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Extended Abstract

In model checking, we verify that a system meets its specification by translating the system to a
finite state machine (FSM), translating the specification to a temporal-logic formula, and checking
that the FSM satisfies the formula [6]. The translation of a high-level description of a system to an
FSM involves a painful blow-up, and the size of the FSM is typically the computational bottleneck
in model-checking algorithms.

There are several sources of the blow-up that the translation involves. A well-studied source
is the ability of components in the system to work in parallel and communicate with each other,
possibly using variables (concurrent FSMs))[8]. Another source of the blow-up in the translation
of systems to FSMs has to do with the ability of a high-level description of a system to reuse the
same component in different contexts (say, by calling a procedure). One way to avoid the later
blowup is to consider hierarchical FSMs, where some of the states of the FSM are boxes, which
correspond to nested FSMs. Since many boxes may refer to the same nested FSM, hierarchical
FSM’s may be exponentially smaller than regular (i.e., flat) FSM’s. Unfortunately, the naive
approach to model checking such systems is to “flatten” them by repeatedly substituting references
to sub-structures with copies of these sub-structures. However, this results in a flat system that is
exponential in the nesting depth of the hierarchical system. In [5], Alur and Yannakakis show that
for Ltl model checking, one can avoid this blow-up altogether, whereas for Ctl, one can trade
it for an exponential blow-up in the (often much smaller) size of the formula and the maximal
number of exits of sub-structures. In other words, while hierarchical FSMs are exponentially more
succinct than flat FSMs [4], in many cases the system complexity of the model-checking problem
is not exponentially higher in the hierarchical setting! Thus, even more than with the feature of
concurrency, here there is clear motivation not to flatten the FSM before model checking it.

The results in [5] set the stage to further work on model-checking of hierarchical systems. As it
so happened, however, this line of research has quickly been focused on recursive systems, which
allow unbounded nesting of components. Having no bound on the nesting gives rise to infinite-state
systems. The emergence of software model checking, the natural association of reusability with
(possibly recursive) procedure calls, the challenge and abstraction that the infinite-state setting
involves, and the neat connection to pushdown automata, have all put recursive systems in the
central stage [1–3], leaving the hierarchical setting as a special case. This work hopes to shift
some attention back to the hierarchical setting. We suggest a uniform game-based approach for
model checking such systems, and argue that the game-based approach enjoys the versatility and
advantages it has proven to have in the flat setting. In particular, the game-based approach leads
to improved model-checking algorithms. An important conclusion of our work is that we should
not hurry to give up the finite-state nature of the hierarchical setting, as it does lead to simpler
algorithms, and better complexities than the recursive setting.

In the flat setting, the game-based approach reduces the model-checking problem (does a
system S satisfy a branching temporal logic specification ψ?) to the problem of deciding a two-
player game obtained by taking the product of S with an alternating tree automaton Aψ for ψ
[9]. The game-based approach separates the logic-related aspects of the model-checking problem,
which are handled in the translation of the specifications to automata, and the combinatorial
aspects, which are handled by the game-solving algorithm. Using the game-based approach, it was
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possible to tighten the time and space complexity of the branching-time model-checking problem
[9]. We describe a unified game-based approach for branching-time model checking of hierarchical
systems. We define two-player hierarchical games, and reduce model checking to deciding such
games. In a hierarchical game, an arena may have boxes, which refer to nested sub-arenas. As
in the flat setting, one can take the product of a hierarchical system with an alternating tree
automaton for its specification, and model checking is reduced to solving the game obtained by
taking this product. Now, however, the hierarchy of the system induces hierarchy in the game.

Having introduced the framework, we turn to the main technical contribution of this paper:
a new and improved algorithm for solving hierarchical parity games. We now briefly describe it.
Consider a hierarchical game G. The idea behind our algorithm is that even though a sub-arena
may appear in different contexts, it is possible to extract information about the sub-arena that is
independent of the context in which it appears. Formally, for each strategy of one of the players,
we can analyze the sub-arena and extract a summary function, mapping each exit of the sub-arena
to the best color (of the parity condition) that the other player can hope for, given that the current
play eventually leaves the sub-arena through this exit. The summary function is independent of
the context and has to be calculated only once. The algorithm for solving the game G then solves a
sequence of flat parity games, obtained by replacing sub-arenas by simple gadgets that implement
the summary functions.

Related work. The work since [5] was focused on recursive systems, with some exceptions
(e.g., [7, 10]). The closest to our work here is [7], which proved that the model-checking problem for
the µ-calculus and hierarchical systems is Pspace-complete (as opposed to the recursive setting, in
which µ-calculus model checking is Exptime-complete). However, the µ-calculus model-checking
algorithm that our approach induces enjoys several advantages with respect to the one in [7]. The
first one is the complexity. Beyond having a polynomial space complexity, the time complexity
of our algorithm is usually much better than the one that follows the “flattening” approach, and
in all cases it is much better than the one in [7]. Second, recall that we reduce the µ-calculus
model-checking to solving hierarchical parity games and our algorithm solves the latter by solving
a sequence of (non-hierarchical) parity games. As such, it can benefit from existing and future
algorithms and tools for solving parity games. Third, the algorithm presented in [7] does not deal
directly with hierarchical systems. Rather, it considers straight line programs (SLP). Translating a
hierarchical system to an SLP is not hard (indeed, it involves a quadratic blow-up), but it messes-
up the direct relationship between the structure of the hierarchical system and the game. This
relationship is crucial in understanding the output of the model-checking procedure, by means of
counterexamples, and to practically use our hierarchical game algorithm in verification tools.
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