
Synthesis of a Hierarchical System from a Library

Benjamin Aminof, Fabio Mogavero, and Aniello Murano

Hebrew University, Jerusalem 91904, Israel.
Università degli Studi di Napoli “Federico II”, 80126 Napoli, Italy.

benj@cs.huji.ac.il {mogavero, murano}@na.infn.it

GAMES 2011
September 2011

Extended Abstract1

Synthesis is the automated construction of a system from its specification. The ba-
sic idea is simple and appealing: instead of developing a system and verifying that it
is correct w.r.t. its specification, we use instead an automated procedure that, given a
specification, constructs a system that is correct by construction. The first formulation
of synthesis goes back to Church [8]; the modern approach to this problem was initiated
by Pnueli and Rosner who introduced linear temporal logic (LTL) synthesis [25], later
extended to handle branching-time specifications, such as µ-calculus [10].

In spite of the rich theory developed for system synthesis in the last two decades,
little of this theory has been reduced to practice. In fact, the main approaches to tackle
synthesis in practice are either to use heuristics (e.g., [12]) or to restrict to simple spec-
ifications (e.g., [24]). Some people argue that this is because the synthesis problem is
very expensive compared to model-checking [17]. There is, however, something mis-
leading in this perception: while the complexity of synthesis is given with respect to
the specification only, the complexity of model-checking is given also with respect to a
program, which can be very large. A common thread in almost all of the works concern-
ing synthesis is the assumption that the system is to be built “from scratch”. Obviously,
real-world systems are rarely constructed this way, but rather by utilizing many pre-
existing reusable components, i.e., a library. Using standard preexisting components is
sometimes unavoidable (for example, access to hardware resources is usually under the
control of the operating system, which must be “reused”), and many times has other
benefits (apart from saving time and effort, which may seem to be less of a problem in a
setting of automatic - as opposed to manual - synthesis), such as maintaining a common
code base, and abstracting away low level details that are already handled by the preex-
isting components. Another important reason for the limited use of formal synthesis in
practice is the fact that synthesized systems are usually monolithic and look very unnat-
ural from the system designer’s point of view. Indeed, in classical synthesis algorithms,
one usually creates a “flat” system, i.e., a system in which sub-systems may be repeated
many times. On the contrary, real-life software and hardware systems are hierarchical
(or even recursive) and repeated sub-systems (such as sub-routines) are described only
once. While hierarchical systems may be exponentially more succinct than flat ones, it
has been shown that the cost of solving questions about them (like model-checking) are
in many cases not exponentially higher [4, 5, 11, 6, 23]. Hierarchical systems can also
be seen as a special case of recursive systems [1, 2, 7, 13, 14], where the nesting of calls
to sub-systems is bounded. However, having no bound on the nesting of calls gives rise
to infinite-state systems, and this results in a higher complexity.

1 A full version of this paper can be found in [3]



2 B. Aminof, F. Mogavero, A. Murano

In this work we provide a uniform algorithm, for different temporal logics, for the
synthesis of hierarchical systems (or, equivalently, transducers) from a library of hier-
archical systems, which mimics the “bottom-up” approach to system design, where one
builds a system by constructing new modules based on previously constructed ones2.
More specifically, the synthesis process starts by providing the algorithm with a library
of available hierarchical components (as well as atomic ones). Then, the system de-
signer provides a specification formula ϕ of the desired hierarchical component, which
is then automatically synthesized using the currently available components as possi-
ble sub-components. We show that while hierarchical systems may be exponentially
smaller than flat ones, the problem of synthesizing a hierarchical system from a library
of existing hierarchical systems is EXPTIME-complete for µ-calculus, and 2EXPTIME-
complete for LTL. Thus, this problem is not harder than the classical synthesis problem
of flat systems “from scratch”. Furthermore, we show that this is true also in the case
where the synthesized system has incomplete information about the environment’s in-
put. Observe that our algorithm can be used for synthesis of a hierarchical system in
many rounds, when at each round the system designer provides the specification of the
currently desired module, which is then automatically synthesized using the initial li-
brary and the modules constructed in previous iterations. We discuss this application of
our algorithm and suggest possible approaches to deal with some of the issues that may
arise in this setting.

The problem of automatic synthesis from reusable components has received less
attention in the formal verification literature than that given to the issues of specifica-
tion and correctness of modularly designed systems. Examples of important work on
the subject are [9, 20, 21, 26]. To solve our synthesis problem, we use an automata-
theoretic approach[17, 19, 15, 18, 16, 22]. However, unlike the classical approach
of [25], we build an automaton whose input is not a computation tree, but rather a
system description in the form of a connectivity tree (inspired by the “control-flow”
trees of [21]), which describes how to connect library components in a way that satis-
fies the specification formula. Taken by itself, our single-round algorithm extends the
“control-flow” synthesis work from [21] in four directions. (i) We consider not only
LTL specifications but also the modal µ-calculus. Hence, unlike [21], where co-Büchi
tree automata were used, we have to use the more expressive parity tree automata. Un-
fortunately, this is not simply a matter of changing the acceptance condition. Indeed, in
order to obtain an optimal upper bound, a widely different approach, which makes use
of the machinery developed in [5] is needed. (ii) We need to be able to handle libraries
of hierarchical transducers, whereas in [21] only libraries of flat transducers are consid-
ered. (iii) A synthesized transducer has no top-level exits (since it must be able to run
on all possible input words), and thus, its ability to serve as a sub-transducer of another
transducer (in future iterations of a multiple-rounds algorithm) is severely limited (it
is like a function that never returns to its caller). We therefore address the problem of
synthesizing exits for such transducers.

References

[1] R. Alur, M. Benedikt, K. Etessami, P. Godefroid, T. W. Reps, and M. Yan-
nakakis. Analysis of recursive state machines. ACM Trans. Program. Lang. Syst.,
27(4):786–818, 2005.

2 While for systems built from scratch, a top-down approach may be argued to be more suitable,
we find the bottom-up approach to be more natural when synthesizing from a library.



Synthesis of Hierarchical a System from a Library 3

[2] R. Alur, S. Chaudhuri, K. Etessami, and P. Madhusudan. On-the-fly reachability
and cycle detection for recursive state machines. In TACAS’05, LNCS 3440,
pages 61–76, 2005.

[3] B. Aminof, F. Mogavero, and A. Murano. Synthesis of hierarchical systems. In
FACS’11, LNCS 7253 pages 42–59, 2011.

[4] R. Alur and M. Yannakakis. Model checking of hierarchical state machines. ACM
Trans. Program. Lang. Syst., 23(3):273–303, 2001.

[5] B. Aminof, O. Kupferman, and A. Murano. Improved model checking of hierar-
chical systems. VMCAI’10, LNCS 5944, pages 61-77, 2010

[6] B. Aminof, O. Kupferman, and A. Murano. Improved Model Checking of Hi-
erarchical Systems. International Journal of Information and Computaion, To
appear in 2012.

[7] L. Bozzelli, A. Murano, and A. Peron. Pushdown module checking. Formal
Methods in System Design, 36(1):65–95, 2010.

[8] A. Church. Logic, arithmetics, and automata. In Proc. International Congress of
Mathematicians, 1962, pages 23–35. institut Mittag-Leffler, 1963.

[9] L. de Alfaro and T. A. Henzinger. Interface-based design. In Engineering Theo-
ries of Software-intensive Systems. NATO Science Series: Mathematics, Physics,
and Chemistry, 195, pages 83–104. Springer, 2005.

[10] E.A. Emerson. Temporal and modal logic. In J. Van Leeuwen, editor, Handbook
of Theoretical Computer Science, volume B, chap. 16, pg. 997–1072. Elsevier,
MIT Press, 1990.

[11] S. Göller and M. Lohrey. Fixpoint logics on hierarchical structures. In
FSTTCS’05, LNCS 3821, pages 483–494. Springer, 2005.

[12] D. P. Guelev, M. D. Ryan, and P. Y. Schobbens. Synthesising features by games.
Electr. Notes Theor. Comput. Sci., 145:79–93, 2006.

[13] A. Ferrante, A. Murano, and M. Parente. Enriched µ-calculus pushdown module
checking. In LPAR’07, LNCS 4790, pages 438–453. 2007.

[14] A. Ferrante, A. Murano, and M. Parente. Enriched µ-calculi module checking.
Logical Methods in Computer Science, 4(3:1):1–21, 2008.

[15] O. Kupferman, G. Morgenstern, and A. Murano. Typeness for ω-regular au-
tomata. In ATVA’04, LNCS 3299, pages 324–333, 2004.

[16] O. Kupferman, G. Morgenstern, and A. Murano. Typeness for ω-regular au-
tomata. International Journal of Foundations of Computer Science, 17(4):869–
883, 2006.

[17] O. Kupferman, M.Y. Vardi, and P. Wolper. An automata-theoretic approach to
branching-time model checking. J. of the ACM, 47(2):312–360, 2000.

[18] S. La Torre, A. Murano, and M. Napoli. Weak muller acceptance condition for
tree automata. Theoretical Computer Science, 332(1–3):233–250, 2005.

[19] S. La Torre and A. Murano. Reasoning about co-büchi tree automata. In IC-
TAC’04, LNCS 3407, pages 527–542, 2005.

[20] R. Lanotte, A. Maggiolo-Schettini, and A. Peron. Structural model checking for
communicating hierarchical machines. In MFCS, pages 525–536, 2004.

[21] Y. Lustig and M. Y. Vardi. Synthesis from component libraries. In FOSSACS’09,
LNCS 5504, pages 395–409, 2009.

[22] A. Murano. Decision Problems on Tree Automata and Synthesis of Open Timed
Systems. PhD thesis, Universitá degli Studi di Salerno, February 2003.

[23] A. Murano, M. Napoli, and M. Parente. Program complexity in hierarchical mod-
ule checking. In LPAR’08, LNCS 5330, pages 318–332, 2008.

[24] N. Piterman, A. Pnueli, and Y. Sa’ar. Synthesis of reactive designs. In VMCAI’06,
LNCS 3855, pages 364–380. Springer, 2006.

[25] A. Pnueli and R. Rosner. On the synthesis of a reactive module. In POPL’89,
pages 179–190. ACM Press, 1989.

[26] J. Sifakis. A framework for component-based construction extended abstract. In
SEFM’05, pages 293–300. IEEE Computer Society, 2005.


