
Event-Clock Nested Automata

Laura Bozzelli, Aniello Murano, and Adriano Peron

Università degli Studi di Napoli Federico II, Italy

Abstract. In this paper we introduce and study Event-Clock Nested
Automata (ECNA), a formalism that combines Event Clock Automata
(ECA) and Visibly Pushdown Automata (VPA). ECNA allow to express
real-time properties over non-regular patterns of recursive programs. We
prove that ECNA retain the closure and decidability properties of ECA
and VPA being closed under Boolean operations and having a decidable
language-inclusion problem. In particular, we prove that emptiness, uni-
versality, and language-inclusion for ECNA are Exptime-complete prob-
lems. As for the expressiveness, we have that ECNA properly extend any
previous attempt in the literature of combining ECA and VPA.

1 Introduction

Model checking is a well-established formal-method technique to automatically
check for global correctness of reactive systems [7]. In this setting, automata
theory over infinite words plays a crucial role: the set of possible (potentially
infinite) behaviors of the system and the set of admissible behaviors of the cor-
rectness specification can be modeled as languages accepted by automata. The
verification problem of checking that a system meets its specification then re-
duces to testing language inclusion between two automata over infinite words.

In the last two decades, model checking of pushdown automata (PDA) has
received a lot of attention [11, 17, 20]. PDA represent an infinite-state formalism
suitable to model the control flow of typical sequential programs with nested and
recursive procedure calls. Although the general problem of checking context-free
properties of PDA is undecidable [16], algorithmic solutions have been proposed
for interesting subclasses of context-free requirements [3, 5, 6, 13]. A well-known
approach is that of Visibly Pushdown Automata (VPA) [5, 6], a subclass of PDA
where the input symbols over a pushdown alphabet control the admissible op-
erations on the stack. Precisely, the alphabet is partitioned into a set of calls,
representing a procedure call and forcing a push stack-operation, a set of re-
turns, representing a procedure return and forcing a pop stack-operation, and
a set of internal actions that cannot access or modify the content of the stack.
This restriction makes the class of resulting languages (visibly pushdown lan-
guages or VPL) very similar in tractability and robustness to that of regular
languages [5, 6]. VPL are closed under Boolean operations, and language inclu-
sion is Exptime-complete. VPA capture all regular properties, and, additionally,
allow to specify regular requirements over two kinds of non-regular patterns on
input words: abstract paths and caller paths. An abstract path captures the local

computation within a procedure with the removal of subcomputations corre-
sponding to nested procedure calls, while a caller path represents the call-stack
content at a given position of the input.

Recently, many works [1, 8, 10, 14, 15, 19] have investigated real-time exten-
sions of PDA by combining PDA with Timed Automata (TA) [2], a model widely
used to represent real-time systems. TA are finite automata augmented with a
finite set of real-valued clocks, which operate over words where each symbol is
paired with a real-valued timestamp (timed words). All clocks progress at same
speed and can be reset by transitions (thus, each clock keeps track of the elapsed
time since the last reset). Constraints on clocks are associated with transitions
to restrict the behavior of the automaton. The emptiness problem for TA is
decidable and Pspace complete [2]. However, since in TA, clocks can be reset
nondeterministically and independently of each other, the resulting class of timed
languages is not closed under complement and, in particular, language inclusion
is undecidable [2]. As a consequence, the general verification problem (i.e., lan-
guage inclusion) of formalisms combining unrestricted TA with robust subclasses
of PDA such as VPA, i.e. Visibly Pushdown Timed Automata (VPTA), is unde-
cidable as well. In fact, checking language inclusion for VPTAis undecidable even
in the restricted case of specifications using at most one clock [15].

Event-clock automata (ECA) [4] are an interesting subclass of TA where the
explicit reset of clocks is disallowed. In ECA, clocks have a predefined associa-
tion with the input alphabet symbols. Precisely, for each symbol a, there are
two clocks: the global recorder clock, recording the time elapsed since the last
occurrence of a, and the global predictor clock, measuring the time required for
the next occurrence of a. Hence, the clock valuations are determined only by
the input timed word being independent of the automaton behavior. Such a
restriction makes the resulting class of timed languages closed under Boolean
operations, and in particular, language inclusion is Pspace-complete [4].

Recently, a robust subclass of VPTA, called Event-Clock Visibly Pushdown
Automata (ECVPA), has been proposed in [18], combining ECA with VPA. ECVPA
are closed under Boolean operations, and language inclusion is Exptime-complete.
However, ECVPA do not take into account the nested hierarchical structure in-
duced by a timed word over a pushdown alphabet, namely, they do not provide
any explicit mechanism to relate the use of a stack with that of event clocks.

Our contribution. In this paper, we introduce an extension of ECVPA, called
Event-Clock Nested Automata (ECNA) that, differently from ECVPA, allows to
relate the use of event clocks and the use of the stack. To this end, we add for each
input symbol a, three additional event clocks: the abstract recorder clock (resp.,
abstract predictor clock), measuring the time elapsed since the last occurrence
(resp., the time for the next occurrence) of a along the maximal abstract path
visiting the current position; the caller clock, measuring the time elapsed since
the last occurrence of a along the caller path from the current position. In this
way, ECNA allow to specify relevant real-time non-regular properties including:

– Local bounded-time responses such as “in the local computation of a proce-
dure A, every request p is followed by a response q within k time units”.

– Bounded-time total correctness requirements such as “if the pre-condition
p holds when the procedure A is invoked, then the procedure must return
within k time units and q must hold upon return”.

– Real-time security properties which require the inspection of the call-stack
such as “a module A should be invoked only if module B belongs to the call
stack and within k time units since the activation of module B”.

We show that ECNA are strictly more expressive than ECVPA and, as for ECVPA,
the resulting class of languages is closed under all Boolean operations. Moreover,
language inclusion and visibly model-checking of VPTA against ECNA speci-
fications are decidable and Exptime-complete. The key step in the proposed
decision procedures is a translation of ECNA into equivalent VPTA.

Related work. Pushdown Timed Automata (PTA) have been introduced in [10],
and their emptiness problem is Exptime-complete. An extension of PTA, namely
Dense-Timed Pushdown Automata (DTPA), has been studied in [1], where each
symbol in the stack is equipped with a real-valued clock representing its ‘age’
(the time elapsed since the symbol has been pushed onto the stack). It has been
shown in [14] that DTPA do not add expressive power and can be translated into
equivalent PTA. Our proposed translation of ECNA into VPTA is inspired from
the construction in [14]. In [9], an equally-expressive extension of ECVPA [18] over
finite timed words, by means of a timed stack (like in DTPA), is investigated.

2 Preliminaries

In the following, N denotes the set of natural numbers and R+ the set of non-
negative real numbers. Let w be a finite or infinite word over some alphabet. By
|w| we denote the length of w (we set |w| =∞ if w is infinite). For all i, j ∈ N,
with i ≤ j, wi is i-th letter of w, while w[i, j] is the finite subword wi · · ·wj .

An infinite timed word w over a finite alphabet Σ is an infinite word w =
(a0, τ0)(a1, τ1), . . . over Σ × R+ (intuitively, τi is the time at which ai occurs)
such that the sequence τ = τ0, τ1, . . . of timestamps satisfies: (1) τi ≤ τi+1 for all
i ≥ 0 (monotonicity), and (2) for all t ∈ R+, τi ≥ t for some i ≥ 0 (divergence).
The timed word w is also denoted by the pair (σ, τ), where σ is the untimed
word a0a1 . . . and τ is the sequence of timestamps. An ω-timed language over Σ
is a set of infinite timed words over Σ.

Pushdown alphabets, abstract paths, and caller paths. A pushdown alphabet is a
finite alphabet Σ = Σcall∪Σret∪Σint which is partitioned into a set Σcall of calls,
a set Σret of returns, and a set Σint of internal actions. The pushdown alphabet
Σ induces a nested hierarchical structure in a given word over Σ obtained by
associating to each call the corresponding matching return (if any) in a well-
nested manner. Formally, the set of well-matched words is the set of finite words
σw over Σ inductively defined by the following grammar:

σw := ε
∣∣ a · σw ∣∣ c · σw · r · σw

where ε is the empty word, a ∈ Σint , c ∈ Σcall , and r ∈ Σret .

Fix an infinite word σ over Σ. For a call position i ≥ 0, if there is j > i such
that j is a return position of σ and σ[i+ 1, j − 1] is a well-matched word (note
that j is uniquely determined if it exists), we say that j is the matching return
of i along σ. For a position i ≥ 0, the abstract successor of i along σ, denoted
succ(a, σ, i), is defined as follows:
– If i is a call, then succ(a, σ, i) is the matching return of i, if such a matching

return exists; otherwise, succ(a, σ, i) = ⊥ (⊥ denotes the undefined value).
– If i is not a call, then succ(a, σ, i) = i + 1 if i + 1 is not a return position,

and succ(a, σ, i) = ⊥, otherwise.
The caller of i along σ, denoted succ(c, σ, i), is instead defined as follows:
– if there exists the greatest call position jc < i such that either succ(a, σ, jc) =
⊥ or succ(a, σ, jc) > i, then succ(c, σ, i) = jc; otherwise, succ(c, σ, i) = ⊥.
In the analysis of recursive programs, a maximal abstract path captures the

local computation within a procedure removing computation fragments corre-
sponding to nested calls, while the caller path represents the call-stack con-
tent at a given position of the input. Formally, a maximal abstract path (MAP)
of σ is a maximal (finite or infinite) increasing sequence of natural numbers
ν = i0 < i1 < . . . such that ij = succ(a, σ, ij−1) for all 1 ≤ j < |ν|. Note
that for every position i of σ, there is exactly one MAP of σ visiting position
i. For each i ≥ 0, the caller path of σ from position i is the maximal (finite)
decreasing sequence of natural numbers j0 > j1 . . . > jn such that j0 = i and
jh+1 = succ(c, σ, jh) for all 0 ≤ h < n. Note that the positions of a MAP have
the same caller (if any).

For instance, consider the finite untimed word σp of length 10 depicted below
where Σcall = {c}, Σret = {r}, and Σint = {ı}.

σp =
0
c

1
c

2
ı

3
c

4
ı

5
r

6
r

7
c

8
ı

9
r

10
ı

Let σ be σp ·ıω. Note that 0 is the unique unmatched call position of σ: hence, the
MAP visiting 0 consists of just position 0 and has no caller. The MAP visiting
position 1 is the infinite sequence 1, 6, 7, 9, 10, 11, 12, 13 . . . and the associated
caller is position 0; the MAP visiting position 2 is the sequence 2, 3, 5 and the
associated caller is position 1, and the MAP visiting position 4 consists of just
position 4 whose caller path is 4, 3, 1, 0.

3 Event-clock nested automata

In this section, we define the formalism of Event-Clock Nested Automata (ECNA),
which allow a combined used of event clocks and visible operations on the stack.
To this end, we augment the standard set of event clocks [4] with a set of abstract
event clocks and a set of caller event clocks whose values are determined by con-
sidering maximal abstract paths and caller paths of the given word, respectively.

In the following, we fix a pushdown alphabet Σ = Σcall ∪Σret ∪Σint . The set
CΣ of event clocks associated with Σ is given by CΣ :=

⋃
b∈Σ{x

g
b, y

g
b , x

a
b, y

a
b , x

c
b}.

Thus, we associate with each symbol b ∈ Σ, five event clocks: the global recorder
clock xgb (resp., the global predictor clock ygb) recording the time elapsed since
the last occurrence of b, if any, (resp., the time required to the next occurrence
of b if any); the abstract recorder clock xab (resp., the abstract predictor clock
yab) recording the time elapsed since the last occurrence of b, if any, (resp. the
time required to the next occurrence of b) along the MAP visiting the current
position; and the caller (recorder) clock xcb recording the time elapsed since the
last occurrence of b if any along the caller path from the current position. Let
w = (σ, τ) be an infinite timed word over Σ and i ≥ 0. We denote by Pos(a, w, i)
the set of positions visited by the MAP of σ associated with position i, and by
Pos(c, w, i) the set of positions visited by the caller path of σ from position i. In
order to allow a uniform notation, we write Pos(g, w, i) to mean the full set N of
positions. Fixed the input word w, when the automaton reads the i-th position
σi at time τi, the values of the clocks are uniquely determined as follows.

Definition 1 (Input determinisitic clock valuations). A clock valuation
over CΣ is a mapping val : CΣ 7→ R+ ∪ {⊥}, assigning to each event clock a
value in R+∪{⊥} (⊥ denotes the undefined value). Given an infinite timed word
w = (σ, τ) over Σ and a position i, the clock valuation valwi over CΣ , specifying
the values of the event clocks at position i along w, is defined as follows for each
b ∈ Σ, where dir ∈ {g, a, c} and dir′ ∈ {g, a}:

valwi (xdirb) =

 τi − τj if ∃j < i : b = σj , j ∈ Pos(dir, w, i), and
∀k : (j < k < i and k ∈ Pos(dir, w, i))⇒ b 6= σk

⊥ otherwise

valwi (ydir
′

b) =

 τj − τi if ∃j > i : b = σj , j ∈ Pos(dir′, w, i), and
∀k : (i < k < j and k ∈ Pos(dir′, w, i))⇒ b 6= σk

⊥ otherwise

It is worth noting that while the values of the global clocks are obtained by
considering the full set of positions in w, the values of the abstract clocks (resp.,
caller clocks) are defined with respect to the MAP visiting the current position
(resp., with respect to the caller path from the current position).

For C ⊆ CΣ and a clock valuation val over CΣ , val |C denotes the restriction
of val to the set C. A clock constraint over C is a conjunction of atomic formulas
of the form z ∈ I, where z ∈ C, and I is either an interval in R+ with bounds
in N∪{∞}, or the singleton {⊥} (also denoted by [⊥,⊥]). For a clock valuation
val and a clock constraint θ, val satisfies θ, written val |= θ, if for each conjunct
z ∈ I of θ, val(z) ∈ I. We denote by Φ(C) the set of clock constraints over C.

For technical convenience, we first introduce an extension of the known class
of Visibly Pushdown Timed Automata (VPTA) [10, 15], called nested VPTA.
Nested VPTA are simply VPTA augmented with event clocks. Therefore, transi-
tions of nested VPTA are constrained by a pair of disjoint finite sets of clocks:
a finite set Cst of standard clocks and a disjoint set C ⊆ CΣ of event clocks.
As usual, a standard clock can be reset when a transition is taken; hence, its
value at a position of an input word depends in general on the behaviour of the
automaton and not only, as for event clocks, on the word.

The class of Event-Clock Nested Automata (ECNA) corresponds to the sub-
class of nested VPTA where the set of standard clocks Cst is empty.

A (standard) clock valuation over Cst is a mapping sval : Cst 7→ R+ (note
that the undefined value ⊥ is not admitted). For t ∈ R+ and a reset set Res ⊆
Cst, sval + t and sval [Res] denote the valuations over Cst defined as follows
for all z ∈ Cst: (sval + t)(z) = sval(z) + t, and sval [Res](z) = 0 if z ∈ Res
and sval [Res](z) = sval(z) otherwise. For C ⊆ CΣ and a valuation val over C,
val ∪ sval denotes the valuation over Cst ∪ C defined in the obvious way.

Definition 2 (Nested VPTA). A Büchi nested VPTA over Σ = Σcall ∪Σint ∪
Σret is a tuple A = (Σ,Q,Q0, D = C ∪ Cst, Γ ∪ {>}, ∆, F), where Q is a finite
set of (control) states, Q0 ⊆ Q is a set of initial states, C ⊆ CΣ is a set of event
clocks, Cst is a set of standard clocks disjoint with CΣ , Γ ∪ {>} is a finite stack
alphabet, > /∈ Γ is the special stack bottom symbol, F ⊆ Q is a set of accepting
states, and ∆c ∪∆r ∪∆i is a transition relation, where (D = C ∪ Cst):
– ∆c ⊆ Q×Σcall × Φ(D)× 2Cst ×Q× Γ is the set of push transitions,
– ∆r ⊆ Q×Σret × Φ(D)× 2Cst × (Γ ∪ {>})×Q is the set of pop transitions,
– ∆i ⊆ Q×Σint × Φ(D)× 2Cst ×Q is the set of internal transitions.

We now describe how a nested VPTA A behaves over an infinite timed word
w. Assume that on reading the i-th position of w, the current state of A is q,
valwi is the event-clock valuation associated with w and i, sval is the current
valuation of the standard clocks in Cst, and t = τi − τi−1 is the time elapsed
from the last transition (where τ−1 = 0). If A reads a call c ∈ Σcall , it chooses
a push transition of the form (q, c, θ,Res, q′, γ) ∈ ∆c and pushes the symbol
γ 6= > onto the stack. If A reads a return r ∈ Σret , it chooses a pop transition
of the form (q, r, θ,Res, γ, q′) ∈ ∆r such that γ is the symbol on top of the stack,
and pops γ from the stack (if γ = >, then γ is read but not removed). Finally,
on reading an internal action a ∈ Σint , A chooses an internal transition of the
form (q, a, θ,Res, q′) ∈ ∆i, and, in this case, there is no operation on the stack.
Moreover, in all the cases, the constraint θ of the chosen transition must be
fulfilled by the valuation (sval + t) ∪ (valwi)|C , the control changes from q to q′,
and all the standard clocks in Res are reset (i.e., the valuation of the standard
clocks is updated to (sval + t)[Res]).

Formally, a configuration ofA is a triple (q, β, sval), where q ∈ Q, β ∈ Γ ∗·{>}
is a stack content, and sval is a valuation over Cst. A run π of A over w = (σ, τ)
is an infinite sequence of configurations π = (q0, β0, sval0), (q1, β1, sval1), . . . such
that q0 ∈ Q0, β0 = >, sval0(z) = 0 for all z ∈ Cst (initialization requirement),
and the following holds for all i ≥ 0, where ti = τi − τi−1 (τ−1 = 0):

– Push: If σi ∈ Σcall , then for some (qi, σi, θ,Res, qi+1, γ) ∈ ∆c, βi+1 = γ · βi,
sval i+1 = (sval i + ti)[Res], and (sval i + ti) ∪ (valwi)|C |= θ.

– Pop: If σi ∈ Σret , then for some (qi, σi, θ,Res, γ, qi+1) ∈ ∆r, sval i+1 =
(sval i+ti)[Res], (sval i+ti)∪(valwi)|C |= θ, and either γ 6= > and βi = γ ·βi+1,
or γ = βi = βi+1 = >.

– Internal: If σi ∈ Σint , then for some (qi, σi, θ,Res, qi+1) ∈ ∆i, βi+1 = βi,
sval i+1 = (sval i + ti)[Res], and (sval i + ti) ∪ (valwi)|C |= θ.

The run π is accepting if there are infinitely many positions i ≥ 0 such that
qi ∈ F . The timed language LT (A) of A is the set of infinite timed words w over
Σ such that there is an accepting run of A on w. The greatest constant of A,
denoted KA, is the greatest natural number used as bound in some clock con-
straint of A. For technical convenience, we also consider nested VPTA equipped
with a generalized Büchi acceptance condition F consisting of a family of sets
of accepting states. In such a setting, a run π is accepting if for each Büchi
component F ∈ F , the run π visits infinitely often states in F .

A VPTA [15] corresponds to a nested VPTA whose set C of event clocks is
empty. An ECNA is a nested VPTA whose set Cst of standard clocks is empty.
For ECNA, we can omit the reset component Res from the transition function
and the valuation component sval from each configuration (q, β, sval). Note the
the class of Event-Clock Visibly Pushdown Automata (ECVPA) [18] corresponds
to the subclass of ECNA where abstract and caller event-clocks are disallowed.
We also consider three additional subclasses of ECNA: abstract predicting ECNA
(AP ECNA, for short) which do not use abstract recorder clocks and caller clocks,
abstract recording ECNA (AR ECNA, for short) which do not use abstract predic-
tor clocks and caller clocks, and caller ECNA (C ECNA, for short) which do not
use abstract clocks. Note that these three subclasses of ECNA subsume ECVPA.

Example 1. Let us consider the AR ECNA depicted below, where Σcall = {c},
Σret = {r}, and Σint = {a, b, ı}. The control part of the transition relation
ensures that for each accepted word, the MAP visiting the b-position associated
with the transition tr from q4 to q5 cannot visit the a-positions following the call
positions. This implies that the abstract recorder constraint xaa = 1 associated
with tr is fulfilled only if all the occurrences of calls c and returns r are matched.
Hence, constraint xaa = 1 ensures that the accepted language, denoted by Lrec

T ,

q0 q1

c, push(c)

a
q2

a

c, push(c)
q3

r, pop(c)

a
q4

b

r, pop(c)
q5

ı

b, xaa = 1

consists of all the timed words of the form (σ, τ) · (ıω, τ ′) such that σ is a well-
matched word of the form a·cn·am·rn·bk with n,m, k > 0, and the time difference
in (σ, τ) between the first and last symbols is 1, i.e. τ|σ|−1−τ0 = 1. The example
shows that ECNA allow to express a meaningful real-time property of recursive
systems, namely the ability of bounding the time required to perform an internal
activity consisting of an unbounded number of returning recursive procedure
calls.Similarly, it is easy to define an AP ECNA accepting the timed language,
denoted by Lpred

T , consisting of all the timed words of the form (σ, τ) · (ıω, τ ′)
such that σ is a well-matched word of the form ak ·cn ·bm ·rn ·b, with n,m, k > 0,
and the time difference in (σ, τ) between the first and last symbol is 1. Finally,
we consider the timed language Lcaller

T , which can be defined by a C ECNA,
consisting of the timed words of the form (c, t0) · (σ, τ) · (ıω, τ ′) such that σ is a
well-matched word of the form a · cn · am · rn · bk, with n,m, k > 0, and the time
difference in (c, t0) · (σ, τ) between the first and last symbols is 1.

Closure properties of Büchi ECNA. As stated in the following theorem, the class
of languages accepted by Büchi ECNA is closed under Boolean operations. The
proof exploits a technique similar to that used in [18] to prove the analogous
closure properties for ECVPA (for details, see Appendix A of [12]).

Theorem 1. The class of ω-timed languages accepted by Büchi ECNA is closed
under union, intersection, and complementation. In particular, given two Büchi
ECNA A = (Σ,Q,Q0, C, Γ∪{>}, ∆, F) and A′ = (Σ,Q′, Q′0, C

′, Γ ′∪{>}, ∆′, F ′)
over Σ, one can construct
– a Büchi ECNA accepting LT (A)∪LT (A′) with |Q|+ |Q′| states, |Γ |+ |Γ ′|+1

stacks symbols, and greatest constant max(KA,KA′);
– a Büchi ECNA accepting LT (A)∩LT (A′) with 2|Q||Q′| states, |Γ ||Γ ′| stacks

symbols, and greatest constant max(KA,KA′);

– a Büchi ECNA accepting the complement of LT (A) with 2O(n2) states, O(2O(n2)·
|Σcall |·|Const |O(|Σ|)) stack symbols, and greatest constant KA, where n = |Q|
and Const is the set of constants used in the clock constraints of A.

Expressiveness results. We now summarize the expressiveness results for ECNA.
First of all, the timed languages Lrec

T , Lpred
T , and Lcaller

T considered in Example 1
and definable by AR ECNA, AP ECNA, and C ECNA, respectively, can be used
to prove that the three subclasses AR ECNA, AP ECNA, and C ECNA of ECNA
are mutually incomparable. Hence, these subclasses strictly include the class of
ECVPA and are strictly included in ECNA. The incomparability result directly
follows from Proposition 1 below, whose proof is in Appendix B of [12].

As for ECNA, we have that they are less expressive than Büchi VPTA. In
fact, by Theorem 3 in Section 4, Büchi ECNA can be converted into equivalent
Büchi VPTA. The inclusion is strict since, while Büchi ECNA are closed under
complementation (Theorem 1), Büchi VPTA are not [15].

In [9], an equally-expressive extension of ECVPA over finite timed words, by
means of a timed stack, is investigated. The Büchi version of such an extension
can be trivially encoded in Büchi AR ECNA. Moreover, the proof of Proposi-
tion 1 can also be used for showing that Büchi ECVPA with timed stack are less
expressive than Büchi AR ECNA, Büchi AP ECNA, and Büchi C ECNA.
The general picture of the expressiveness results is summarized by Theorem 2.

Proposition 1. The language Lrec
T is not definable by Büchi ECNA which do

not use abstract recorder clocks, Lpred
T is not definable by Büchi ECNA which

do not use abstract predictor clocks, and Lcaller
T is not definable by Büchi ECNA

which do not use caller clocks. Moreover, the language Lrec
T ∪ L

pred
T ∪ Lcaller

T is
not definable by Büchi AR ECNA, Büchi AP ECNA and Büchi C ECNA.

Theorem 2. The classes AR ECNA, AP ECNA, and C ECNA are mutually in-
comparable, and AP ECNA ∪ AR ECNA ∪ C ECNA ⊂ ECNA. Moreover,

(1) ECVPA ⊂ AR ECNA (2) ECVPA ⊂ AP ECNA
(3) ECVPA ⊂ C ECNA (4) ECNA ⊂ VPTA

Note that the expressiveness results above also hold for finite timed words.

4 Decision procedures for Büchi ECNA

In this section, we first investigate emptiness, universality, and language inclusion
problems for Büchi ECNA. Then, we consider the Visibly model-checking problem
against Büchi ECNA, i.e., given a visibly pushdown timed system S over Σ (that
is a Büchi VPTA where all the states are accepting) and a Büchi ECNA A over
Σ, the problem whether LT (S) ⊆ LT (A) hold. We establish that the above
mentioned problems are decidable and Exptime-complete. The key intermediate
result is an exponential-time translation of Büchi ECNA into language-equivalent
generalized Büchi VPTA. More precisely, we show that event clocks in nested
VPTA can be removed with a single exponential blow-up.

Theorem 3 (Removal of event clocks from nested VPTA). Given a gen-
eralized Büchi nested VPTA A, one can construct in singly exponential time a
generalized Büchi VPTA A′ (which do not use event clocks) such that LT (A′) =
LT (A) and KA′ = KA. Moreover, A′ has n ·2O(p·|Σ|) states and m+O(p) clocks,
where n is the number of A-states, m is the number of standard A-clocks, and p
is the number of event-clock atomic constraints used by A.

In the following we sketch a proof of Theorem 3. Basically, the result follows
from a sequence of transformation steps all preserving language equivalence. At
each step, an event clock is replaced by a set of fresh standard clocks. To remove
global event clocks we use the technique from [4]. Here, we focus on the removal
of an abstract predictor clock yab with b ∈ Σ, referring to Appendix D and E of
[12] for the treatment of abstract recorder clocks and caller clocks, respectively.

Fix a generalized Büchi nested VPTA A = (Σ,Q,Q0, C ∪Cst, Γ ∪{>}, ∆,F)
such that yab ∈ C. By exploiting nondeterminism, we can assume that for each
transition tr of A, there is exactly one atomic constraint yab ∈ I involving yab used
as conjunct in the clock constraint of tr. If I 6= {⊥}, then yab ∈ I is equivalent
to a constraint of the form yab � ` ∧ yab ≺ u, where �∈ {>,≥}, ≺∈ {<,≤},
` ∈ N, and u ∈ N ∪ {∞}. We call yab � ` (resp., yab ≺ u) a lower-bound (resp.,
upper-bound) constraint. Note that if u = ∞ , the constraint yab ≺ u is always
fulfilled, but we include it to have a uniform notation. We construct a generalized
Büchi nested VPTA Ayab equivalent to A whose set of event clocks is C \ {yab},
and whose set of standard clocks is Cst ∪Cnew, where Cnew consists of the fresh
standard clocks z�` (resp., z≺u), for each lower-bound constraint yab � ` (resp.,
upper-bound constraint yab ≺ u) of A involving yab .

We now report the basic ideas of the translation. Consider a lower-bound
constraint yab � `. Assume that a prediction yab � ` is done by A at position
i of the input word for the first time. Then, the simulating automaton Ayab
exploits the standard clock z�` to check that the prediction holds by resetting
it at position i. Moreover, if i is not a call (resp., i is a call), Ayab carries the
obligation �` in its control state (resp., pushes the obligation �` onto the stack)
in order to check that the constraint z�` � ` holds when the next b occurs at a
position jcheck along the MAP ν visiting position i. We observe that:
– if a new prediction yab � ` is done by A at a position j > i of ν strictly

preceding jcheck, Ayab resets the clock z�` at position j rewriting the old

obligation. This is safe since the fulfillment of the lower-bound prediction
yab � ` at j guarantees that prediction yab � ` is fulfilled at i along ν.

– If a call position ic ≥ i occurs in ν before jcheck, the next position of ic
in ν is the matching return ir of ic, and any MAP visiting a position h ∈
[ic+1, ir−1] is finite and ends at a position k < ir. Thus, the clock z�` can be
safely reset to check the prediction yab � ` raised in positions in [ic+1, ir−1]
since this check ensures that z�` � ` holds at position jcheck.

Thus, previous obligations on a constraint yab � ` are always rewritten by more
recent ones. At each position i, Ayab records in its control state the lower-bound
obligations for the current MAP ν (i.e., the MAP visiting the current position
i). Whenever a call ic occurs, the lower-bound obligations are pushed on the
stack in order to be recovered at the matching return ir. If ic + 1 is not a return
(i.e., ir 6= ic + 1), then Ayab moves to a control state having an empty set of
lower-bound obligations (position ic + 1 starts the MAP visiting ic + 1).

The treatment of an upper-bound constraint yab ≺ u is symmetric. Whenever
a prediction yab ≺ u is done by A at a position i, and the simulating automaton
Ayab has no obligation on the constraint yab ≺ u, Ayab resets the standard clock
z≺u. If i is not a call (resp., i is a call) the fresh obligation (first,≺u) is recorded
in the control state (resp., (first,≺u) is pushed onto the stack). When, along the
MAP ν visiting position i, the next b occurs at a position jcheck, the constraint
z≺u ≺ u is checked, and the obligation (first,≺u) is removed or confirmed (in
the latter case, resetting the clock z≺u), depending on whether the prediction
yab ≺ u is asserted at position jcheck or not. We observe that:

– if a new prediction yab ≺ u occurs in a position j > i of ν strictly preceding
jcheck, Ayab simply ignores it (the clock z≺u is not reset at position j) since
checking the prediction yab ≺ u at the previous position i guarantees the
fulfillment of the prediction yab ≺ u at the position j > i along ν.

– If a call position ic ≥ i occurs in ν before jcheck, then all the predictions
yab ≺ u occurring in a MAP visiting a position h ∈ [ic + 1, ir − 1], with
ir ≤ jcheck being the matching-return of ic, can be safely ignored (i.e., z≺u
is not reset there) since they are subsumed by the prediction at position i.

Thus, for new obligations on an upper-bound constraint yab ≺ u, the clock z≺u
is not reset. Whenever a call ic occurs, the updated set O of upper-bound
and lower-bound obligations is pushed onto the stack to be recovered at the
matching return ir of ic. Moreover, if ic + 1 is not a return (i.e., ir 6= ic + 1),
then Ayab moves to a control state where the set of lower-bound obligations
is empty and the set of upper-bound obligations is obtained from O by re-
placing each upper-bound obligation (f ,≺u), for f ∈ {live,first}, with the live
obligation (live,≺u). The latter asserted at the initial position ic + 1 of the
MAP ν visiting ic + 1 (note that ν ends at ir − 1) is used by Ayab to re-
member that the clock z≺u cannot be reset along ν. Intuitively, live upper-
bound obligations are propagated from the caller MAP to the called MAP. Note
that fresh upper-bound obligations (first,≺u) always refer to predictions done
along the current MAP and, differently from the live upper-bound obligations,
they can be removed when the next b occurs along the current MAP.

Extra technicalities are needed. At each position i, Ayab guesses whether i
is the last position of the current MAP (i.e., the MAP visiting i). For this,
it keeps track in its control state of the guessed type (call, return, or internal
symbol) of the next input symbol. In particular, when i is a call, Ayab guesses
whether it has a matching return. If not, Ayab pushes onto the stack a special
symbol, say bad, and the guess is correct iff the symbol is never popped from the
stack. Conversely, Ayab exploits a special proposition p∞ whose Boolean value is
carried in the control state: p∞ does not hold at a position j of the input iff the
MAP visiting j has a caller whose matching return exists. Note that p∞ holds
at infinitely many positions. The transition function of Ayab ensures that the
Boolean value of p∞ is propagated consistently with the guesses. Doing so, the
guesses about the matched calls are correct iff p∞ is asserted infinitely often along
a run. A Büchi component of Ayab ensures this last requirement. Finally, we have
to ensure that the lower-bound obligations and fresh upper-bound obligations
at the current position are eventually checked, i.e., the current MAP eventually
visits a b-position. For finite MAP, this can be ensured by the transition function
of Ayab . For infinite MAP, we note that at most one infinite MAP ν exists along
a word, and ν visits only positions where p∞ holds. Moreover, each position i
greater than the initial position i0 of ν is either a ν-position, or a position where
p∞ does not hold. Thus, a Büchi component of Ayab using proposition p∞ ensures
the b-liveness requirements along the unique infinite MAP (if any). Full details
of the construction of Ayab are in Appendix C of [12].

By exploiting Theorems 1 and 3, we establish the main result of the paper.

Theorem 4. Emptiness, universality, and language inclusion for Büchi ECNA,
and visibly model-checking against Büchi ECNA are Exptime-complete.

Proof. For the upper bounds, first observe that by [10, 1] the emptiness problem
of generalized Büchi VPTA is Exptime-complete and solvable in time O(n4 ·
2O(m·logKm)), where n is the number of states, m is the number of clocks, and
K is the largest constant used in the clock constraints of the automaton (hence,
the time complexity is polynomial in the number of states). Now, given two
Büchi ECNA A1 and A2 over Σ, checking whether LT (A1) ⊆ LT (A2) reduces
to check emptiness of the language LT (A1) ∩ LT (A2). Similarly, given a Büchi
VPTA S where all the states are accepting and a Büchi ECNA A over the same
pushdown alphabet Σ, model-checking S against A reduces to check emptiness
of the language LT (S) ∩ LT (A). Since Büchi VPTA are polynomial-time closed
under intersection and universality can be reduced in linear-time to language
inclusion, by the closure properties of Büchi ECNA (Theorem 1) and Theorem 3,
membership in Exptime for the considered problems directly follow.

For the matching lower-bounds, the proof of Exptime-hardness for empti-
ness of Büchi VPTA can be easily adapted to the class of Büchi ECNA. For the
other problems, the result directly follows from Exptime-hardness of the corre-
sponding problems for Büchi VPA [5, 6] which are subsumed by Büchi ECNA. ut

Conclusions. In this paper we have introduced and studied ECNA, a robust
subclass of VPTA allowing to express meaningful non-regular timed properties

of recursive systems. The closure under Boolean operations, and the decidability
of languages inclusion and visibly model-checking makes ECNA amenable to
specification and verification purposes. As future work, we plan to investigate
suitable extensions of the Event Clock Temporal Logic introduced for ECA so
that a logical counterpart for ECNA can be similarly recovered.

References

1. Abdulla, P.A., Atig, M.F., Stenman, J.: Dense-timed pushdown automata. In: Proc.
27th LICS. pp. 35–44. IEEE Computer Society (2012)

2. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science
126(2), 183–235 (1994)

3. Alur, R., Etessami, K., Madhusudan, P.: A temporal logic of nested calls and
returns. In: Proc. 10th TACAS. LNCS, vol. 2988, pp. 467–481. Springer (2004)

4. Alur, R., Fix, L., Henzinger, T.A.: Event-clock automata: A determinizable class
of timed automata. Theoretical Computer Science 211(1-2), 253–273 (1999)

5. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: Proc. 36th STOC. pp.
202–211. ACM (2004)

6. Alur, R., Madhusudan, P.: Adding nesting structure to words. Journal of ACM
56(3), 16:1–16:43 (2009)

7. Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press (2008)
8. Benerecetti, M., Peron, A.: Timed recursive state machines: Expressiveness and

complexity. Theoretical Computer Science 625, 85–124 (2016)
9. Bhave, D., Dave, V., Krishna, S.N., Phawade, R., Trivedi, A.: A logical character-

ization for dense-time visibly pushdown automata. In: Proc. 10th LATA. LNCS,
vol. 9618, pp. 89–101. Springer (2016)

10. Bouajjani, A., Echahed, R., Robbana, R.: On the automatic verification of systems
with continuous variables and unbounded discrete data structures. In: Hybrid Sys-
tems II. LNCS, vol. 999, pp. 64–85. Springer (1994)

11. Bozzelli, L., Murano, A., Peron, A.: Pushdown Module Checking. Formal Methods
in System Design 36(1), 65–95 (2010)

12. Bozzelli, L., Murano, A., Peron, A.: Event-clock nested automata.
http://arxiv.org/abs/1711.08314 (2017)

13. Chatterjee, K., Ma, D., Majumdar, R., Zhao, T., Henzinger, T., Palsberg, J.: Stack
size analysis for interrupt-driven programs. In: Proc. 10th SAS. LNCS, vol. 2694,
pp. 109–126. Springer (2003)

14. Clemente, L., Lasota, S.: Timed pushdown automata revisited. In: Proc. 30th LICS.
pp. 738–749. IEEE Computer Society (2015)

15. Emmi, M., Majumdar, R.: Decision problems for the verification of real-time soft-
ware. In: Proc. 9th HSCC. LNCS, vol. 3927, pp. 200–211 (2006)

16. Kupferman, O., Piterman, N., Vardi, M.Y.: Pushdown specifications. In: Proc. 9th
LPAR. LNCS, vol. 2514, pp. 262–277. Springer (2002)

17. Murano, A., Perelli, G.: Pushdown multi-agent system verification. In: Proc. IJCAI.
pp. 1090–1097 (2015)

18. Tang, N.V., Ogawa, M.: Event-clock visibly pushdown automata. In: Proc. 35th
SOFSEM. LNCS, vol. 5404, pp. 558–569. Springer (2009)

19. Trivedi, A., Wojtczak, D.: Recursive timed automata. In: Proc. 8th ATVA. LNCS,
vol. 6252, pp. 306–324. Springer (2010)

20. Walukiewicz, I.: Pushdown Processes: Games and Model Checking. In: CAV’96.
pp. 62–74 (1996)

