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Abstract. Parity games are abstract infinite-round games that take an
important role in formal verification. In the basic setting, these games are
two-player, turn-based, and played under perfect information on directed
graphs, whose nodes are labeled with priorities. The winner of a play is
determined according to the parities (even or odd) of the minimal priority
occurring infinitely often in that play. The problem of finding a winning
strategy in parity games is known to be in UPTime ∩ CoUPTime and
deciding whether a polynomial time solution exists is a long-standing
open question. In the last two decades, a variety of algorithms have been
proposed. Many of them have been also implemented in a platform named
PGSolver. This has enabled an empirical evaluation of these algorithms
and a better understanding of their relative merits.
In this paper, we further contribute to this subject by implementing, for
the first time, an algorithm based on alternating automata. More precisely,
we consider an algorithm introduced by Kupferman and Vardi that solves
a parity game by solving the emptiness problem of a corresponding
alternating parity automaton. Our empirical evaluation demonstrates
that this algorithm outperforms other algorithms when the game has a
a small number of priorities relative to the size of the game. In many
concrete applications, we do indeed end up with parity games where the
number of priorities is relatively small. This makes the new algorithm
quite useful in practice.

1 Introduction

Parity games [11,31] are abstract infinite-duration games that represent a powerful
mathematical framework to address fundamental questions in computer science.
They are intimately related to other infinite-round games, such as mean and
discounted payoff, stochastic, and multi-agent games [3, 4, 6, 7].

In the basic setting, parity games are two-player, turn-based, played on
directed graphs whose nodes are labeled with priorities (also called, colors) and
players have perfect information about the adversary moves. The two players,
Player 0 and Player 1, take turns moving a token along the edges of the graph
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starting from a designated initial node. Thus, a play induces an infinite path
and Player 0 wins the play if the smallest priority visited infinitely often is even;
otherwise, Player 1 wins the play. The problem of deciding if Player 1 has a
winning strategy (i.e., can induce a winning play) in a given parity game is known
to be in UPTime ∩ CoUPTime [15]; whether a polynomial time solution exists
is a long-standing open question [30].

Several algorithms for solving parity games have been proposed in the last two
decades, aiming to tighten the known complexity bounds for the problem, as well
as come out with solutions that work well in practice. Among the latter, we recall
the recursive algorithm (RE) proposed by Zielonka [31], the Jurdziński’s small-
progress measures algorithm [16] (SP), the strategy-improvement algorithm by
Jurdziński and Vöge [28], the (subexponential) algorithm by Jurdzińki, Paterson
and Zwick [17], and the big-step algorithm by Schewe [25]. These algorithms
have been implemented in the platform PGSolver, and extensively investigated
experimentally [12,13]. This study has also led to a few key optimizations, such as
the decomposition into strongly connected components, the removal of self-cycles
on nodes, and the application of a priority compression [2, 16]. Specifically, the
latter allows to reduce a game to an equivalent game where the priorities are
replaced in such a way they form a dense sequence of natural numbers, 1, 2, . . . , d,
for a minimal possible d. Table 1 summarizes the mentioned algorithms along
with their known worst-case complexity, where the parameters n, e, and d denote
the number of nodes, edges, and priorities, respectively (see [12,13], for more).

Algorithm Computational Complexity

Recursive (RE) [31] O(e · nd)

Small Progress Measures (SP) [16] O(d · e · (n
d

)
d
2 )

Strategy Improvement (SI) [28] O(2e · n · e)
Dominion Decomposition (DD) [17] O(n

√
n)

Big Step (BS) [25] O(e · n
1
3
d)

Table 1. Parity algorithms along with their computational complexities.

In formal system design [8,9,21,24], parity games arise as a natural evaluation
machinery for the automatic synthesis and verification of distributed and reactive
systems [1,19,27], as they allow to express liveness and safety properties in a very
elegant and powerful way [22]. Specifically, in model-checking, one can check the
correctness of a system with respect to a desired behavior, by checking whether
a model of the system, that is, a Kripke structure, is correct with respect to a
formal specification of its behavior, usually described in terms of a modal logic
formula. In case the specification is given as a µ-calculus formula [18], the model
checking question can be rephrased, in linear-time, as a parity game [11]. So, a
parity game solver can be used as a model checker for a µ-calculus specification
(and vice-versa), as well as for fragments such as CTL, CTL?, and the like.

In the automata-theoretic approach to µ-calculus model checking, under a
linear-time translation, one can also reduce the verification problem to a question
about automata. More precisely, one can take the product of the model and an
alternating tree automaton accepting all tree models of the specification. This



product can be defined as an alternating word parity automaton over a singleton
alphabet, and the system is correct with respect to the specification iff this
automaton is nonempty [21]. It has been proved there that the nonemptiness
problems for nondeterministic tree parity automata and alternating word parity
automata over a singleton alphabet are equivalent and that their complexities
coincide. For this reason, in the sequel we refer to these two kinds of automata
just as parity automata. Hence, algorithms for the solution of the µ-calculus
model checking problem, parity games, and the emptiness problem for parity
automata can be interchangeably used to solve any of these problems, as they are
linear-time equivalent. Several algorithms have been proposed in the literature
to solve the non-emptiness problem of parity automata, but none of them has
been ever implemented under the purpose of solving parity games.

In this paper, we study and implement an algorithm, which we call APT,
introduced by Kupferman and Vardi in [20], for solving parity games via emptiness
checking of alternating parity automata, and evaluate its performance over the
PGSolver platform. This algorithm has been sketched in [20], but not spelled
out in detail and without a correctness proof, two major gaps that we fill here.
The core idea of the APT algorithm is an efficient translation to weak alternating
automata [23]. These are a special case of Büchi automata in which the set of
states is partitioned into partially ordered sets. Each set is classified as accepting
or rejecting. The transition function is restricted so that the automaton either
stays at the same set or moves to a smaller set in the partial order. Thus, each run
of a weak automaton eventually gets trapped in some set in the partition. The
special structure of weak automata is reflected in their attractive computational
properties. In particular, the nonemptiness problem for weak automata can be
solved in linear time [21], while the best known upper bound for the nonemptiness
problem for Büchi automata is quadratic [5]. Given an alternating parity word
automaton with n states and d colors, the APT algorithm checks the emptiness of an
equivalent weak alternating word automaton with O(nd) states. The construction
goes through a sequence of d intermediate automata. Each automaton in the
sequence refines the state space of its predecessor and has one less color to check
in its parity condition. Since one can check in linear time the emptiness of such
an automaton, we get an O(nd) overall complexity for the addressed problem.
APT does not construct the equivalent weak automaton directly, but applies the
emptiness test directly, constructing the equivalent weak automaton on the fly.

We evaluated our implementation of the APT algorithm over several random
game instances, comparing it with RE and SP algorithms. Our main finding is that
when the number of the priority in a game is significantly smaller (specifically,
logarithmically) than the number of nodes in the game graph, the APT algorithm
significantly outperform the other algorithms. We take this as an important
development since in many real applications of parity games we do get game
instances where the number of priorities is indeed very small compared to the
size of the game graph. For example, coming back to the automata-theoretic
approach to µ-calculus model checking [21], the translation usually results in a
parity automaton (and thus in a parity game) with few priorities, but with a huge



number of nodes. This is due to the fact that usually specification formulas are
small, while the system is big. A similar phenomenon occurs in the application
of parity games to reactive synthesis [27].

Outline The sequel of the paper is as follows. Section 2 gives preliminary
concepts on parity games. Section 3 introduces extended parity games and
describes the APT algorithm in detail, including a proof of correctness. Section 4
describes the implementation of the APT algorithm in the tool PGSolver. Section 5
contains the experimental results on runtime for APT over random benchmarks.
Finally, Section 6 gives some conclusions.

2 Preliminaries

In this section, we briefly recall some basic concepts regarding parity games. A
Parity Game (Pg, for short) is a tuple G , 〈Ps,Ps,Mv , p〉, where Ps and Ps
are two finite disjoint sets of nodes for Player 0 and Player 1, respectively, with
Ps = Ps ∪ Ps, Mv ⊆ Ps × Ps, is the left-total binary relation of moves, and
p : Ps→ N is the priority function 1. Each player moves a token along nodes by
means of the relation Mv . By Mv(q) , {q′ ∈ Ps : (q, q′) ∈ Mv} we denote the
set of nodes to which the token can be moved, starting from node q.
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Fig. 1. A parity game.

As a running example, consider the Pg de-
picted in Figure 1. The set of players’s nodes is
Ps = {q, q, q, q} and Ps = {q, q, q}; we
use circles to denote nodes belonging to Player 0
and squares for those belonging to Player 1. Mv is
described by arrows. Finally, the priority function
p is given by p(q) = 1, p(q) = p(q) = p(q) =
2, p(q) = 3, and p(q) = p(q) = 5.

A play (resp., history) over G is an infinite
(resp., finite) sequence π = q ·q ·. . . ∈ Pth ⊆ Psω

(resp., ρ = q · . . . · qn ∈ Hst ⊆ Ps∗) of nodes that
agree with Mv , i.e., (πi, πi+) ∈ Mv , for each natural number i ∈ N (resp.,
i ∈ [1, n− 1]). In the Pg in Figure 1, a possible play is π = q · q · q · (q)ω,
while a possible history is given by ρ = q · q · q · q.

For a given play π = q · q · . . ., by p(π) = p(q) · p(q) · . . . ∈ Nω we denote
the associated priority sequence. As an example, the associated priority sequence
to π is given by p(π) = 1 · 5 · 5 · (2)ω.

For a given history ρ = q · . . . · qn, by fst(ρ) , q and lst(ρ) , qn we denote
the first and last node occurring in ρ, respectively. For the example history, we
have that fst(ρ) = q and lst(ρ) = q. By Hst (resp., Hst) we denote the set of
histories ρ such that lst(ρ) ∈ Ps (resp., lst(ρ) ∈ Ps). Moreover, by Inf(π) and
Inf(p(π)) we denote the set of nodes and priorities that occur infinitely often in
π and p(π), respectively. Finally, a play π is winning for Player 0 (resp., Player
1) if min(Inf(p(π))) is even (resp., odd). In the running example, we have that
Inf(π) = {q} and Inf(p(π)) = {2} and so, π is winning for Player 0.

1 Here, we mean the set of non-negative integers, excluding zero.



A Player 0 (resp., Player 1) strategy is a function str : Hst → Ps (resp.,
str : Hst → Ps) such that, for all ρ ∈ Hst (resp., ρ ∈ Hst), it holds that
(lst(ρ), str(ρ)) ∈ Mv (resp., lst(ρ), str(ρ)) ∈ Mv).

Given a node q, Player 0 and a Player 1 strategies str and str, the play of
these two strategies, denoted by play(q, str, str), is the only play π in the game
that starts in q and agrees with both Player 0 and Player 1 strategies, i.e., for
all i ∈ N, if πi ∈ Ps, then πi+ = str(πi), and πi+ = str(πi), otherwise.

A strategy str (resp., str) is memoryless if, for all ρ, ρ ∈ Hst (resp.,
ρ, ρ ∈ Hst), with lst(ρ) = lst(ρ), it holds that str(ρ) = str(ρ) (resp.,
str(ρ) = str(ρ)). Note that a memoryless strategy can be defined on the set
of nodes, instead of the set of histories. Thus we have that they are of the form
str : Ps → Ps and str : Ps → Ps.

We say that Player 0 (resp., Player 1) wins the game G from node q if there
exists a Player 0 (resp., Player 1) strategy str (resp., str) such that, for all
Player 1 (resp., Player 0) strategies str (resp., str) it holds that play(q, str, str)
is winning for Player 0 (resp., Player 1).

A node q is winning for Player 0 (resp., Player 1) if Player 0 (resp., Player 1)
wins the game from q. By Win(G) (resp., Win(G)) we denote the set of winning
nodes in G for Player 0 (resp., Player 1). Parity games enjoy determinacy, meaning
that, for every node q, either q ∈Win(G) or q ∈Win(G) [11]. Moreover, it can
be proved that, if Player 0 (resp., Player 1) has a winning strategy from node q,
then it has a memoryless winning strategy from the same node [31].

3 Extended Parity Games

In this section we recall the APT algorithm, introduced by Kupferman and Vardi
in [20], to solve parity games via emptiness checking of parity automata. More
important, we fill two major gaps from [20] which is to spell out in details the
definition of the APT algorithm as well as to give a correctness proof. The APT

algorithm makes use of two special (incomparable) sets of nodes, denoted by
V and A, and called set of Visiting and Avoiding, respectively. Intuitively, a
node is declared visiting for a player at the stage in which it is clear that, by
reaching that node, he can surely induce a winning play and thus winning the
game. Conversely, a node is declared avoiding for a player whenever it is clear
that, by reaching that node, he is not able to induce any winning play and thus
losing the game. The algorithm, in turns, tries to partition all nodes of the game
into these two sets. The formal definition of the sets V and A follows.

An Extended Parity Game, (Epg, for short) is a tuple 〈Ps,Ps,V,A,Mv , p〉
where Ps, Ps, Mv are as in Pg. The subsets of nodes V,A ⊆ Ps = Ps∪Ps are
two disjoint sets of Visiting and Avoiding nodes, respectively. Finally, p : Ps→ N
is a parity function mapping every non-visiting and non-avoiding set to a color.

The notions of histories and plays are equivalent to the ones given for Pg.
Moreover, as far as the definition of strategies is concerned, we say that a play
π that is in Ps · (Ps \ (V ∪A))∗ ·V · Psω is winning for Player 0, while a play π
that is in Ps · (Ps \ (V ∪ A))∗ · A · Psω is winning for Player 1. For a play π that



never hits either V or A, we say that it is winning for Player 0 iff it satisfies the
parity condition, i.e., min(Inf(p(π))) is even, otherwise it is winning for Player 1.

Clearly, Pgs are special cases of Epgs in which V = A = ∅. Conversely,
one can transform an Epg into an equivalent Pg with the same winning set by
simply replacing every outgoing edge with loop to every node in V ∪ A and then
relabeling each node in V and A with an even and an odd number, respectively.

In order to describe how to solve Epgs, we introduce some notation. By
Fi = p−(i) we denote the set of all nodes labeled with i. Doing that, the
parity condition can be described as a finite sequence α = F · . . . · Fk of sets,
which alternates from sets of nodes with even priorities to sets of nodes with
odd priorities and the other way round, forming a partition of the set of nodes,
ordered by the priority assigned by the parity function. We call the set of nodes
Fi an even (resp., odd) parity set if i is even (resp., odd).

For a given set X ⊆ Ps, by force0(X) = {q ∈ Ps : X ∩Mv(q) 6= ∅} ∪ {q ∈ Ps
: X ⊆ Mv(q)} we denote the set of nodes from which Player 0 can force to move
in the set X. Analogously, by force1(X) = {q ∈ Ps : X ∩Mv(q) 6= ∅} ∪ {q ∈ Ps :
X ⊆ Mv(q)} we denote the set of nodes from which Player 1 can force to move
in the set X. For example, in the Pg in Figure 1, force1({q}) = {q, q, q}.

We now introduce two functions that are co-inductively defined that will be
used to compute the winning sets of Player 0 and Player 1, respectively.

For a given Epg G with α being the representation of its parity condition, V
its visiting set, and A its avoiding set, we define the functions Win(α,V,A) and
Win(α,A,V). Informally, Win(α,V,A) computes the set of nodes from which
the player 0 has a strategy that avoids A and either force a visit in V or he wins
the parity condition. The definition is symmetric for the function Win(α,A,V).
Formally, we define Win(α,V,A) and Win(α,A,V) as follows.

If α = ε is the empty sequence, then

– Win(ε,V,A) = force0(V) and
– Win(ε,A,V) = force1(A).

Otherwise, if α = F · α′, for some set F, then

– Win(F · α′,V,A) = µY(Ps \Win(α
′,A ∪ (F \Y),V ∪ (F ∩Y))) and

– Win(F · α′,A,V) = µY(Ps \Win(α
′,V ∪ (F \Y),A ∪ (F ∩Y))),

where µ is the least fixed-point operator2.
To better understand how APT solves a parity game we show a simple piece

of execution on the example in Fig 1. It is easy to see that such parity game is
won by Player 0 in all the possible starting nodes. Then, the fixpoint returns the
entire set Ps. The parity condition is given by α = F1 · F2 · F3 · F4 · F5, where
F1 = {q}, F2 = {q, q, q}, F3 = {q}, F4 = ∅, F5 = {q, q}. The repeated
application of functions Win(α,V,A) and Win(α,A,V) returns:

2 The unravellings of Win and Win have some anologies with the fixed-point formula
introduced in [29] also used to solve parity games. Unlike our work, however, the
formula presented there is just a translation of the Zielonka algorithm [31].



Win(α, ∅, ∅) = µY1(Ps \ µY2(Ps \ µY3(Ps \ µY4(Ps \ µY5(Ps \ force1(V6))))))

in which the sets Yi are the nested fixpoint of the formula, while the set V

is obtained by recursively applying the following:

– V1 = ∅, Vi+1 = Ai ∪ (Fi \Yi), and
– A1 = ∅, Ai+1 = Vi ∪ (Fi ∩Yi).

As a first step of the fixpoint computation, we have that Y1 = Y2 = Y3 =
Y4 = Y5 = ∅. Then, by following the two iterations above for the example in
Figure 1, we obtain that V = {q, q, q, q}.

At this point we have that force1(V6) = {q, q, q, q} 6= ∅ = Y. This means
that the fixpoint for Y has not been reached yet. Then, we update the set Y

with the new value and compute again V. This procedure is repeated up to the
point in which force1(V6) = Y, which means that the fixpoint for Y has been
reached. Then we iteratively proceed to compute Y = Ps \Y until a fixpoint
for Y is reached. Note that the sets Ai and Vi depends on the Yi and so they
need to be updated step by step. As soon as a fixpoint for Y is reached, the
algorithm returns the set Ps \Y. As a fundamental observation, note that, due
to the fact that the fixpoint operations are nested one to the next, updating the
value of Yi implies that every Yj , with j > i, needs to be reset to the empty set.

We now prove the correctness of this procedure. Note that the algorithm is
an adaptation of the one provided by Kupferman and Vardi in [20], for which a
proof of correctness has never been shown.

Theorem 1. Let G = 〈Ps,Ps,V,A,Mv , p〉 be an Epg with α being the parity
sequence condition. Then, the following properties hold.

1. If α = ε then Win(G) = Win(α,V,A) and Win(G) = Win(α,V,A);
2. If α starts with an odd parity set, it holds that Win(G) = Win(α,V,A);
3. If α starts with an even parity set, it holds that Win(G) = Win(α,V,A).

Proof. The proof of Item 1 follows immediately by definition, as α = ε forces the
two players to reach their respective winning sets in one step.

For Item 2 and 3, we need to find a partition of F into a winning set for Player
0 and a winning set for Player 1 such that the game is invariant w.r.t. the winning
sets, once they are moved to visiting and avoiding, respectively. We proceed by
mutual induction on the length of the sequence α. As base case, assume α = F
and F to be an odd parity set. Then, first observe that Player 0 can win only by
eventually hitting the set V, as the parity condition is made by only odd numbers.
We have that Win(F,V,A) = µY(Ps \Win(ε,A ∪ (F \Y),V ∪ (F ∩ (Y)))) =
µY(Ps \ force1(A ∪ (F \ Y))) that, by definition, computes the set from which
Player 1 cannot avoid a visit to V, hence the winning set for Player 0. In the
case the set F is an even parity set the reasoning is symmetric.

As an inductive step, assume that Items 2 and 3 hold for sequences α of length
n, we prove that it holds also for sequences of the form F·α of length n+1. Suppose



that F is a set of odd priority. Then, we have that, by induction hypothesis, the
formula Win(α,A ∪ (F \Y),V ∪ (F ∩Y)) computes the winning set for Player 1
for the game in which the nodes in F∩Y are visiting, while the nodes in F\Y are
avoiding. Thus, its complement Ps \Win(α,A∪ (F \Y),V∪ (F∩Y)) returns the
winning set for Player 0 in the same game. Now, observe that, if a set Y′ is bigger
than Y, then Ps\Win(α,A∪(F\Y′),V∪(F∩Y′)) is the winning set for Player 0 in
which some node in F\Y has been moved from avoiding to visiting. Thus we have
that Ps\Win(α,A∪(F\Y),V∪(F∩Y)) ⊆ Ps\Win(α,A∪(F\Y′),V∪(F∩Y′)).
Moreover, observe that, if a node q ∈ F ∪A is winning for Player 0, then it can
be avoided in all possible winning plays, and so it is winning also in the case
q is only in F. It is not hard to see that, after the last iteration of the fixpoint
operator, the two sets F\Y and F∩Y can be considered in avoiding and winning,
respectively, in a way that the winning sets of the game are invariant under this
update, which concludes the proof of Item 2.

Also in the inductive case, the reasoning for Item 3 is perfectly symmetric to
the one for Item 2.

4 Implementation of APT in PGSolver

fun win i G Ps α V A =
i f (α 6= ε) then
W := Ps \( min fp (1−i) G Ps α A V ) ;
else
W :=forcei(V) ;

return W; ;

fun min fp i G Ps α V A =
Y1 := ∅ ;
Y2 := ∅ ;
F := head [α ] ;

α′ := t a i l [α ] ;

V′ := V ∪ F ;

A′ := A ;

Y2 := win i G Ps α′ V′ A′ ;

while ( Y2 6= Y1 ) do
(
Y1 := Y2 ;

V′ := V ∪ (F ∩ Y1) ;

A′ := A ∪ (F \ Y1 ) ;

Y2 := win i G Ps α′ V′ A′ ;
)
done

return Y2 ; ;

Fig. 2. APT Algorithm

In this section we describe the im-
plementation of APT in the well-
known platform PGSolver devel-
oped in OCaml by Friedman and
Lange [13], which collects the large
majority of the algorithms intro-
duced in the literature to solve parity
games [14,16,17,25,26,28,31].

We briefly recall the main aspects
of this platform. The graph data struc-
ture is represented as a fixed length
array of tuples. Every tuple has all
information that a node needs, such
as the owner player, the assigned pri-
ority and the adjacency list of nodes.
The platform implements a collection
of tools to generate and solve parity
games, as well as compare the per-
formance of different algorithms. The
purpose of this platform is not just
that of making available an environ-
ment to deploy and test a generic solu-
tion algorithm, but also to investigate
the practical aspects of the different
algorithms on the different classes of parity games. Moreover, PGSolver imple-
ments optimizations that can be applied to all algorithms in order to improve



their performance. The most useful optimizations in practice are decomposition
into strongly connected components, removal of self-cycles on nodes, and priority
compression.

We have added to PGSolver an implementation of the APT algorithm intro-
duced in Section 3. Our procedure applies the fixpoint algorithm to compute
the set of winning positions in the game by means of two principal functions
that implement the two functions of the algorithm core processes, i.e., function
forcei and the recursive function Wini(α, V,A). The pseudocode of the APT al-
gorithm implementation is reported in Figure 2. It takes six parameters: the
Player (0 or 1), the game, the set of nodes, the condition α, the set of visiting
and avoiding. Moreover, we define the function min fp for the calculation of the
fixed point. The whole procedure makes use of Set and List data structures,
which are available in the OCaml’s standard library, for the manipulation of
the sets visiting and avoiding, and the accepting condition α. The tool along
with the implementation of the APT algorithm is available for download from
https://github.com/antoniodistasio/pgsolver-APT.

For the sake of clarity, we report that in PGSolver it is used the maximal
priority to decide who wins a given parity game. Conversely, the APT algorithm
uses the minimal priority. However, these two conditions are well known to be
equivalent and, in order to compare instances of the same game on different
implementations of parity games algorithms in PGSolver, we simply convert the
game to the specific algorithm accordingly. For the conversion, we simply use a
suitable permutation of the priorities.

5 Experiments

In this section, we report the experimental results on evaluating the performance
for the APT algorithm implemented in PGSolver over the random benchmarks
generated in the platform. We have compared the performance of the implemen-
tation of APT with those of RE and SP. We have chosen these two algorithms as
they have been proved to be the best-performing in practice [13].

All tests have been run on an AMD Opteron 6308 @2.40GHz, with 224GB
of RAM and 128GB of swap running Ubuntu 14.04. We note that APT has been
executed without applying any optimization implemented in PGSolver [13], while
SP and RE are run with such optimizations. Applying these optimization on APT

is a topic of further research.
We evaluated the performance of the three algorithms over a set of games

that are randomly generated by PGSolver, in which it is possible to give the
number n of states and the number k of priority as parameters. We have taken
20 different game instances for each set of parameters and used the average time
among them returned by the tool. For each game, the generator works as follows.
For each node q in the graph-game, the priority p(q) is chosen uniformly between
0 and k − 1, while its ownership is assigned to Player 0 with probability 1

2 , and
to Player 1 with probability 1

2 . Then, for each node q, a number d from 1 to n is
chosen uniformly and d distinct successors of q are randomly selected.



5.1 Experimental results

2 Pr 3 Pr 5 Pr
n RE SP APT RE SP APT RE SP APT

2000 4.94 5.05 0.10 4.85 5.20 0.15 4.47 4.75 0.42

4000 31.91 32.92 0.17 31.63 31.74 0.22 31.13 32.02 0.82

6000 107.06 108.67 0.29 100.61 102.87 0.35 100.81 101.04 1.39

8000 229.70 239.83 0.44 242.24 253.16 0.5 228.48 245.24 2.73

10000 429.24 443.42 0.61 482.27 501.20 0.85 449.26 464.36 3.61

12000 772.60 773.76 0.87 797.07 808.96 0.98 762.89 782.53 6.81

14000 1185.81 1242.56 1.09 1227.34 1245.39 1.15 1256.32 1292.80 10.02

Table 2. Runtime executions with fixed priorities 2, 3 and 5

We ran two experiments. First, we tested games with 2, 3, and 5 priorities,
where for each of them we measured runtime performance for different state-space
sizes, ranging in {2000, 4000, 6000, 8000, 10000, 12000, 14000}. The results are in
Table 2, in which the number of states is reported in column 1, the number of
colors is reported in the macro-column 2, 3, and 5, each of them containing the
runtime executions, expressed in seconds, for the three algorithms. Second, we
evaluated the algorithms on games with an exponential number of nodes w.r.t.
the number of priorities. More precisely, we ran experiments for n = 2k, n = ek

and n = 10k, where n is the number of states and k is the number of priorities.

n Pr RE SP APT

n = 2k

1024 10 1.25 1.25 8.58

2048 11 7.90 8.21 71.08

4096 12 52.29 52.32 1505.75

8192 13 359.29 372.16 abortT

16384 14 2605.04 2609.29 abortT

32768 15 abortT abortT abortT

n = ek

21 3 0 0 0

55 4 0 0 0.02

149 5 0.01 0.01 0.08

404 6 0.14 0.14 0.19

1097 7 1.72 1.72 0.62

2981 8 24.71 24.46 7.88

8104 9 413.2.34 414.65 35.78

22027 10 abortT abortT 311.87

n = 10k

10 1 0 0 0

100 2 0 0 0

1000 3 1.3 1.3 0.04

10000 4 738.86 718.24 4.91

100000 5 abortM abortM 66.4

Table 3. Runtime executions with
n = ek and n = 2k and n = 10k

The experiment results are reported in Ta-
ble 3. By abortT , we denote that the execution
has been aborted due to time-out (greater of
one hour), while by abortMwe denote that the
execution has been aborted due to mem-out.

The first experiment shows that with a fixed
number of priorities (2, 3, and 5) APT signifi-
cantly outperforms the other algorithms, show-
ing excellent runtime execution even on fairly
large instances. For example, for n = 14000, the
running time for both RE and SP is about 20
minutes, while for APT it is less than a minute.

The results of the exponential-scaling exper-
iments, shown in Table 3, give more nuanced
results. Here, APT is the best performing algo-
rithm for n = ek and n = 10k. For example,
when n = 100000 and k = 5, both RE and SP

memout, while APT completes in just over one
minute. That is, the efficiency of APT is notable
also in terms of memory usage. At the same
APT underperforms for n = 2k. Our conclusion
is that APT has superior performance when the
number of priorities is logarithmic in the num-
ber of game-graph nodes, but the base of the logarithm has to be large enough. As
we see experimentally, e is sufficiently large base, but 2 is not. This point deserve



further study, which we leave to future work. In Figure 3 we just report graphically
the benchmarks in the case n = ek. An interested reader can find more detailed
experiment results at https://github.com/antoniodistasio/pgsolver-APT.

Fig. 3. Runtime executions with n = ek

6 Conclusion

The APT algorithm, an automata-theoretic technique to solve parity games, has
been designed two decades ago by Kupferman and Vardi [20], but never considered
to be useful in practice [12]. In this paper, for the first time, we fill missing gaps
and implement this algorithm. By means of benchmarks based on random games,
we show that it is the best performing algorithm for solving parity games when
the number of priorities is very small w.r.t. the number of states. We believe
that this is a significant result as several applications of parity games to formal
verification and synthesis do yield games with a very small number of priorities.

The specific setting of a small number of priorities opens up opportunities for
specialized optimization technique, which we aim to investigate in future work.
This is closely related to the issue of accelerated algorithms for three-color parity
games [10]. We also plan to study why the performance of the APT algorithm is
so sensitive to the relative number of priorities, as shown in Table 3.
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