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Abstract

Temporal logic is a powerful formalism widely studied in formal verifica-
tion. It allows reasoning about the ongoing behavior of a system, without
talking explicitly about time. Two logic frameworks have been mainly inves-
tigated: (i) linear-time temporal logics, such as LTL, suitable to describe sin-
gle computations of a system, and (ii) branching-time temporal logics, such
as CTL and CTL?, useful to reason about its computational tree structure.

Systems are often made by iterative and recursive structures. Then, rea-
soning about computational cycles becomes crucial both in their specification
and verification. Indeed, this is the case when we use automata and game-
theoretic approaches to handle decision problems such as model checking
and satisfiability. Surprisingly, no temporal logic has been studied so far
with explicit ability of talking about cycles.

In this paper we introduce Cycle-CTL?, an extension of CTL? with cycle
quantifications that are able to predicate over cycles. The introduced logic
turns out to be very expressive. Indeed, we prove that it strictly extends
CTL? and is orthogonal to µCalculus. We also give an evidence of its
usefulness by providing few examples involving non-regular properties. We
extensively investigate both the model-checking and satisfiability problems
for Cycle-CTL? and some of its variants/fragments.
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1. Introduction

Temporal logic is a suitable framework largely used in formal system ver-
ification [27, 8, 11, 10]. It allows to specify and reason in a rigorous manner
about the temporal evolution of a system, without talking explicitly about
the elapsing of time. Two fundamental decision problems involving temporal
logics have been deeply investigated: model checking and satisfiability. The
former, given a mathematical model of the system, such as a Kripke struc-
ture, asks whether it satisfies a temporal logic formula specifying its desired
behavior. The latter, instead, checks whether the temporal logic specification
is consistent and, thus, a corresponding system is feasible [10].

In several situations, reasoning about system correctness and, in partic-
ular, solving the above decision questions, reduces to detect precise cycle
properties over the system model. For example, in the classical automata-
theoretic approach there are settings in which the satisfiability question re-
duces to first build a Büchi automaton accepting all models of the formula
and then to check for its non-emptiness [22]. The latter can be solved by look-
ing for a “lasso”, that is a path from the initial state to a final state belonging
to a cycle [22, 18]. Similarly, if one uses a game-theory approach, solving the
model checking or the satisfiability questions reduces to first construct a two-
player game, such as a Büchi or a parity game [13, 22, 23, 3, 16, 31], and
then check for the existence of a winning strategy for a designated player.
The latter can be reduced to check whether it has the ability to confine the
evolution of the game (a play) over some specific cycle over the arena, no
matter how the other player behaves.

Depending on the view of the underlying nature of time, two types of
temporal logics are mainly considered. In linear-time temporal logics, such
as LTL [27], time is treated as if each moment in time has a unique possi-
ble future. Conversely, in branching-time temporal logics such as CTL [8]
and CTL? [12] each moment in time may split into various possible futures.
Then, to express properties along one or all the possible futures we make
use of existential and universal quantifiers. Noticeably, LTL is suitable to
express path properties; CTL is more appropriate to express state-based
properties; finally, CTL? has the power to express combinations of path and
state properties. In the years, these logics have been extended in a number
of ways in order to express very complicated specification properties. Sur-
prisingly, no temporal logic has been introduced so far to reason explicitly
about cycles, despite their usefulness. In addition to the technical motivation
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mentioned above, there are often cases in which it is useful to distinguish be-
tween purely infinite behaviors, like those occurring in infinite-state systems,
from regular infinite behaviors [6, 19], which can be detected by looking for
cycles. Moreover, also in finite-state systems there are infinite behaviors that
are not regular, like the one referred as prompt in [20, 26], which also can be
detected by looking at cyclic computations.

In this paper we introduce Cycle-CTL? (CTL?	), an extension of the
classical logic CTL? along with the ability to predicate over cycles. For a
cycle we mean a path that passes through its initial state infinitely often.
Syntactically, CTL?	 is obtained by enriching CTL? with two novel cycle
quantifiers, namely the existential one E	 and the universal one A	. Note
that CTL?	 still uses the classical quantifiers E and A. Hence, we can use it
to specify models whose behaviour results as an opportune combination of
standard paths and cycles. In particular, CTL?	 can specify the existence of
a lasso within a model.

We study the expressiveness of CTL?	 and show that it is strictly more
expressive than CTL? but orthogonal to µ-calculus. To give an evidence of
the power and usefulness of the introduced logic, we provide some examples
along the paper. Precisely, we first show how CTL?	 can be used to rea-
soning, in a very natural way, about liveness properties restricted to cycles.
Precisely, we show how to specify that some designated properties recurrently
occurs in the starting state of a cycle. As another example, we show the abil-
ity of the logic to handle non-regular properties such as the “prompt-parity
condition” [26]. In temporal logic, we can specify properties that will even-
tually hold, but this gives no bound on the moment they will occur. Prompt
temporal logics and games have been deeply investigated in order to restrict
reasoning about properties that only occur in bounded time [7, 1, 21, 4, 26].

We investigate both the model checking and the satisfiability questions
for CTL?	 and provide some automata-based solutions. For the model check-
ing question we provide a PSpace upper-bound by opportunely extending
the classical approach that is used for CTL? [22]. Specifically, we add a ma-
chinery consisting of an appropriate Büchi automaton that checks in parallel
whether a path is a cycle and satisfies a required formula. Concerning the
satisfiability question, we introduce instead a novel approach that makes use
of two-way automata [28]. These automata, largely investigate and used in
formal verification [5, 14, 19], allow to traverse trees both in forward and
backward. The reason why we cannot use and extend the classical approach
provided for CTL? (see [22]) resides on the fact that such an approach makes
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strongly use of some positive properties that hold for CTL?, among the oth-
ers the tree- and the finite-model ones. Unluckily and unsurprisingly, due to
the ability in CTL?	 to force (and even more to forbid) the existence of cycles,
we lose in this logic both these properties. This requires the introduction of
novel and ad hoc definitions of bisimulation and tree-like unwinding to be
used along with the automata-based approach. In particular, two-way tree
automata are used to collect all tree representations of such tree-like unwind-
ing structures. By means of this machinery we show that the satisfiability
question for the full logic is 3ExpTime.

In addition to CTL?	, we also introduce Simple-CTL?	: a semantic vari-
ant of the logic in which the cycle quantifications predicate only on simple
cycles. By using a similar reasoning as for CTL?	, also Simple-CTL?	 strictly
includes CTL?. In particular, it is orthogonal to µ-calculus. We investigate
both the model-theoretic and the satisfiability problems for Simple-CTL?	,
showing that their complexities correspond to the ones for CTL?. Finally,
we investigate Cycle-CTL and Simple-Cycle-CTL as the natural CTL-like
fragments of the introduced logics.

Outline of the paper. The paper is divided into sections as follows. In Sec-
tion 2, we introduce the syntax and semantics of Cycle-CTL? and Simple-
Cycle-CTL?, as well as the fragments corresponding to CTL. We also in-
troduce some example to make the reader familiar with the new logic. In
Section 3, we analyze the model-theoretic properties of these logics. In par-
ticular, we first prove that they are not invariant under the classic notion of
bisimulation, this showing that they cannot be embedded into either CTL?

or µ-calculus. Then, we introduce the notion of Cycle-bisimulation, a refine-
ment of the classic bisimulation for which our logic and its fragments are
invariant. In Section 4 we analyze the computational complexities of both
the model-checking and the satisfiability problem. Finally, in Section 5 we
provide some discussion and future work.

2. Computation-Tree Logic with Cycle Detection

In this section we introduce and discuss the syntax and semantics of
Cycle-CTL? (CTL?	, for short) and Simple-Cycle-CTL? (CTL?s	, for short),
as well as their fragments CTL	 and CTLs	, respectively. To do this, we
first recall the concept of Kripke structure and some related basic notions.
Finally, we also discuss some interesting problems that can be expressed in
our logic.
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Models We first provide the definition of the underlying model for our
logics.

Definition 1 (Kripke Structure). A Kripke structure (KS, for short) [17]
over a finite set of atomic propositions AP is a tuple K ,〈AP,W,R , L, w〉,
where W is an enumerable non-empty set of worlds, w ∈W is a designated
initial world, R ⊆W×W is a left-total transition relation, and L : W 7→ 2AP

is a labeling function mapping each world to the set of atomic propositions
true in that world.

A path in K is an infinite sequence of worlds π ∈ Pth ⊆ Wω such that,
for all i ∈ N, it holds that ((π)i, (π)i+1) ∈ R. We denote by fst(π) , π0 and
(π)i , πi the first and i-th element of π. For a path π, we say that π is a
cycle if, for all i ∈ N, there exists j ∈ N, with j > i, such that (π)j = fst(π).
We denote by Cyc ⊆ Pth the set of cycles. A cycle π is a simple cycle if
there is a strictly increasing sequence (ni)i∈N such that, for all i ∈ N, (a)
πni

= π and (b) for all i ∈ N and for all ni < j < k < ni+1, we have πj 6= πk.
We denote by SCyc ⊆ Cyc the set of simple cycle. For a given path π, we
denote by L(π) the sequence γ in (2AP)ω such that (γ)i = L(πi) for all i ∈ N.
Moreover, (π)≤i , π0 · · · πi and (π)≥i , πi · πi+1 · · · represent the prefix up
to and the suffix from position i of π. Prefixes of a path are also called tracks
and denoted by ρ ∈ Trk ⊆ W+. We also denote by lst(ρ) the last element
occurring in the track ρ. Finally, all the definitions given above for paths
naturally apply to tracks.

By Trk(w) and Pth(w) we denote the set of tracks and paths starting
from w, respectively. By Cyc(w) and SCyc(w) we denote the set of cycles
and simple cycles starting from w, respectively. Intuitively, tracks and paths
of a KS K are legal sequences, either finite or infinite, of reachable worlds
that can be seen as partial or complete descriptions of possible computations
of the system modelled by K.

For a pair (w, w) ∈ R, we say that w is an R-successor of w. Note
that in case R is a function, then each world w has only one R-successor.
This implies that, starting from the initial world w, there is a unique legal
path. Such structures are called LTL models.

Syntax CTL?	 extends CTL? [9] by means of two additional path op-
erators, E	ψ and A	ψ, which respectively read as “there exists a cycle path
satisfying ψ” and “for all cycle paths ψ holds”. As for CTL?, the syntax
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includes path-formulas, expressing properties over sequences of words, and
state-formulas, expressing properties over a single word. State and path
formulas are defined by mutual induction as follows.

Definition 2 (CTL?	 syntax). CTL?	 formulas are inductively built from a
set of atomic propositions AP, by using the following grammar, where p ∈
AP:

φ := p | ¬φ | φ ∧ φ | φ ∨ φ | Eψ | Aψ | E	ψ | A	ψ
ψ := φ | ¬ψ | ψ ∧ ψ | ψ ∨ ψ | Xψ | ψUψ

Moreover, for CTL?	 and all the fragments introduced below, all the other
Boolean connectives are derived as usual. In particular, we make use of the
implication, defined as φ1 → φ2 ≡ ¬φ1 ∨ φ2, and equivalence, defined as
φ1 ↔ φ2 ≡ (φ1 → φ2) ∧ (φ2 → φ1).

All the formulas generated by a φ-rule are called state-formulas, while the
formulas generated by a ψ-rule are called path-formulas.

By sub(ϕ) we denote the set of all subformulas of ϕ, and by subs(ϕ) we
denote the set of state subformulas of ϕ.

Similarly to CTL?, we define the syntactic fragment CTL	 of CTL?	
in which the nesting of temporal operators in the scope of the same path
quantifiers is not allowed. Formally, we have the following.

Definition 3 (CTL	 syntax). CTL	 formulas are inductively built from
a set of atomic propositions AP , by using the following grammar, where
p ∈ AP:

φ := p | ¬φ | φ ∧ φ | φ ∨ φ | EXφ | AXφ | E(φUφ) | A(φUφ) |
E	Xφ | A	Xφ | E	(φUφ) | A	(φUφ)

Alternatively to the quantification over cycles, in this paper we also ad-
dress the quantification over simple cycles. To do this, we introduce a variant
of the logic, in which the cycle path quantification is replaced by a simple
cycle path one. Formally, by knowing that, a (state or path) formula ϕ is in
normal form if for all subformulas ¬ψ in sub(ϕ), the formula ψ is an atomic
proposition, we have the following definition.

Definition 4 (CTL?s	 syntax). Given AP be a set of atomic propositions,
we use the following grammar, where p ∈ AP:
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φ := p | ¬φ | φ ∧ φ | φ ∨ φ | Eψ | Aψ | E	s ψ | A	s ψ
ψ := φ | ¬ψ | ψ ∧ ψ | ψ ∨ ψ | Xψ | ψUψ

Finally, as in the case for CTL?	, we also introduce the CTL-like fragment
of CTL?s	.

Definition 5 (CTLs	 syntax). CTLs	 formulas are inductively built from
a set of atomic propositions AP , by using the following grammar, where
p ∈ AP:

φ := p | ¬φ | φ ∧ φ | φ ∨ φ | EXψ | AXφ | E(φ1Uφ2) | A(φ1Uφ2) |
E	s Xφ | A	s Xφ | E	s (φ1Uφ2) | A	s (φ1Uφ2)

Given a formula ϕ in normal form, we define its simple cycle translation
as the formula obtained by replacing each symbol E	 in the formula ϕ, by
the symbol E	s . The simple cycle translation of ϕ is denoted by (ϕ)s.

Semantics The semantics for CTL?	 is defined w.r.t. Kripke structures.
It extends the one for CTL?, with the addition of two new definitions for
two cycle path quantifiers.

Definition 6. The semantics of CTL?	 formulas is recursively defined as
follows. For a Kripke structure K, a world w, a path π and a natural number
i ∈ N, we have that:

� For all state formulas φ, φ1, and φ2:

– K, w |= p if p ∈ L(w);

– K, w |= ¬φ if K, w 6|= φ;

– K, w |= φ1 ∧ φ2 if both K, w |= φ1 and K, w |= φ2;

– K, w |= φ1 ∨ φ2 if either K, w |= φ1 or K, w |= φ2;

– K, w |= Eψ if there exists a path π in Pth(w) such that K, π, 0 |= ψ;

– K, w |= Aψ if, for all paths π in Pth(w), it holds that K, π, 0 |= ψ

– K, w |= E	ψ if there exists a path π in Cyc(w) and K, π, 0 |= ψ;

– K, w |= A	ψ if, for all paths π in Cyc(w), it holds that K, π, 0 |= ψ.

� For path formulas φ, ψ, ψ1, and ψ2:

– K, π, i |= φ if K, (π)i |= φ;
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– K, π, i |= ¬ψ if K, π, i 6|= ψ;

– K, π, i |= ψ1 ∧ ψ2 if both K, π, i |= ψ1 and K, π, i |= ψ2;

– K, π, i |= ψ1 ∨ ψ2 if either K, π, i |= ψ1 or K, π, i |= ψ2;

– K, π, i |= Xψ if K, π, i+ 1 |= ψ;

– K, π, i |= ψ1Uψ2 if there exists k ∈ N such that K, π, i + k |= ψ2

and K, π, i+ j |= ψ1, for all j ∈ [0, k[;

We say that π satisfies the path formula φ over K, and write K, π |= φ, if
K, π, 0 |= φ. Also, we say that K satisfies the state formula ϕ, and write
K |= ϕ, if K, wI |= ϕ.

Definition 7. The semantics of CTL?s	 is recursively defined as follows.
Given a Kripke structure K, a world w, a path π and a natural number
i ∈ N, we have that:

� K, w |= E	s ψ if there is a simple cycle π with beginning state w, such
that K, π |= ψ;

� K, w |= A	s ψ if for all simple cycle π with beginning state w, it holds
that K, π |= ψ;

All the remaining cases are defined as in Definition 6.

Regarding CTL	 and CTLs	, observe that they are a syntactic fragment
of CTL?	 and CTL?s	, respectively. Therefore, their semantics is defined by
following Definition 6 and Definition 7, respectively.

Examples In this section, we provide some properties that are express-
ible with CTL?	.

Assume that there is a system composed by two processes, requesting
to access a resource, and a scheduler, releasing such resource in a mutually
exclusive way, i.e., the resource is never used by the two processes at the
same time. Every time the scheduler grants the resource to process i, such
resource is exclusively used by process i until the system goes back to the
decision point, that is, the state in which the scheduler released the resource.
We denote by dec the atomic proposition labeling the states that are decision
points (that is, the moment where the scheduler makes a decision) and by
res, res the atomic propositions representing the fact that the resource is
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released to processes 1 and 2, respectively. The above described situation can
be expressed with the CTL?	 formula ϕi = E	((dec ∧ ¬resi ∧ G¬res−i) →
F resi), for i ∈ {1, 2}. Note that in that formula, the use of the cycle operator
is crucial as it allows us to loop at the decision point. Finally, note that, since
the system is required to loop on a decision point from which it is possible
to release the resource for either process 1 or process 2, this automatically
implies the existence of an infinite path which is able to satisfy this lockout
freedom condition, which is expressible in CTL? by means of the formula
ψ = E(GFres∧GFres). In other words, we have that ϕ1∧ϕ2 → ψ is a valid
CTL?	 formula.

We now discuss another example involving prompt parity games, intro-
duced in [26].

A Parity Game is a tuple of the form P = 〈V,V,V,E , p, v〉 where V
is a nonempty finite set of states of the game, partitioned into V and V,
being the set belonging to Player 0 and Player 1, respectively, E ⊆ V × V
is an edge relation, p : V → N is a priority labeling function, assigning a
natural number to each state, and v ∈ V is a designated initial state. The
game is played starting from v. At each state v of the game, if v ∈ Vi, then
Player i move to an E -successor of v. Such operation induces an infinite path
π over V called play and then, by means of the function p, we also consider
the infinite path p(π). Every occurrence of an odd priority on p(π) is called
request. For any request, the successive occurrence of an even and greater
priority is its response. We say that Player 0 wins the play π under the parity
condition if every request occurring infinitely often is responded. Moreover,
we say that Player 0 wins the play π under the prompt parity condition if
there exists a natural number n such that each request occurring infinitely
often is responded in less than n steps. For both the above cases, we say that
Player 1 wins the game iff Player 0 does not win. A strategy for Player i is
a function fi : V∗ · Vi → V assigning an E -successor to each partial (finite)
path of the game. Clearly, a pair of strategies f and f determines a unique
path and therefore, the winner. A strategy fi is positional if, for all partial
paths ρ and ρ′, with lst(ρ) = lst(ρ′) ∈ Vi, it holds that fi(ρ) = fi(ρ

′).
Let P be a parity game and f be a positional strategy for Player 0. By

projecting the strategy on the arena, we obtain a KS KP,f = 〈AP,W,R , L,
w〉 defined as follows: AP = rng(p) = [0, n] 1, for some n ∈ N, W = V,

1W.l.o.g., we can assume that the range of a priority function is of the form [0, n].
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R = f ∪ E ∩ (V × V), L(w) = {p(w)}, for all w ∈ W, and wI = v.
We can express that f is winning for Player 0 by means of the formula
ϕpar = A(

∨
k≡20

(GFk ∧
∧l≡21
l≥k FG¬l)). Indeed, the formula asserts that, for all

possible paths, there exists an even priority k occurring infinitely often such
that each odd priority l greater than k occurs finitely many times. Hence,
we have that f is winning over P iff KP,f , v |= ϕpar.

In addition to this, we can express the existence of a path violating the
prompt condition by means of the formula ϕnpmt =

∨
k≡21

E(GFk ∧ G(k →
(
∧l≡20
l≥k ¬l)U(E	

∧l≡20
l≥k G¬l))). Intuitively, ϕnpmt holds if there exists an odd

priority k occurring infinitely often along a path such that before any possible
response there exists a cycle departing from a node of the path in which no
response can be found. This loop can be used by Player 1 to avoid that
Player 0 can reply to priority k within a fixed amount of time. At this
point, the formula ϕpar → ϕnpmt is able to express the existence of a winning
strategy for Player 1 under the prompt parity condition.

3. Model-Theoretic Properties

This section consists of two parts. First, we present invariance properties
of CTL?	. As trees do not contain any cycle and bisimulation do not preserve
cycles, it does not come at a surprise that CTL?	 is not invariant under bisim-
ulation and does not have a tree-model property. Therefore, we introduce
a new notion of bisimulation namely cycle-bisimulation, which takes cycles
into account. We prove that CTL?	 is invariant under cycle-bisimulation.
Using that property, we show that CTL?	 has a tree-like model property.

In the second part of the section, we investigate the expressive power of
CTL?	. We show that CTL?	 strictly extends CTL? and is orthogonal to
the µCalculus.

Invariance Properties We start by establishing that CTL?	 is not
invariant under bisimulation and does not have a tree-model or finite-model
property.

Theorem 1 (CTL?	 Negative Model Properties). CTL?	 has neither the
finite-model property, nor the tree-model property. It is also not invariant
under bisimulation.

Proof. Consider the formula ϕ1 = AG¬E	> stating that all paths starting
from the initial state, do not contain any cycle. This formula is satisfiable.
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However, since the transition relation is such that each state has a successor,
ϕ1 can only be true in an infinite model.

Consider now the formula ϕ2 = E	>. It is true in a model iff its initial
state is the first point of a cycle. So ϕ2 is satisfiable but is never true at
the root of a tree. Hence, CTL?	 does not have the tree-model property and
thus, is not invariant under bisimulation.

Definition 8 (Cycle-Bisimulation). Let K =〈AP,W,R, L, w

〉 and K =

〈AP,W,R, L, w

〉 be two Kripke structures. Then, a relation B ⊆ W ×

W is a cycle-bisimulation relation if the following hold:

1. (wI , w

I ) belongs to B;

2. for all w ∈W and w ∈W, if (w, w) belongs to B, then:

(a) L(w) = L(w);

(b) for all v ∈W such that (w, v) ∈ R, there is v ∈W such that
(w, v) ∈ R and (v, v) ∈ B;

(c) for all v ∈W such that (w, v) ∈ R, there is v ∈W such that
(w, v) ∈ R and (v, v) ∈ B;

(d) for all cycles π with beginning state w, there is a cycle π with
beginning state w such that for all i ∈ N, the pair ((π)i, (π)i)
belongs to B,

(e) for all cycles π with beginning state w there is a cycle π with
beginning state w such that for all i ∈ N, the pair ((π)i, (π)i)
belongs to B.

We say that K and K are cycle-bisimilar w.r.t. a relation B ⊆W×W if
B is a cycle bisimulation. Moreover, two paths π and π are bisimilar w.r.t.
a cycle-bisimulation B if for all i ∈ N, the pair ((π)i, (π)i) belongs to B.

The notion of cycle-bisimulation is quite intuitive. While the usual defi-
nition of a bisimulation allows us to “mimic” the transition relation from one
model to the other, a cycle-bisimulation also ensures that we can “mimic”
cycles from one model to the other.

As a remark, the cycle-bisimulation notion is interesting by itself, as it
gives rise to a new notion of equivalence among structures, that might lead
to model-reduction characterization of the logic. We plan to investigate this
aspect in a future work.
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Theorem 2 (Invariance under cycle-bisimulation). CTL?	 is invariant under
cycle-bisimulation.

Proof. Let K and K be two models and let B be a cycle-bisimulation be-
tween K and K. We have to prove that K |= ϕ iff K |= ϕ, for all formulas
ϕ in CTL?	. We prove by induction on ϕ and ψ that:

� for all pairs (w, w) ∈ B , K, w |= ϕ iff K, w |= ϕ;

� for all paths π in K and all paths π in K such that π and π are
bisimilar w.r.t. B , K, π |= ψ, iff K, π |= ψ.

We only treat the cases of the induction that are not similar to the proof of
the invariance of CTL? under bisimulation. We also restrict ourselves to the
formulas of the form E	ψ, as the case for the formulas of the form A	ψ is
symmetric.

Consider a formula E	ψ in CTL?	. We show that, for all (w, w) ∈ B , it
holds that K, w |= E	ψ iff K, w |= E	ψ. We prove only the direction from
left to right. Suppose that for a pair (w, w) in B , we have K, w |= E	ψ.
That is, there is a cycle π with starting state w such that K, π |= ψ. By
definition of a cycle-bisimulation, this means that there is a cycle π with
beginning state w, that is bisimilar to π w.r.t. B . By induction hypothesis,
since K, π |= ψ, this implies that K, π |= ψ. Together with the fact that
π is a cycle with beginning state w, this means that K, w |= E	ψ, which
finishes the proof.

Using the invariance under cycle-bisimulation, we establish a tree-like
model property for CTL?	. Intuitively, the tree-model property for CTL?	
fails as trees do not admit any cycle. Hence, the idea is to consider structures
obtained by adding some restricted form of cycles over trees. We call those
structures trees with back edges and they are defined as follows.

Definition 9. A Kripke model K = 〈AP,W,R , L, w〉 is a tree with back
edges if there are a Kripke model T = (AP,W,R, L, w) and a partial map
f : W ⇀ W such that

(i) (W,R) is a tree with root w over the alphabet 2 AP,

2The relation R is the child relation of the tree.
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(ii) R is equal to R ∪ {(w, f(w)) : w belongs to the domain of f},

(iii) for all w ∈W, f(w) is an ancestor of w,

(iv) for all w, w ∈ W, if f(w) is defined, (f(w), w), (w, w) ∈ R
+ 3,

then f(w) = f(w).

We say that (T, f) is a tree decomposition of K, where T is the asso-
ciated tree and f is the back-edge map. If a pair (w, v) belongs to R, we
say that (w, v) is associated with a forward edge, while if v = f(w), the pair
(w, v) is associated with a back edge.

Note that if for every pair (w, v) in R we know whether (w, v) is associated
with a forward or back edge, then this uniquely defines a tree decomposition.

Intuitively, a tree with back edges is a structure obtained from a tree by
adding edges (called back edges) from some nodes to their ancestors. More
precisely, we add a back edge from each node w in the domain of f to its image
f(w). Such back edges need to satisfy two conditions. First, each node must
admit at most one outgoing back edge. The second condition (condition (iv))
is a bit less intuitive. It requires that the partial map f preserves the ancestor
relation, and, in addition, that the back edges cannot overlap, that is, in a
tree back edges never cross each other.

We prove now the tree-like model property and show that each satisfiable
formula of CTL?	 is satisfiable in a tree with back edges. More specifically,
given a Kripke modelK, we show how to define a tree with back edges UK such
that K and UK are cycle-bisimilar. Together with Theorem 2, this implies
that each satisfiable formula of CTL?	, is satisfiable in a tree with back
edges. Before defining UK, we need to introduce two preliminaries notions:
the projection map and the initial cycle state.

Let K =〈AP,W,R , L, w〉 be a Kripke model and consider two constants
nw and cy. We define the projection map pr : (W × {nw, cy})∗ → W as
the unique surjective map such that pr(ε) = w and for all w• 6= ε, we have
pr(w•) = w, where lst(w•) = (w, α) and α ∈ {nw, cy}.

Given a state w• ∈ (W×{nw, cy})∗, we say that w• admits a sequence v•

as an initial cycle state if there is a sequence v . . . vk such that w• is equal to
v• (v, nw)(v, cy) . . . (vk, cy). Given a sequence w• ∈ (W × {nw, cy})∗ such

3As usual, R+
 is the transitive closure of R and is the ancestor relation of the tree

(W,R).
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that lst(w•) = (w, α), we say that w• is labeled by w and α. Intuitively,
the initial cycle state of a given state w• is simply the parent of the closest
ancestor of w• that is labeled by nw. Note that a state admits at most one
initial cycle state. We are now ready to define UK.

Definition 10. Given a Kripke model K =〈AP,W,R , L, w〉, we define the
tree-like unwinding UK = 〈AP,W•,R•, L•, w•〉 of K in the following way:

� W• = (W × {nw, cy})∗;

� w• = ε;

� for all w• ∈W•, we have L•(w•) = L(pr(w•));

� for all w• ∈W• and for all (pr(w•), v) ∈ R:

– the pair (w•, w•(v, nw)) belongs to R• and is associated with a for-
ward edge;

– if w• admits an initial cycle state u• such that pr(u•) 6= v, then the
pair (w•, w•(v, cy)) belongs to R• and is associated with a forward
edge;

– if w• admits an initial cycle state u• such that pr(u•) = v, then
the pair (w•, u•) belongs to R• and is associated with a back edge.

As mentioned earlier, knowing which edges are forward edges or back
edges, uniquely determines a tree decomposition. We denote by (T(K), f(K))
the tree decomposition associated with the above definition.

v

w

Figure 1: The
Kripke Model K.

Note that ε is the only state of UK that does not ad-
mit any initial cycle state. It follows from the definition
of R• that all the successors of ε in UK are of the form
(w, nw) (where w is a successor in K of the initial state
of K). Intuitively, the tree with back edges UK is defined
as follows. We consider the usual unwinding construc-
tion 4 of a Kripke model and we modify it in two steps.

4That is, the Kripke model with domain {ρ : ρ is a track in K}, initial state ε, transition
relation {(ρ, ρw) : ρ and ρ ·w are tracks in K} and a labeling function mapping each track
ρ to the set Llst(ρ).

14



First, in the unwinding construction, given a track ρ with lst(ρ) = w and
given a pair (w, v) in the transition relation R, we construct one successor
of ρ of the form ρ · v. Here, we make two “copies” of the successor ρ · v, one
labeled by nw and the other one labeled by cy.

ε

(w, n)

(w, n)(v, n) (w, c)

(w, n) (w, n)(v, n) (v, n) (w, n)(v, n) (w, c)

Figure 2: The tree with back edges T (K).

The second modifica-
tion is as follows: we
delete certain edges and
replace them with back
edges (and finally, delete
all the states that are not
reachable from ε). An
edge from track ρ to ρ
is deleted iff ρ is labeled
by cy and ρ and the ini-
tial cycle state of ρ are labeled by the same state of K.

It is easy to see that the tree-like unwinding of a Kripke structure fulfills
Definition 9, and so it is a tree with back edges. Indeed, note that item (i),
(ii), and (iii) of the definition are trivially satisfied. Regarding item (iv),
note that every state w• is mapped backward only to its corresponding initial
cycle state v• and, for every state z• in between v• and w•, i.e. such that
(v•, z•) ∈ R and (z•, w•) ∈ R, it holds that v• is its corresponding initial
cycle state. Hence, the condition at item (iv) holds.

In order to illustrate the construction UK, we provide an example in Fig-
ure 1 and Figure 2. To make notation easier in the figure, we abbreviate nw

by n and cy by c. Also, instead of writing ρ for a state, we only write the
pair of labels lst(ρ). The back edges are those that are not straight lines.

Theorem 3. CTL?	 has a tree-like model property. Every satisfiable formula
of CTL?	 is satisfiable in a tree with back edges.

This follows immediately from the following proposition.

Proposition 1. Let K = 〈AP,W,R , L, w〉 be a Kripke model and UK =
〈AP•,W•,R•, L•, w•〉 its tree-like unwinding. Then, the relation {(w•, pr(w•)) :
w• ∈W•} is a cycle-bisimulation. Hence, K and UK satisfy exactly the same
formulas in CTL?	.

Proof. Let B be the relation {(w•, pr(w•)) : w• ∈ W•}. The pair (ε, w)
belongs to B . Next, consider a pair (w•, w) in B . We have to check that it
satisfies conditions 2a, 2b, 2c, 2d and 2e from Definition 8.
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The fact that 2a is satisfied follows immediately from the definition of
UK. It also follows from the definition of pr and UK that if a pair (w•, v•)
belongs to R•, then (pr(w•), pr(v•)) belongs to R. In particular, condition 2b
is satisfied.

For condition 2c, let (pr(w•), u) be a pair in R. We define u• as the
sequence w•(u, nw). We have that pr(u•) = u. Hence, the pair (u•, u) belongs
to B . It also follows from the definition of R• that (w•, u•) belongs to R•.
Hence, condition 2c is satisfied.

For condition 2d, let π• be a cycle with beginning state w•. By definition
of R• and B , the path pr(π•) is a cycle with initial node pr(w•) = w, that
is bisimilar w.r.t. B to π•. Hence, 2d holds.

Finally, for 2e, consider a cycle π with beginning state w. Assume that
π = ww . . . . Since π is a cycle, there is an infinite sequence (ni)i≥0 such
that n0 = 0 and for all i ∈ N, ni + 1 < ni+1 and wni

= w,N, for all ni < j <
ni+1, wj 6= w. /∈ {ni : i ≥ 0}.

Given a number j ∈ N, we define cl(j) as the greatest number ni such
that ni ≤ j. We are now ready to define the path π• as the path (w•j )j≥0,
where for all j ∈ N,

w•j =


w•, if j = ni for some i ∈ N,
w•(wj, nw), if j = cl(j) + 1,

w•(wcl(j)+, nw)(wcl(j)+, cy) . . . (wj, cy), otherwise.

Note that pr(w•j ) = wj. Intuitively, the path π• is defined as follows. We
start at the state w•. The next state is the successor labeled by w1 and
nw. Next, we will only choose successors (until we go back to w•) that are
labeled by cy. This ensures that for each chosen state, its initial cycle state
is w•. Once we have gone down the tree for n1−1 steps (and reached a node
labeled by wn− and cy), we go back to the state w•. We keep iterating the
procedure.

Now we prove that π• is a cycle of UK, that is bisimilar to π. Since
(π•)ni

= w• for all i ∈ N, we know that the path π• goes infinitely often
through the state w•. Moreover, since pr(w•j ) = wj, the path π• is bisimilar
to π.

Hence, it remains to prove that π• is indeed a path of UK. That is, for
all j > 0, the pair (w•j−, w

•
j ) belongs to the relation R•. The difficult case

is when j = ni0 for some i0 ∈ N. So we have to show that (w•ni−, w
•
ni

)
belongs to R•. By definition, the state w•ni

is equal to w•. Hence, we
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have to prove that (w•ni−, w
•) belongs to R•. It is enough to show that

there is back edge in UK from w•ni− to w•. By definition of UK, this is
equivalent to prove that (i) the pair (pr(w•ni−), pr(w•)) belongs to R and
(ii) w• is the initial cycle state of w•ni−. We start by (i). We know that
pr(w•ni−) = wni− and pr(w•) = w. So we have to prove that (wni−, w)
belongs to R. Since wni

= w (by definition of the nis), this is equivalent
to show that (wni−, wni

) belongs to R. This follows from the fact that
(wj)j≥0 is a path in K.

We finish the proof by showing (ii). It follows from the definition of
π• that w•ni− is equal to w•(u1, nw)(u2, cy) . . . (uk, cy) for some sequence
u1 . . . uk. Hence, w• is the initial cycle state of w•ni−.

Before finishing the section on model properties, we state one more prop-
erty concerning the tree-like unwinding of a model. It states that if a formula
is true in a tree-like unwinding, then we may assume the “witness” cycles
(for the subformulas of the form E	ψ) to be simple cycles. This means that,
from the satisfiability point of view, the operator E	 can be replaces with its
simple-cycle version E	s . The property will play an important role in the next
section for obtaining a 2ExpTime upper-bound for the satisfiability problem
of the existential fragment of CTL?	.

Proposition 2. Let ϕ be a formula in CTL?	 in normal form and let K be
a Kripke model. Then K |= ϕ iff UK |= (ϕ)s, where UK is the tree with back
edges as in Definition 9.

Proof. By induction on the structure of the formula, we prove that K, w |= φ
if and only if UK, w• |= (ϕ)s, where w• is any state in UK corresponding to
w. We show here only the case of E	ψ, as all the other cases are trivial. Let
us assume ϕ = E	ψ is such that K, w |= E	ψ. Then, by the definition of
semantics, there exists a cycle path π in PthK such that K, π |= ψ. Now,
consider the path π• in UK inductively defined from π as follows. For n = 0,
we define (π•)0 = w•. For every n ≥ 0, if πn+ = w, then (π•)n+1 = (w, nw),
otherwise, define (π•)n+1 = π≤n · (πn+, cy). Now, observe that π• is a simple
cycle. Indeed, the initial state w occurs infinitely often along π•. Moreover,
for every two consecutive occurrences of w, the states in between are strictly
ordered according to the prefix relation, and so there are no repeating ones.
Finally, it is immediate to see that π• is cycle-bisimilar to π. Thus, by means
of Theorem 1, it holds that UK, π• |= ψ.
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Expressiveness We now investigate the expressive power of CTL?	
w.r.t. the usual temporal logics. All the results are collected in the following
theorem.

Theorem 4 (Expressiveness comparison). CTL?	 is strictly more expressive
than CTL? and is incomparable with the µCalculus.

Proof. First we show that CTL? is strictly less expressive than CTL?	. We
observed in the proof of Theorem 1 that the formula ϕ1 = AG¬E	> is satisfi-
able but does not admit any finite model. Since CTL? has the finite-model
property, this implies that ϕ1 is a formula in CTL?	, which is not equivalent
to any formula in CTL?.

Now, we prove that CTL?	 is incomparable with the µCalculus. First,
since the µCalculus has the finite model property, we also have that ϕ1 is
a formula in CTL?	 that is not equivalent to any formula in CTL?. Next,
we show that there is a formula in the µCalculus that is not expressible in
CTL?	. Consider the formula ψ = νx.p ∧ 22x. The formula ψ is true in a
model if for all paths π starting from the initial state, p is true in every even
state (π)2i of the path π. In particular, ψ is true in an LTL model if p is
true in every even state.

We show that ψ is not equivalent to any formula in CTL?	. Suppose for
contradiction that there is a formula χ in CTL?	 that is equivalent to ψ. The
idea is to transform χ into a formula t(χ) in LTL such that χ and t(χ) are
equivalent over LTL models. We will do that in the next paragraph, but
first we show how the existence of such a formula t(χ) is sufficient to derive
a contradiction. So let t(χ) be a formula in LTL such that χ and t(χ) are
equivalent over LTL models. Recall that ψ is true in an LTL model if p is
true in every even state. In particular, t(χ) is a formula of LTL such that ψ
is true in an LTL model if p is true in every even state. However, it is known
that there is no LTL formula defining the class of LTL models in which p is
true in every even state [30]. We obtained the desired contradiction.

Now, it remains to define the formula t(χ) in LTL such that χ and t(χ)
are equivalent over LTL models. The formula t(χ) is obtained by deleting all
the occurrences of A and E and by replacing all the occurrences of the symbol
	 by ⊥. The fact that χ and t(χ) are equivalent over LTL model follows
from the fact that 	 is never true in a state of an LTL model and the fact
that for all LTL formulas χ0, the formulas Aχ0 and Eχ0 are equivalent to χ0

over LTL models.
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4. Decision Problems

In this section, we deal with the solution of the model-checking and satis-
fiability problems for CTL?	. Regarding the former, we show that we retain
the same complexity as for CTL?, that is PSpace. Concerning satisfiability,
we also retain the same complexity of CTL? if we restrict to the existential-
cycle fragment of the logic, that is 2ExpTime. Conversely, we show that it
is 3ExpTime for the whole logic.

Model Checking For the solution of the model-checking problem of
CTL?	, we employ a standard bottom-up procedure on the nesting of the path
quantifiers of the specification under exam, which extends the one originally
proposed for CTL? [10]. With more details, starting from the innermost
state formulas ϕ of the kind Eψ, Aψ, E	ψ, and A	ψ, we determine their truth
value over a KS K at a world w ∈W by checking the emptiness of a suitable
nondeterministic Büchi word automaton N ϕ

K,w. In case of a positive result,
we enrich the labeling of the world w with a fresh proposition ϕ representing
the formula ϕ itself. Obviously, the path formula ψ is just seen as a classic
LTL formula, where all its subformulas of the kind described above are
interpreted as atomic propositions whose truth values on the worlds of K are
already computed in some previous step of the algorithm. It is important to
observe that the difference between the automata for Eψ or Aψ and those for
E	ψ or A	ψ resides in the fact that, for the latter, we have to further verify
that the initial state of the path is seen infinitely often. This can be done
by means of the standard Büchi acceptance condition. Hence, we directly
obtain that the model checking for CTL?	 is not more complex than the same
problem for CTL?.

Theorem 5. The model-checking problem for CTL?	 is PSpace-c w.r.t. the
formula complexity and NLogSpace-c w.r.t. the data complexity.

Proof. We just describe the construction of the automaton N ϕ
K,w for the for-

mula E	ψ, as the verification of the formula A	ψ immediately reduces to
the one for ¬E	¬ψ. Let K = 〈AP,W,R , L, w〉 be the KS under exam and
Nψ =〈2AP,Q, δ,QI ,F〉 the nondeterministic Büchi word automaton obtained
from the LTL ψ by means of the classic Vardi-Wolper construction [29].
We build the automaton N ?

ψ , 〈W,Q, δ?,QI ,F〉 obtained from Nψ by re-
placing the alphabet 2AP with the set of worlds of K via the definition
δ?(q, w) , δ(q, L(w)). By construction, N ?

ψ accepts an infinite word on
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W iff its labeling satisfies the property ψ. Now, we need to to force N ?
ψ

to only accepts words that are effectively paths in the structure K passing
infinitely often through the initial state w. We do this via the nondeterminis-
tic Büchi word automaton NK,w ,〈W,W, δ•, {w}, {w}〉 with δ•(v, v) = R(v)
and δ•(v, v′) = ∅, for v 6= v′, whose starting and accepting set {w} ensures the
recognizing of all and only those sequences of worlds that start and pass in-
finitely often through w. Finally, we construct the required automaton N ϕ

K,w
by making the product of N ?

ψ and NK,w. It is easy to see that K, w |= E	ψ
iff N ϕ

K,w accepts some word, which results to be a cycle path of K.

As the complexity is concerned, observe that the size ofN ϕ
K,w is O(|K| · 2|ϕ|).

Since the emptiness of this automaton can be computed in NLogSpace
w.r.t. its size, the verification of K, w |= E	ψ can be solved in PSpace w.r.t.
|ϕ| and in NLogSpace w.r.t. |K|.

For the special case of a CTL	 formula ϕ, note that the size of the
automaton N ϕ

K,w is O(|K| · |ϕ|) [22]. From this and by following the same
construction as in Theorem 5, we derive the complexity for solving the model-
checking of CTL	.

Theorem 6. The model-checking problem for CTL	 is PTime-c w.r.t. the
formula complexity and NLogSpace-c w.r.t. the data complexity.

We now address the cases of CTL?s	 and CTLs	. Differently from the
case of a generic cycle, it is not enough to check whether the initial state
occurs infinitely often with the automaton NK,w. This is because, in order
to be a simple cycle, there have to be no repetitions of states in between
two occurrences of the initial state in the path. This additional check makes
the overall complexity to raise, as it is explain in the proof of the following
theorem.

Theorem 7. The two following hold:

� The model-checking problem for Simple-Cycle-CTL?	 is PSpace-c w.r.t.
the formula complexity and PSpace-c w.r.t. the data complexity.

� The model-checking problem for CTL?	 is PTime-c w.r.t. the formula
complexity and PSpace-c w.r.t. the data complexity.

Proof. The proof of the two items are similar to the ones for Theorem 5
and Theorem 6, respectively. We only need to replace the automaton NK,w
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with a more refined one, taking into account the acceptance of simple cycles,
instead of cycles. To do this, consider the automaton N s

K,w , 〈W,W × 2W,
δs•, {(w, ∅)}, {w} × 2W〉, with δs•((v,V), v′) = ∅ if v 6= v′ and

δs•((v,V), v) =

{
R(v)× {∅}, if v = w

(R(v) \ V)× (V ∪ {v}), otherwise
,

The state space of the automaton is made by two components. The first
corresponds to the one given for the automaton NK,w defined in the proof of
Theorem 5, and it is used to keep track of the path executed in the Kripke
structure K. The second, intuitively, keeps track of the states that have been
visited since the last time the state w has been encountered, and it is reset
every time w is seen in the execution. The reader notices that, in case the
automaton is in a state w′ 6= w, the transition relation allows to move from
w′ to R(w′) \V, where V is the visited set. This prevents the accepting runs
to visit the same state twice or more times, since the last visit of w, which
corresponds to the definition of simple cycle paths. Hence, the automaton
N s
K,w recognizes the set SCyc(w).

Satisfiability Differently from the model-checking problem, the two in-
troduced looping quantifiers E	ψ and A	ψ and their simple-cycle counterpart
E	s ψ and A	s ψ heavily affect the satisfiability of CTL?	 and CTL?s	. In par-
ticular, since this logic lacks of the standard tree-model property, we cannot
use for the CTL? part of CTL?	 and CTL?s	 the automata approach as
proposed in [22]. Instead, here we use symmetric two-way alternating tree
automata [5], a simplified version of two-way graded alternating parity tree
automata [5], which simply lifts standard (asymmetric) two-way alternating
automata over ranked trees [28] to unranked trees, i.e., trees with possibly
unbounded width. These are automata that allow to traverse a tree in both
forward and backward directions, helping us to search for tree representa-
tion of the tree-like unwinding of a structure, as described in the previous
section. With more details, for every CTL?	 state formula ϕ, we build an
alternating parity two-way tree automaton Aϕ such that a KS K =〈AP,W,
R , L, w〉 is a model of ϕ iff Aϕ accepts a tree TK = 〈AP ∪ {nw, ↑},W•,R?,
L?, w•I〉 associated with the tree-like unwinding UK = 〈AP,W•,R•, L•, w•I〉 of
K satisfying the following properties: (i) R? = {(w•, v•) ∈ R• : |w•| < |v•|},
(ii) L?(w•) ∩ AP = L•(w•), (iii) nw ∈ L?(w•) iff lst(w•) = (w, nw), for some
w ∈ W, and (iv) ↑ ∈ L?(w•) iff there exists (w•, v•) ∈ R• with |v•| < |w•|.
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Intuitively, TK is built from UK by deleting all back edges (property (i)) and
enriching the original labeling of every world w• (property (ii)) with nw, if
the last letter of w• contains the flag with the same name (property (iii)),
and with ↑, if w• is the origin of a back edge (property (iv)). It is not hard
to see that, for every unwinding UK of a KS K, there exists one and only
one tree TK satisfying the previous four properties. Therefore, instead of
looking for a model K of ϕ or its tree-like unwinding UK, we just look for its
tree representation TK. This idea is at the basis for the automata-theoretic
approach described in the proofs of the following theorems.

Theorem 8. The satisfiability problem for CTL?	 can be solved in 3ExpTime
and is 2ExpTime-h. The same problem for CTL	 is ExpTime-c.

Proof. The 2ExpTime (resp, ExpTime) lower bound for CTL?	 (resp.,
CTL	) immediately follows from the one of CTL? (resp, CTL). For the
3ExpTime (resp., ExpTime) upper bound, given a CTL?	 (resp., CTL	)
state formula ϕ, we reduce the associated satisfiability question to the empti-
ness problem of a symmetric alternating parity two-way tree automaton Aϕ,
whose size and index are, respectively, doubly and singly exponential (resp.,
both polynomial) in |ϕ|. For a detailed definition of this type of automata
and the related concepts of size and index, we refer to [5]. Since the emptiness
of Aϕ can be checked in time exponential w.r.t. both its states and index [5],
we obtain the desired result 5.

As mentioned above, Aϕ needs to recognize all and only the tree repre-
sentations TK of the tree-like unwindings UK of KS models K of ϕ. As it is
usually done for CTL?, we slightly weaken this property by allowing Aϕ to
run on trees that also contain, as labeling of its worlds, the subformulas of
ϕ of the form Eψ, Aψ, E	ψ, and A	ψ, which are interpreted as fresh atomic
propositions. We denote by sub(ϕ) the set of subformulas of ϕ of the form
Eψ, Aψ, E	ψ, and A	ψ. We also let sub¬(ϕ) be the the closure under nega-
tion of the set sub(ϕ), i.e., for every Eψ (resp., Aψ, E	ψ, A	ψ) in sub(ϕ), we
have A¬ψ (resp., E¬ψ, A	¬ψ, E	¬ψ) in sub¬(ϕ). So, instead of considering a
model K = 〈AP,W,R , L, w〉 of ϕ, we work on the enriched KS K? = 〈AP?,
W,R , L?, w〉 such that (i) AP? = AP∪sub¬(ϕ), (ii) L?(w)∩AP = L(w), and

5In particular, Theorem 6.7 in [5] can be used for the translation. Observe that, since
we do not make use of any graded modalities (our box and diamond symbols stand for [[0]]
and 〈〈0〉〉 in their syntax) the resulting automaton is simply a symmetric non-deterministic
tree automaton.
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(iii) η ∈ L?(w) iff K, w |= η, for all η ∈ sub¬(ϕ), where the latter set denotes
the closure under negation of the set sub(ϕ), i.e., for every Eψ (resp., Aψ,
E	ψ, A	ψ) in sub(ϕ), we have A¬ψ (resp., E¬ψ, A	¬ψ, E	¬ψ) in sub¬(ϕ).

The automaton Aϕ is built as the conjunction of an automaton Aη, for
every subformula η ∈ sub¬(ϕ), and a deterministic safety (i.e., without ac-
ceptance condition) automaton Dϕ used to verify that ϕ is satisfied at the
root of the input tree TK, when ϕ is interpreted as a Boolean formula on
AP?. In addition, Aϕ needs to check that, if a world is not labeled by a
state formula η ∈ sub¬(ϕ), it is necessarily labeled by a formula η ∈ sub¬(ϕ)
equivalent to its negation, i.e., η ≡ ¬η. The automaton Aη is committed
to check that a world labeled by η ∈ sub¬(ϕ) really satisfies this formula.
Formally, we have Aϕ , Dϕ ∧

∧
η∈sub¬(ϕ)Aη. So, its size is the sum of the

sizes of the components. The construction of Dϕ is trivial. Moreover, the
automata for Aψ and A	ψ can be directly derived via dualization from the
automaton for E¬ψ and E	¬ψ by replacing ∨ and 3 with ∧ and 2 in their
definitions. Hence, we just focus on the constructions for the latter.

We start with the construction of AEψ for Eψ. Consider the nondetermin-
istic Büchi word automaton Nψ = 〈2AP?

,Q, δ,QI ,F〉 obtained by applying
the Vardi-Wolper construction to ψ which is read as an LTL formula over
AP? [29]. We define a two-way Büchi tree automaton AEψ , 〈Σ?,Q?, δ?,
q?I ,F

?〉, where the alphabet Σ? , 2AP?∪{nw,↑} augments the set of extended
atomic propositions AP? with the symbols nw and ↑, as required by the defi-
nition of the tree representations TK. The set of states Q? , {q?I}∪Q×{↓, ↑}
contains the initial state q?I plus two copies of the states of Nψ, one for each
direction of navigation over the tree TK. For the Büchi acceptance condition
we consider the set F? , {q?I} ∪ F × {↓}. The definition of the transition
function δ? follows. For the sake of readability, we split it in three parts,
depending on whether it focuses on q?I , a state q flagged with ↓, or a state q
flagged with ↑.

� The initial state q?I is used to start the evaluation of the formula Eψ on
every world of the input tree labeled by q?I . This is done by starting
the simulation of Nψ. Formally, we have that δ?(q?I , σ) , (2, q?I ) ∧∨
q∈QI

(ε, (q, ↓)), if Eψ ∈ σ, and δ?(q?I , σ) , (2, q?I ), otherwise.

� Every copy of a state q ∈ Q flagged with ↓ is used to effectively verify
the existence of an infinite path in UK satisfying ψ. This is done by
guessing an extension of the finite path built up to now and sending,
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to the corresponding direction, a successor p of q that complies with
the transition function δ of Nψ, when the labeling σ of the world under
exam is read. As the input tree TK is a representation of the tree with
back edges UK, we have also to take them into account when we guess
the extension of the path from a world labeled with ↑. This is done by
sending up along the tree the copy of the state p flagged with ↑, which
is used to simulate a jump to the world destination of the back edge.
Formally, we have δ?((q, ↓), σ) ,

∨
p∈δ(q,σ∩AP?) (3, (p, ↓)) ∨ ↑(p), where

↑(p) is set to (ε, (p, ↑)) if ↑ ∈ σ, and to f, otherwise.

� Finally, for every copy of a state q ∈ Q flagged with ↑, we only have
to modify the state and the direction of the automaton when we are
approaching to the destination of the back edge that gave rise to the
evaluation of (q, ↑). Fortunately, due to the structure of the tree-like
unwinding UK and, consequently, of its tree representation TK, when
we reach a world labeled by nw, we are sure that the immediate an-
cestor of this world is the destination of the back edge. Thus, we can
immediately change the flag of the state q to ↓ in order to resume the
verification of the path formula ψ. Formally, δ?((q, ↑), σ) , (↑, (q, ↓)),
if nw ∈ σ, and δ?((q, ↑), σ) , (↑, (q, ↑)), otherwise.

Now, by construction, it is not hard to prove that AEψ correctly verifies that
every world of TK labeled by Eψ satisfies Eψ in UK. Also, by the Vardi-
Wolper procedure, it follows that |Q| = O(2|ψ|). Consequently, the size of
AEψ is exponential in the length of Eψ. Note that in case Eψ is a CTL path
formula, i.e., ψ = Xϕ, ψ = ϕ1Uϕ2, or ψ = ϕ1Rϕ2 with ϕ, ϕ1, and ϕ2 state
formulas, the set Q has constant size, so, the size of AEψ is constant as well.

The construction of AE	ψ is quite more complex than the one previously
described, as it also requires a projection operation that is the reason behind
the exponential gap between the upper and lower bounds. Differently from
the automata for classic path quantifiers, we cannot evaluate the correctness
of the labeling E	ψ on all worlds of the tree in one shot. This is because of the
possible interactions among the cycles starting in different worlds, which does
not allow us to determine which is the origin of the path we are interested
in. Consequently, we have to focus on one world labeled by E	ψ at a time
and check the existence of a path passing infinitely often through that world,
which also satisfies the property ψ. This unique world is identified by a
fresh symbol #. Then, an universal projection operation over such a symbol
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will take care of the fact that this check has to be done for every possible
world labeled by E	ψ. Formally, AE	ψ is built as follows: Π∀#(N# ∨ A#

E	ψ).
Intuitively, we make a universal projection over # of a disjunction between
the automaton N#, accepting all trees where the labeling # is incorrect (i.e.,
there are more than one occurrences of # or this symbol is on a world that
is not labeled by E	ψ), and the automaton A#

E	ψ, verifying the existence of
a path satisfying ψ that starts and passes infinitely often through the world
labeled by #. The construction of N# is trivial. For the computation of
the projection, we use the equality Π∀#A = ¬Π∃#¬A. Note however that
there is no known projection operation that can act directly on a two-way
automaton. Instead, we have first to translate it into a nondeterministic
one-way automaton [5] and then apply the standard projection. Due to the
nondeterminization procedure, Π∀#A has exponential size w.r.t. that of A.

So, AE	ψ is exponential in the size of A#
E	ψ.

It remains to define the latter automaton. As above, let Nψ =〈2AP?
,Q, δ,

QI ,F〉 be the nondeterministic Büchi word automaton obtained by applying
the Vardi-Wolper construction to ψ. Then, we set A#

E	ψ ,〈Σ?,Q?, δ?, q?I ,F
?〉

as a two-way Büchi tree automaton having alphabet Σ? , 2AP?∪{nw,↑,#}. The
set of states Q? , {q?I} ∪ Q × {f, t} × {#, ↓, ↑} contains the initial state q?I
plus six copies of the states of Nψ. Each of them is flagged with a Boolean
value keeping track of the original acceptance condition derived from Nψ and
a symbol indicating the direction of navigation over the tree. Differently from
the previous case, we have also # as a flag in order to indicate the passage
though the state labeled by the flag itself. For the Büchi acceptance condition
we consider the set F? , {q?I} ∪ Q× {t} × {#}. Intuitively, apart from the
initial state, we assume as final those states that certify both the passage
through the origin of the path indicated by # and the possibly previous
occurrence of an accepting state. It remains to define the transition function
δ?. Here we use β(q, α) to denote the Boolean value t, if q ∈ F, and α,
otherwise.

� The initial state q?I is used to start evaluating the formula E	ψ on
the unique world of the input tree labeled by #. Formally, we have
δ?(q?I , σ) ,

∨
q∈QI

(ε, (q, β(q, f), ↓)), if # ∈ σ, and δ?(q?I , σ) , (2, q?I ),
otherwise. Note that, since we are just starting with the simulation of
Nψ, the flag β(q, f) concerning the memory on the acceptance condition
only depends on the state q, as the second argument is fixed to f.
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� Since a state (q, α,#) is just used to verify the passage through the
starting point of the path satisfying ψ, the automaton has to reset the
memory on the acceptance condition and continue with the simulation
of Nψ. Formally, δ?((q, α,#), σ) , (ε, (q, f, ↓)).

� The automaton A#
E	ψ on the state (q, α, ↓) behaves almost as AEψ on

(q, ↓), with only two differences. The first resides in the update of the
memory on the acceptance condition via the function β(p, α), which
takes into account both the previous memory α and the membership
of p in F. The other difference is that, if σ contains the symbol #, we
have to record this fact in the state, by swapping the flag from ↓ to #.
Formally, we have δ?((q, α, ↓), σ) ,

∨
p∈δ(q,σ∩AP?) (3, (p, β(p, α), γ)) ∨

↑(p), where γ = #, if # ∈ σ, and γ = ↓, otherwise; moreover, ↑(p) is
set to (ε, (p, β(p, α), ↑)), if ↑ ∈ σ, and to f, otherwise.

� Finally, as for AEψ, a state of the form (q, α, ↑) identifies the destination
of a back edge. Thus, we have δ?((q, α, ↑), σ) , (↑, (q, α, ↓)), if nw ∈ σ,
and δ?((q, α, ↑), σ) , (↑, (q, α, ↑)), otherwise.

It is easy to verify that the size of A#
E	ψ is exponential in the length of E	ψ,

which implies that AE	ψ is doubly exponential in the same length. Note
that in case E	ψ is a CTL cycle-path formula, i.e., ψ = Xϕ, ψ = ϕ1Uϕ2, or
ψ = ϕ1Rϕ2 with ϕ, ϕ1, and ϕ2 state formulas, the size of A#

E	ψ is constant.
Consequently, so is the one of AE	ψ.

We say that a CTL?	 formula is in cycle-existential form, if it is in normal
form and does not contain any occurrence of the universal-cycle quantificer
A	. We call the subset of CTL?	 formulas in cycle-existential form the cycle-
existential fragment of CTL?	. In case we want to restrict our attention to
the satisfiability of the cycle-existential fragment of CTL?	, we can improve
the previous proof, obtaining a tight 2ExpTime procedure, by providing a
single exponential construction for the automaton AE	ψ. Indeed, thanks to
the simple cycle property of the verification of the formula E	ψ on the tree-
like unwinding UK, we can just focus on cycle paths of UK going through the
successors of their origin labeled by nw. In this way, there are no interactions
among the paths that start at different worlds labeled by E	ψ, since two
paths passing through the same world necessarily use different successors.
Consequently, we can always uniquely identify the origin of a path on which
we have to pass infinitely often.
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Unfortunately, the same idea cannot be exploited for the verification of
the universal looping quantifiers A	ψ, as we have to check the property ψ on
all cycle paths and not only on those that are simple. At the moment, it is
left open whether a 2ExpTime satisfiability procedure for the whole CTL?	
logic exists.

Theorem 9. The satisfiability problem for CTL?s	 and the existential-cycle
fragment of CTL?	 is 2ExpTime-c.

Proof. As described above, in order to deal with the exponential blow up in
the construction of the automaton AE	ψ, we avoid the projection operation,
by exploiting the simple cycle property. To implement this idea, when the
automaton AE	ψ starts with the guessing of a path satisfying ψ, first it choses
a successor of the initial world labeled by the flag nw and then continues the
verification on descendants not labeled by this flag, unless it returns at the
root of the path via a back edge, where the cycle starts again.

We can now formalize the structure of AE	ψ. Let Nψ = 〈2AP?
,Q, δ,QI ,

F〉 be the Vardi-Wolper automaton for ψ. Then, we set AE	ψ , 〈Σ?,Q?, δ?,
q?I ,F

?〉 as a two-way automaton having alphabet Σ? , 2AP?∪{nw,↑}. The set
of states Q? , {q?I} ∪ Q × {f, t} × {#, [, ↓, ↑} contains the initial state q?I
plus eight copies of the states of Nψ. As in the previous construction for

A#
E	ψ, each state is flagged with a Boolean value keeping track of the original

acceptance condition derived from Nψ. Moreover, it is associated with two
symbols indicating the direction of navigation over the tree plus two other
symbols, # and [, used either to certify the passage through the root of the
path or to reach one of its successors labeled by nw. As for A#

E	ψ, the Büchi

acceptance condition is set to F? , {q?I} ∪Q× {t} × {#}. At this point, it
only remains to define the transition function δ?.

� The initial state q?I starts the evaluation of the formula E	ψ on every
world of the input tree labeled by it. Formally, we have δ?(q?I , σ) ,
(2, q?I ) ∧

∨
q∈QI

(ε, (q, β(q, f),#)), if E	ψ ∈ σ, and δ?(q?I , σ) , (2, q?I ),
otherwise. Observe that the state q is associated with the flag # to
denote the fact that we are on the root of the path.

� At the root of the path, we have to send the automaton towards one
of its successors labeled by nw. Moreover, we have to reset the memory
on the acceptance condition. Consequently, we have δ?((q, α,#), σ) ,∨
p∈δ(q,σ∩AP?) (3, (p, β(p, f), [)).
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� In a state of the form (q, α, [), the automaton has to verify that the
world under exam is labeled by nw and then continues by guessing
the path and the associated verification of the property ψ. Hence, we
have δ?((q, α, [), σ) ,

∨
p∈δ(q,σ∩AP?) (3, (p, β(p, α), ↓)) ∨ ↑(p), if nw ∈

σ, and δ?((q, α, [), σ) , f, otherwise, where ↑(p) is defined as in the
construction of A#

E	ψ, i.e., ↑(p) is set to (ε, (p, β(p, α), ↑)), if ↑∈ σ, and
to f, otherwise.

� The evolution of AE	ψ on a state (q, α, ↓) is the same of that on a
state (q, α, [). The only difference is that they are applied when the
world under exam is not labeled by nw. Formally, δ?((q, α, ↓), σ) ,∨
p∈δ(q,σ∩AP?)(3, (p, β(p, α), ↓))∨↑(p), if nw 6∈ σ, and δ?((q, α, ↓), σ) , f,

otherwise.

� As in the previous construction, a state flagged by ↑ is used to determine
the destination of a back edge. In this case, however, we also record in
the state the reaching of the root of the path by switching the flag to
# instead of ↓. Formally, δ?((q, α, ↑), σ) , (↑, (q, α,#)), if nw ∈ σ, and
δ?((q, α, ↑), σ) , (↑, (q, α, ↑)), otherwise.

By construction, it is immediate to see that the above automaton also works
for the existential simple-cycle-path quantifier E	s ψ. Thus, by exploiting the
dualization property of alternating automata, we can construct an automaton
for the universal simple-cycle-path quantifier A	s ψ as well. Consequently, the
global automaton for an arbitrary CTL?s	 formula is only exponential in the
size of the specification.

5. Discussion

Model-Checking Satisfiability

Formula Data

CTL PTime-c NLogSpace-c ExpTime-c
CTL	 PTime-c NLogSpace-c ExpTime-c
CTLs	 PTime-c PSpace ExpTime-c
CTL? PSpace-c NLogSpace-c 2ExpTime-c
CTL?	 PSpace-c NLogSpace-c 3ExpTime
CTL?s	 PSpace-c PSpace 2ExpTime-c

Table 1: Complexity Table

Spurred by the ob-
servation that most of
the solution techniques
for solving the model-
checking and satisfiabil-
ity problems of temporal
logics are cycle detection
based, we introduced ex-
tensions of CTL? and
CTL that explicitly take
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into account the existence of cycles in their models. Specifically, we intro-
duced CTL?	 and CTL	 by adding cycle quantifiers to CTL? and CTL
that restrict their range of quantification on the paths that are cyclic, i.e.,
in which the initial state occurs infinitely often. We investigate on the ex-
pressive power of such logics, finding that they are strictly more expressive
than their classic counter-parts CTL? and CTL, as well as orthogonal to the
µ-calculus. We also introduced CTL?s	 and CTLs	 in which the cycle quan-
tifiers are further restricted to predicate over simple cycles. For all these
logics, we addressed both the model-checking and satisfiability problems.
The results are summarized in Table 1.

The results found are very surprising. Given that the the model-checking
and the satisfiability problems for CTL? and its fragments are based on
cycle detection techniques, one might expect that adding an explicit control
on the cycles in the logic would not make any difference in terms of both
expressiveness and complexity. However, we have shown that the logics result
to be expressively incomparable with µ-calculus. In addition to this, solving
the satisfiability problem turns out to be a non-trivial extension of the one
for CTL?. Apparently, the reason why this happens is not directly related
to the ability of stating the existence of a cycle, but instead of its negation,
i.e. stating that there are non cyclic paths. As an indication for that, the
lack of finite-model property (and consequently lack of bisimulation) follows
from the ability of enforcing the satisfying subtrees to never start a cyclic
branch. At the current state, this phenomenon has not been entirely singled
out and we plan to do it on a future work.

Another possible direction for future work is to investigate the use of the
introduced cycle construct in the realm of logics for multi-agent systems such
as ATL? [2] and Strategy Logic [24, 25]. These logics have been proved to
be useful to reasoning about strategic abilities in a number of complicated
settings. In particular, the latter is able to express sophisticated solution
concepts such as Nash Equilibria and Subgame Perfect Equilibria, as well as
it has been used to express iterative extensive game forms such as the iterated
prisoner dilemma. In all these contexts, talking explicitly about cycles could
play a central role in solving the related game questions.

Finally, the notion of cycle dealt with in this work is extremely general:
the sequences between two occurrences of the recurrent state can have differ-
ent lengths and contain different states. It would be interesting to analyze
a simpler notion of cycle, for instance a regular one, as well. In addition,
one can think to explicitly verify whether a property holds between subse-
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quent occurrences of the repeating state. These questions are left as future
research.
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