¬ψI .

PROOF. We have to prove that K, w0 |= E≥gψ iff K, w0 |=
∨
I⊆[1,k] ϕI ∧ E≥gψI (resp.,

K, w0 |= A<g¬ψ iff K, w0 |=
∨
I⊆[1,k] ϕI ∧ A<g¬ψI), where w0 is the initial world of K,

for all KS K. First, let I ⊆ [1, k] be the set of indexes of just the state formulas ϕi that are
true on K, i.e., such that (i) K, w0 |= ϕi, for all i ∈ I , and (ii) K, w0 6|= ϕi, for all i ∈ [1,
k] \ I . Thus, K, w0 |= ϕI . Note that such a set is uniquely determined by the KS K.

By Items iii and iv of Proposition 3.1, it holds that Pth(K, w0, ψ) = Pth(K, w0, ψI).
What remains to prove is that π1 ≡ψK π2 iff π1 ≡ψI

K π2, for all π1, π2 ∈ Pth(K, w0). By
the conjunction-consistency property, we have that π1 ≡ψK π2 iff, for all i ∈ [1, k], it holds
that π1 ≡ϕi∨Opiψi

K π2. Thus, by the local disjunction-consistency property, we obtain
that π1 ≡ψK π2 iff, for all i ∈ [1, k], it holds that π1 ≡ϕi

K π2 or π1 ≡Opiψi

K π2. Now, if
i ∈ I , by the state-focus property, it holds that π1 ≡ϕi

K π2. On the contrary, if i ∈ [1,
k] \ I , by the satisfiability-constraint property, it holds that π1 6≡ϕi

K π2. Hence, the previous
coimplication between π1 ≡ψK π2 and its expansion can be simplified as follows: π1 ≡ψK π2

iff, for all i ∈ [1, k] \ I , it holds that π1 ≡Opiψi

K π2. At this point, again by the conjunction-

consistency property, we have that π1 ≡ψK π2 iff π1 ≡
∧

i∈[1,k]\I Opiψi

K π2. Now, it is easy
to note that

∧
i∈[1,k]\I Opiψi ≡ ψI . So, by the syntax-independence property, we can

further simplify the previous coimplication in π1 ≡ψK π2 iff π1 ≡ψI

K π2, obtaining directly
that (Pth(K, w0, ψ)/≡ψK) = (Pth(K, w0, ψI)/≡ψI

K). Thus, the assumption K, w0 |= ϕI
implies that K, w0 |= E≥gψ iff K, w0 |= E≥gψI (resp., K, w0 |= A<g¬ψ iff K, w0 |=
A<g¬ψI).

Now, on one hand, it is easy to see that, for each KS K, there is a set I ⊆ [1,
k] such that K, w0 |= ϕI and so E≥gψ ⇒

∨
I⊆[1,k] ϕI ∧ E≥gψI (resp., A<g¬ψ ⇒∨

I⊆[1,k] ϕI ∧ A<g¬ψI). On the other hand, the existence of a set I ⊆ [1, k] such that
K, w0 |= ϕI andK, w0 |= E≥gψI (resp.,K, w0 |= A<g¬ψI) implies E≥gψ (resp., A<g¬ψ),
i.e.,

∨
I⊆[1,k] ϕI ∧E≥gψI ⇒ E≥gψ (resp.,

∨
I⊆[1,k] ϕI ∧A<g¬ψI ⇒ A<g¬ψ). Hence, the

thesis follows.

It may be interesting to observe that the previous result is a generalization of Theorems
4.7 and 4.8 that can be obtained as the limit cases in which there are no conjunctions or
disjunctions, respectively. Moreover, it is important to note that, differently from the case
of the local conjunction quantification, here we need the full power of the conjunction-
consistency property in order to prove this equivalence.

5. PREFIX PATH EQUIVALENCE

In this section, we introduce a suitable path equivalence relation that satisfies all the
previously discussed properties. Hence, we show that those properties are not contradictory,
by presenting one of the possible meaningful graded computation tree logics. In the sequel
of the paper, we only refer to GCTL* under this specific equivalence relation.

ACM Transactions on Computational Logic, Vol. ?, No. ?, ? 20?.

26 · Alessandro Bianco et al.

5.1 Definition and properties

In the definition of the GCTL* semantics, we use a generic equivalence relation ≡·· on
paths that allows us to count how many ways a structure has to satisfy a path formula. So,
two paths should be considered equivalent when they represent only one way to perform
according to that formula. For many formulas, such a way results to be their common finite
prefix. For example, all paths that satisfy X p and have the first two nodes in common
may be regarded as equivalent because the first two nodes constitute the one sought way to
satisfy the formula. For some other formula like X̃ p, the ways to satisfy it are less clear.
For example, consider two paths π1 and π2 with only the starting node in common, such
that the first satisfies X p while the latter X ¬p. Then, the common node, if taken alone, i.e.,
without its successors, may be considered as a path satisfying X̃ p. So, the two paths would
be equivalent. However, this looks unreasonable because π2 does not satisfy X̃ p and, thus,
the common prefix failed to ensure the conservativeness of the satisfiability for this formula.
Hence, a common prefix between two paths may be considered as a way to satisfy a path
formula, if it satisfies the formula and somehow it allows us to deduce that this formula is
true on all paths with that prefix in the structure. The following definition of the equivalence
relation among paths formally captures the previous idea.

DEFINITION 5.1 (PREFIX EQUIVALENCE). Two paths π1, π2 ∈ Pth(K) are prefix
equivalent w.r.t. a path formula ψ, in symbols π1 ≡ψK π2, iff either π1 = π2 or (i) the
common track ρ = pfx(π1, π2) of π1 and π2 is not empty and (ii) K, ρ · π≥1 |= ψ, for every
path/track π ∈ (Pth(K, lst(ρ)) ∪ Trk(K, lst(ρ))).

Observe that when two paths are distinct w.r.t. ≡ψK, there are always at least two successors
of the last node of their common prefix. Hence, the KS K is never allowed to stop its
computations at that node, i.e., the common prefix is a track but not a path in K.

We now give few simple examples of the behavior of GCTL* under the use of the prefix
equivalence.

ε
p

0
p

1
p

(a) T .

ε

∅

0
p

1
p

(b) T ′.

Fig. 2. Two finite KTs.

Consider a finite KT T having just three
nodes all labeled by p, the root and its two
successors (see Figure 2). Also, consider
the formula ϕ = E≥2F p. Because of the
definition of the equivalence, the only two
paths π1, π2 ∈ Pth(T , ε) of length two
satisfying F p are equivalent, since the com-
mon prefix ρ = pfx(π1, π2) containing just the root satisfies the formula too. Hence, T 6|= ϕ.
On the contrary, if we take a tree T ′ that is the same of T , but with its root not labeled with
p, we obtain that T ′ |= ϕ, since T ′, ρ 6|= F p. This means that the particular equivalence
allows us to count as different events only their first appearance along the paths.

ε
p

0
p

00
p · · ·

1
p

10
p · · ·

Fig. 3. An infinite KT.

Consider now the formula ϕ = E≥2G p and
an infinite KT T having just two paths all la-
beled by p (see Figure 3). Since G p cannot
be satisfied on a track or finite path, we have
that T , ρ 6|= G p, so the two infinite paths are
not equivalent w.r.t. this formula, which im-
plies that T |= ϕ′. On the contrary, if we take
ϕ′ = E≥2 G̃ p, then we obtain T 6|= ϕ′, since
ACM Transactions on Computational Logic, Vol. ?, No. ?, ? 20?.

Graded Computation Tree Logic · 27

each track and path completely labeled with p satisfies G̃ p.
We now define a new equivalence between path formulas that results to be compatible

with the chosen prefix equivalence. Its definition, in particular, takes into account a KS K
and one of its worlds w in which we want to verify that the two formulas under exam are
interchangeable for the logic.

DEFINITION 5.2 (STRUCTURE FORMULA EQUIVALENCE). Let K be a KS, w one of
its worlds, and ψ1 and ψ2 be two path formulas. Then, ψ1 is structurally equivalent to ψ2

w.r.t. K andw, in symbols ψ1
∼=w
K ψ2, iff, for all paths/tracks π ∈ (Pth(K, w)∪Trk(K, w)),

it holds that K, π |= ψ1 iff K, π |= ψ2.

Observe that ∼=·· is an equivalence structure according to definition 4.4.
The following theorem shows that the prefix path relation satisfies the adequacy property

defined in the previous section, if we consider the structure formula equivalence when we
have to deal with the weak next operator.

THEOREM 5.1 (PREFIX EQUIVALENCE ADEQUACY). The prefix equivalence relation
is adequate w.r.t. ∼=··.

PROOF. All the equivalence properties we want to show express that a given property on
two paths implies a derived property on the same paths. So they are trivially satisfied when
they concern two identical paths. For this reason in the following, we make the assumption
that the two paths π1, π2 ∈ Pth(K) involved in the proof are distinct. Moreover, we use
ρ = pfx(π1, π2) to indicate their common prefix.

i. (Syntax independence). For i ∈ {1, 2}, if π1 ≡ψi

K π2, then (i) ρ 6= ε and (ii) K, ρ ·
π≥1 |= ψi, for all π ∈ (Pth(K, lst(ρ)) ∪Trk(K, lst(ρ))). Since ψ1 ≡ ψ2, by Item i of
Proposition 3.1, we obtain then that K, ρ · π≥1 |= ψ3−i, for all π ∈ (Pth(K, lst(ρ)) ∪
Trk(K, lst(ρ))). Hence, π1 ≡ψ3−i

K π2.
ii. (State focus). Assume that (π1)0 = (π2)0, thus obtaining ρ 6= ε. Since ϕ is a state

formula, by Item ii of Proposition 3.1, we have thatK, (ρ)0 |= ϕ impliesK, ρ·π≥1 |= ϕ,
for all π ∈ (Pth(K, lst(ρ)) ∪ Trk(K, lst(ρ))). Hence, π1 ≡ϕK π2.

iii. (Next consistency). Assume that (π1)0 = (π2)0. Then, it is immediate to see that ρ 6= ε
and ρ≥1 = pfx((π1)≥1, (π2)≥1) is the common prefix of the suffixes of the two paths π1

and π2. [Only if]. If π1 ≡X ψ
K π2, then K, ρ ·π≥1 |= X ψ, for all π ∈ (Pth(K, lst(ρ))∪

Trk(K, lst(ρ))). Since lst(ρ) ∈ Trk(K, lst(ρ)), we have that K, ρ · ε |= X ψ, i.e.,
K, ρ |= X ψ and so, ρ≥1 6= ε, by Item v of Proposition 3.1. Moreover, by the
same item, one can note that K, (ρ · π≥1)≥1 |= ψ, i.e., K, ρ≥1 · π≥1 |= ψ, for
all π ∈ (Pth(K, lst(ρ)) ∪ Trk(K, lst(ρ))) = (Pth(K, lst(ρ≥1)) ∪ Trk(K, lst(ρ≥1))).
Hence, (π1)≥1 ≡ψK (π2)≥1. [If]. If (π1)≥1 ≡ψK (π2)≥1, then K, ρ≥1 · π≥1 |= ψ, i.e.,
K, (ρ · π≥1)≥1 |= ψ, for all π ∈ (Pth(K, lst(ρ≥1)) ∪ Trk(K, lst(ρ≥1))). Now, by
Item v of Proposition 3.1, one can note that K, ρ · π≥1 |= X ψ, for all π ∈ (Pth(K,
lst(ρ≥1))∪Trk(K, lst(ρ≥1)))=(Pth(K, lst(ρ))∪Trk(K, lst(ρ))). Hence, π1≡X ψ

K π2.
iv. (Weak next consistency). Assume that (π1)0 = (π2)0. As in the previous item,

we have that ρ 6= ε and ρ≥1 = pfx((π1)≥1, (π2)≥1). [Only if]. If π1 ≡X̃ ψ
K π2, then

K, ρ·π≥1 |= X̃ ψ, for all π ∈ (Pth(K, lst(ρ))∪Trk(K, lst(ρ))). Now, suppose that X̃ ψ
is not an ∼=(ρ)0

K -tautology. Then, it is possible to see that ρ≥1 6= ε. Indeed, suppose by
contradiction that ρ≥1 = ε and let π ∈ (Pth(K, (ρ)0)∪Trk(K, (ρ0)) be the path/track

ACM Transactions on Computational Logic, Vol. ?, No. ?, ? 20?.

28 · Alessandro Bianco et al.

not satisfying X̃ ψ, i.e., such that K, π 6|= X̃ ψ. Since (ρ)0 = lst(ρ), it is immediate to
see that π = ρ · π≥1, so we have that K, ρ · π≥1 6|= X̃ ψ, and this is in contradiction

with the equivalence π1 ≡X̃ ψ
K π2. At this point, by Item vi of Proposition 3.1, one

can note that K, ρ≥1 · π≥1 |= ψ, for all π ∈ (Pth(K, lst(ρ)) ∪ Trk(K, lst(ρ))) =

(Pth(K, lst(ρ≥1))∪Trk(K, lst(ρ≥1))). Hence, (π1)≥1 ≡ψK (π2)≥1. [If]. On one hand,
if X̃ ψ is an ∼=(ρ)0

K -tautology, then all paths/tracks π ∈ (Pth(K, (ρ)0) ∪ Trk(K, (ρ)0))

satisfy X̃ ψ, i.e., K, π |= X̃ ψ. Thus, K, ρ · π≥1 |= X̃ ψ, for all π ∈ (Pth(K, lst(ρ)) ∪
Trk(K, lst(ρ))). Hence, π1 ≡X̃ ψ

K π2. On the other hand, if (π1)≥1 ≡ψK (π2)≥1,
then K, ρ≥1 · π≥1 |= ψ, for all π ∈ (Pth(K, lst(ρ≥1)) ∪ Trk(K, lst(ρ≥1))). Now,
by Item vi of Proposition 3.1, one can note that K, ρ · π≥1 |= X̃ ψ, for all π ∈
(Pth(K, lst(ρ≥1)) ∪ Trk(K, lst(ρ≥1))) = (Pth(K, lst(ρ)) ∪ Trk(K, lst(ρ))). Hence,

π1 ≡X̃ ψ
K π2.

v. (Source dependence). By definition, if the two paths π1 and π2 have no starting node
in common, i.e., (π1)0 6= (π2)0, they cannot be prefix equivalent because ρ = ε, i.e.,
they do not have any non-empty prefix in common at all.

vi. (Conjunction consistency). Let ψ = ψ1∧ψ2. Then, it holds that π1 ≡ψK π2 iff (i) ρ 6= ε
and (ii) K, ρ · π≥1 |= ψ, for all π ∈ (Pth(K, lst(ρ)) ∪ Trk(K, lst(ρ))). By Item iii of
Proposition 3.1, the condition (ii) is equivalent to K, ρ · π≥1 |= ψi, for all i ∈ {1, 2}.
Hence, π1 ≡ψK π2 iff π1 ≡ψ1

K π2 and π1 ≡ψ2

K π2.
vii. (Local disjunction consistency). Let ψ = ϕ ∨ ψ′, where ϕ is a state formula. [Only

if]. If π1 ≡ψK π2, then (i) ρ 6= ε and (ii) K, ρ · π≥1 |= ψ, for all π ∈ (Pth(K, lst(ρ)) ∪
Trk(K, lst(ρ))). First suppose that K, (ρ)0 |= ϕ. Then, by the state-focus property, we
obtain that π1 ≡ϕK π2. Suppose now that K, (ρ)0 6|= ϕ. By Item ii of Proposition 3.1,
we have that K, ρ · π≥1 6|= ϕ, for all π ∈ (Pth(K, lst(ρ))∪Trk(K, lst(ρ))), and so, by
Item iv of Proposition 3.1, we obtain thatK, ρ·π≥1 |= ψ′, for all π ∈ (Pth(K, lst(ρ))∪
Trk(K, lst(ρ))). Consequently, we obtain that π1 ≡ψ

′

K π2. [If]. If π1 ≡ϕK π2 (resp.,
π1 ≡ψ

′

K π2), then (i) ρ 6= ε and (ii) K, ρ · π≥1 |= ϕ (resp., K, ρ · π≥1 |= ψ′), for all
π ∈ (Pth(K, lst(ρ)) ∪ Trk(K, lst(ρ))). By Item iv of Proposition 3.1, we have that
K, ρ · π≥1 |= ψ, for all π ∈ (Pth(K, lst(ρ)) ∪ Trk(K, lst(ρ))). Hence, π1 ≡ψK π2.

viii. (Satisfiability constraint). If π1 ≡ψK π2, thenK, ρ ·π≥1 |= ψ, for all π∈(Pth(K, lst(ρ))
∪ Trk(K, lst(ρ))). Now, since there are two paths π′1, π

′
2 ∈ Pth(K, lst(ρ)) such that

π1 = ρ · (π′1)≥1 and π2 = ρ · (π′2)≥1, we obtain that K, π1 |= ψ and K, π2 |= ψ.

At this point, we are able to prove that we can express the concept of tautology in GCTL
itself, due to the particular structure formula equivalence chosen for the logic.

THEOREM 5.2 (STRUCTURE FORMULA TAUTOLOGY). Let K = 〈AP,W,R, L, w0〉
be a KS and w ∈W be one of its worlds. Moreover, let ϕ, ϕ1, and ϕ2 be state formulas
and ψ be a path formula. Then, the following holds:

i. ϕ is an ∼=w
K-tautology iff K, w |= ϕ;

ii. X ψ cannot be an ∼=w
K-tautology;

iii. X̃ ψ is an ∼=w
K-tautology iff ψ is an ∼=w′

K -tautology, for all w′∈W such that (w,w′) ∈ R;
iv. ϕ1U ϕ2 is an ∼=w

K-tautology iff K, w |= ϕ2;

ACM Transactions on Computational Logic, Vol. ?, No. ?, ? 20?.

Graded Computation Tree Logic · 29

v. ϕ1R ϕ2 is an ∼=w
K-tautology iff K, w |= ϕ1 ∧ ϕ2;

vi. ϕ1 Ũ ϕ2 is an ∼=w
K-tautology iff K, w |= A<1ϕ1 Ũ ϕ2;

vii. ϕ1 R̃ ϕ2 is an ∼=w
K-tautology iff K, w |= A<1ϕ1 R̃ ϕ2.

PROOF. We prove the statements case by case. In particular, note that we implicitly
make use of properties of Proposition 3.1. Moreover, for Items vi and vii, we only prove the
(if) direction, since the converse is immediate by the definition of ∼=w

K-equivalence.

i. The thesis directly derives from the definition of ∼=w
K-tautology.

ii. The formula X ψ cannot be an ∼=w
K-tautology, since w ∈ Trk(K, w) and K, w 6|= X ψ,

where we remind that w for the path formula satisfiability relation |= is considered as
the track built only by the world w itself.

iii. [Only if]. If X̃ ψ is an ∼=w
K-tautology, then K, π |= X̃ ψ, for all π ∈ (Pth(K, w) ∪

Trk(K, w)). Hence, we have that K, π≥1 |= ψ, for all π ∈ (Pth(K, w) ∪ Trk(K, w))
with π≥1 6= ε, i.e., π 6= w, which implies that K, π |= ψ, for all π ∈ (Pth(K, w′) ∪
Trk(K, w′)) with (w,w′) ∈ R. Hence, the thesis follows. [If]. The converse direction
is perfectly specular to the previous one.

iv. [Only if]. If ϕ1U ϕ2 is an ∼=w
K-tautology, so is ϕ2 ∨ ϕ1 ∧ X ϕ1U ϕ2. Now, since

w ∈ Trk(K, w), we have that K, w |= ϕ2 ∨ ϕ1 ∧ X ϕ1U ϕ2 and so, K, w |= ϕ2,
since K, w 6|= X ϕ1U ϕ2. [If]. If K, w |= ϕ2, then K, π |= ϕ2 ∨ ϕ1 ∧ X ϕ1U ϕ2

and so K, π |= ϕ1U ϕ2, for all π ∈ (Pth(K, w) ∪ Trk(K, w)). Hence, ϕ1U ϕ2 is an
∼=w
K-tautology.

v. [Only if]. If ϕ1R ϕ2 is an ∼=w
K-tautology, so is ϕ2 ∧ (ϕ1 ∨ X ϕ1R ϕ2). Now, since

w ∈ Trk(K, w), we have that K, w |= ϕ2 ∧ (ϕ1 ∨X ϕ1R ϕ2) and so, K, w |= ϕ1 ∧ϕ2,
since K, w 6|= X ϕ1R ϕ2. [If]. If K, w |= ϕ1 ∧ϕ2, then K, π |= ϕ2 ∧ (ϕ1 ∨X ϕ1R ϕ2)
and so K, π |= ϕ1R ϕ2, for all π ∈ (Pth(K, w) ∪ Trk(K, w)). Hence, ϕ1R ϕ2 is an
∼=w
K-tautology.

vi. By the hypothesis, we have that K, π |= ϕ1 Ũ ϕ2, for all π ∈ Pth(K, w). Now,
suppose by contradiction that ϕ1 Ũ ϕ2 is not an ∼=w

K-tautology, i.e., that there is a track
ρ ∈ Trk(K, w) such that K, ρ 6|= ϕ1 Ũ ϕ2. Then, we have that K, ρ |= (¬ϕ1)R (¬ϕ2)
and soK, ρ |= (¬ϕ2)U (¬ϕ1∧¬ϕ2), since ρ is necessarily finite. Now, consider a path
π ∈ Pth(K, w) having ρ as prefix, i.e., such that π≤(|ρ|−1) = ρ. Then, it is evident
that K, π |= (¬ϕ2)U (¬ϕ1 ∧ ¬ϕ2) and this implies that K, π 6|= ϕ1 Ũ ϕ2, since there
is no prefix in π satisfying ϕ1 in all its positions before to reach a point in which ϕ2

holds. Hence, we reached the contradiction.
vii. By the hypothesis, we have thatK, π |= ϕ1 R̃ ϕ2, for all π ∈ Pth(K, w). Now, suppose

by contradiction that ϕ1 R̃ ϕ2 is not an ∼=w
K-tautology, i.e., that there exists a track

ρ ∈ Trk(K, w) such that K, ρ 6|= ϕ1 R̃ ϕ2. Then, we have that K, ρ |= (¬ϕ1)U (¬ϕ2).
Now, consider a path π ∈ Pth(K, w) having ρ as prefix, i.e., such that π≤(|ρ|−1) = ρ.
Then, it is evident that K, π |= (¬ϕ1)U (¬ϕ2) and this implies that K, π 6|= ϕ1 R̃ ϕ2.
Hence, we reached the contradiction.

We now deduce two simple corollaries.

COROLLARY 5.1 (GCTL NEXT EQUIVALENCES). Let ≡ ·· be the prefix path equiva-
lence. Moreover, let ϕ be a state formula and g ∈ [1, ω]. Then, it holds that E≥g X̃ ϕ ≡
EX̃(g, ϕ,E≥1X ¬ϕ) and A<gX ϕ ≡ AX(g, ϕ,A<1 X̃ ¬ϕ).

ACM Transactions on Computational Logic, Vol. ?, No. ?, ? 20?.

30 · Alessandro Bianco et al.

PROOF. By Theorem 5.1, ≡ ·· is adequate. Now, the thesis can be derived by Theorem
4.3 and Items i and iii of Theorem 5.2.

In the rest of the paper, we only consider formulas not containing any sub formula of the
form E≥g X̃ ϕ with ϕ 6= f and A<gX ϕ with ϕ 6= t. This can be done w.l.o.g. since each
formula can be converted, with a linear blow-up only, into another one without the above
quantifications, by using the equivalence of the previous corollary.

COROLLARY 5.2 (GCTL FIXPOINT EQUIVALENCES). Let ≡·· be the prefix path equiv-
alence. Moreover, let ϕ1 and ϕ2 be two state formulas and g ∈ [1, ω]. Then, the following
holds:

i. E≥gϕ1U ϕ2 ≡ EU(g, ϕ1, ϕ2,E
≥gϕ1U ϕ2);

ii. E≥gϕ1R ϕ2 ≡ ER(g, ϕ1, ϕ2,E
≥gϕ1R ϕ2);

iii. E≥gϕ1 Ũ ϕ2 ≡ EŨ(g, ϕ1, ϕ2,E
≥gϕ1 Ũ ϕ2,E

≥1X E≥1¬(ϕ1 Ũ ϕ2));
iv. E≥gϕ1 R̃ ϕ2 ≡ ER̃(g, ϕ1, ϕ2,E

≥gϕ1 R̃ ϕ2,E
≥1X E≥1¬(ϕ1 R̃ ϕ2));

v. A<gϕ1U ϕ2 ≡ AU(g, ϕ1, ϕ2,A
<gϕ1U ϕ2,A

<1 X̃ A<1¬(ϕ1U ϕ2));
vi. A<gϕ1R ϕ2 ≡ AR(g, ϕ1, ϕ2,A

<gϕ1R ϕ2,A
<1 X̃ A<1¬(ϕ1R ϕ2));

vii. A<gϕ1 Ũ ϕ2 ≡ AŨ(g, ϕ1, ϕ2,A
<gϕ1 Ũ ϕ2);

viii. A<gϕ1 R̃ ϕ2 ≡ AR̃(g, ϕ1, ϕ2,A
<gϕ1 R̃ ϕ2).

PROOF. By Theorem 5.1, ≡ ·· is adequate. Now, Items i, ii, vii, and viii follow directly
by Theorem 4.9, while Items iii, iv, v, and vi can be derived by Theorem 4.10 and Items iii,
vi, and vii of Theorem 5.2.

We now conclude this part of the section by showing two simple but fundamental
properties of GCTL* that allow the application of the automata-theoretic approach to the
solution of the satisfiability problem for GCTL.

By using a proof by induction, we prove that GCTL* is invariant under the unwinding of
a model.

THEOREM 5.3 (GCTL* UNWINDING INVARIANCE). Let ≡ ·· be the prefix path equiv-
alence. Then, GCTL* is invariant w.r.t. unwinding, i.e., K |= ϕ iff KU |= ϕ, for all state
formulas ϕ.

PROOF. Let K = 〈AP,W,R, L, w0〉 be a KS and KU = 〈AP,W′,R′, L′, ε〉 be its
unwinding. Then, we show that for each GCTL* state formula ϕ and world w ∈ W′,
it holds that K, unw(w) |= ϕ iff KU , w |= ϕ, where unw : W′ → W is the unwinding
function. As a side result, we also prove thatK, unw(π) |= ψ iffKU , π |= ψ, for all GCTL*
path formulas ψ and paths/tracks π ∈ (Pth(KU , w) ∪ Trk(KU , w)), where, in this case,
unw : (Pth(KU) ∪ Trk(KU)) → (Pth(K) ∪ Trk(K)) is bijective function that extends
the unwinding function on worlds to paths and tracks, i.e., (unw(π))i = unw((π)i), for all
i ∈ [0, |π|[.

The proof proceeds by induction on the structure of the formula ϕ. The basic case of
atomic propositions and the inductive cases of Boolean combinations are immediate and
left to the reader. Therefore, let us consider the inductive case where ϕ is an existential
quantification of the form E≥gψ, with g ∈ [1, ω]. The case of universal quantifications
A<gψ can be treated similarly.

First observe that, by the inductive hypothesis, it holds that K, unw(w) |= ϕ iff KU , w |=
ϕ, for all ϕ ∈ rcl(ψ) and w ∈ W′. Now, it is immediate to see that K, unw(π) |= ψ iff
ACM Transactions on Computational Logic, Vol. ?, No. ?, ? 20?.

Graded Computation Tree Logic · 31

KU , π |= ψ, for all paths π ∈ (Pth(KU , w) ∪ Trk(KU , w)). Indeed, by the definition of
semantics on paths, we have that K, unw(π) |= ψ iff $K,ψ(unw(π)) |= ψ and KU , π |= ψ
iff $KU ,ψ(π) |= ψ. Now, by the previous observation and the definition of the path
transformation, we have that $K,ψ(unw(π)) = $KU ,ψ(π). Consequently, it holds that
unw(π) ∈ Pth(K, unw(w), ψ) iff π ∈ Pth(KU , w, ψ), for all π ∈ Pth(KU , w).

At this point, in order to prove that |(Pth(K, unw(w), ψ)/≡ψK)| ≥ g iff |(Pth(KU , w, ψ)

/≡ψKU
)| ≥ g, it remains to shows that π1 ≡ψKU

π2 iff unw(π1) ≡ψK unw(π2). The case
π1 = π2 is trivial. Thus, consider the case π1 6= π2, let ρ = pfx(π1, π2) be their common
prefix, and observe that unw(ρ) = pfx(unw(π1), unw(π2)). Now, by definition of prefix
path equivalence, we have that π1 ≡ψKU

π2 iff ρ 6= ε and KU , ρ · π≥1 |= ψ, for all
π ∈ (Pth(KU , lst(ρ)) ∪ Trk(KU , lst(ρ))), and unw(π1) ≡ψK unw(π2) iff unw(ρ) 6= ε
and K, unw(ρ) · π′≥1 |= ψ, for all π′ ∈ (Pth(K, lst(unw(ρ))) ∪ Trk(K, lst(unw(ρ)))).
Now, using again the fact that K, unw(π) |= ψ iff KU , π |= ψ, for all paths/tracks π ∈
(Pth(KU , w) ∪ Trk(KU , w)), the thesis follows.

Directly from the previous result, we obtain that GCTL* also enjoys the tree model
property.

COROLLARY 5.3 (GCTL* TREE MODEL PROPERTY). Let≡·· be the prefix path equiv-
alence. Then, GCTL* has the tree model property.

PROOF. Consider a formula ϕ and suppose that it is satisfiable. Then, there is a KS K
such that K |= ϕ. By Theorem 5.3, ϕ is satisfied at the root of the unwinding KU of K.
Thus, since KU is a KT, we immediately have that ϕ is satisfied on a tree model.

5.2 GCTL vs GµCALCULUS relationships

The µCALCULUS [Kozen 1983] is a well-known modal logic augmented with fixed point
operators, which subsumes the classical temporal logics such as LTL, CTL, and CTL*. The
GµCALCULUS simply extends the µCALCULUS with graded state quantifiers [Kupferman
et al. 2002; Bonatti et al. 2008].

In the next theorem, we show a double-exponential reduction from the significant frag-
ment of GCTL without infinite-degree quantifications to GµCALCULUS.

THEOREM 5.4 (GCTL-GµCALCULUS REDUCTION). For each GCTL formula ϕ free
of the E≥ω and A<ω quantifications, it is possible to construct an equisatisfiable formula χ
of GµCALCULUS with ‖χ‖ = O(2k·

√
ϕ̊·|ϕ|), for a constant k, i.e., ϕ is satisfiable iff χ is

satisfiable.

PROOF. The reduction we now propose is almost a translation by equivalence. The only
basic formulas that cannot be directly translated are the quantifications E≥1 X̃ f and A<1X t
that are satisfied, respectively, only on worlds without and with successors. This is due to
the fact that the µCALCULUS, and so the GµCALCULUS, is usually defined only on total KS,
and E≥1 X̃ f and A<1X t are equivalent to f and t, respectively, on such a kind of structures.
To overcome this gap, we enrich each KS with a fresh atomic proposition end, representing
the fact that a world has no successors, and translate E≥1 X̃ f in end and A<1X t in ¬end.
Moreover, we force the translation of (i) E≥gX ϕ to ensure that it is satisfied only on worlds
not labeled with end and (ii) A<g X̃ ϕ to allow that it is satisfied also on worlds labeled
with end, where g ∈ [1, ω[. Apart from the cases of the atomic propositions, the Boolean
connectives, and the quantifiers E≥0ψ and A<0ψ that are equivalent to t and f, respectively,

ACM Transactions on Computational Logic, Vol. ?, No. ?, ? 20?.

32 · Alessandro Bianco et al.

the remaining case are solved using the equivalence showed in Corollary 5.2. Formally, the
translation χ = ϕ of ϕ is inductively defined as follows, where g ∈ [1, ω[:

(1) p , p, for p ∈ AP;
(2) ¬ϕ , ¬ ϕ; ϕ1 ∧ ϕ2 , ϕ1 ∧ ϕ2; ϕ1 ∨ ϕ2 , ϕ1 ∨ ϕ2;
(3) E≥0ψ , t; A<0ψ , f;

(4) E≥1 X̃ f , end; A<1X t , ¬end;

(5) E≥gX ϕ , ¬ end ∧ 〈g − 1〉 ϕ; A<g X̃ ϕ , end ∨ [g − 1] ϕ;

(6) E≥g(ϕ1U ϕ2) , µY.EU(g, ϕ1, ϕ2, Y);

(7) E≥g(ϕ1R ϕ2) , νY.ER(g, ϕ1, ϕ2, Y);

(8) E≥g(ϕ1 Ũ ϕ2) , µY.EŨ(g, ϕ1, ϕ2, Y,E≥1X E≥1¬(ϕ1 Ũ ϕ2));

(9) E≥g(ϕ1 R̃ ϕ2) , νY.ER̃(g, ϕ1, ϕ2, Y,E≥1X E≥1¬(ϕ1 R̃ ϕ2));

(10) A<g(ϕ1U ϕ2) , µY.AU(g, ϕ1, ϕ2, Y,A<1 X̃ A<1¬(ϕ1U ϕ2));

(11) A<g(ϕ1R ϕ2) , νY.AR(g, ϕ1, ϕ2, Y,A<1 X̃ A<1¬(ϕ1R ϕ2));

(12) A<g(ϕ1 Ũ ϕ2) , µY.AŨ(g, ϕ1, ϕ2, Y);

(13) A<g(ϕ1 R̃ ϕ2) , νY.AR̃(g, ϕ1, ϕ2, Y).

By induction on the structure of the formula, it is not hard to see that, for each KS K = 〈AP,
W,R, L, w0〉 model of ϕ, the KS K′ = 〈AP ∪ {end},W,R′, L′, w0〉 is a model of ϕ,
where (i) R′ ∩ (W \W′) ×W = R, (ii) L′(w) = L(w), (iii) L′(w′) = L(w′) ∪ {end},
and (iv) (w′, w′) ∈ R′, for all w ∈ W \ W′ and w′ ∈ W′, with W′ = {w ∈ W :
@w′ ∈W.(w,w′) ∈ R}. Intuitively, we simply add to each world having no successors a
self loop and the label end. Moreover, from a KS K = 〈AP,W,R, L, w0〉 model of ϕ, it is
possible to extract a KS K′ = 〈AP,W,R′, L, w0〉 model of ϕ, by simply substituting the
transition relation R with a new relation R′ defined as follows: (w,w′) ∈ R′ iff (w,w′) ∈ R
and end 6∈ L(w), for all w,w′ ∈W. Intuitively, we simply cut out each edge exiting from a
world labeled with end.

Finally, we turn to the size of χ. First, note that all points 1-5 are linear. Instead, points
6-13 are exponential in the degree of the original formula, and so, double exponential in its
size, since they are based on the expansion formulas of Theorems 4.9 and 4.10. With more
details, each of these transformations give a blow-up that is an O((|ϕ1| + |ϕ2|) · 2k·

√
g).

Now, by a simple calculation, since the nesting of such a kind of formulas is bounded by the
length of ϕ, we obtain that ‖χ‖ = O(2k·

√
ϕ̊·|ϕ|). It is important to remark that the number

of disjunctions in χ can be exponential in the degree ϕ̊. Therefore, even using a DAG to
represent χ, it would only reduce the overall size to O(|ϕ| ·2k·

√
ϕ̊). Hence, it remains double

exponential in ‖ϕ‖.

By the previous theorem and the fact that for GµCALCULUS the satisfiability problem is
solvable in EXPTIME [Kupferman et al. 2002], we immediately get that the problem for
the above fragment of GCTL is decidable and solvable in 3EXPTIME. However, in the
next chapters we improve this result by showing that the problem for the whole GCTL is
solvable in EXPTIME, by exploiting an automata-theoretic approach.

Finally, we show that GCTL is at least exponentially more succinct than GµCALCULUS,
both with the binary coding of the degree. We prove the statement by showing a class of
ACM Transactions on Computational Logic, Vol. ?, No. ?, ? 20?.

Graded Computation Tree Logic · 33

GCTL formulas ϕg, with g ∈ [1, ω[, whose minimal equivalent GµCALCULUS formulas
χg needs to be, in size, exponentially bigger than (the size of) ϕg. Classical techniques
([Lange 2008; Lutz 2006; Wilke 1999]) rely on the fact that in the more succinct logic
there exists a formula having a least finite model whose size is double exponential in the
size of the formula, while in the less succinct logic every satisfiable formula has finite
models of size at most exponential in its size. Unfortunately, in our case we cannot apply
this idea, since, as far as we know, both GCTL and the GµCALCULUS satisfy the small
model property, i.e., all their satisfiable formulas have always a model at most exponential
in their size. Hence, to prove the succinctness of GCTL, we explore a technique based on a
characteristic property of our logic. Specifically, it is based on the fact that, using GCTL,
we can write a set of formulas ϕg each one having a number of “characterizing models”
that is exponential in the degree g of ϕg , while every GµCALCULUS formula has at most a
polynomial number of those models in its degree.

Consider the property “in a tree, there are exactly g grandchildren of the root having only
one path leading from them, and these grandchildren are all and only the nodes labeled with
p”. Such a property can be easily described by the GCTL formulaϕg = ϕ′∧ϕ′′g , whereϕ′ =

¬p∧A<1X (¬p∧A<1X (p∧A<1X A<1G (¬p∧A<2 X̃ f))) and ϕ′′g = E=gF p. By simple a
calculation, we can see that |ϕg| = 31, ϕ̊g = g, and ‖ϕg ‖ = 32 + dlog(g)e+ dlog(g+ 1)e.
So, its size is Θ(dlog(g)e). We claim that a GµCALCULUS formula χg requires exponential
size to express the same property. More formally, our aim is to prove the following theorem.

THEOREM 5.5 (GCTL EXPONENTIAL SUCCINCTNESS). Let ϕg = ϕ′ ∧ ϕ′′g , with
ϕ′ = ¬p ∧ A<1X (¬p ∧ A<1X (p ∧ A<1X A<1G (¬p ∧ A<2 X̃ f))), ϕ′′g = E=gF p, and
g ∈ [1, ω[. Then, each GµCALCULUS formula χg equivalent to ϕg has size Ω(2‖ϕg‖).

The proof of this theorem proceeds directly by proving the following lemma and observing
that, since ‖ϕg ‖ = Θ(dlog(g)e), we can easily derive that ‖χg ‖ = Ω(2‖ϕg‖).

LEMMA 5.1 (GµCALCULUS POLYNOMIAL DEGREE LOWER BOUND). For all the
GµCALCULUS formulas χg equivalent to ϕg , it holds that they have size Ω(g).

PROOF. To prove this, we use an automata-theoretic approach. We first recall that the
automata model developed in [Kupferman et al. 2002], used to accept all and only the
tree models of a GµCALCULUS formula χ, has as set of states the closure set of χ. On
every accepting run, when the automaton is in a state q on a node x of the input tree, the
subtree rooted at that node is a model of q. Our aim now is to prove that the automaton
Aχg

for χg can accept all and only the models of χg, and so of ϕg, only if its state
space contains either a formula 〈i〉φ or a formula [i]φ, for all i ∈ [0, g[. Recall that the
GµCALCULUS formulas 〈i〉φ and [i]φ mean that there are at least i+ 1 successor satisfying
φ and all but at most i successors satisfy φ, respectively. Suppose by contradiction that
there is no formula φ such that 〈i〉φ or [i]φ are in the state space of Aχg , for a given index
i. Since Aχg

accepts all the models of ϕg, it accepts the input tree T = 〈T, v〉, where
T = {ε} ∪ {0, 1} ∪ {0 · 0 · 0∗, . . . , 0 · (i− 1) · 0∗, 1 · 0 · 0∗, . . . , 1 · (g− i− 1) · 0∗}, every
node x, with |x| = 2, i.e., of level equal to 2, is labeled with v(x) = {p}, and every other
node y is labeled with v(y) = ∅. Informally, node 0 has i successors labeled with p, while
node 1 has g − i successors labeled in the same way. Now, on the accepting runR of Aχg

on T in the node 0, the active states represent what are needed to be satisfied in the current
node and such requirements do no contain any existential 〈i〉φ or universal [i]φ. Hence, if

ACM Transactions on Computational Logic, Vol. ?, No. ?, ? 20?.

34 · Alessandro Bianco et al.

we substitute T with a new tree T ′ having only i− 1 successor of 0 (labeled with p), then
we obtain that also T ′ is accepted, reaching in this way the contradiction. This is due to
the fact that, we can easily modify the run R to construct an accepting run R′ for T ′, by
removing all its subtrees rooted at a node whose label contains the node 0 · l, with l ∈ [0,
g[, not in T ′. Indeed, when Aχg is on the node 0, every non-quantified formula is already
satisfied. A formula 〈j〉φ with j > i could not be required on T , and so on T ′, since it
would be trivially false anyway. A formula [j]φ with j > i is trivially true on both the trees.
Finally, formulas 〈j〉φ or [j]φ, with j < i, are satisfied on T by hypothesis. Now, since
the subtrees rooted at the successor nodes of 0 are all equal, they all satisfy φ. Thus, by
removing one of them, the quantifier formula is still satisfied. This reasoning shows that the
closure of χg contains at least an existential or universal formula for each degree i ∈ [0, g[.
Hence, the formula χg must have at least size Ω(g).

Note that, as far as we know, the size of the smallest GµCALCULUS formula χ equivalent
to ϕ has size double exponential in the binary coding of the degree g. In particular, χ can be
obtained by using the translation ϕ described in Theorem 5.4. So, there is an exponential gap
between upper and lower bound for the translation from GCTL to GµCALCULUS. Actually,
we conjecture that the succinctness is tight for double exponential, but the technique used in
the previous lemma does not seem to be adaptable for a double exponential lower bound.

6. ALTERNATING TREE AUTOMATA

In this section, we briefly introduce an automaton model used to solve efficiently the
satisfiability problems for GCTL in EXPTIME w.r.t. the size of the formula, by reducing
this problem to the emptiness of the automaton. We recall that, in general, an approach with
tree automata to the solution of the satisfiability problem is only possible once the logic
satisfies the tree model property. In fact, this property holds for GCTL*, and consequently
for GCTL, as we have proved in Corollary 5.3.

6.1 Classic automata

Nondeterministic tree automata are a generalization to infinite trees of the classical non-
deterministic word automata (see [Thomas 1990], for an introduction). Alternating tree
automata are a further generalization of nondeterministic tree automata [Muller and Schupp
1987]. Intuitively, on visiting a node of the input tree, while the latter sends exactly one
copy of itself to each of the successors of the node, the first can send several copies of itself
to the same successor.

We now give the formal definition of alternating tree automata.

DEFINITION 6.1 (ALTERNATING TREE AUTOMATA). An alternating tree automaton
(ATA, for short) is a tuple A , 〈Σ,∆,Q, δ, q0,F〉, where Σ, ∆, and Q are non-empty finite
sets of input symbols, directions, and states, respectively, q0 ∈ Q is an initial state, F is an
acceptance condition to be defined later, and δ : Q × Σ → B+(∆ × Q) is an alternating
transition function that maps each pair of states and input symbols to a positive Boolean
combination on the set of propositions of the form (d, q) ∈ ∆×Q, a.k.a. moves.

A nondeterministic tree automaton (NTA, for short) is a special ATA in which each
conjunction in the transition function δ has exactly one move (d, q) associated with each
direction d. In addition, a universal tree automaton (UTA, for short) is a special ATA in
which all the Boolean combinations that appear in δ are only conjunctions of moves.
ACM Transactions on Computational Logic, Vol. ?, No. ?, ? 20?.

Graded Computation Tree Logic · 35

The semantics of the ATAs is now given through the following concept of run.

DEFINITION 6.2 (ATA RUN). A run of an ATA A = 〈Σ,∆,Q, δ, q0,F〉 on a Σ-labeled
∆-tree T = 〈T, v〉 is a (Q × T)-labeled N-tree R , 〈R, r〉 such that (i) r(ε) = (q0, ε)
and (ii) for all nodes y ∈ R with r(y) = (q, x), there is a set of moves S ⊆ ∆ × Q with
S |= δ(q, v(x)) such that, for all (d, q′) ∈ S, there is an index j ∈ [0, |S|[for which it holds
that y · j ∈ R and r(y · j) = (q′, x · d).

In the following, we only consider ATAs along with the parity acceptance condition (APT,
for short) F = (F1, . . . ,Fk) ∈ (2Q)+ with F1 ⊆ . . . ⊆ Fk = Q (see [Kupferman et al.
2000], for more). The number k of sets in F is called the index of the automaton.

Let R = 〈R, r〉 be a run of an ATA A on a tree T = 〈T, v〉 and R′ ⊆ R one of its
branches. Then, by inf(R′) , {q ∈ Q : |{y ∈ R′ : ∃x ∈ T.r(y) = (q, x)}| = ω} we
denote the set of states that occur infinitely often as labeling of the nodes in the branch R′.
We say that a branch R′ of T satisfies the parity acceptance condition F = (F1, . . . ,Fk) iff
the least index i ∈ [1, k] for which inf(R′) ∩ Fi 6= ∅ is even.

At this point, we can define the concept of language accepted by an ATA.

DEFINITION 6.3 (ATA ACCEPTANCE). An ATA A = 〈Σ,∆,Q, δ, q0,F〉 accepts a Σ-
labeled ∆-tree T iff there exists a run R of A on T such that all its infinite branches
satisfy the acceptance condition F, where the concept of satisfaction is dependent from the
definition of F.

By L(A) we denote the language accepted by the ATA A, i.e., the set of trees T accepted
by A. Moreover, A is said to be empty if L(A) = ∅. The emptiness problem for A is to
decide whether L(A) = ∅ or not.

6.2 Automata with satellite

As a generalization of ATA, here we consider alternating tree automata with satellites
(ATAS, for short), in a similar way it has been done in [Kupferman and Vardi 2006], with the
main difference that our satellites are nondeterministic and can work on trees and not only on
words. The satellite is used to ensure that the input tree satisfies some structural properties
and it is kept apart from the main automaton as it allows to show a tight complexity for the
satisfiability problems.

We now formally define this new fundamental concept of automaton.

DEFINITION 6.4 (ALTERNATING TREE AUTOMATA WITH SATELLITE). An alternat-
ing tree automaton with satellite (ATAS, for short) is a tuple 〈A,S〉, where A , 〈Σ× PE ,
∆,Q, δ, q0,F〉 is an ATA and S , 〈Σ,∆,P, ζ,P0〉 is a nondeterministic safety automaton,
a.k.a. satellite, where P = PE×PI is a non-empty finite set of states split in two components,
external PE and internal PI states, P0 ⊆ P is a set of initial states, and ζ : P× Σ→ 2P∆

is a nondeterministic transition function that maps a state and an input symbol to a set of
functions from directions to states. The set Σ is the alphabet of the ATAS 〈A,S〉.

The semantics of satellites is given through the following concepts of run, acceptance,
and building. It is possible to note a similarity with the concept of cascade product automata
that can be found in literature.

DEFINITION 6.5 (SATELLITE RUN). A run of a satellite S = 〈Σ,∆,P, ζ,P0〉 on a
Σ-labeled ∆-tree T = 〈T, v〉 is a P-labeled ∆-treeR , 〈T, r〉 such that (i) r(ε) ∈ P0 and

ACM Transactions on Computational Logic, Vol. ?, No. ?, ? 20?.

36 · Alessandro Bianco et al.

(ii) for all nodes x ∈ T with r(x) = p, there is a function g ∈ ζ(p, v(x)) such that, for all
d ∈ ∆ with x · d ∈ T, it holds that r(x · d) = g(d).

DEFINITION 6.6 (SATELLITE ACCEPTANCE). A satellite S=〈Σ,∆,P, ζ,P0〉 accepts
a Σ-labeled ∆-tree T iff there exists a runR of S on T .

For the coming definition we have to introduce an extra notation. Given a (Σ′×Σ′′)-labeled
∆-tree T = 〈T, v〉, we define the projection of T on Σ′ as the Σ′-labeled ∆-tree T↓Σ′ , 〈T,
v′〉 such that, for all nodes x ∈ T, we have v(x) = (v′(x), σ), for some σ ∈ Σ′′. Moreover,
given a Σ′-labeled ∆-tree T ′ = 〈T, v′〉 and a Σ′′-labeled ∆-tree T ′′ = 〈T, v′′〉, we define
the combination of T ′ with T ′′ as the (Σ′ × Σ′′)-labeled ∆-tree T ′ ⊗ T ′′ , 〈T, v〉 such
that, for all nodes x ∈ T, we have v(x) = (v′(x), v′′(x)).

DEFINITION 6.7 (SATELLITE BUILDING). A satellite S = 〈Σ,∆,P, ζ,P0〉 with P =
PE × PI builds a Σ× PE-labeled ∆-tree TS over a Σ-labeled ∆-tree T iff there exists a
runR of S on T such that TS is the combination T ⊗R↓PE

of T with the projection ofR
on PE .

At this point, we can define the language accepted by an ATAS.

DEFINITION 6.8 (ATAS ACCEPTANCE). A Σ-labeled ∆-tree T is accepted by an ATAS
〈A,S〉, where A = 〈Σ× PE ,∆,Q, δ, q0,F〉, S = 〈Σ,∆,P, ζ,P0〉, and P = PE × PI , iff
S builds a tree TS over T such that TS is accepted by the ATA A.

In words, first the satellite S guesses and adds to the input tree T an additional labeling
over the set PE , thus returning the built tree TS . Then, the main automaton A computes a
new run on TS taken as input. By L(〈A,S〉) we denote the language accepted by the ATAS
〈A,S〉.

In the following, we consider, in particular, ATAS along with the parity acceptance
condition (APTS, for short).

Note that satellites are just a convenient way to describe an ATA in which the state space
can be partitioned into two components, one of which is nondeterministic, independent
from the other, and that has no influence on the acceptance. Indeed, it is just a matter
of technicality to see that automata with satellites inherit all the closure properties of
alternating automata. In particular, the following theorem, directly derived by a proof idea
of [Kupferman and Vardi 2006], shows how the separation between A and S gives a tight
analysis of the complexity of the relative emptiness problem.

THEOREM 6.1 (APTS EMPTINESS). The emptiness problem for an APTS 〈A,S〉 with
alphabet size h, where the main automaton A has n states and index k and the satellite S
has m states, can be decided in time 2O(log(h)+(n·k)·((n·k)·log(n·k)+log(m))).

PROOF. As first thing, we use the Muller-Schupp exponential-time nondeterminization
procedure [Muller and Schupp 1995] that leads from the APT A to an NPT N , with
2O((n·k)·log(n·k)) states and index O(n · k), such that L(A) = L(N). Since an NPT is a
particular APT, we immediately have that L(〈N ,S〉) = L(〈A,S〉). At this point, by taking
the product-automaton between N and the satellite S, we obtain another NPT N ?, with
2O((n·k)·log(n·k)+log(m)) states and index O(n · k), such that L(N ?) = L(〈N ,S〉). With
more details, ifN = 〈Σ×PE ,∆,Q, δ,Q0,F〉 and S = 〈Σ,∆,P, ζ,P0〉with P = PE×PI
and F = (F1, . . . ,Fk), we have that N ? , 〈Σ,∆,Q × P, δ?,Q0 × P0,F

?〉 with F? ,
(F1 × P, . . . ,Fk × P) and δ?((q, (pE , pI)), σ) , (

∨
g∈ζ((pE ,pI),σ) δ(q, (σ, pE)))[(d, q′) ∈

ACM Transactions on Computational Logic, Vol. ?, No. ?, ? 20?.

Graded Computation Tree Logic · 37

∆×Q/(d, (q′, g(d)))], where by f [x/y] we denote the formula in which all occurrences
of a proposition x in f are replaced by the proposition y. In words, δ?((q, (pE , pI)), σ) is
obtained by guessing what is the choice g of the satellite in the state (pE , pI) when it reads
σ and then by substituting in δ(q, (σ, pE)) each occurrence of a move (d, q′) with a new
move of the form (d, (q′, p′)), where p′ = g(d) represents the new state sent by the satellite
in the direction d. Hence, it is evident that L(N ?) = L(〈A,S〉) by definition of ATAS. Now,
the emptiness of N ? can be checked in polynomial running-time in its number of states,
exponential in its index, and linear in the alphabet size (see Theorem 5.1 of [Kupferman
and Vardi 1998]). Overall, with this procedure, we obtain that the emptiness problem for an
APTS is solvable in time 2O(log(h)+(n·k)·((n·k)·log(n·k)+log(m))).

7. GCTL MODEL TRANSFORMATIONS

At this point, we can start to describe the decision procedure for the satisfiability problem
of GCTL. As we discussed in the introduction, we exploit an automata-theoretic approach
by using satellites that are able to accept binary tree-encodings of tree models of a formula.
So, we first introduce the binary tree encoding and then, in the next section, we show how
to build the automaton accepting all tree-model encodings satisfying the formula of interest.

The tree encoding works as follows. Given a tree model T of ϕ, we first build its widening
TW , obtaining in this way a full tree with infinite branching. Then, from TW , we derive a
delayed generation tree TD that embeds TW in a binary tree. Finally, we enrich the labeling
of TW with degree functions that allow to propagate the information related to the degree g
of the formula along the paths. This is done by using a set B of elements, called bases, that
are used in the domain of the degree functions. The obtained tree TDB,g is named B-based
g-degree delayed generation. Intuitively, a base is used to represent a subformula of ϕ to
which we associate, by means of the degree functions, the related number of paths required
to be satisfied. This turns to be a key step in the whole satisfiability procedure we show in
the next section.

In the following, to simplify the technical reasoning, we use as unwinding of a KS K, not
the KT KU itself, but one of the complete 2AP-labeled N-tree T isomorphic to KU .

7.1 Binary tree model encoding

As first step in our binary encoding construction, we define the widening of a 2AP-labeled
N-tree T , i.e., a transformation that, taken T , returns a full infinite tree TW having infinite
branching degree and embedding T itself (see Figure 4). This transformation ensures that
in TW all nodes have the same branching degree and all branches are infinite. To this aim,
we use a fresh label # to denote fake nodes, as described in the following definition.

DEFINITION 7.1 (WIDENING). Let T = 〈T, v〉 be a Σ-labeled N-tree such that # 6∈ Σ.
Then, the widening of T is the ΣW -labeled N-tree TW , 〈N∗, vW 〉 such that (i) ΣW ,
Σ ∪ {#}, (ii) for x ∈ T, vW (x) , v(x), and (iii) for y ∈ N∗ \ T, vW (y) , #.

Now, we define a sharp transformation of TW in a full binary tree TD. This is inspired
but different from that used to embed the logic SωS into S2S [Rabin 1969]. Intuitively,
the transformation allows to delay n abstract decisions, to be taken at a node y in TW and
corresponding to its n successors y · i, along some corresponding nodes x, x · 0, x · 00, . . .
in TD. In particular, when we are on a node x · 0i, we are able to split the decision on y · i
into an immediate action, which is sent to the right (effective) successor x · 0i · 1, while the

ACM Transactions on Computational Logic, Vol. ?, No. ?, ? 20?.

38 · Alessandro Bianco et al.

ε

∅

0
p

1
q

(a) T .

ε

∅

1
q

0
p

2
#

. . .

. . .00
#

10
#

. . .

(b) TW .

ε

∅

0
⊥

1
p

00
⊥

01
q

10
#

11
#

000
#

001
#

010
#

011
#

(c) TD .

Fig. 4. A tree T , its widening TW , and the related delayed generation TD .

remaining actions are sent to its copy x · 0i+1. To differentiate the meaning of left and right
successors of a node in TD, we use the fresh symbol ⊥ (see Figure 4).

DEFINITION 7.2 (DELAYED GENERATION). Let TW = 〈N∗, vW 〉 be the widening of
a Σ-labeled tree T such that ⊥ 6∈ Σ. Then, the delayed generation of T is the ΣD-
labeled {0, 1}-tree TD , 〈{0, 1}∗, vD〉 such that (i) ΣD , ΣW ∪ {⊥} and (ii) there
exists a surjective function s : {0, 1}∗ → N∗, with s(ε) , ε, s(x · 0i) , s(x), and
s(x · 0i · 1) , s(x) · i, where x ∈ {0, 1}∗ and i ∈ N, such that (ii.i) vD(x) , vW (s(x)),
for all x ∈ {ε} ∪ {0, 1}∗ · {1}, and (ii.ii) if vD(x · 1) = # then vD(x · 0) , # else
vD(x · 0) , ⊥, for all x ∈ {0, 1}∗.

To complete the tree encoding, we have also to delay the degree associated to each node
in the input tree model. We recall that, an original tree model of a graded formula may
require a fixed number of paths satisfying the formula going through the same node. Such a
number is the degree associated to that node and which we need to delay. To this aim, we
enrich the label of a node with a function mapping a set of elements, named bases, into
triples of numbers representing the splitting of the node degree into two components. The
first is the delayed degree, while the second is the degree associated to one of the effective
successors of the node. Such a splitting is the delayed abstract action mentioned above,
when it is customized to the need of having information on the degrees. We further use
a flag with values in {[, 6 [} to indicate if the labeling is or not active, i.e., if it actually
represents the splitting of the degree of a given base that needs to be propagated in the two
tree directions. Note that, for a formula with degree g, it is not important to monitor the
presence of a finite number of paths of cardinality greater than g. To this purpose, we use
the symbol 6ω to efficiently represent the infinite set]g, ω[. We relate ω and 6ω to the finite
number in [0, g] in the expected way: (i) i <6ω < ω, for all i ∈ [0, g]; (ii) i + j ,6ω, for
all i, j ∈ [0, g] such that i+ j > g; (iii) i+ j = j + i , i, for all i ∈ {6ω, ω} and j ∈ [0,
g] ∪ {6ω, ω} such that j ≤ i. The whole idea of the degree encoding is formalized through
the following four definitions.

DEFINITION 7.3 ((Σ,B)-ENRICHED g-DEGREE TREE). Let Σ and B be two sets, g ∈
N, and H(g) , {(d, d1, d2) ∈ ([0, g] ∪ {6 ω, ω})3 : d = d1 + d2} × {[, 6 [}. Then, a
(Σ,B)-enriched g-degree tree is a (Σ×H(g)B)-labeled {0, 1}-tree T = 〈{0, 1}∗, v〉.

We now introduce a (ΣD,B)-enriched g-degree tree TDB,g
as the extension of the delayed

generation TD of T with degree functions in its labeling. Intuitively, each function in a
ACM Transactions on Computational Logic, Vol. ?, No. ?, ? 20?.

Graded Computation Tree Logic · 39

node represents how to distribute and propagate an information on the degrees along its
successors.

DEFINITION 7.4 (B-BASED g-DEGREE DELAYED GENERATION). Let B be a set, g
∈ N, and TD = 〈{0, 1}∗, vD〉 be the delayed generation of a Σ-labeled tree T . Then, a
B-based g-degree delayed generation of T is a (ΣD,B)-enriched g-degree tree TDB,g

=
〈{0, 1}∗, vDB,g

〉 such that there is an h ∈ H(g)B with vDB,g
(x) = (vD(x), h), for all

x ∈ {0, 1}∗.

In order to have a sound construction for TDB,g , we need to impose a coherence property
on the information between a node and its two successors. In particular, whenever we
enter a node x labeled with # in its first part, as it represents that the node is fictitious, we
have to take no splitting of the degree by sending to x the value 0. In addition, we force
children labeled with # to have necessarily the flag set to 6 [. On the other nodes, we need to
match the value of the first component of the splitting with the degree of the left successor.
Moreover, in dependence of the flag in {[, 6 [}, we may have also to match the value of the
second component with the degree of the right successor. With more details, we require
a coherence that is not punctual (=) but rather, depending on the particular kind of bases
we are analyzing, it has to be either superior (≥) or inferior (≤) to the value given by the
parent of the node. Specifically, to distinguish between these kinds of bases, we split them
into the two subsets Bsup and Binf . So, a tree has to be superiorly coherent w.r.t. Bsup and
inferiorly coherent w.r.t. Binf .

DEFINITION 7.5 (GCTL SUP/INF COHERENCE). Let T = 〈{0, 1}∗, v〉 be a (Σ ∪
{#},B)-enriched g-degree tree. Then, T is superiorly (resp., inferiorly) coherent w.r.t. a
base b ∈ B iff, for x ∈ {0, 1}∗ and i ∈ {0, 1} with v(x) = (σ, h), h(b) = (d, d0, d1, β),
v(x · i) = (σi, hi), and hi(b) = (di, di0, d

i
1, β

i), it holds that (i) if σi = # then di = 0 and
βi = 6 [and (ii) if i = 0 or β = [then di ≤ di (resp., di ≥ di).

Finally, with the following definition, we extend the local concept of sup/inf coherence
of a particular base to a pair of sets of bases Bsup,Binf ⊆ B.

DEFINITION 7.6 (GCTL FULL COHERENCE). A (Σ∪{#},B)-enriched g-degree tree
T is full coherent w.r.t. a pair (Bsup,Binf), where Bsup ∪ Binf ⊆ B, iff it is superiorly and
inferiorly coherent w.r.t. all bases b ∈ Bsup and b ∈ Binf , respectively.

Note that the sets Bsup and Binf turn out to be useful, in the satisfiability algorithm we
give, to deal with the degree of existential and universal path quantifications, respectively.
In particular, the whole construction ensures that the degrees of all formulas are correctly
propagated along the tree, i.e., in other words, that the model is full coherent.

7.2 The coherence structure satellites

We now define the satellites we use to verify that the tree encoding the model of the formula
has a correct shape w.r.t. the whole transformation described in the previous paragraph. In
particular, we first introduce a satellite that checks if the “enriched degree tree” in input is
the result of a “based degree delayed generation” of the unwinded model of the formula.
Then, we show how to create the additional labeling of the tree that satisfies the coherence
properties on the degrees required by the semantics of the logic. The following automaton
checks if the # and ⊥ labels of the input tree are correct w.r.t. Definitions 7.1 and 7.2.

ACM Transactions on Computational Logic, Vol. ?, No. ?, ? 20?.

40 · Alessandro Bianco et al.

DEFINITION 7.7 (STRUCTURE SATELLITE). The structure satellite is the satellite S?
, 〈ΣD, {0, 1}, {#,⊥,@}, ζ, {@}〉 on binary trees, where ζ is set as follows: if p = σ = #
then ζ(p, σ) , {(#,#)} else if either p = σ = ⊥ or p = @ and σ ∈ Σ then ζ(p, σ) ,
{(⊥,@), (#,#)}, otherwise ζ(p, σ),∅.

The satellite S? has constant size 3. Its transition function ζ is defined to directly represent
the constraints on the # and ⊥ labels and, in particular, the state @ is used to represents a
real node of the original tree with values in Σ. So, next lemma easily follows.

LEMMA 7.1 (STRUCTURE SATELLITE). The S? satellite accepts all and only the ΣD-
labeled {0, 1}-trees TD that can be obtained as the delayed generation of Σ-labeled N-trees
T .

The next satellite creates the additional labeling of the input tree, for the main automaton,
in such a way that it is full coherent w.r.t. the pair of sets (Bsup,Binf). Precisely, if the
satellite accepts the input tree, the additional labeling of the built tree is given by its states.

DEFINITION 7.8 (GCTL COHERENCE SATELLITE). The (Σ,B)-enriched g-degree
(Bsup,Binf)-coherence satellite with Bsup ∪ Binf ⊆ B is the binary satellite SΣ,(Bsup,Binf)

B,g

, 〈Σ ∪ {#}, {0, 1},H(g)B, ζ,H(g)B〉, where ζ is set as follows: (i) if σ = #, then
ζ(p, σ) , {(p, p)}, if for all b ∈ B it holds p(b) = (0, 0, 0, 6 [), and ζ(p, σ) , ∅, otherwise;
(ii) if σ 6= # then ζ(p, σ) contains all and only the pairs of states (p0, p1) ∈ (H(g)B){0,1}

such that, for all b ∈ Bα with α = sup (resp., α = inf), p(b) = (d, d0, d1, β), and
pi(b) = (di, di0, d

i
1, β

i), it holds that if i = 0 or β = [then di ≤ di (resp., di ≥ di), for all
i ∈ {0, 1}.

The transition function is structured to directly represent the constraints of Definitions 7.5
and 7.6. Note that the satellite SΣ,(Bsup,Binf)

B,g is polynomial in g and exponential in |B|,
since its number of states is equal to (2 · (g + 3)2)|B|. Next lemma follows by construction.

LEMMA 7.2 (GCTL COHERENCE SATELLITE). The SΣ,(Bsup,Binf)
B,g satellite builds all

and only the (Σ∪ {#},B)-enriched g-degree trees T ′ over Σ∪ {#}-labeled {0, 1}-tree T
that are full coherent w.r.t. the pair (Bsup,Binf).

Finally, we introduce the satellite that checks if the tree in input is coherent or not by
merging the behavior of the two previous described satellites.

DEFINITION 7.9 (GCTL COHERENCE STRUCTURE SATELLITE). The B-based g-de-
gree structure (Bsup,Binf)-coherence satellite with Bsup ∪ Binf ⊆ B is the binary satellite
SBsup,Binf

B,g = 〈ΣD, {0, 1},PE × PI , ζ,PE0 × PI0〉, where PE = PE0 , H(g)B, PI ,

{#,⊥,@}, and PI0 , {@}, obtained as the product of the (Σ∪{⊥},B)-enriched g-degree
(Bsup,Binf)-full coherent satellite SΣ∪{⊥},(Bsup,Binf)

B,g with the structure satellite S?.

Clearly, the size of SBsup,Binf

B,g is polynomial in g and exponential in |B|, since its number of
states is equal to 3 · (2 · (g + 3)2)|B|. Due to the product structure of the automaton, next
result directly follows from Lemmas 7.1 and 7.2.

THEOREM 7.1 (GCTL COHERENCE STRUCTURE SATELLITE). The SBsup,Binf

B,g satel-
lite builds all and only theB-based g-degree delayed generations TDB,g

of Σ-labeled N-trees
T over their delayed generation TD that are full coherent w.r.t. the pair (Bsup,Binf).

ACM Transactions on Computational Logic, Vol. ?, No. ?, ? 20?.

Graded Computation Tree Logic · 41

8. GCTL SATISFIABILITY

In this section, we finally introduce an APT Aϕ that checks whether a complete 2AP-labeled
N-tree T satisfies a given formula ϕ by evaluating all B-based g-degree delayed gener-
ation trees TDB,g associated with T , where g , ϕ̊ is the maximum finite degree of ϕ
and B , qcl(ϕ) is the quantification closure of ϕ, i.e., the set of all the quantification
formulas, contained in the closure, deprived of the degree. To formally define this concept,
we have first to introduce the extended closure ecl(ϕ) of a GCTL formula ϕ that is con-
struct in the same way of cl(ϕ), by also asserting that (i) if E≥gϕ1Op ϕ2 ∈ ecl(ϕ) then
E≥1ϕ1Op ϕ2 ∈ ecl(ϕ), (ii) if E≥gϕ1Õp ϕ2 ∈ ecl(ϕ) then E≥1¬(ϕ1Õp ϕ2) ∈ ecl(ϕ), (iii)
if A<gϕ1Opϕ2 ∈ ecl(ϕ) then A<1¬(ϕ1Opϕ2) ∈ ecl(ϕ), and (iv) if A<gϕ1Õpϕ2 ∈ ecl(ϕ)

then A<1ϕ1Õp ϕ2 ∈ ecl(ϕ), for all Op ∈ {U,R}, and g ∈ [2, ω]. Intuitively, the differ-
ence between cl(ϕ) and ecl(ϕ) resides in the fact that, in the latter, we also include the
formulas with degree 1 used to deal with the ≡xT -tautologies and their negations. Note
that |ecl(ϕ)| = O(|cl(ϕ)|). The quantification closure is consequently defined as follows:
qclE(ϕ) , {Eψ : E≥gψ ∈ ecl(ϕ)} \ {EX̃ f}, qclA(ϕ) , {Aψ : A<gψ ∈ ecl(ϕ)} \ {AX t},
and qcl(ϕ) , qclE(ϕ) ∪ qclA(ϕ). In particular, observe that we do not need any base for
the formulas checking whether there is or not a successor of a node.

The automaton runs on every B-based g-degree generation tree, even those that are
not associated with a complete tree. However, we make the assumptions that the trees in
input are really associated with this kind of trees and that they are coherent with respect
to (Bsup,Binf), where Bsup , qclE(ϕ) and Binf , qclA(ϕ). By Theorem 7.1, we are able
to enforce such properties by using Aϕ as the main part of an APTS having the B-based
g-degree structure (Bsup,Binf)-coherence satellite SBsup,Binf

B,g as second component.

In order to understand how the formula automaton works, it is useful to gain more insights
into the meaning of the tree TDB,g associated with T . First of all, the widening operation
has the purpose to make the tree full by adding fake nodes labeled with #. Through this,
we obtain the tree TW . Then, the delaying operation transforms TW into a binary tree
TD, such that at every level a node x associated to a node y in T generates only one of
the successor of y at a time in the direction 1, meanwhile it sends a duplicate of itself on
the direction 0 labeled with ⊥. The following duplicates have to generate the remaining
successors in a recursive way. However, if there are no more successors to generate, the
node x does not send in the direction 0 a duplicate of itself anymore, but just a fake node
labeled with #. At this point, to obtain the tree TDB,g

, we enrich the labeling of the delayed
generation tree, by adding a degree function h : B → H(g). In the hypothesis that T
satisfies ϕ, for every formula ϕ′ ∈ B and node x ∈ {0, 1}∗ with vDB,g

(x) = (σ, h), we
have that h(ϕ′) = (d, d0, d1, β) describes the degree with which the formula ϕ′ is supposed
to be satisfied on x. In particular d is the degree in the current node, the decomposition
d = d0 + d1 explains how this degree is partitioned in the following left and right children,
and the β flag represents whether this splitting of degrees is meaningful or not. More
precisely, β is set to 6 [iff the inner formula of ϕ′ or its negation is a structure formula
tautology in x. Hence, there is no point in splitting the degree, since the formula is already
verified or falsified. Moreover, d1 represents the degree sent to the direction 1, which usually
corresponds to a concrete node in T . Hence, it is the degree sent to that node. Meanwhile,
d0 represents the degree sent to the direction 0, which usually corresponds to a duplicate of
the previous node. Hence, d0 represents the degree that have yet to be partitioned among the

ACM Transactions on Computational Logic, Vol. ?, No. ?, ? 20?.

42 · Alessandro Bianco et al.

remaining successors of the node y associated to x. To this aim, the coherence requirement
asks: (i) for an existential formula, the degree found in a successor node is not lower than the
degree the father sent to that node (it may be higher as the node may satisfy the formula by
finding more paths with a certain property, so it surely satisfies what the formula requires);
(ii) for a universal formula, the degree found in a successor node is not greater than the
degree the father sent to that node (it may be smaller as the node may satisfy the formula
by finding less paths with a certain negated property, so it surely satisfies what the formula
requires).

In the hypothesis of coherence, the formula automaton needs only to check that (i) the
degree of every existential and universal formula is correctly initiated on the node in which
the formula first appears in (e.g., for an existential formula it needs to check that the degree
in the label of the node is not lower than the degree required by the formula), and (ii)
that every node of the tree satisfies the existential or universal formula with the degree
specified in the node labeling. To do this, the automaton Aϕ has as state space the set
ecl(ϕ) ∪ mcl(ϕ) ∪ qcl(ϕ) ∪ {#,¬#}, where mcl(ϕ) is the modified closure of ϕ defied
as follows: mcl(ϕ) , mcl1(ϕ) ∪mclω(ϕ), mcl1(ϕ) , mclE1(ϕ) ∪mclA1(ϕ), mclE1(ϕ) ,⋃i∈{0,1}

Op∈{U,R}mclEOp,i(ϕ), mclA1(ϕ) ,
⋃i∈{0,1}

Op∈{U,R}mclAOp,i(ϕ), mclEOp,i(ϕ) , {E≥1
i ψ :

Eψ ∈ qclE(ϕ) ∧ ψ ∈ {ϕ1Op ϕ2, ϕ1Õp ϕ2}}, mclAOp,i(ϕ) , {A<1
i ψ : Aψ ∈ qclA(ϕ) ∧

ψ ∈ {ϕ1Op ϕ2, ϕ1Õp ϕ2}}, mclω(ϕ) , mclEω (ϕ) ∪ mclAω (ϕ), mclEω (ϕ) , {E≥ωψ :
Eψ ∈ qclE(ϕ)}, and mclAω (ϕ) , {A<ωψ : Aψ ∈ qclA(ϕ)}. On one hand, the formulas in
qcl(ϕ) ask the automaton to verify them completely relying on the degree of the labeling. On
the other hand, the existential and universal formulas in ecl(ϕ) ∪mcl(ϕ) ask the automaton
even to check that their degrees agree with that contained in the labeling. The states # and
¬# are used to verify the existence or not of a successor of a node when we have to deal
with the formulas E≥1 X̃ f and A<1X t. Finally, states in mcl(ϕ) ∪ qcl(ϕ) are also used for
the parity acceptance condition.

DEFINITION 8.1 (GCTL FORMULA AUTOMATON). The formula automaton for ϕ is
the binary APT Aϕ , 〈Σϕ × PEϕ

, {0, 1},Qϕ, δ, ϕ,Fϕ〉, where Σϕ , 2AP ∪ {#,⊥},
PEϕ

, H(ϕ̊)qcl(ϕ), Qϕ , ecl(ϕ) ∪mcl(ϕ) ∪ qcl(ϕ) ∪ {#,¬#}, Fϕ , (F1,F2,Qϕ) with
F1 , mclAU ,1(ϕ) ∪ mclAω (ϕ) and F2 , qclA(ϕ) ∪ mclA1(ϕ) ∪ mclω(ϕ) ∪ mclER ,1(ϕ),
and δ : Qϕ × (Σϕ × PEϕ

)→ B+({0, 1} ×Qϕ) is defined in the body of the article.

We now describe the structure of the whole transition function δ(q, (σ, h)) through a case
analysis on the state space.

As first thing, when σ = #, the automaton is on a fake node x = x′ · i of the the input tree
TDB,g

, so no formula should be checked on it. However, in the instant the automaton reaches
such a node, by passing through its antecedent x′, it is not asking to verify the formula
represented by the state q, due to the fact that it is sent by another state q′ on x′ which
corresponds to a universal formula. In this case, indeed, we are checking that its “core” is
satisfied on all successors (but a given number of them). Hence, since x does not exist in
the original tree T , we do not have to verify the property of q on it. Moreover, we are sure
that q′ does not represent any existential property. This is due to the fact that (i) the degree
di related to the state q′ in the labeling of x′ needs to be 0 by the coherence requirements of
Definition 7.5 and (ii), as we show later, the transition on existential formulas do not send
any state to a direction j ∈ {0, 1} having dj = 0. For this reason, we set δ(q, (#, h)) , t,
for all q ∈ Qϕ and h ∈ PEϕ

.
ACM Transactions on Computational Logic, Vol. ?, No. ?, ? 20?.

Graded Computation Tree Logic · 43

Furthermore, the structure of the transition function does not send a state q belonging
to the set (ecl(ϕ) \mclω(ϕ)) ∪

⋃
Op∈{U,R}(mclEOp,1(ϕ) ∪mclAOp,1(ϕ)) to a node labeled

with σ = ⊥ and a state q belonging to the set
⋃

Op∈{U,R}(mclEOp,0(ϕ) ∪mclAOp,0(ϕ)) to a
node labeled with σ 6= ⊥. For this reason, w.l.o.g., we can set δ(q, (σ, h)) , f, for all these
cases.

Now, we describe the remaining part of the definition of δ(q, (σ, h)) with the proviso that
(i) σ 6= #, (ii) if q ∈ (ecl(ϕ) \mclω(ϕ)) ∪

⋃
Op∈{U,R}(mclEOp,1(ϕ) ∪mclAOp,1(ϕ)) then

σ 6= ⊥, and (iii) if q ∈
⋃

Op∈{U,R}(mclEOp,0(ϕ) ∪mclAOp,0(ϕ)) then σ = ⊥.

(1) If q ∈ Lit , AP ∪ ¬AP, where ¬AP , {¬p : p ∈ AP}, the automaton has to verify if
the literal is locally satisfied or not. To do this, we set δ(q, (σ, h)) , t, if either q ∈ AP
and q ∈ σ or q ∈ ¬AP and q 6∈ σ, and δ(q, (σ, h)) , f, otherwise.

(2) The boolean cases are treated in the classical way: δ(ϕ1∧ϕ2, (σ, h)) , δ(ϕ1, (σ, h))∧
δ(ϕ2, (σ, h)) and δ(ϕ1 ∨ ϕ2, (σ, h)) , δ(ϕ1, (σ, h)) ∨ δ(ϕ2, (σ, h)).

(3) The case E≥1 X̃ f (resp., A<1X t) is simply solved by setting δ(E≥1 X̃ f, (σ, h)) , (1,#)
(resp., δ(A<1X t, (σ, h)) , (1,¬#)) and δ(#, (σ, h)) , t (resp., δ(¬#, (σ, h)) , f),
if σ = #, and δ(#, (σ, h)) , f (resp., δ(¬#, (σ, h)) , t), otherwise.

(4) Let h(EX ϕ) = (d, d0, d1, β) (resp., h(AX̃ ϕ) = (d, d0, d1, β)). For a state of the form
EX ϕ (resp., AX̃ ϕ) we verify that this formula holds with degree d. The flag β needs
to be 6 [, since a next formula on a successor node is not related to one in the current
node, due to the fact that this kind of formula never propagate itself. Recall that in
the input tree the pair of degrees (d0, d1) describe the distribution of the degree d on
the nodes, which need to (resp., are allowed to not) satisfy ϕ, among the successors
of the current node. Since the nodes on the direction 1 are real successors of the node
in the original input tree T we need to ask that the state formula ϕ holds on them iff
d1 = 1 (resp., d1 = 0). However, we cannot ask that a state formula holds more than
one time, so, if d1 > 1, the input tree cannot be accepted, since E≥d1ϕ ≡ f (resp.,
we do not make any difference in dependence of a value d1 > 0, since A≤d1ϕ ≡ t).
Finally, on direction 0, we send the same state EX ϕ (resp., AX̃ ϕ) if 0 < d0 < ω (resp.,
0 ≤ d0 < 6ω), in order to ask that the residual degree d0 is distributed on the remaining
successors. When we deal with the infinite degree ω (resp., finite but unbounded degree
6 ω) we have to ensure that the formula ϕ is verified infinitely often (resp. falsified
finitely often) on the successors of the current node. To this aim, every time a non-null
degree is sent to direction 1, we sent the state E≥ωX ϕ (resp. A<ωX ϕ) to direction
0. Formally, δ(EX ϕ, (σ, h)) (resp., δ(AX̃ ϕ, (σ, h))) is set to f, if β = [, and to the
following conjunction, otherwise:

—

t, if d0 = 0;

(0,EX ϕ), if d0 < ω;

(0,EX ϕ), if d0 = ω and d1 = 0;

(0,E≥ωX ϕ), if d0 = ω and d1 6= 0;

∧

t, if d1 = 0;

(1, ϕ), if d1 = 1;

f, if d1 > 1.

—

(0,AX̃ ϕ), if d0 < 6ω;

(0,AX̃ ϕ), if d0 = 6ω and d1 6= 0;

(0,A<ω X̃ ϕ), if d0 = 6ω and d1 = 0;

f, if d0 = ω;

∧

{
(1, ϕ), if d1 = 0;

t, if d1 > 0.

ACM Transactions on Computational Logic, Vol. ?, No. ?, ? 20?.

44 · Alessandro Bianco et al.

For a state of the form E≥gX ϕ (resp., A<g X̃ ϕ) we have only to further verify that the
degree g agrees with the value d, i.e., d ≥ g (resp., d < g). Formally, δ(E≥gXϕ, (σ, h))
(resp., δ(A<g X̃ ϕ, (σ, h))) is set to f, if d < g (resp., d ≥ g), and to δ(EX ϕ, (σ, h))
(resp., δ(AX̃ ϕ, (σ, h))), otherwise.

(5) A state E≥1
i ψ (resp., A<1

i ψ) in mcl(ϕ) is used to verify that there is a branch satisfying
(resp., all branch satisfy) the inner path formula ψ = ϕ1Op ϕ2, regardless the precise
value of the added degree labels. What is important is only to follow paths in which
the degrees are not null (for the existential case only). The related transition function
simply reflects the one-step unfolding of the CTL formulas, shown in Proposition
3.3. When this requirement needs to be propagated on some successor node, we send
different states in the two tree directions, with the sole purpose to distinguish these
ones for acceptance reasons.
—δ(E≥1

i ϕ1U ϕ2, (σ, h)) , δ(ϕ2, (σ, h)) ∨ δ(ϕ1, (σ, h)) ∧
∨dj>0

j∈{0,1}(j,E
≥1
j ϕ1U ϕ2);

—δ(A<1
i ϕ1U ϕ2, (σ, h)) , δ(ϕ2, (σ, h))∨ δ(ϕ1, (σ, h))∧

∧
j∈{0,1}(j,A

<1
j ϕ1U ϕ2)∧

δ(A<1X t, (σ, h));
—δ(E≥1

i ϕ1R ϕ2, (σ, h)) , δ(ϕ2, (σ, h))∧ (δ(ϕ1, (σ, h))∨
∨dj>0

j∈{0,1}(j,E
≥1
j ϕ1R ϕ2));

—δ(A<1
i ϕ1R ϕ2, (σ, h)) , δ(ϕ2, (σ, h))∧(δ(ϕ1, (σ, h))∨

∧
j∈{0,1}(j,A

<1
j ϕ1R ϕ2)∧

δ(A<1X t, (σ, h)));
—δ(E≥1

i ϕ1 Ũ ϕ2, (σ, h)) , δ(ϕ2, (σ, h))∨δ(ϕ1, (σ, h))∧(
∨dj>0

j∈{0,1}(j,E
≥1
j ϕ1 Ũ ϕ2)∨

δ(E≥1 X̃ f, (σ, h)));
—δ(A<1

i ϕ1 Ũ ϕ2, (σ, h)) , δ(ϕ2, (σ, h)) ∨ δ(ϕ1, (σ, h)) ∧
∧
j∈{0,1}(j,A

<1
j ϕ1 Ũ ϕ2);

—δ(E≥1
i ϕ1 R̃ ϕ2, (σ, h)) , δ(ϕ2, (σ, h))∧(δ(ϕ1, (σ, h))∨

∨dj>0

j∈{0,1}(j,E
≥1
j ϕ1 R̃ ϕ2)∨

δ(E≥1 X̃ f, (σ, h)));
—δ(A<1

i ϕ1 R̃ ϕ2, (σ, h)) , δ(ϕ2, (σ, h))∧ (δ(ϕ1, (σ, h))∨
∧
j∈{0,1}(j,A

<1
j ϕ1 R̃ ϕ2)).

For a state of the form E≥1ψ (resp., A<1ψ) we have only to further verify that d ≥ 1
(resp., d < 1). Formally, δ(E≥1ψ, (σ, h)) (resp., δ(A<1ψ, (σ, h))) is set to f, if d < 1

(resp., d ≥ 1), and to δ(E≥1
1 ψ, (σ, h)) (resp., δ(A<1

1 ψ, (σ, h))), otherwise.
(6) Let h(Eψ) = (d, d0, d1, β) (resp., h(Aψ) = (d, d0, d1, β)), where ψ = ϕ1Op ϕ2. For

a state of the form Eψ (resp., Aψ) we verify that this formula holds with degree d.
If the node is not a duplicate of a previous node, i.e., σ 6= ⊥, we have to check the
formula, which should hold in the current node, by applying the one-step unfolding
property derived by the semantics and reported in Corollary 5.2. At this point, we
may need to propagate the formula in the two directions of the tree, by taking into
account the requirements established by the degree in those directions. If such degree
di is 0 (resp., ω) then the existential (resp., universal) formula is immediately true
(resp., false). If di = 1 (resp., di = 0), we propagate a particular requirement with the
meaning that we are looking for a path (resp., all paths) satisfying the internal path
formula ϕ1Op ϕ2. Precisely, in order to differentiate between the two directions, we
send the state E≥1

i ϕ1Op ϕ2 (resp., A<1
i ϕ1Op ϕ2) to direction i ∈ {0, 1}. If di > 1

(resp., 0 < di < ω) we propagate the original requirement by leaving to the degree of
the successor nodes the task to specify how many paths (resp., do not) satisfy the inner
formula. However, when we deal with the infinite degree ω (resp., finite but unbounded
degree 6ω) we have to ensure that the formula ϕ1Op ϕ2 is verified on infinitely (resp.
falsified on finitely) many paths. To this aim, we use the apposite state E≥ωϕ1Op ϕ2

ACM Transactions on Computational Logic, Vol. ?, No. ?, ? 20?.

Graded Computation Tree Logic · 45

(resp., A<ωϕ1Op ϕ2), which is sent on one direction iff on the other one there is a
non null (resp., null) degree. In this way, we can keep track of a possible infinite
splitting of the degree which is required (resp., forbidden) by an infinite (resp., finite)
number of paths. In the following we describe such a propagation of the states by
means of the following macro: γEOp(d0, d1) , γ0

EOp(d0, d1) ∧ γ1
EOp(d0, d1) (resp.,

γAOp(d0, d1) , γ0
AOp(d0, d1) ∧ γ1

AOp(d0, d1)), where

—γiEOp(d0, d1) ,

t, if di = 0;

(i,E≥1
i ϕ1Op ϕ2), if di = 1;

(i,Eϕ1Op ϕ2), if di < ω;

(i,Eϕ1Op ϕ2), if di = ω and d1−i = 0;

(i,E≥ωϕ1Op ϕ2) ∧
∧ (1− i,E≥1

1−iϕ1Op ϕ2), if di = ω and d1−i 6= 0.

—γiAOp(d0, d1) ,

(i,A<1
i ϕ1Op ϕ2), if di = 0;

(i,Aϕ1Op ϕ2), if di < 6ω;

(i,Aϕ1Op ϕ2), if di = 6ω and d1−i = 0;

(i,A<ωϕ1Op ϕ2), if di = 6ω and d1−i 6= 0;

f, if di = ω.

Observe that the last case requires the existence of a path satisfying the inner formula
ψ in the direction 1 − i. This is due to the fact that, when we verify the existential
formula with infinite degree, we risk that the latter is always regenerated without
actually completing a real path satisfying ψ. By coupling this condition with that about
the infinite generation, we ensure that we actually find infinitely many paths satisfying
ψ. (Resp., the first to last case may also require that in the direction 1− i there is no
path falsifying the inner formula ψ. However, this requirement is implicit in the whole
structure of γAOp(d0, d1).)

(7) Let h(Qn ψ) = (d, d0, d1, β) with ψ = ϕ1Op ϕ2. Due to the meaning of the flag
β, when β = 6 [, the automaton has to verify that either ψ or ¬ψ is a tautology. On
the contrary, when β = [, it has to verify that no one of them is a tautology. Thus,
we need two components of the transition function, ηψ(σ, h) and ηψ(σ, h), to ensure,
respectively, that ψ is or not a tautology on a node labeled with σ. These components
have to require the automaton to check the truth of the formulas equivalent to the
tautologies, as described in Theorem 5.2.
—ηϕ1U ϕ2

(σ, h) , δ(ϕ2, (σ, h));
—ηϕ1U ϕ2

(σ, h) , δ(¬ϕ2, (σ, h));
—ηϕ1R ϕ2

(σ, h) , δ(ϕ1, (σ, h)) ∧ δ(ϕ2, (σ, h));
—ηϕ1R ϕ2

(σ, h) , δ(¬ϕ1, (σ, h)) ∨ δ(¬ϕ2, (σ, h));
—ηϕ1 Ũ ϕ2

(σ, h) , δ(A<1ϕ1 Ũ ϕ2, (σ, h));

—ηϕ1 Ũ ϕ2
(σ, h) , δ(E≥1¬(ϕ1 Ũ ϕ2), (σ, h));

—ηϕ1 R̃ ϕ2
(σ, h) , δ(A<1ϕ1 R̃ ϕ2, (σ, h));

—ηϕ1 R̃ ϕ2
(σ, h) , δ(E≥1¬(ϕ1 R̃ ϕ2), (σ, h)).

(8) Now, we discuss the general structure of a transition function for a state of the form
Eψ (resp., Aψ) with ψ = ϕ1Op ϕ2. Let h(Eψ) = (d, d0, d1, β) (resp., h(Aψ) =

ACM Transactions on Computational Logic, Vol. ?, No. ?, ? 20?.

46 · Alessandro Bianco et al.

(d, d0, d1, β)). Note that the degree d is never equal to 0 or 1 (resp. 0 or ω), because
the requirement γEOp(d0, d1) (resp., γAOp(d0, d1)) discussed above never propagates
an existential (resp., universal) state without degree on a direction i when di = 0 or
di = 1 (resp. di = 0 or di = ω). If the node is not a duplicate of a previous node, i.e.,
σ 6= ⊥, we verify that the formula holds in the current node by applying the one-step
unfolding property derived by the semantics, as reported in Corollary 5.2. Precisely,
since d > 1 (resp. 0 < d < ω) ψ cannot (resp., can) be a tautology, otherwise (resp.,
since) we would find only one minimal path satisfying ψ. On the other hand, ¬ψ
cannot (resp., can) be a tautology, otherwise (resp., since) we would find only one
minimal path non satisfying ψ. So, the automaton has to verify that ψ and ¬ψ are
not tautologies in the current node and has to propagate the existential state on the
successors through the γEOp(d0, d1) requirement (resp., the automaton has to verify
either that ψ or ¬ψ is a tautology or that both are not tautologies and that the universal
requirement γAOp(d0, d1) is propagated on the successors). Due to the non-tautological
nature of ψ and ¬ψ, the automaton has to reject the input tree when β = 6 [(resp. the
automaton has to verify that ψ or ¬ψ is a tautology iff β =6 [). If σ = ⊥ then the
current node is simply a replica of a previous node with σ 6= ⊥. Since the existential
(resp., universal) state have been propagated on direction 0, we already know that ψ and
¬ψ are not tautologies, hence we need just to propagate the state through the relative
γEOp(d0, d1) (resp., γAOp(d0, d1)) requirement. Due to the fact that, when σ = ⊥, both
ψ and ¬ψ are not tautologies, the automaton has to reject the tree when β = 6 [.

—δ(Eψ, (σ, h)) ,

f, if β = 6 [;
γEOp(d0, d1), if σ = ⊥ and β = [;

ηψ(σ, h) ∧ η¬ψ(σ, h) ∧ γEOp(d0, d1), if σ 6= ⊥ and β = [.

—δ(Aψ, (σ, h)) ,

f, if σ = ⊥ and β = 6 [;
γAOp(d0, d1), if σ = ⊥ and β = [;

ηψ(σ, h) ∨ η¬ψ(σ, h), if σ 6= ⊥ and β = 6 [;
ηψ(σ, h) ∧ η¬ψ(σ, h) ∧ γAOp(d0, d1), if σ 6= ⊥ and β = [.

Note that, the whole transition function can be simplified, case by case, because of
the redundancy of some of its components. For example, consider the case EU
when σ 6= ⊥ and β = [. By definition, we obtain that δ(Eϕ1U ϕ2, (σ, h)) =
δ(¬ϕ2, (σ, h))∧δ(E≥1ϕ1U ϕ2, (σ, h))∧γEU (d0, d1), which can be equivalently written
as follows: δ(¬ϕ2, (σ, h))∧δ(ϕ1, (σ, h))∧δ(E≥1X E≥1ϕ1U ϕ2, (σ, h))∧γEU (d0, d1).
Now, since the requirement γEU (d0, d1) ensure the existence of d = d0 + d1 > 1 non
equivalent paths starting on the successors of the current node, we have that the
δ(E≥1X E≥1ϕ1U ϕ2, (σ, h)) component is surely verified. So, this piece is redundant.
The remaining expression δ(¬ϕ2, (σ, h))∧ δ(ϕ1, (σ, h))∧ γEU (d0, d1) simply reflects
what is required by Item i of Corollary 5.2. Now, for a state of the form E≥gψ (resp.,
A<gψ), with g ∈ [2, ω], we have only to further verify that d ≥ g (resp., d < g).
Formally, δ(E≥gψ, (σ, h)) (resp., δ(A<gψ, (σ, h))) is set to f, if d < g (resp., d ≥ g),
and to δ(Eψ, (σ, h)) (resp., δ(Aψ, (σ, h))), otherwise.

We now briefly discuss the parity acceptance condition for Aϕ. Note that, in our reason-
ings, we assume Fϕ = (F1,F2,F3) with F3 = Qϕ.

Let T be a complete N-tree, TDB,g be one of its B-based g-degree delayed generation in
input toAϕ, andR be a related run. It is easy to see that states in cl(ϕ)\mclω(ϕ) represents
ACM Transactions on Computational Logic, Vol. ?, No. ?, ? 20?.

Graded Computation Tree Logic · 47

literals, ands, ors, and quantified formulas with finite degree that never generate themselves,
so, they never progress infinitely often. On the other hand, formulas in mcl(ϕ) ∪ qcl(ϕ)
may be generated infinitely often, but only some of them should be allowed to do so (due to
their intrinsic semantics).

(1) Existential next states EX ϕ and E≥ωX ϕ are never sent to direction 1 and they can
only progress indefinitely along direction 0. The propagation of an existential formula
without degree represents a delay of the choice of the particular successors of the
replicated node on which it is needed to verify ϕ. When the associated degree is finite,
the formula needs to be satisfied on a finite number of successors. So, the choice of the
successors must be eventually made, and the formula cannot be propagated indefinitely.
When the degree is infinite, instead, the formula is allowed to progress under the
condition that successors satisfying ψ are found infinitely often. Hence, we use two
states: a ω-grade version is generated every time a successor satisfying ϕ is found and
a grade-less version is used when the successor is skipped. Hence, the existential next
formulas EX ϕ is not allowed to progress indefinitely and, thus, it belongs to F3 but
not to F2. On the other hand the formulas E≥ωX ϕ are allowed to occur infinitely often
and, thus, they belong to F2 but not F1.

(2) Universal next states AX ϕ and A≥ωX ϕ are never sent to direction 1 and they can only
progress indefinitely along direction 0. An infinite generation of an universal next
formulas represents the propagation of a requirement demanded on infinitely many
successors of the replicated node with the aim to check that only a finite number of them
do not satisfy it. This should be allowed, however, when the associated degree is finite
but not a priori determined, i.e., if it is 6ω. Generally, this degree can be split infinitely
many times without decreasing, so, we risk to allow infinitely many successors to not
satisfy ϕ. In order to avoid such a problem, we use two states: a ω-grade version is
generated every time a successor is allowed to not satisfy ¬ϕ and a grade-less version
is used when the successor satisfies ϕ. Hence, the universal formulas AX ϕ is allowed
to progress indefinitely on such branches and, thus, it belongs to F2 but not to F1. On
the other hand the universal formula A<ωX ϕ is not allowed to occur infinitely often,
even when AX ϕ does, thus, it belongs to F1.

(3) Existential non-next formulas E≥1
i ψ, with degree 1, have to trace a path satisfying the

inner path formula ψ ∈ {ϕ1U ϕ2, ϕ1R ϕ2, ϕ1 Ũ ϕ2, ϕ1 R̃ ϕ2}. When ψ is an until or
weak until formula, the path have to eventually reach a point in which the formula is
locally satisfied. So, the relative states E≥1

i ψ are not allowed to progress indefinitely
and, thus, they belong to F3 but not to F2. When ψ is a release or weak release formula,
it may happened that there are no points in which the formula is locally satisfied.
However, only paths that progress infinitely often along direction 1 are real paths of the
input tree (following the replica indefinitely would yield no path). Hence, states E≥1

0 ψ

belong to F3 but not to F2, and states E≥1
1 ψ belong to F2 but not F1.

(4) Universal non-next formulas A<1
i ψ, with degree 1, have to trace all paths and prove that

they satisfy the inner path formula ψ ∈ {ϕ1U ϕ2, ϕ1R ϕ2, ϕ1 Ũ ϕ2, ϕ1 R̃ ϕ2}. When ψ
is a release or weak release formula, it may happened that there are no points in which
the formula is locally satisfied. So, the relative states A<1

i ψ are allowed to progress
indefinitely and, thus, they belong to F2 but not to F1. When ψ is an until or weak
until formula, the path have to eventually reach a point in which the formula is locally

ACM Transactions on Computational Logic, Vol. ?, No. ?, ? 20?.

48 · Alessandro Bianco et al.

satisfied. However, we need to propagate it infinitely often along direction 0, in order
to ask it on all successor of the replicated node. Now, since on paths that progress
infinitely often along direction 1 it is possible to generate both the states A≥1

0 ψ and
A≥1

1 ψ, the infinite generation of A≥1
1 ψ has an higher non-acceptance priority with

respect to that of A≥1
0 ψ. This is due to the fact that those paths represent real branches

of the input tree where ψ need to eventually hold. Hence, states A≥1
0 ψ belong to F2

but not to F1, and states A≥1
1 ψ belong to F1.

(5) Existential non-next formulas with infinite degree E≥ωψ or without degree Eψ have to
trace a non singleton set of paths satisfying the inner path formula ψ∈{ϕ1U ϕ2, ϕ1R
ϕ2, ϕ1 Ũ ϕ2, ϕ1 R̃ ϕ2}. One one hand, if the number of such paths is finite, the automa-
ton will eventually reach a node from which there in only one outgoing path model of
ψ, since all the paths have to eventually split. When this happens, the automaton verify
the existence of such a path with the relative 1-grade version E≥1

i ψ. Hence, when a
grade-less formula is accompanied by a finite degree it must not progress infinitely
often. On the other hand, when the number of paths the automaton needs to follow is
infinite, we should allow the existential formula to progress infinitely often. However,
by doing so, we risk to trace just one path in the input tree along which we propagate
the existential formula and, obviously, it cannot provide the infinite number of paths
we need in order to verify the formula itself. Thus, when we propagate the existential
requirement on direction i, we have to use the two versions of the requirement itself.
The ω-grade formula is sent on direction i when on direction 1 − i is ensured the
existence of a path satisfying ψ. Instead, the grade-less version is used when such an
existence is not verified. Consequently, when the ω-grade version is generated infinitely
often along the path, there are infinite branches coming out from this and satisfying
ψ. On the contrary, when the grade-less version is definitively propagated, we are just
following a unique path which cannot provide the infinite paths we need. Hence, all
grade-less non-next existential formula belong to F3 but not to F2 and their ω-grade
versions belong to F2 but not to F1.

(6) Universal non-next formulas with infinite degree A<ωψ or without degree Aψ have
to trace a set of paths that are allowed to not satisfy the inner path formula ψ ∈
{ϕ1U ϕ2, ϕ1R ϕ2, ϕ1 Ũ ϕ2, ϕ1 R̃ ϕ2}. There may be cases in which the automaton
eventually reach a node from which there are no outgoing paths model of ¬ψ. When
this happens, the automaton needs to verify the universal validity of ψ with the relative
1-grade version A<1

i ψ. Also, the automaton may reach a point where the ψ or ¬ψ are
tautologies and, thus, it stops by verifying one of them. However, it is also possible
that the universal requirement progress infinitely often. In such a case, we have that it
is tracing one path that may not satisfy ψ, even if it would be allowed to trace more
paths. Since the accompanying degree is greater than 0, this does not result to be a
problem and, hence, we allow the infinite propagation. Moreover, every time we meet
an universal formula with finite but non a priori determined degree, i.e., if such degree
is 6ω, the formula may split in the two direction and allow paths to not satisfy the ψ
formula on both of them. If this happens infinitely often along the single path on which
we are propagating the requirement, we would allow an infinite numbers of path to
not satisfy ψ, contradicting what we want to verify. Thus, when we propagate the
universal requirement on direction i, we have to use the two versions of the requirement
itself. The ω-grade formula is sent on direction i when on direction 1− i is allowed

ACM Transactions on Computational Logic, Vol. ?, No. ?, ? 20?.

Graded Computation Tree Logic · 49

the existence of a path non-satisfying ψ. Instead, the grade-less version is used when
such an existence is forbidden. Consequently, when the ω-grade version is generated
infinitely often along the path, there may be infinite branches coming out from this
and non-satisfying ψ. On the contrary, when the grade-less version is definitively
propagated, we are just following a unique path which does not allow the existence of
the infinite number of paths we want to avoid. Hence, all grade-less non-next universal
formula belong to F2 but not to F1 and their ω-grade versions belong to F1.

We now prove the following main result about the decidability of GCTL satisfiability.

THEOREM 8.1 (GCTL SATISFIABILITY). Let ϕ be a GCTL formula, with g = ϕ̊,
B = qcl(ϕ), Bsup = qclE(ϕ), and Binf = qclA(ϕ). Then, ϕ is satisfiable iff L(〈Aϕ,
SBsup,Binf

B,g 〉) 6= ∅.

PROOF. [Only if]. Given a 2AP-labeled N-tree T = 〈T, v〉 model of ϕ, we first show
how to recursively construct one of its B-based g-degree delayed generation trees TDB,g

=
〈{0, 1}∗, vDB,g 〉, necessarily full coherent w.r.t. the pair (Bsup,Binf), along with a partial
map t : {0, 1}∗ ⇀ T that links each node x ∈ {0, 1}∗ of TDB,g , with vDB,g (x) = (σ, h)
and σ 6= #, to the corresponding one t(x) ∈ T in T . This function, is simply the restriction
to real nodes, i.e., nodes not labeled with #, of the s function introduced in Definition 7.2
of the delayed generation.

To each subtree T xDB,g
of TDB,g

rooted in x = x′ · 0j , with x′ ∈ {ε} ∪ 0∗ · 1, vDB,g
(x) =

(σ, h) such that σ 6= #, we associate the subtree T x of T rooted in y = t(x). Observe
that T x·1 is the subtree of T rooted at the (j + 1)-th successor of y and that T x·0 = T x.
Moreover, by T ′x we denote the subtree of T x in which the first j successors of the root
are deleted. Note that T ′x·1 = T x·1 and T ′x·0 is the subtree of T ′x with the first successor
of the root deleted.

In the rest of the proof, we say that a path formula ψ is locally determined on a node x iff
either ψ or ¬ψ is an ≡εT x -tautology.

For each node x ∈ {0, 1}∗ and base b ∈ B with vDB,g (x) = (σ, h), h(b) = (d, d0, d1, β),
vDB,g (x·0) = (σ0, h0), and vDB,g (x·1) = (σ1, h1) we set: if σ = # then d = d0 = d1 , 0

and β , 6 [, if σ0 = # then d0 , 0, if σ1 = # then d1 , 0. For the other cases, we set the
values of the degrees as follows, where we recall that 6ω is in place of any finite number
greater than g.

(1) b = EX ϕ. Then, β ,6 [and d (resp., d0) is set to the maximum degree l ∈ [0,
g]∪{6ω, ω} with which the formula E≥lX ϕ is satisfied on T ′x (resp., T ′x·0 if σ0 6= #).
Moreover, d1 is set to 1, if ϕ is satisfied on T ′x·1, and to 0 otherwise.

(2) b = AX̃ ϕ. Then, β , 6 [and d (resp., d0) is set to the minimum degree l ∈ [0,
g] ∪ {6 ω, ω} with which the formula A<l+1 X̃ ϕ is satisfied on T ′x (resp., T ′x·0 if
σ0 6= #). Moreover, d1 is set to 1, if ϕ is not satisfied on T ′x·1, and to 0 otherwise.

(3) b = Eψ is a non-next formula. Then, β , 6 [if ψ is locally determined on x. If β = [,
then d (resp., d0, d1) is set to the maximum degree l ∈ [0, g] ∪ {6 ω, ω} with which
the formula E≥lX ψ (resp., E≥lX ψ, E≥lψ) is satisfied on T ′x (resp., T ′x·0 if σ0 6= #,
T ′x·1 if σ1 6= #). If β =6 [, only d and d0 are set as stated before, while d1 is arbitrary.

(4) b = Aψ is a non-next formula. Then, β , 6 [if ψ is locally determined on x. If β = [,
then d (resp., d0, d1) is set to the minimum degree l ∈ [0, g] ∪ {6 ω, ω} with which
the formula A<l+1X ψ (resp., A<l+1X ψ, A<l+1ψ) is satisfied on T ′x (resp., T ′x·0 if

ACM Transactions on Computational Logic, Vol. ?, No. ?, ? 20?.

50 · Alessandro Bianco et al.

σ0 6= #, T ′x·1 if σ1 6= #). If β = 6 [, only d and d0 are set as stated before, while d1 is
arbitrary.

It is immediate to see that, if β = [then d = d0 +d1. Moreover, let h0(b) = (d0, d0
0, d

0
1, β

0)
and h1(b) = (d1, d1

0, d
1
1, β

1), we have that d0 = d0 and if β = [then d1 = d1. Now, by
Definition 7.6, we can derive that the tree TDB,g

is actually full coherent w.r.t. the pair
(Bsup,Binf). Hence, by Theorem 7.1, we have that it can be obtained as a building of the
satellite SBsup,Binf

B,g over the delayed generation TD of T itself.
It remains to prove that TDB,g

is accepted by Aϕ. The proof proceeds by induction on
the structure of the set of states derived by the formula ϕ and on the degree d associated
to the state. In particular, we use the following ordering ≺ ⊆ Q × Q between states:
(i) for all formulas ϕ′, ϕ′′ ∈ Q with ϕ′′ ∈ ecl(ϕ′) and ϕ′′ 6= ϕ′, we set ϕ′′ ≺ ϕ′; (ii)
Eψ ≺ E≥lψ (resp., Aψ ≺ A<lψ) and E≥ωψ ≺ E≥lψ (resp., A<ωψ ≺ A<lψ), for all l ∈ [2,
ω[; (iii) E≥1ψ ≺ Eψ (resp., A<1ψ ≺ Aψ) and E≥1ψ ≺ E≥ωψ (resp., A<1ψ ≺ A<ωψ);
(iv) E≥1

i ψ ≺ E≥1ψ (resp., A<1
i ψ ≺ A<1ψ), for all i ∈ {0, 1}. We also use the following

inductive hypotheses: (i) each state q = Eψ is sent to a node x with the related degree
greater than 1, i.e., with vDB,g

(x) = (σ, h), h(q) = (d, d0, d1, β), and d > 1; (ii) each state
q = E≥ωψ is sent to a node x with infinite related degree, i.e., with vDB,g (x) = (σ, h),
h(Eψ) = (d, d0, d1, β), and d = ω.

Intuitively, if the automaton Aϕ is on a state q = Qn ψ (resp. q = Qn X ψ), where Qn is
a quantification, on a node x of the tree TDB,g , with label vDB,g (x) = (σ, h) and σ 6= #,
then it accepts the subtree T xDB,g

if either it is able to check the truth of formulas of lower
order than q w.r.t. ≺, implying already the validity of q itself, or it checks other formulas
lower than ψ w.r.t. ≺, implying the non-validity of the negation of the formula represented
by q, and verifies that the subtree T ′x satisfies the formula represented by Qn X ψ (resp.,
Qn ψ) with degree given either by the formula q itself or, if such degree is not present in it,
by the d component of the function h valuated on the relative base.

We now give a detailed explanation only for the inductive case of q = Eψ with ψ =
ϕ1Op ϕ2, when we are on a node x = x′ · 1. The other cases are a variation on theme.

Let h(q) = (d, d0, d1, β). By the inductive hypothesis, the degree d is greater than 1.
Hence ψ is not a tautology (otherwise, we would find only one path satisfying ψ). So, we
have β = [. Consequently, the related path formulas X ψ and ψ are true on some of the
successors of t(x) partitioned between T ′x·0 and T ′x·1. Precisely, we have E=d0X ψ is
satisfied on T ′x·0 and E=d1ψ is satisfied on T x·1. The transition function checks that ψ and
¬ψ are not tautologies, by verifying formulas of lower order than ψ w.r.t. ≺, through the
use of the components ηψ(σ, h) and η¬ψ(σ, h). Moreover, the transition function verifies
the same state q on T ′x·0 and T x·1, through the component γEOp(d0, d1). Observe that
this formula sends the states Eψ and E≥ωψ on direction i only if di > 1 and di = ω,
respectively.

At this point, we have to distinguish between the two cases d < ω and d = ω.
In the first, it is possible that the automaton needs to check only states of lower order

w.r.t. ≺, so the acceptance is deduced by the inductive hypothesis. On the contrary, it may
also happen that the state propagates itself with the same degree on one direction. But,
this propagation cannot happen indefinitely, since the degree eventually splits, and so, it
eventually incurs in the first possibility.

In the second case, instead, the state q surely propagates on one direction q itself or its
ω-degree version E≥ωψ. So, the induction does not reach a lower case. Let t = x0 · x1 · · · ·
ACM Transactions on Computational Logic, Vol. ?, No. ?, ? 20?.

Graded Computation Tree Logic · 51

with x0 = x be the branch on which the infinite degree d is propagated: formally, for each
k ∈ N with vDB,g

(xk) = (σ, h) and h(Eψ) = (dk, dk0 , d
k
1 , β

k), we have dk = ω. Moreover,
let f : N→ {0, 1} be the direction function that associates to each index k ∈ N the direction
of the successor of xk, i.e., xk+1 = xk · f(k). Then, we distinguish the two following
cases, where only the first one can actually happen, meanwhile the second one yield a
contradiction.

(1) dk1−f(k) > 0, for infinitely many k ∈ N. In this case, the automaton passes, on the
branch t, through the state E≥ωψ infinitely often, so it accepts the branch t.

(2) dk1−f(k) = 0, for all k ∈ N. We distinguish two sub-cases: t progresses definitively on
the direction 0 and t progresses infinitely often through direction 1.

(a) f(k) = 0 so, xk = x0 · 0k, for all k ∈ N. By construction of T x0 , we have that the
tree T xk·1 does not contain a path that satisfies the formula, for all k ∈ N. This
means that there is no path satisfying the formula through any successor of t(x0).
But this contradicts the hypothesis that T x satisfies the q with infinite degree.

(b) f(k) = 1, for infinitely many k ∈ N. Than, there is an infinite set of indexes
{j0, j1, . . .} ⊆ N with j0 = 0 such that, for all l ∈ N and k ∈ [jl, jl+1[, it holds
that xk = xjl · 0k−jl , and xjl+1

= xjl−1 · 1. Let yl = t(xjl), for all l ∈ N. Then,
the branch r = y0 · y1 · · · · is an infinite path in T x0 on which there are infinite
non-equivalent paths that starting in yl and satisfying ψ, for all l ∈ N. Now, since
dk1−f(k) = 0, all these paths have to pass through yl+1. By induction, we obtain
that all the paths that start from y0 and satisfy ψ must pass through all the nodes of
r. But this is a contradiction, since it means that they are actually one unique path.

[If]. The converse direction is specular. Since a tree TD is accepted by 〈Aϕ,S
Bsup,Binf

B,g 〉,
we can assert that (i) it is actually a delayed generation of a 2AP-labeled tree T and (ii) the
B-based g-degree delayed generation tree TDB,g

built by the satellite SBsup,Binf

B,g on TD is
full coherent w.r.t. (Bsup,Binf) and it is accepted byAϕ. Using these facts, by induction on
the structure of the formula, we can prove that every time Aϕ is in a state q on a node x of
the tree TDB,g

with label (σ, h), T x satisfies the formula represented by q with the related
degree iff the automaton accepts the subtree T xDB,g

. Actually, this fact happens if x is a right
node, i.e., when x does not terminates with 0. When x is a left node, the transition function
only requires that T x satisfies the next formulas in the one-step unfolding of q. However,
since the formulas not in the scope of the next are yet verified on a previous right node, we
also obtain that T x satisfies the whole q. Finally, since Aϕ accepts T εDB,g

by hypothesis,
we have that the tree T is a model of ϕ.

By a matter of calculation, it holds that |Aϕ| = O(|ϕ|) and |SBsup,Binf

B,g | = 2O(|ϕ|·log(ϕ̊)).
Moreover, also the alphabet Σϕ × PEϕ

of the APTS has size 2O(|ϕ|·log(ϕ̊)). By Theorem
6.1, we obtain that the emptiness problem for 〈Aϕ,S

Bsup,Binf

B,g 〉 can be solved in time

2O(|ϕ|
2·(log(|ϕ|)+log(ϕ̊))) ≤ 2O(‖ϕ‖

3). Moreover, by recalling that GCTL subsumes CTL, the
following result follows.

THEOREM 8.2 (GCTL SATISFIABILITY COMPLEXITY). The satisfiability problem
for GCTL with binary coding of degrees is EXPTIME-COMPLETE.

ACM Transactions on Computational Logic, Vol. ?, No. ?, ? 20?.

52 · Alessandro Bianco et al.

9. CONCLUSION

Graded modalities refine classical existential and universal quantifiers by specifying the
number of elements for which the existential requirement should hold/universal requirement
may not hold. Earlier work studied the extension of the µCALCULUS by graded modality
on successors and shown that the complexity of the related satisfiability problem stays
EXPTIME-COMPLETE. In this paper, we have introduced GCTL as an extension of CTL
with graded modalities on paths, in order to count the number of equivalence classes of paths
satisfying a given formula. We have proposed a general framework that allows to define
different kinds of “graded extensions” of GCTL, depending on the specific equivalence
relation one chooses among paths. Moreover, we have described reasonable properties that
such an equivalence should satisfy and, as a concrete application of our general framework,
we have studied a graded logic with path prefix equivalence based on the suitable concepts
of minimality and conservativeness. This choice is aimed on counting a minimal way a
Kripke structure has to satisfy a given formula in such a way we can ensure its satisfiability
no matter how a minimal part is extended.

One of the main features of GCTL is the capability to express properties that are weaker
than those definable with the universal quantifications Aψ and stronger than those definable
with the existential quantifications Eψ. In “planning in nondeterministic domain” [Cimatti
et al. 1998; Cimatti et al. 2003], for example, the use of strong planning (i.e., all the goals
have to be satisfied by all the computations) and weak planning (i.e., all the goals have to
be satisfied by some computation) are two extreme ways to achieve a given purpose. With
our logic, we are able to express “graded path specification” that can be considered as a
compromise between strong and weak planning.

We have studied several properties of GCTL under the path prefix equivalence and all
of them hold in the general case of graded numbers coded in binary. Among the others,
we have proved that this logic can be reduced to the GµCALCULUS, but that it is at least
exponentially more succinct. Also, we have studied the satisfiability problem and, by using
a sharp automata-theoretic approach via a binary-tree encoding of models and a refinement
of the technique involving satellite automata, we have shown that this problem is EXPTIME-
COMPLETE, thus no harder than the one for CTL. This result, along with the fact that GCTL
is exponentially more succinct of GµCALCULUS and much more “friendly” to use, make
GCTL a very useful and powerful logic to be used in practice in formal system verification.
It is important to note that, all the results we have achieved for GCTL with path prefix
equivalence are based on the properties we have studied for a general path equivalence.
Hence, all the technical constructions can be easily lifted to any other graded extension of
CTL that respects those properties.

As we have reported before, our satisfiability algorithm for GCTL uses an automata-
theoretic approach on the binary-tree encoding of the models of the formula. While the
automata approach results in a natural and classical one, it may be also substituted by other
techniques, such as the systems of infinite tableaux [Friedmann et al. 2010], turning in an
algorithm with the same overall complexity we achieve. On the contrary, the binary-tree
encoding seems to be unavoidable even in the case of the tableaux approach. Indeed, by
using the regular models, we need to label each node with a tuple of degree functions, used
for the splitting, which are not of fixed size 3 anymore, but rather linear in the degree of the
formula and so exponential in its size. Then, by applying either the automata or the tableaux
approach it turns in an overall double-exponential algorithm.
ACM Transactions on Computational Logic, Vol. ?, No. ?, ? 20?.

Graded Computation Tree Logic · 53

As future work, there are several directions that could be investigated along with graded
path modalities. In particular, we left open the solution of the satisfiability problem of
GCTL*. However, by a simple variation of the technique developed in this paper, one can
easily obtain a 3EXPTIME upper bound, while a 2EXPTIME-HARD lower bound easily
derives from the satisfiability of CTL*. In this case, is also worth investigating the use of
the tableaux technique to try to match the known lower bound. By exploiting a similar idea
of that used for GµCALCULUS, one could also investigate whether GCTL* is equivalent to
CTL* augmented with graded world modalities (Counting-CTL* [Moller and Rabinovich
2003]). However, we conjecture that GCTL* is exponentially more succinct than Counting-
CTL* (for GCTL and Counting-CTL, this result holds by simply applying the same idea
used for the translation from GCTL to the GµCALCULUS). This result is important as it
was shown in [Moller and Rabinovich 2003] that Counting-CTL* is equivalent to monadic
path logic, which is MSOL with set quantifications restricted to paths.

A. MATHEMATICAL NOTATION

Classic objects. Given two sets X and Y of objects, we denote by |X| the cardinality of
X, i.e., the number of its elements, by 2X the powerset of X, i.e., the set of all its subsets, and
by YX ⊆ 2X×Y the set of total functions f from the domain dom(f) , X to the codomain
cod(f) , Y. In addition, with rng(f) , {f(x) : x ∈ X} ⊆ cod(f) we indicate the range of
f, i.e., the set of values actually assumed by f. Often, we write f : X→ Y and f : X ⇀ Y
to indicate, respectively, f ∈ YX and f ∈

⋃
X′⊆X YX′ . Regarding the latter, note that we

consider f as a partial function from X to Y, where dom(f) ⊆ X contains all and only the
elements for which f is defined. Given a set Z, by f�Z , f∩(Z×Y) we denote the restriction
of f to the set X∩ Z, i.e., the function f�Z : X∩ Z ⇀ Y such that, for all x ∈ dom(f)∩ Z, it
holds that f�Z(x) = f(x). Moreover, with ∅ we indicate a generic empty function, i.e., a
function with empty domain. Note that X ∩ Z = ∅ implies f�Z = ∅.

As special sets, we consider N as the set of natural numbers and [m,n] , {k ∈ N :
m ≤ k ≤ n}, [m,n[, {k ∈ N : m ≤ k < n},]m,n] , {k ∈ N : m < k ≤ n}, and]m,

n[, {k ∈ N : m < k < n} as its interval subsets, with m ∈ N and n ∈ N̂ , N ∪ {ω},
where ω is the numerable infinity, i.e., the least infinite ordinal.

Words. By Xn with n ∈ N we denote the set of all n-tuples of elements from X, by
X∗ ,

⋃<ω
n=0 Xn the set of finite words on the alphabet X, by X+ , X∗ \ {ε} the set of

non-empty words, and by Xω the set of infinite words, where, as usual, ε ∈ X∗ is the empty
word. Moreover, |x| ∈ N̂ indicates the length of a word x ∈ X∞ , X∗ ∪Xω. By (x)i we
denote the i-th letter of the finite word x, with i ∈ [0, |x|[. Furthermore, by fst(x) , (x)0

(resp., lst(x) , (x)|x|−1), we indicate the first (resp., last) letter of x. In addition, by x≤i
(resp., x>i), we denote the prefix up to (resp., suffix after) the letter of index i of x, i.e.,
the finite word built by the first i+ 1 (resp., last |x| − i− 1) letters (x)0, . . . , (x)i (resp.,
(x)i+1, . . . , (x)|x|−1). We also set, x<0 , ε, x<i , x≤i−1, x≥0 , x, and x≥i , x>i−1,
for i ∈ [1, |x|[. Mutatis mutandis, the notations of i-th letter, first, prefix, and suffix apply to
infinite words too. Finally, by pfx(x1, x2) ∈ X∞ we indicate the maximal common prefix of
two different words x1, x2 ∈ X∞, i.e. the finite word x ∈ X∗ for which there are two words
x′1, x

′
2 ∈ X∞ such that x1 = x · x′1, x2 = x · x′2, and fst(x′1) 6= fst(x′2). By convention, we

set pfx(x, x) , x.
ACM Transactions on Computational Logic, Vol. ?, No. ?, ? 20?.

54 · Alessandro Bianco et al.

Trees. For a set ∆ of objects, called directions, a ∆-tree is a set T ⊆ ∆∗ closed under
prefix, i.e., if t · d ∈ T, with d ∈ ∆, then also t ∈ T, and we say that it is complete iff it
also holds that t · d′ ∈ T, for all d′ < d, where <⊆ ∆×∆ is a fixed strict total order on
the directions that is clear from the context. The elements of T are called nodes and the
empty word ε is the root of T. For every t ∈ T and d ∈ ∆, the node t · d ∈ T is a successor
of t in T. T is full iff T = ∆∗. Moreover, it is b-bounded iff the maximal number b of its
node successors is finite, i.e., b = maxt∈T |{t · d ∈ T : d ∈ ∆}| <∞. A branch of a tree
T is a subset T′ ⊆ T closed under prefix such that, for each t ∈ T′, there exists at most one
successor t · d ∈ T′. For a finite set Σ of objects, called symbols, a Σ-labeled ∆-tree is a
pair 〈T, v〉, where T is a ∆-tree and v : T→ Σ is a labeling function. When ∆ and Σ are
clear from the context, we call 〈T, v〉 simply a (labeled) tree.

B. LTL SEMANTICS

In this short appendix, we report the definition of the semantics of all LTL formulas ψ w.r.t.
finite and infinite words $ ∈ (2AP)∞, with $ 6= ε, on the alphabet 2AP.

(1) $ |= p, for p ∈ AP, iff p ∈ $0.
(2) $ |= ¬ψ iff not $ |= ψ, that is $ 6|= ψ;
(3) $ |= ψ1 ∧ ψ2 iff $ |= ψ1 and $ |= ψ2;
(4) $ |= ψ1 ∨ ψ2 iff $ |= ψ1 or $ |= ψ2;
(5) $ |= X ψ iff |$| > 1 and $≥1 |= ψ;
(6) $ |= ψ1U ψ2 iff there is an index i ∈ [0, |$|[such that $≥i |= ψ2 and, for all indexes

j ∈ [0, i[, it holds that $≥j |= ψ1;
(7) $ |= ψ1R ψ2 iff, for all indexes i ∈ [0, |$|[, it holds that $≥i |= ψ2 or there is an

index j ∈ [0, i[such that $≥j |= ψ1, and |$| = ω or there is an index j ∈ [0, |$|[
such that $≥j |= ψ1;

(8) $ |= X̃ ψ iff |$| = 1 or $≥1 |= ψ;

(9) $ |= ψ1 Ũ ψ2 iff there is an index i ∈ [0, |$|[such that $≥i |= ψ2 and, for all indexes
j ∈ [0, i[, it holds that $≥j |= ψ1, or |$| < ω and, for all indexes j ∈ [0, |$|[, it
holds that $≥j |= ψ1;

(10) $ |= ψ1 R̃ ψ2 iff, for all indexes i ∈ [0, |$|[, it holds that $≥i |= ψ2 or there is an
index j ∈ [0, i[such that $≥j |= ψ1.

REFERENCES

APOSTOL, T. 1976. Introduction to Analytic Number Theory. Springer-Verlag.
ARENAS, M., BARCELÓ, P., AND LIBKIN, L. 2007. Combining Temporal Logics for Querying XML Documents.

In International Conference on Database Theory’07. LNCS 4353. Springer, 359–373.
BAADER, F., CALVANESE, D., MCGUINNESS, D., NARDI, D., AND PATEL-SCHNEIDER, P., Eds. 2003. The

Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press.
BARCELÓ, P. AND LIBKIN, L. 2005. Temporal Logics over Unranked Trees. In IEEE Symposium on Logic in

Computer Science’05. IEEE Computer Society, 31–40.
BIANCO, A., MOGAVERO, F., AND MURANO, A. 2009. Graded Computation Tree Logic. In IEEE Symposium

on Logic in Computer Science’09. IEEE Computer Society, 342–351.
BIANCO, A., MOGAVERO, F., AND MURANO, A. 2010. Graded Computation Tree Logic with Binary Coding.

In EACSL Annual Conference on Computer Science Logic’10. LNCS 6247. Springer, 125–139.
BONATTI, P., LUTZ, C., MURANO, A., AND VARDI, M. 2008. The Complexity of Enriched Mu-Calculi. Logical

Methods in Computer Science 4, 3, 1–27.

ACM Transactions on Computational Logic, Vol. ?, No. ?, ? 20?.

Graded Computation Tree Logic · 55

CIMATTI, A., PISTORE, M., ROVERI, M., AND TRAVERSO, P. 2003. Weak, Strong, and Strong Cyclic Planning
via Symbolic Model Checking. Artificial Intelligence 147, 1-2, 35–84.

CIMATTI, A., ROVERI, M., AND TRAVERSO, P. 1998. Strong Planning in Non-Deterministic Domains via Model
Checking. In International Conference on Artificial Intelligence Planning Systems98. 36–43.

CLARKE, E. AND EMERSON, E. 1981. Design and Synthesis of Synchronization Skeletons Using Branching-Time
Temporal Logic. In Logic of Programs’81. LNCS 131. Springer, 52–71.

EISNER, C., FISMAN, D., HAVLICEK, J., LUSTIG, Y., MCISAAC, A., AND CAMPENHOUT, D. V. 2003.
Reasoning with Temporal Logic on Truncated Paths. In Computer Aided Verification’03. LNCS 2725. Springer,
27–39.

EMERSON, E. AND HALPERN, J. 1985. Decision Procedures and Expressiveness in the Temporal Logic of
Branching Time. Journal of Computer and System Science 30, 1, 1–24.

EMERSON, E. AND HALPERN, J. 1986. “Sometimes” and “Not Never” Revisited: On Branching Versus Linear
Time. Journal of the ACM 33, 1, 151–178.

FERRANTE, A., NAPOLI, M., AND PARENTE, M. 2008. CTL Model-Checking with Graded Quantifiers. In
International Symposium on Automated Technology for Verification and Analysis’08. LNCS 5311. Springer,
18–32.

FERRANTE, A., NAPOLI, M., AND PARENTE, M. 2009. Graded-CTL: Satisfiability and Symbolic Model
Checking. In International Conference on Formal Engineering Methods’10. LNCS 5885. Springer, 306–325.

FINE, K. 1972. In So Many Possible Worlds. Notre Dame Journal of Formal Logic 13, 516–520.

FISCHER, M. AND LADNER, R. 1979. Propositional Dynamic Logic of Regular Programs. Journal of Computer
and System Science 18, 2, 194–211.

FRIEDMANN, O., LATTE, M., AND LANGE, M. 2010. A Decision Procedure for CTL* Based on Tableaux and
Automata. In 10. LNCS 6173. Springer, 331–345.

GRÄDEL, E. 1999. On The Restraining Power of Guards. Journal of Symbolic Logic 64, 4, 1719–1742.

KOZEN, D. 1983. Results on the Propositional mu-Calculus. Theoretical Computer Science 27, 3, 333–354.

KUPFERMAN, O., SATTLER, U., AND VARDI, M. 2002. The Complexity of the Graded µ-Calculus. In
Conference on Automated Deduction’02. LNCS 2392. Springer-Verlag, 423–437.

KUPFERMAN, O. AND VARDI, M. 1998. Weak Alternating Automata and Tree Automata Emptiness. In ACM
Symposium on Theory of Computing’98. 224–233.

KUPFERMAN, O. AND VARDI, M. 2006. Memoryful Branching-Time Logic. In IEEE Symposium on Logic in
Computer Science’06. IEEE Computer Society, 265–274.

KUPFERMAN, O., VARDI, M., AND WOLPER, P. 2000. An Automata Theoretic Approach to Branching-Time
Model Checking. Journal of the ACM 47, 2, 312–360.

LAMPORT, L. 1980. “Sometime“ is Sometimes “Not Never“: On the Temporal Logic of Programs. In ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages’80. 174–185.

LANGE, M. 2008. A Purely Model-Theoretic Proof of the Exponential Succinctness Gap between CTL+ and
CTL. Information Processing Letters 108, 5, 308–312.

LIBKIN, L. AND SIRANGELO, C. 2008. Reasoning About XML with Temporal Logics and Automata. In
International Conference on Logic for Programming Artificial Intelligence and Reasoning’08. LNCS 5330.
Springer, 97–112.

LUTZ, C. 2006. Complexity and Succinctness of Public Announcement Logic. In Autonomous Agents and
Multiagent Systems’06. 137–143.

MCCABE, T. 1976. A Complexity Measure. IEEE Transactions on Software Engineering 2, 308–320.

MIYANO, S. AND HAYASHI, T. 1984. Alternating Finite Automata on ω-Words. Theoretical Computer
Science 32, 3, 321–330.

MOGAVERO, F. 2007. Branching-Time Temporal Logics (Theoretical Issues and a Computer Science Application).
M.S. thesis, Universitá degli Studi di Napoli ”Federico II”, Italy.

MOLLER, F. AND RABINOVICH, A. 2003. Counting on CTL*: On the Expressive Power of Monadic Path Logic.
Information and Computation 184, 1, 147–159.

MULLER, D. AND SCHUPP, P. 1987. Alternating Automata on Infinite Trees. Theoretical Computer Science 54, 2-
3, 267–276.

ACM Transactions on Computational Logic, Vol. ?, No. ?, ? 20?.

56 · Alessandro Bianco et al.

MULLER, D. AND SCHUPP, P. 1995. Simulating Alternating Tree Automata by Nondeterministic Automata: New
Results and New Proofs of Theorems of Rabin, McNaughton and Safra. Theoretical Computer Science 141, 1-2,
69–107.

PNUELI, A. 1977. The Temporal Logic of Programs. In Foundation of Computer Science’77. 46–57.
PNUELI, A. 1981. The Temporal Semantics of Concurrent Programs. Theoretical Computer Science 13, 45–60.
RABIN, M. 1969. Decidability of Second-Order Theories and Automata on Infinite Trees. Transactions of the

American Mathematical Society 141, 1–35.
SCHMIDT-SCHAUSS, M. AND SMOLKA, G. 1991. Attributive Concept Descriptions with Complements. Artificial

Intelligence 48, 1, 1–26.
SLOANE, N. AND PLOUFFE, S. 1995. The Encyclopedia of Integer Sequences. Academic Press.
THOMAS, W. 1990. Automata on Infinite Objects. In Handbook of Theoretical Computer Science (vol. B). MIT

Press, 133–191.
TOBIES, S. 2001. PSpace Reasoning for Graded Modal Logics. Journal of Logic and Computation 11, 1, 85–106.
VARDI, M. AND WOLPER, P. 1986. Automata-Theoretic Techniques for Modal Logics of Programs. Journal of

Computer and System Science 32, 2, 183–221.
WILKE, T. 1999. CTL+ is Exponentially More Succinct than CTL. In IARCS Annual Conference on Foundations

of Software Technology and Theoretical Computer Science’99. Springer, 110–121.

Received ? 20?; revised ? 20?; accepted ? 20?.

ACM Transactions on Computational Logic, Vol. ?, No. ?, ? 20?.

