
Automatic Verification of Multi-Agent Systems
in Parameterised Grid-Environments

Benjamin Aminof
Technische Universität Wien,

Austria
benj@forsyte.at

Aniello Murano, Sasha Rubin
Università di Napoli Federico II, Italy

aniello.murano@unina.it
sasharubin@unina.it

Florian Zuleger
Technische Universität Wien,

Austria
zuleger@forsyte.at

ABSTRACT
We present a framework for modeling and analysing multi-
ple mobile agents on grid-environments such as finite mazes
and labyrinths. Agents are modeled as automata, and the
grid-environments are parameterised by their size and the
relative positions of the obstacles. We study the verifica-
tion problem, i.e., whether given agents complete a given
task on a given (possibly infinite) set of grid-environments.
We identify restrictions on the agents and on the environ-
ments for which the verification problem is decidable (and
in pspace). These assumptions are: i) there are a bounded
number of obstacles, and ii) the agents are not allowed to is-
sue commands like “increase my x-coordinate by 1” but can
only issue commands that change their relative positions,
e.g., “increase my x-coordinate until I go past this wall”.

We prove pspace-hardness already for the verification prob-
lem of a single agent on singleton parameterised environ-
ments with no obstacles. It is therefore remarkable that the
pspace-upper bound also holds for the verification prob-
lem with multiple agents, parameterised environments and
multiple obstacles. We prove that weakening either of re-
strictions i) or ii) results in undecidability. The importance
of this work is that it is the first to give a sound and com-
plete decision procedure for the verification problem on pa-
rameterised grid-like environments. Previous work either
involved only a single grid, restricted the scheduling of the
agents, or excluded grids altogether.

General Terms
Theory, Verification

Keywords
Computational Models; Autonomous Mobile Agents; Dis-
tributed Robot Systems; Grids; Parameterised Verification

1. INTRODUCTION
Physical multiagent systems are designed to move in space.

Thus 2D or 3D space, or their abstractions into grids [41,
7, 25, 26, 3], are the canonical environments for modeling
multiagent systems. In some cases, e.g., if the environment

Appears in: Proceedings of the 15th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2016),
J. Thangarajah, K. Tuyls, C. Jonker, S. Marsella (eds.),
May 9–13, 2016, Singapore.
Copyright c© 2016, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

is too dangerous or expensive to be reached by humans, we
may assume that agents initially only have partial informa-
tion about the environment. For instance, they may not
know the exact size of the space or the extent of the obsta-
cles, but they may know the relative positions of obstacles.
Thus, agents should be designed so that they operate cor-
rectly on all possible grids that are consistent with their
information [44, 43, 7, 31, 19, 25, 3]. In this paper we study
the verification problem for such multiagent systems that
have partial information about the environment.

Model checking is one of the main paradigms for auto-
matic verification: the system is modeled as a finite struc-
ture M , the specification is expressed as a formula φ in a
suitable logical formalism, and a model checking algorithm
is used to verify if the structure M satisfies the formula φ
[13]. The main obstacle to using this paradigm in our set-
ting is that, since the environment is not completely-known,
we have to model check many (potentially infinitely many)
structures M . There are two main approaches to overcom-
ing this problem, abstraction [13] and parameterised model-
checking [6]. We pursue the second approach.

Motivating Scenario: Navigating Manhattan. Sup-
pose you are arrive at Grand Central Station (GCS) in mid-
town Manhattan and want to get to a certain landmark,
say Carnegie Hall (CH), by walking along the streets and
avenues. Perhaps you already know (because you have a
crude map drawn on a piece of paper) the relative positions
of some of the major landmarks,1 e.g., Times Square (TS)
is west of GCS, somewhere between TS and GCS is a point,
North of which is the Museum of Modern Art (MOMA),
and CH is North of MOMA. Can you use this information
to reach CH? Any algorithm that you use to navigate will
probably have primitives of the form “walk east until you
reach landmark X”, or “walk east for a while, and stop at
some point to look at your map again”. Now, suppose you
have a generic algorithm for navigating, given the relative
positions of landmarks. Is your algorithm always guaranteed
to succeed? This is the parameterised verification problem.
It is parameterised because you do not want to test your
algorithm only on this particular part of Manhattan, but on
all, potentially infinitely many, such environments.

We believe that there are many scenarios of multi-agent
systems where navigating using exact positioning is not pos-
sible or desirable. On the one hand, precise positioning re-
quires complicated hardware (such as GPS receivers, servo

1Even if one has a map which is to scale, one probably does
not navigate by measuring or calculating the distance one
travels.

mechanisms, etc.), and on the other hand, even if the agent
knows its exact location, many times it does not have this
information for other objects in the environment, e.g., if a
complete to-scale map of the environment is not available,
and only a partial schematic exists (such as a “map” drawn
on a napkin), or if there is no map at all.

Aims and Contributions. In order to capture the mo-
tivating example above, as well as many other scenarios,
the aim of this work is to provide a formal framework for
reasoning mathematically and computationally about mul-
tiple mobile-agents in grid-environments, having some tasks
to perform. We model agents as finite-state machines that
walk on grids containing obstructions. The agents can move
along the axes, e.g., in two dimensions they can move hor-
izontally and vertically but not diagonally. Agents main-
tain a fixed number of beacons which they can place on
the grid to remember positions they have been to, and can
be used for navigation or coordination with other agents.
Grid-environments are parameterised by their size and the
relative positions of the obstacles on the grid. Tasks are for-
malised in a suitable linear-time logic that extends LTL by
adding the ability to talk about the relative positions of the
agents and obstacles at different points in time. In partic-
ular, it can express tasks like gathering, border patrol, and
line-formation. Agents move asynchronously according to
an optional scheduling policy; this is motivated by the as-
sumption that agents have no common notion of time since
they have different internal clocks [40, 2, 6].

We prove that the verification problem is decidable (and
in pspace) under two restrictions: i) there is a bounded
number of obstacles, and ii) the agents are not allowed to is-
sue commands like “increase my x-coordinate by 1” but can
only issue commands that change their relative positions,
e.g., “increase my x-coordinate until I go past this wall”. We
prove pspace-hardness already for the verification problem
of a single agent on singleton parameterised environments
with no obstacles and no beacons. We therefore find it re-
markable that the pspace-upper bound also holds for the
verification problem with multiple agents, beacons, param-
eterised environments and multiple obstacles.

In stark contrast, we prove that verification is undecid-
able, even for very simple tasks (such as reachability), if ei-
ther of these two conditions is relaxed. E.g., even on empty
grids, thus i) holds, if agents can issue commands with ab-
solute distances then verification is undecidable; and, if ii)
holds, but there is no bound on the number of obstacles,
then verification is undecidable even on simple “Avenues-
and-Street” grids.2

The importance of this work is that it is the first to give a
sound and complete decision procedure for the verification
problem on parameterised grid-like environments. Previous
work either involved abstractions [37], only a single environ-
ment [36], parameterised environments but with schedulings
that restricted the number of turns [2], or parameterised en-
vironments but excluded grids altogether [45]. Thus, com-
pletely new ideas are needed.

Our work is based on the insight that the ability to move
precisely in a coordinate system results in undecidability,
and that methods from formal methods can shed light on

2Moreover, we get undecidability even if the absolute place-
ment of the obstacles is not fixed, e.g., the width of the
avenues may vary.

weakened agents that still retain the ability of moving rela-
tive to other objects. In this way we obtain a powerful new
paradigm for modelling multi agent systems.

Related work. The parameterised model-checking prob-
lem has been considered in the verification community for
models of (typically immobile) processes — see [6] for a sur-
vey. On the other hand, the distributed-computing litera-
ture consideration of mobile robots (i.e., automata walking
on graphs) is mostly mathematical rather than algorithmic,
but naturally (and interestingly) provides theorems that are
parameterised (in, e.g., the number of robots, the number of
internal states of the robots, etc.) [8, 38, 28, 20, 15, 14, 27].

The main tool we exploit for decidability is a spatio tem-
poral logic called constraint LTL that was originally defined
for the verification of counter machines [17, 18].

Our paper considers qualitative tasks. In contrast, [43]
studies the shortest path problem in a 2D model that bares
some similarity to ours: obstacles are non-intersecting rect-
angles with sides parallel to the axes, and obstacles that are
in a straight line of sight can be seen, and also measured.

Our beacons are reminiscent of pebble automata [21, 4]
which themselves are related to extensions of first-order logic
with transitive closure; we remark that in our model there
is no stack-like restriction on the orders that beacons can
placed or retrieved, and yet we still achieve decidability.

Our paper considers verification. A related problem is
synthesis with partially known environments, also known as
generalised planning, which typically considers one dimen-
sional environments [16, 32, 34, 35].

Besides navigation in known environments, the AAMAS
community has studied distributed solutions to navigation
tasks in unknown environments, and in contrast to our work,
most studies were experimentally verified: [33] contains a
technique for computationally sophisticated robots to solve
the multi-robot coverage task problem using Voronoi parti-
tioning; In [12], computationally and memory limited agents
are studied using coalition logic to manage team-formation;
in [29], the agents communicate by exchanging messages
with a predefined set of other agents, whose task is to reach a
goal state in weighted planar graphs where robots discover
adjacent nodes to visited nodes; [24] contains a variation
of the A∗ algorithm for finding optimal paths in partially
known graphs, i.e., where robots discover nodes adjacent
to visited ones; and the authors of [11], motivated by re-
ducing deployment time, consider intelligent cameras and
autonomous robots for a museum guiding service.

2. NOTATION AND BACKGROUND
Notation. Let N denote the integers, and N0 be N∪{0}. For
N ∈ N, write [N] for the set {1, 2, . . . , N}. Fix an infinite
set var of variables (that vary over N). Fix, once and for all,
a dimension D ∈ N for the grids (e.g., if D = 1 then the
agents move on a line, if D = 2 then they move on planar
grids, etc). Write εi for the D-tuple (0, . . . , 0, 1, 0, . . . , 0)
that is 0 everywhere except for the ith co-ordinate which is
1. Write 0 for the D-tuple (0, . . . , 0). Write x[i ← a] for
the tuple x with the value of the ith co-ordinate replaced by
the a, e.g., (0, 0, 1)[2← 1] is (0, 1, 1). Throughout, we freely
interchange between functional notation f(i) = b and vector
notation (. . . , b, . . .). For an infinite sequence σ, write σi for
the ith element of σ.

Two-counter Machines. Our undecidability proofs pro-
ceed by reducing the halting problem of two counter ma-
chines to the verification problem. An input-free 2-counter
machine (2CM) [42] is a deterministic program manipulat-
ing two nonnegative integer counters using commands that
can increment a counter by 1, decrement a counter by 1,
and check whether a counter is equal to zero. We refer to
the “line numbers” of the program code as the “states” of
the machine. One of these states is called the halting state,
and once it is entered the machine halts. The non-halting
problem for 2CMs, which is known to be undecidable [42],
is to decide given a 2CM M whether it does not halt.

Constraint linear-temporal logic (C-LTL). Linear tem-
poral logic (LTL) is nowadays a well-established logic for rea-
soning about reactive systems. We recall the definition of
constraint linear-temporal logic (C-LTL) introduced in [18].
C-LTL is a spatio-temporal logic that has been introduced for
the verification of constraint automata, a class of automata
that can be viewed as abstractions of counter-automata. It
is the main tool that allows us to achieve decidability of the
verification problem for multi-agent systems on grids.

A term t is either an element of N0 or an expression of
the form Oi(x) (x ∈ var and i ∈ N0). We identify O0(x)
with x. An atomic constraint R is an expression of the
form t ./ t′ where t, t′ are terms and ./ is one of =, <,≡ba
(0 ≤ a < b ∈ N0). Here =, < are interpreted as usual on
N0, and ≡ba is the modulo unary relation, i.e., ≡ba (x) iff
x = a mod b. E.g., O2(x) < O1(y) is an atomic constraint.
Informally, it means that the value of x two time steps ahead
is less than the value of y one time step ahead. A constraint
is a Boolean combination of atomic constraints. A number
constraint is a constraint that only involves elements of N0

and variables, i.e., no terms of the form Oi(x) for i > 0.
The syntax of C-LTL is given by: ϕ ::= R | ¬ϕ | (ϕ ∨

ϕ) | Oϕ |ϕUϕ where R is an atomic constraint. A valua-
tion is a function var → N0. Models of C-LTL formulas are
infinite sequences of valuations, i.e., σ = σ0σ1 . . . where each
σj is a valuation. The semantics of C-LTL follows:

(σ, i) |= R iff σi+l(x) ./ σi+m(y) and

R = Ol(x) ./ Om(y)

(σ, i) |= ¬ϕ iff (σ, i) 6|= ϕ

(σ, i) |= ϕ ∨ ψ iff (σ, i) |= ϕ or (σ, i) |= ψ

(σ, i) |= Oϕ iff (σ, i+ 1) |= ϕ

(σ, i) |= ϕUψ iff ∃j ≥ i : (σ, j) |= ψ and

∀l ∈ [i, j) : (σ, l) |= ϕ

Write σ |= ϕ if (σ, 0) |= ϕ. We use the usual derived op-
erators Fϕ := trueUϕ, its dual Gϕ := ¬F¬ϕ, and ϕ1 Rϕ2

which is the dual of U, i.e., ¬(¬ϕ1 U¬ϕ2), as well as the
short-hands

∧
and

∨
. For example, G(x < O1(x)) means

that “globally the value of x at the current point of time is
smaller than the value of x at the next point of time”, which
simply means that x is always strictly increasing.

We mention the following important facts about C-LTL,
see [18]. First, recall that linear-temporal logic (LTL) has
the same syntax as C-LTL except that instead of atomic
constraints it has atomic propositions such as p and q; and
LTL formulas are interpreted over infinite sequences of sets
of atomic propositions. Now, C-LTL generalizes LTL (the
idea is to associate to each atom p a unique variable x, and

replace p by the constraint x = 1 and replace ¬p by the
constraint x = 0). Second, the satisfiability problem (and
thus also the validity problem) for C-LTL (i.e., given a C-
LTL formula ϕ, decide if there exists σ such that σ |= ϕ) is
decidable, and in fact has the same complexity as for LTL,
i.e., it is pspace-complete.

3. ENVIRONMENTS AND AGENTS
Environments. We model environments as grids of arbi-
trary, but fixed, dimension containing obstacles whose faces
are parallel to the axes. A (finite or infinite) set of envi-
ronments of interest is called a parameterised environment.
Comparisons between points of ND are taken point-wise,
e.g., v ≤ w means that vi ≤ wi for i ≤ d. We describe
various subsets of ND. A rectangle is a subset of ND of
the form {a ∈ ND : v ≤ a ≤ w}, where v ≤ w ∈ ND.
The points v and w are called the SW- and NE-corners
of the rectangle, respectively.3 The interior of a rectan-
gle R, whose SW and NE corners are v and w, is the set
Rint := {a ∈ ND : v < a < w}.

A K-obstruction M = 〈M1, . . . ,Mk〉 is a tuple of K many
rectangles. Given L ∈ N, and a K-obstruction M such
that all rectangles in M are contained in [L]D, the (L,M)-
environment is the graph G = (V,E) whose vertex set V =
[L]D\(

⋃
iM

int) (i.e., it is the rectangle with corners (0, . . . , 0)
and (L, . . . , L), and the interiors of the rectangles in M re-
moved), and whose edge relation E ⊂ V × V consists of
pairs (v, w) such that for some i we have |vi − wi| = 1 and
for j 6= i we have vi = wi (i.e., horizontally- or vertically-
adjacent vertices are joined with an edge). Environments
are also called finite labyrinths [30]. A parameterised envi-
ronment is some finite or infinite set of environments.

Since only the interiors of the obstructing rectangles are
removed, agents are allowed to move along the “walls” of
an obstacle. Observe that this has the effect that if, for
example, two rectangles (or a rectangle and a boundary of
the grid) have a common edge/face, agents can still walk
between them “along the adjoining wall”. If one wants to
ensure, that agents cannot walk between two rectangles, one
can specify that the rectangles overlap. We add that over-
lapping rectangles can be used to build obstacles of different
shapes than rectangles. For example, one can build a non-
rectangular obstacle such as an “L” by using two rectangles
and specifying that they have the same SW-corner, and that
one rectangle is thinner and higher and the other rectangle
is broader and more shallow. We finally add, that if one
wants to remove the points common to a rectangle and a
boundary of the grid4 this could be accomplished by adding
a second type of rectangle with the desired behaviour. For
ease of exposition we refrain from doing so.

Agents. Agents are modeled as finite-state machines that
can move along the axes of the grid. E.g., in a 2-dimensional
grid, each single move is in direction north, south, east or
west, but not diagonally. More formally, an agent A is tuple
(Q, I, δ) where Q is a finite set of states (we usually assume

3Note that even though our grids are not necessarily 2-
dimensional this is perhaps the most common case, and we
find it assists in imagining things if we use 2-dimensional
terms like “NE”.
4This can be used also to simulate a grid with sides of differ-
ent length by positioning suitable obstacles along the bound-
aries.

w.l.o.g. that Q = [|Q|]); I ⊆ Q is a set of initial states;
δ ⊂ Q×gc×Q is a finite transition relation. Elements of gc
are called guarded commands and are of the form (d, guard)
where d ∈ [D] is the axis along which the agent should move,
and guard is a condition specifying some restriction that
the path taken by the agent during this move must satisfy
for the move to be possible. For example, the guard may
specify that the agent moves exactly one step in the positive
direction of the axis. There are many possible definitions
for the types of guards that can be used, and these choices
determine the “power” the agents have, and we will consider
a few possible definitions of gc in later sections. In all cases,
we assume that the guard can test whether the agent is at
a boundary of the grid. Observe that we implicitly assume5

that i) the path taken by an agent in a single command does
not collide with any other agent (in more detail, an agent
may start and end in the same position as another agent,
but it may not “pass-through” an agent in a single move);
and ii) the path taken does not use positions occupied by an
obstruction. Note that the guard may be such that it does
not fully specify the end position of a move, in which case
the system nondeterministically chooses it (in a way which
satisfies the guard).

4. UNDECIDABILITY RESULTS
In this section we give two simple undecidability results

that direct our choice of model for agents in parameterized
grid environments, presented in the next section.

A common assumption is that agents have the ability
to exactly know and/or control their position [41, 27, 38,
39, 36]. This assumption abstracts real-world situations of
agents that, for example, are equipped with a global posi-
tioning system (GPS). Unfortunately, as demonstrated by
the following theorem, it is very easy to show that making
this assumption leads to undecidability of the verification
problem with respect to even the simplest tasks and pa-
rameterized grid environments. It is worth noting that this
assumption can be made, without leading to undecidability,
in many cases where the environments of interest are not
grids, e.g., environments with bounded tree-width [45, 2].

Say that an agent has precise positioning if gc contains
(directly or indirectly) commands of the form (d, xd = x′d +
j), with j ∈ {0,−1, 1}, where xd, x

′
d are the positions of the

agent along the d axis at the start and end of the move, and
guards that allow the agent to test its position, in particular
whether it is on the bottom or left boundary of the grid.

Theorem 1. The following problem is undecidable: given
a single agent with precise positioning, and a state h of the
agent, verify that for all obstacle-free finite 2-dimensional
grids no run of the agent ever enters state h.

Proof. The proof is by reduction from the non-halting
problem of 2-counter machines. Given a 2CM M , we build
an agent A that has the same states as the 2CM plus an
additional overflow state. The agent simulates the 2CM by
using its position (x, y) to encode a configuration ofM where
the first counter has value x and the second counter has value
y. The agent begins by going to the origin of the grid (south
as far as possible then west as far as possible). Incrementing
(resp. decrementing) a counter is done by simply moving one

5In other words, an instruction can be taken only if these
extra conditions are satisfied.

step in the correct direction. A test for zero amounts to the
agent checking that it has collided with the bottom or left
boundary of the grid. If the agent wants to go right or up
(to simulate an increment), but hits the boundary, it enters
the special overflow state and discontinues the simulation.

It is easy to see that, on an L × L grid, the agent can
simulate any prefix of the computation of the 2CM in which
the values of both counters never go above n. Thus, M does
not halt iff, for all L ∈ N the agent A doesn’t enter the
halting state in the L× L grid.

Observe that it is simple to modify Theorem 1 and ob-
tain that, if one wishes to consider grids of unbounded size,
verifying any non-trivial task for an agent with precise po-
sitioning is undecidable. Hence, if we wish to be able to
automatically verify that the agent performs its task on a
families of grids of unbounded size we must limit the agent’s
ability to precisely control/know its location.

In our quest for a model for describing agents in parame-
terized grid environments we are motivated by the example
from the introduction of a person navigating in an unknown
city using a schematic map, or instructions from a GPS unit.
Note that one is usually not using the precise positioning in-
formation available to the GPS, but one is simply following
instructions such as“turn left at the next corner”. All that is
needed to follow such an instruction is the ability to detect
the next corner. Let us consider then a model for the agent
where the guarded command can specify a guard that ex-
presses (directly or indirectly) that the end position x′ of the
move is a vertex of some obstacle in the environment, and no
point strictly between the start point and the end point is a
vertex of an obstacle.6 This is arguably a very basic way of
detecting a corner, as one is doing it “by feel” (reminiscent
of how a blind person uses a white cane). We call agents
with this ability agents with next corner detection.

For the following theorem, given L ∈ N, let the L-regular-
city be the 2-dimensional grid environment of length 2L+1,
in which for every i, j ∈ {0, . . . , L} there is a 1× 1 obstacle
whose SW corner is located at (2i, 2j).

Theorem 2. The following problem is undecidable: given
a single agent with next corner detection, and a state h of
the agent, verify that for all L ∈ N, no run of the agent ever
enters state h while navigating the L-regular-city.

Proof. The proof is very similar to that of Theorem 1.
Unlike Theorem 1, we do not assume that the agent has
precise positioning, and thus it can not encode the counters
of the 2CM directly by its position. However, it can do
so indirectly as follows: it encodes the value of the first
counter by the number of obstacles that are strictly to the
west of it (at the same y coordinate as it is), and the value
of the second counter by the number of obstacles that are
strictly to the south of it (at the same x coordinate). The
main difference with the agent in the proof of Theorem 1, is
that incrementing (resp. decrementing) a counter is done by
moving to the SW corner of the next obstacle in the correct
direction, which takes two moves. For example, if q is an
increment of the first counter, the agent moves twice to the
next corner to the east: the first move takes it from the SW
corner of the current obstacle to its SE corner (and to state

6If one wishes, one can further assume that if no such x′

exists then the agent walks as far as it can.

q′), and the next move takes it to the SW corner of the next
obstacle (and the next state of the 2CM).

It follows that, in an L-regular-city, the agent can simulate
any prefix of the computation of M in which the counter
values don’t exceed L. Thus, M does not halt iff, for all
L ∈ N, the agent never enters the halting state of M .

As was the case with Theorem 1, one can modify the proof
above to obtain undecidability for any non-trivial task. The
proof goes through unchanged even if the definition of an L-
regular-city is modified to allow the obstacles and the gaps
between them to have different sizes, as long as the general
structure of aligned streets and avenues is maintained.

5. A MODEL OF MAS ON GRIDS
In this section we present a model of multiple agents oper-

ating asynchronously in unbounded parameterized grid en-
vironments with a bounded number of obstacles. We also
define a way to specify the tasks for these agents.

The theorems in the previous section imply that if we want
to be able to decide whether our agents achieve their speci-
fied tasks on grid environments of unbounded size, and still
maintain the agents’ ability to detect corners of obstacles,
we should disallow the agents from precisely specifying the
distance they travel as well as bound the number of obsta-
cles in a parameterized environment. However, we place no
bounds on the sizes and positions of the obstacles.

Informally, the guarded commands of the agents do not
allow them to specify absolute positions or step sizes, and
only allow one to express relative positioning with respect
to other objects in the environment. In order to regain some
of the power lost by this relative positioning, agents are also
allowed to place some fixed number of smart markers, called
beacons (similar to non-directional radio beacons used in air
and marine navigation), in the environment. At any point in
time, and from any point in the environment, an agent can
test whether its position along any of the D axes is smaller,
equal, or larger than that of any other agent, corner of an
obstacle, or any beacon (of any agent). A beacon can also be
remotely retrieved by the agent that owns it (i.e., without
going back to it) and deposited at the current location of
the agent. Agents are also able to query other agents as to
their current local state.

Note that the beacons allow the agents to perform certain
operations that would otherwise be impossible with relative
positioning, e.g., such as marking a position an agent can
later return precisely to, or to draw a virtual line in the
town square such that the agents later gather in the square
with half of them on each side of the line. The beacons can
be implemented, for example, by making the following (lim-
ited) use of a GPS system and memory registers: placing a
beacon number i of agent j in the current position is simu-
lated by j recording, in its i’th register, the current position
as indicated by the GPS. Comparing an agent’s position
to that of the beacon is done by querying the GPS system
as to whether some coordinate d of the current location is
smaller, larger, or equal, to the value in the corresponding
register. Retrieving the beacon is done by simply overwrit-
ing the value in the register. Obviously, not all the power
of this model may be needed or possible to implement by a
real system. For example, our agents can see through walls
(I.e., they are in a “smart city” where the corners of each
obstacle broadcast radio signals), and one is welcome to not

make use of any unnecessary feature (E.g., limit the agents
to not see through obstacles).

For the rest of the paper fix the number B of beacons, the
number N of agents, and the number K of obstacles.

Variables. We define the following variables (i.e., elements
of var), that will be used later to define other important
concepts such as guards, runs, etc.:

- agent variables avar := {xn,d : n ∈ [N], d ∈ [D]};

- primed agent variables avar′ := {x′n,d : n ∈ [N], d ∈
[D]};

- beacon variables bvar := {bjn,d : n ∈ [N], d ∈ [D], j ∈
[B]};

- primed beacon variables bvar′ := {b′jn,d : n ∈ [N], d ∈
[D], j ∈ [B]};

- agent local-state variables svar := {sn : n ∈ [N]};

- obstruction variables ovar := {uk,d, vk,d : k ∈ [K], d ∈
[D]};

- the size variable l, and the turn variable turn.

The values of each variable have the following meanings.
xn := (xn,1, . . . , xn,d), is the current position of agent n, and
the primed version x′n is the next position of agent n; the

position of the j’th beacon of agent n is b
j
n := (bjn,1, . . . , b

j
n,d),

and its next position is b
′j
n := (b′jn,1, . . . , b

′j
n,d). The value of

sn is the current local state of the nth agent. The variables
uk and vk are the SW- and NE-corners of the kth obstacle;
l is the length of the grid; and turn is which agent’s turn it
is (used to define schedules). For simplicity, we assume that
the values of l and variables in ovar do not change over time,
i.e., that the size of the grid and the positions of obstacles
are fixed throughout a run of a system.

Parameterised environments with a fixed number of
obstacles. An environment constraint is a number con-
straint φ over variables ovar ∪ {l}. It determines a set of
environments Gφ as follows. Every (L,M)-environment G
with M = 〈M1, . . . ,MK〉 determines a valuation σG over
ovar ∪ {l} as follows: σG maps variable l to L, and for each
i ∈ [K], σG maps ui (resp. vi) to the SW-corners (resp. NE-
corner) of the rectangle Mi. Thus, a number constraint φ
determines the set Gφ of environments G such that the val-
uation σG satisfies φ. E.g., for d = 2,K = 1, and 2-tuples of
variables (u1, u2), (v1, v2) representing the inner rectangle,
the constraint l ≥ 10 ∧

∧
i=1,2 0 < ui < vi < l determines

the set of rectangular “race-tracks” of size at least 10.
Note that by constraining the variable l, we may specify

environments of a single size (e.g., l = 4), a finite set of sizes
(e.g., l = 4 ∨ l = 5 or l < 10), or infinitely many sizes (e.g.,
l > 10 or ≡2

0 (l)).

Agents. Recall from Section 3 that an agent A is tuple
(Q, I, δ) where Q is a finite set of states, I ⊆ Q is a set
of initial states, and δ ⊂ Q × gc × Q is a finite transition
relation, where the guarded commands gc are of the form
(d, guard) where d ∈ [D]. It remains to define the possible
values of guard. We let guard be any number constraint
over avar ∪ avar′ ∪ bvar ∪ bvar′ ∪ ovar ∪ {l}. Note that a
transition specifies that beacon j of agent n is retrieved and
dropped in the new location of the agent by specifying in the

guard that x′n = b
′j
n . An agent ensemble is a tuple of agents

A = 〈A1, · · · , AN 〉 (such that all the agents’ commands use
the same N,K and B).

Configurations, Schedules, Runs. Let G = (V,E) be
an (L,M)-environment with K obstacles, and let A be an
agent ensemble. A configuration of A on G is a tuple c :=
(loc, locb, state), where loc : [N] → V maps an agent to
its location; locb : [N] × [B] → V maps a beacon to its
location; and state : [N] → ∪jQj , such that state(j) ∈ Qj
(for j ∈ [N]), maps an agent to its current local state. Say
that c is an initial configuration if state(j) ∈ Ij (for j ∈ [N]).

We can think of c as a valuation valc over variables avar∪
bvar ∪ ovar ∪ svar that (for n ∈ [N], j ∈ [B], k ∈ [K]): maps

xn to loc(n), maps b
j
n to locb(n, j), maps uk (resp. vk) to

the SW-corner (resp. NE-corner) of the kth obstruction Mk

of the environment G; and maps sn to state(n). Similarly, if
we are given a second configuration c′, we can further extend
valc to get a valuation valc,c′ that maps x′n to loc′(n) and

b
′j
n to locb′(n, j).
For configurations c = (loc, locb, state) and c′ = (loc′, locb′,

state′), and n ∈ [N], write c `n c′ if agent n can, by tak-
ing one transition, change the configuration from c to c′.
Formally, c `n c′ if there exists (q, (d, guard), q′) ∈ δn and
α ∈ Z such that:

1. state(n) = q, and state′ = state[n ← q′] (i.e., the
agent changes state from q to q′);

2. loc′ = loc[n← loc(n)+αεd] (i.e., the agent moves some
distance α ∈ Z along the dth axis);

3. For everym ∈ [N], j ∈ B, either locb′(m, j) = locb(m, j),
or m = n and locb′(m, j) = loc′(n); (i.e., the agent can
transfer any of its beacons to its new location);

4. σloc,loc′ |= guard (i.e., the guard holds);

5. for every v ∈ ND0 strictly between loc(n) and loc′(n):
v ∈ V (i.e., no obstruction) and v 6= loc(j) for all
j ∈ [N] \ {n} (i.e., no collision).

An schedule κ is an element of [N]ω. A set S of sched-
ulers is called a scheduler. A scheduler constraint is a C-
LTL formula ω over the variable {turn}. It induces the
set of schedules κ such that there exists σ |= ω such that
σi |= (turn = κi) for all i ∈ N.7

Example 1. Round-robin of N agents may be expressed
as the N-scheduler consisting of the schedules (π(1) . . . π(N))ω

such that π is a bijection of [N]. To express this scheduler
in C-LTL one may use the formula

∨
π G

∧
n(turn = n) →

O(turn = π(π−1(n) + 1)) where the disjunction is over all
bijections π of [N].

Example 2. Fair scheduling of N agents may be expressed
as the set of schedules satisfying

∧
n GF(turn = n).

A run ρ of A on G according to scheduler S is an in-
finite sequence ρ = ρ1ρ2ρ3 · · · of configurations such that
ρ1 is initial and there exists κ ∈ S such that ρi `κi ρi+1,
for all i. The agent locations of the run is the sequence

7It is also possible to define more powerful schedulers by C-
LTL formulae over the variables {turn}∪ svar∪ avar∪ bvar∪
ovar ∪ {l}. For ease of exposition we refrain from doing so.

loc(ρ1)loc(ρ2) . . ., the beacon locations of the run is the se-
quence locb(ρ1)locb(ρ2) . . ., and the states of the run is the
sequence state(ρ1)state(ρ2) To every run ρ = ρ1ρ2 . . .
we associate val(ρ), which is the sequence of valuations
valρ1valρ2

Agent Tasks. Agents should achieve some task in their
environment. A task is a C-LTL formula τ over variables
avar ∪ svar ∪ bvar ∪ ovar ∪ {l}. The ensemble A achieve the
task τ in environment G according to scheduler S if for all
runs ρ of A on G according to scheduler S, the sequence of
valuations val(ρ), satisfies τ. Note that the task may, if one
wishes, restrict the initial states and positions of the agents.
For example, agents may be required to start at the corners
of the grid, etc.

Example 3. Agents gather if eventually they arrive at
the same, not previously determined, location [39]. This task
can be expressed by the C-LTL formula F

∧
{xn,d = xm,d :

n,m ∈ [N], d ∈ [D]}.

Example 4. The Line Formation task requires the set of
agents to form a line, an example of a pattern-formation task
[25]. This can be expressed by the C-LTL formula: FLine
where Line :=

∨
d∈[D]

∧
{xn,d = xm,d : n,m ∈ [N]}. A

variation asks that the agents repeatedly form a line, and
can be written GFLin.

The following is inspired by the task of a guard making
sure that the doors of all buildings on campus are locked.

Example.
We consider the task of border patrol for a single agent.

This task consists of moving through the grid such that ev-
ery border, in our encoding every edge of every obstacle, is
traversed at least once by the agent. Below we will give a
specification for border patrol and describe a protocol for an
agent that achieves border patrol. Our main positive result
(Theorem 3) means that one can automatically verify this
protocol against this specification for every parameterized
grid environment satisfying the constraints of Theorem 3.
For ease of exposition, we consider the 2-D setting where all
obstacles are disjoint (disjointness can be encoded by a C-
LTL-formula which is quadratic in the number of obstacles).

Specification for border patrol. We consider an ob-
stacle described by SW corner (x1, y1) and NE (x2, y2). For
the edge between (x1, y1) and (x1, y2) (the bottom edge of
the rectangle) we can encode by an eventually formula the
agent arrives at the corner (x1, y1) or (x1, y2). Then we can
describe by an until formula that the agent will eventually
reach the other corner of the edge while not leaving the edge
on the way. Border control is specified by a conjunction of
formulae as described above for every edge of every obstacle.

Protocol for border control. We assume that the
agent starts at the origin (where the security personnel office
is located), i.e., the SW corner of the grid. When the agent
is at the left side of the grid it places a beacon on its posi-
tion. Then the agent moves from the left of the grid to the
right of the grid circling around every obstacle encountered
on its way. After circling around an obstacle the agent uses
the beacon to stay on the horizontal line defined by the co-
ordinates of the beacon. When the agent has arrived at the
right hand side of the grid it returns to the beacon. Then
the agent moves upwards until it on the same height with

the next obstacle, i.e, the agent and the SW corner of the
first obstacle in the whole environment whose SW corner is
at a larger y coordinate then its current position. The agent
repeats this behavior until it reached the NE corner of the
grid. This completes the description of the agent. It is inter-
esting to note that the described agent can be implemented
by a finite automaton with a single beacon whose size only
depends linearly on the number of obstacles.

Observe that in the description above, the agent’s move
up until aligned with the SW corner of the next obstacle
cannot be directly implemented in a model where the agent
can only use vision to navigate (since that corner may be
obstructed by other obstacles that are horizontally between
the agent and that corner), and the example illustrates the
power of our model. As noted before, one can obviously limit
the agents to not use the full power of the model, and one
can come up with border patrol protocols for vision/touch
limited agents as well.

6. PARAMETERISED VERIFICATION
We first formalise the parameterised verification problem

(PVP) for agents on parameterized grids with a bounded
number of obstacles (as defined in the previous section) and
show that it is decidable. The PVP depends on formulas for
tasks, environments, and schedulers. Recall that Gφ is the
(possibly infinite) set of environments determined by φ, and
Sω is the set of schedules determined by ω.

Definition 1. The parameterised verification prob-
lem of Sliding Robots on Grids, written PVP, is the fol-
lowing decision problem: given an agent ensemble A, a task
τ for the agents, an environment constraint φ describing a
parameterized grid environment, and scheduler constraint ω,
decide whether for every G ∈ Gφ, the agents A achieve task
τ on environment G according to scheduler Sω.

Theorem 3. The PVP is in pspace.

Proof. We show this by reducing the PVP to satisfia-
bility of C-LTL which is in pspace [18]. I.e., we effectively
transform the agent-ensemble A = 〈A1, . . . , AN 〉, environ-
ment constraint φ, and scheduler constraint ω, into a C-LTL
formula ψA,φ,ω whose models code all, and only, the runs of
A on environments G ∈ Gφ according to the scheduler Sω.
Then we check that the C-LTL formula ψA,φ,ω → τ is valid,
or equivalently, that ¬(ψA,φ,ω → τ) is not satisfiable.

Here are the details of the transformation. Say An =
(Qn, In, δn), and w.l.o.g. assume, for n ∈ [N], j ∈ Qn, that
Qn = [|Qn|]. The formula ψA,φ has variables avar ∪ ovar ∪
{l}∪ {si : i ∈ [N]}∪ {turn} and uses constants from the set
{0, 1, · · · ,maxn |Qn|}. We first define some helper formulas:

- In(x, u, v) is
∧
d ud ≤ xd ≤ vd (position x is within the

rectangle determined by u and v);

- NotObstructed is
∧
n

∧
k ¬In(xn, uk, vk) (no agent is

inside any rectangle obstruction);

- Btwnd(x, y, z) is (xd < yd < zd ∨ zd < yd < xd) ∧∧
e 6=d ze = ye = xe (position y is between positions x

and z and lie parallel to axis d);

- O1(z) is (O1(z1), . . . ,O1(zn)).

Define ψA,φ,ω as the conjunction of:

- GNotObstructed (agents are unobstructed);

- φ ∧ G[l = O1(l) ∧
∧
k uk = O1(uk) ∧ vk = O1(vk)]

(obstructions satisfy the environment constraint and
do not change over time);

-
∧
n

∨
j∈In sn = j (each agent starts in an initial state);

- ω ∧ G
∧
n(turn 6= n) → (xn = O1(xn) ∧ sn = O1(sn))

(agents take turns according to a schedule in ω);

- G
∧
n

∧
i∈B(turn 6= n)→ (b

i
n = O1(b

i
n)) (only beacons

of the agent whose turn it is can be moved);

-
∧
n,j G[turn = n ∧ sn = j →

∨
t∈δn Nextt] (agents

follow their protocols),

where Nextt, for t of the form (j, (d, guard), j′), is

guard′ ∧move ∧ O1(sn) = j′ ∧ nocollide ∧ beacon

where guard′ is guard with every primed agent variable
x′m,e (resp. beacon variable bim,e) is replaced by O1(xm,e)

(resp. O1(bim,e)); move is
∧
e 6=d xn,e = O1(xn,e); nocollide

is
∧
m 6=n ¬Btwnd(xn, xm,O

1(xn)); and beacon is
∧
i b
i
n 6=

O1(b
i
n) → O1(b

i
n) = O1(xn) (the agent can move a beacon

only to its new location).
It is not hard to check that for every sequence σ of valu-

ations, σ |= ψA,φ,ω if and only if there exists G ∈ Gφ and
a run ρ of A on G according to scheduler Sω such that (i)
σ � avar is equal to loc(ρ); (ii) σ � {sn : n ∈ [N]} is equal
to state(ρ); (iii) σ � ovar ∪ {l} is a sequence of identical
valuations, each satisfying φ.

Thus, ψA,φ,ω → τ is not valid if and only if there exists a
sequence σ satisfying ψA,φ,ω ∧¬τ if and only if there exists
G ∈ Gφ and a run ρ of A on G according to scheduler Sω
such that the sequence val(ρ) of valuations of the run ρ
satisfies ¬τ if and only if the agents A do not achieve the
task τ according to scheduler Sω on all environments from
Gφ. This completes the proof.

Before presenting a pspace lower-bound for the PVP, we
need some definitions and a lemma.

Let AP be a set of atomic propositions, and let APig :=
AP ∪ {ignore}, where ignore is a new atomic proposition
not in AP. Let Σ := 2AP and Σig := 2APig . Given a word
w′ ∈ Σωig, let sub(w) be the word obtained by deleting all
letters in w that are not in Σ (i.e., which contain ignore).

Lemma 1. Let φ be an LTL formula over atomic propo-
sitions AP. One can compute in polynomial time an LTL
formula φ′ over APig, such that for every w′ ∈ Σωig we have
that w′ |= φ′ iff sub(w) is infinite and models φ.

Proof. W.l.o.g., we assume that φ is in positive nor-
mal form (i.e., negations are pushed to the atoms). The
required formula is the conjunction of two formulas: the
first requires that ¬ignore holds infinitely often (thus en-
suring that if w′ |= φ′ then sub(w) is infinite), and the
second “simulates” φ on the points where ¬ignore holds
(and“skipping” the points in which ignore holds). Formally,

φ′ := φ̂∧GF(¬ignore), where φ̂ is constructed by induction
on the structure of φ as follows:

• if φ := t, where t is an atomic proposition or its nega-

tion, then φ̂ := ignoreU(¬ignore ∧ t);

• if φ := φ1 ./ φ2, where ./∈ {∨,∧}, then φ̂ := φ̂1 ./ φ̂2;

• if φ := Oφ1 then φ̂ := ignoreU(¬ignore ∧ O φ̂1);

• if φ := φ1 Uφ2 then φ̂ := (ignore∨φ̂1)U(¬ignore∧φ̂2);

• if φ := φ1 Rφ2 then φ̂ := (¬ignore∧φ̂1)R(ignore∨φ̂2).

This completes the proof.

Theorem 4. PVP is pspace-hard already for the case of
a single agent on singleton parameterized environments with
no obstacles and no beacons.

Proof. We reduce the problem of validity of LTL for-
mulas, which is pspace-hard, to the PVP. Let φ be an
LTL formula over the atomic propositions (w.l.o.g.) AP :=
{1, . . . , D}. Consider the parameterized environment G con-
taining the single D-dimensional grid with sides of length 1
(i.e., the discrete d-dimensional unit hypercube), with no
obstacles. Note that every position on this grid is a vec-
tor x ∈ {0, 1}D. Consider a single agent A with two states
>,⊥. The transition relation allows the agent, from each
state >,⊥, to transition to either >,⊥ while moving in any
direction (or staying in the same place).

A configuration c of A on G encodes a set X ∈ Σig of
atomic propositions in APig as follows: i ∈ [D] is in X iff
the i’th coordinate of the location of A is 1, and ignore ∈
X iff the local state of A is ⊥. Hence, by the definition
of A, for every word w′ ∈ Σωig there is some run of A on
G that encodes w′, and vice-versa. Also, using the same
encoding (of atomic propositions of APig as constraints on
the location/state of the agent) we can write, with a linear
blowup, a task τ that is a C-LTL formula that encodes the
LTL formula φ′ we obtain from φ using Lemma 1.

By Lemma 1, φ is valid iff φ′ is valid. By the reasoning
above, the later is true iff the output of the PVP is true on
the input: agent A, a formula describing the hypercube G,
and the task τ (and the unrestricted scheduler true).

Observe that, in the proof above, the location of the robot
encodes the values of all atomic propositions in parallel,
which is the reason D dimensions are used. However, we
can make do instead with a single dimension if we encode
the values in serial. I.e., if we partition the positions (over
time) of the robot into blocks of length D, and let the j
position inside a block encode the value of the j’th atomic
proposition at the time corresponding to the block number.
I.e., for i ∈ N0, and 1 ≤ j ≤ D, the position of the robot at
time iD+j encodes the value of atomic proposition number i

at time j. By suitably modifying φ′ and φ̂ to this new encod-
ing we can deduce that the problem remains pspace-hard
also in the interesting cases of 2 and 3-dimensional grids.

7. DISCUSSION
Parameterized verification of multi-agent systems is a hard

problem, and the case of most interest, i.e., that of 2 and
3-dimensional grids, even more so. Indeed, in [2] it is shown
that (for agents with precise positioning) while the problem
is decidable for many parameterized environments it is un-
decidable even for agents working on a 1-D grid with only
collision-detection abilities. In this work we gave one way
to regain decidability. We have presented a model for de-
scribing multiple agents moving in parameterised grid envi-
ronments of arbitrary size with a fixed number of obstacles

of arbitrary sizes. We have shown that relaxing the require-
ment that agents can not specify exact absolute positioning
or step size, or the requirement of having a bounded num-
ber of obstacles, results in undecidability of the verification
problem of very simple tasks of even a single agent. Our
model of agents is very powerful (without becoming undecid-
able), and it generalises many other models (such as vision
and touch based agents).

Many works in the past reason about environments by us-
ing all kinds of abstractions into graphs [9, 10, 44, 46]. Our
approach avoids such abstractions (except for discretising
space) by directly reasoning about the grid environments.
We believe that our choice of using C-LTL as a logic for spec-
ifying both agents, parameterised environments, and tasks,
allows one to encode things in a direct and natural way,
and yields an elegant automatic verification algorithm. We
draw an analog to the case of timed-automata, which are
extremely popular because they provide users with direct
and natural modeling formalism. Indeed, timed-automata
can be verified by a sound and complete ”region abstrac-
tion” to finite graphs [1, 22, 23], but working directly with
these graphs is not convenient. A similar abstraction possi-
bly exists for our framework, although it is not immediately
clear or obvious how to define an abstraction with multi-
ple agents, especially since they can stop ”in the middle” of
edges, and one can speak of their relative positions. Many
forms of abstraction are not sound/complete. Thus, they
do not allow one to map the border between decidability
and undecidability as we do. Also, because an abstraction
”throws away information”, it must be tailor-made depend-
ing on the property to be verified.

Future Work. As mentioned above, one possible task is to
try and come up with a form of ”region abstraction” of our
framework that is both sound and complete.

It is interesting to note that one can modify Theorem 1
to the case that the agent has access to absolute positioning
with some error (i.e., ±ε, as would be provided by a real-
world GPS system). However, it is not clear if it can be mod-
ified to the case of an agent that has no global positioning
but can measure its step size with some error. This suggests
that one may come up with a model for such agents that
has a decidable parameterised verification problem (with or
without relative positioning).

Two other natural directions of future work are the fol-
lowing. First, one can investigate in practice the actual per-
formance of the presented framework by implementing the
proposed algorithms. Although the complexity is pspace in
general, one can hope — as it is with many algorithms in for-
mal verification — that in many natural cases the algorithm
may exhibit acceptable performance. Another possible di-
rection is to try to extend this framework to get decidability
results (with reasonable complexity) for multi-robot system
scenarios that are rich enough to capture protocols found in
the distributed computing literature, e.g., [5, 25, 26, 38].

Acknowledgments
B. Aminof and F. Zuleger are supported by the Austrian
National Research Network S11403-N23 (RiSE) of FWF and
by WWTF through grant ICT12-059. S. Rubin is a Marie
Curie fellow of the Istituto Nazionale di Alta Matematica.
A. Murano is partially supported by the GNCS 2016 project:
Logica, Automi e Giochi per Sistemi Auto-adattivi.

REFERENCES
[1] R. Alur, C. Courcoubetis, and D. L. Dill.

Model-checking in dense real-time. Inf. Comput.,
104(1):2–34, 1993.

[2] B. Aminof, A. Murano, S. Rubin, and F. Zuleger.
Verification of asynchronous mobile-robots in
partially-known environments. In PRIMA, LNCS
9387, pages 185–200, 2015.

[3] E. M. Barrameda, S. Das, and N. Santoro. Uniform
dispersal of asynchronous finite-state mobile robots in
presence of holes. In ALGOSENSORS, LNCS 8243,
pages 228–243, 2013.

[4] M. A. Bender, A. Fernandez, D. Ron, A. Sahai, and
S. Vadhan. The power of a pebble: Exploring and
mapping directed graphs. I & C, 176(1):1–21, 2002.

[5] M. A. Bender and D. K. Slonim. The power of team
exploration: Two robots can learn unlabeled directed
graphs. Technical report, MIT, 1995.

[6] R. Bloem, S. Jacobs, A. Khalimov, I. Konnov,
S. Rubin, H. Veith, and J. Widder. Decidability of
Parameterized Verification, volume 6 (1) of Synthesis
Lectures on Distributed Computing Theory. 2015.

[7] A. Blum, P. Raghavan, and B. Schieber. Navigating in
unfamiliar geometric terrain. SIAM J. Comput.,
26(1):110–137, 1997.

[8] M. Blum and C. Hewitt. Automata on a 2-dimensional
tape. SWAT (FOCS), pages 155–160, 1967.

[9] R. Brafman, J. Latombe, Y. Moses, and Y. Shoham.
Applications of a logic of knowledge to motion planning
under uncertainty. J.ACM, 44(5):633–668, 1997.

[10] W. Burgard, M. Moors, C. Stachniss, and F.Schneider.
Coordinated multi-robot exploration. IEEE
Transactions on Robotics, 21(3):376–386, 2005.

[11] A. Canedo-Rodŕıguez, V. Alvarez-Santos,
C. V Regueiro, X. M. Pardo, and R. Iglesias.
Multi-agent system for fast deployment of a guide
robot in unknown environments. Journal of Physical
Agents, 6(1):31–41, 2012.

[12] K. Cheng and P. Dasgupta. Coalition game-based
distributed coverage of unknown environments by
robot swarms. In AAMAS, pages 1191–1194, 2008.

[13] E. Clarke, O. Grumberg, and D. Peled. Model
Checking. MIT, 2002.

[14] R. Cohen, P. Fraigniaud, D. Ilcinkas, A. Korman, and
D. Peleg. Label-guided graph exploration by a finite
automaton. In Automata, Languages and
Programming, LNCS 3580, pages 335–346. 2005.

[15] S. Das. Mobile agents in distributed computing:
Network exploration. Bull. EATCS, 109:54–69, 2013.

[16] G. De Giacomo, P. Felli, F. Patrizi, and S. Sardiña.
Two-player game structures for generalized planning
and agent composition. In AAAI, 2010.

[17] S. Demri and D. D’Souza. An automata-theoretic
approach to constraint LTL. Inform. and Comp.,
205(3):380 – 415, 2007.

[18] S. Demri and R. Gascon. Verification of qualitative Z
constraints. Theor. Comput. Sci., 409(1):24–40, 2008.

[19] A. Dessmark and A. Pelc. Optimal graph exploration
without good maps. In ESA, LNCS 2461, pages
374–386. Springer, 2002.

[20] K. Diks, P. Fraigniaud, E. Kranakis, and A. Pelc. Tree

exploration with little memory. Journal of Algorithms,
51(1):38–63, 2004.

[21] J. Engelfriet and H. J. Hoogeboom. Nested pebbles
and transitive closure. In STACS, pages 477–488, 2006.

[22] M. Faella, S. La Torre, and A. Murano. Dense
real-time games. In LICS, pages 167–176. IEEE
Computer Society, 2002.

[23] M. Faella, S. La Torre, and A. Murano.
Automata-theoretic decision of timed games. Theor.
Comput. Sci., 515:46–63, 2014.

[24] A. Felner, R. Stern, and S. Kraus. PHA*: performing
A* in unknown physical environments. In AAMAS,
pages 240–247. ACM, 2002.

[25] P. Flocchini, G. Prencipe, and N. Santoro. Computing
by mobile robotic sensors. In Theoretical Aspects of
Distributed Computing in Sensor Networks, EATCS,
pages 655–693. 2011.

[26] P. Flocchini, G. Prencipe, and N. Santoro. Distributed
Computing by Oblivious Mobile Robots. Synthesis
Lectures on Distributed Computing Theory. 2012.

[27] P. Fraigniaud, D. Ilcinkas, G. Peer, A. Pelc, and
D. Peleg. Graph exploration by a finite automaton.
Theoretical Computer Science, 345:331–344, 2005.

[28] L. Gasieniec and T. Radzik. Memory efficient
anonymous graph exploration. In Graph-Theoretic
Concepts in Computer Science, LNCS 5344, pages
14–29. Springer, 2008.

[29] A. Gilboa, A. Meisels, and A. Felner. Distributed
navigation in an unknown physical environment. In
AAMAS, pages 553–560, 2006.

[30] F. Hoffmann. One pebble does not suffice to search
plane labyrinths. In Fundamentals of Computation
Theory, LNCS 117, pages 433–444. 1981.

[31] T. Hsiang, E. M. Arkin, M. A. Bender, S. P. Fekete,
and J. S. B. Mitchell. Algorithms for rapidly
dispersing robot swarms in unknown environments. In
WAFR, Springer Tracts in Advanced Robotics, vol. 7,
pages 77–94. Springer, 2002.

[32] Y. Hu and G. De Giacomo. Generalized planning:
Synthesizing plans that work for multiple
environments. In IJCAI, pages 918–923, 2011.

[33] K. Hungerford, P. Dasgupta, and K. R. Guruprasad.
Distributed, complete, multi-robot coverage of initially
unknown environments using repartitioning. In
AAMAS, pages 1453–1454. IFAAMAS, 2014.

[34] A. Khalimov, S. Jacobs, and R. Bloem. PARTY
parameterized synthesis of token rings. In CAV, LNCS
8044, pages 928–933, 2013.

[35] A. Khalimov, S. Jacobs, and R. Bloem. Towards
efficient parameterized synthesis. In VMCAI, LNCS
7737, pages 108–127, 2013.

[36] P. Kouvaros and A. Lomuscio. Automatic verification
of parameterised multi-agent systems. In AAMAS,
pages 861–868, 2013.

[37] P. Kouvaros and A. Lomuscio. A counter abstraction
technique for the verification of robot swarms. In
AAAI, pages 2081–2088, 2015.

[38] E. Kranakis, D. Krizanc, and S. Rajsbaum. Mobile
agent rendezvous: A survey. In SIROCCO, LNCS
4056, pages 1–9, 2006.

[39] E. Kranakis, D. Krizanc, and S. Rajsbaum.

Computing with mobile agents in distributed
networks. In Handbook of Parallel Computing: Models,
Algorithms, and Applications. Chapter 8. 2007.

[40] N. A. Lynch. Distributed Algorithms. Morgan
Kaufmann, 1996.

[41] D. K. M. Blum. On the power of the compass (or, why
mazes are easier to search than graphs). In FOCS,
pages 132–142, 1978.

[42] M. L. Minsky. Computation: finite and infinite
machines. Prentice-Hall, Inc., 1967.

[43] C. H. Papadimitriou and M. Yannakakis. Shortest
paths without a map. Theor. Comput. Sci.,
84(1):127–150, 1991.

[44] N. Rao, S. Kareti, W. Shi, and S. Iyengar. Robot
navigation in unknown terrains: Introductory survey
of non-heuristic algorithms. Jul 1993.

[45] S. Rubin. Parameterised verification of autonomous
mobile-agents in static but unknown environments. In
AAMAS, pages 199–208, 2015.

[46] K. Senthilkumar and K. Bharadwaj. Multi-robot
exploration and terrain coverage in an unknown
environment. Robotics and Autonomous Systems,
60(1):123–132, 2012.

	Introduction
	Notation and Background
	Environments and Agents
	Undecidability Results
	A Model of MAS on Grids
	Parameterised Verification
	Discussion

