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Abstract. Visibly Pushdown Automata (VPA) are a special case of
pushdown machines where the stack operations are driven by the in-
put. In this paper, we consider VPA with two stacks, namely 2-VPA.
These automata introduce a useful model to effectively describe con-
current pushdown systems using a simple communication mechanism
between stacks. We show that 2-VPA are strictly more expressive than
VPA. Indeed, 2-VPA accept some context-sensitive languages that are
not context-free and some context-free languages that are not accepted
by any VPA. Nevertheless, the class of languages accepted by 2-VPA is
closed under all boolean operations and determinizable in ExpTime, but
does not preserve decidability of emptiness problem. By adding an or-
dering constraint on stacks (2-OVPA), decidability of emptiness can be
recovered (preserving desirable closure properties) and solved in PTime.
Using these properties along with the automata-theoretic approach, we
prove that the model checking problem over 2-OVPA models against
2-OVPA specifications is ExpTime-complete.

1 Introduction

In the area of formal design verification, one of the most significant developments
has been the discovery of the model checking technique, that automatically allows
to verify on-going behaviors of reactive systems ([CE81, QS81, VW86]). In this
verification method (for a survey see [CGP99]), one checks the correctness of a
system with respect to a desired behavior by checking whether a mathematical
model of the system satisfies a formal specification of this behavior.

Traditionally, model checking is applied to finite-state systems, typically
modeled by labeled state-transition graphs. Recently, model checking has been
extended to infinite-state sequential systems (e.g., see [Wal96, BMP05]). These
are systems in which each state carries a finite, but unbounded, amount of infor-
mation, e.g., a pushdown store. Pushdown automata (PDA) naturally model the
control flow of sequential programs with nested and recursive procedure calls.
Therefore, PDA are the proper model to tackle with program analysis, compiler
optimization, and model checking questions that can be formulated as decision
problems for PDA. While many analysis problems, such as identifying dead code
and accesses to uninitialized variables, can be captured as regular requirements,
many others require inspection of the stack or matching of calls and returns, and
are non-regular context-free. More examples of useful non-regular properties are
given in [SCFG84], where the specification of unbounded message buffers is con-
sidered. Since checking context-free properties on PDA is proved in general to
be undecidable [KPV02], weaker models have been proposed to decide different
kinds of non-regular properties. One of the most promising approaches is that of



Visibly Pushdown Automata (VPA) [AM04]. These are PDA where the push or
pop actions on the stack are controlled externally by the input alphabet. Such a
restriction on the use of the stack allows to enjoy all desirable closure properties
and tractable decision problems, though retaining an expressiveness adequate to
formulate program analysis questions (as summarized in Figure 1). Therefore,
checking pushdown properties of pushdown models is feasible as long as the
calls and returns are made visible. This visibility requirement seems quite natu-
ral while writing requirements about pre/post conditions or for inter-procedural
flow properties. In particular, requirements that can be verified in this manner
include all regular properties, and non-regular properties such as: partial correct-
ness (if P holds when a procedure is invoked, then, if the procedure returns, P ′

holds upon return), total correctness (if P holds when a procedure is invoked,
then the procedure must return and P ′ must hold at the return state), local
properties (the computation within a procedure by skipping over calls to other
procedures satisfies a regular property, for instance, every request is followed
by a response), access control (a procedure A can be invoked only if another
procedure B is in the current stack), and stack limits (whenever the stack size
is bounded by a given constant, a property A holds). Unfortunately, some nat-
ural context-free properties like “the number of calls to procedures A and B
is the same” cannot be captured by any VPA [AM04]. Moreover, VPA cannot
explicitly represent concurrency: for instance, properties of two threads running
in parallel, each one exploiting its own pushdown store.

In this paper, we propose an extension of VPA in order to enrich with fur-
ther expressiveness the model though maintaining some desirable closure prop-
erties and decidability results. We first consider VPA with an additional, input
driven, pushdown store and we call the proposed model 2-Visibly Pushdown Au-
tomaton (2-VPA). As in the VPA case, 2-VPA input symbols are partitioned in
subclasses, each of them triggers a transition belonging to a specific class, i.e.,
push/pop/local transition, which also selects the operating stack, i.e., the first or
the second or both. Moreover, visibility in 2-VPA affects the transfer of informa-
tion from one stack to the other. 2-VPA turn out to be strictly more expressive
than VPA and they also accept some context-sensitive languages that are not
context-free. Unfortunately, this extension does not preserve decidability of the
emptiness problem as it can be proved by a reduction from the halting prob-
lem over Minsky Machines [Min67]. In the automata-theoretic approach, to gain
with a decidable model checking procedure, decidability of the emptiness prob-
lem is crucial. For this reason, we add to 2-VPA a suitable restriction on stack
operations, namely we consider 2-VPA in which pop operations on the second
stack are allowed only if the first is empty. We call such a variant ordered 2-VPA
(2-OVPA). The ordering constraint is inspired from the class of multi-pushdown
automata (MPDA), defined in [BCCR96]. These are pushdown automata ex-
ploiting an ordered collection of arbitrary number of pushdown stores in which
a pop action on the i-th stack can occur only if all previous stacks are empty. In
[BCCR96], it has been shown that the class of languages accepted by MPDA is
strictly included into context-sensitive languages, it has the emptiness problem
decidable, it is closed under union, but not under intersection and complement.

From an expressive point of view, 2-OVPA are a proper subclass of MPDA
with two stacks (PD2). Differently from PD2, exploiting visibility allows to re-
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cover in 2-OVPA closure under intersection and complement thus allowing to
face the model checking problem following the automata-theoretic approach. In
such an approach, to verify whether a system, modeled as a 2-OVPA S, satisfies
a correctness requirement expressed by a 2-OVPA P , we check for emptiness
the intersection between the language accepted by S and the complement of the
language accepted by P (i.e., L(S) ∩ L(P ) = ∅). Since intersection and comple-
mentation of 2-OVPA can be performed in polynomial and exponential time,
respectively, and inclusion for VPA is ExpTime-complete [AM04], we get that
model checking an 2-OVPA model against an 2-OVPA specification is ExpTime-
complete. This is notable since checking context-free properties on PDA is proved
to be undecidable [KPV02] and then also model checking multi-pushdown prop-
erties over MPDA is undecidable.

The extension we propose for VPA does not only affect expressiveness, but
also gives us a way to naturally describe distributed pushdown systems behav-
ior. In fact, we show that 2-OVPA capture the behavior of systems built on
pairs of VPA running in a suitable synchronous way according to a distributed
computing paradigm. To this purpose, we introduce a composition operator on
VPA parameterized on a communication interface. Given a pair of VPA, this
operator allows to build a Synchronized System of VPA (S-VPA), which behaves
synchronously and in parallel. A communication between two synchronous VPA
consists in a transfer of information from the top of the stack of one VPA to the
top of stack of the other. If we interpret each one of the involved VPA as a pro-
cess with its pushdown store (containing activation records of procedure calls,
for instance), the enforced communication form can be seen as a Remote Pro-
cedure Call [ST02], widely exploited in the client-server paradigm of distributed
computing. In our case, ordering of VPA modules can be interpreted as follows:
we can see the former one acts as a client and the latter as a server. The client
can always demand to the server the execution of a task and the server can
return a result to the client whenever this is available (its stack is empty).

The properties of languages accepted by 2-VPA and 2-OVPA we obtain along
the paper are summarized in Figure 1. Due to page limitations, some proofs are
reported in Appendix.

Languages Closure Properties Decision problems
∪ ∩ Complement Emptiness Inclusion

Regular Yes Yes Yes Nlogspace Pspace
CFL Yes No No Ptime Undecidable
VPL Yes Yes Yes Ptime ExpTime
LPD2 Yes No No Ptime Undecidable
2-VPL Yes Yes Yes Undecidable Undecidable
2-OVPL Yes Yes Yes Ptime ExpTime

Fig. 1. A comparison between closure properties and decision problems.

2 Preliminaries

Let Σ be a finite alphabet partitioned into three pairwise disjoint sets Σc, Σr,
and Σl standing respectively for call, return, and local alphabets. We denote
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the tuple Σ̃ = 〈Σc,Σr,Σl〉 a visibly pushdown alphabet. A (nondeterministic)
visibly pushdown automaton (VPA) on finite words over Σ̃ [AM04] is a tuple
M = (Q,Qin,Γ,⊥, δ, QF ), where Q, Qin, QF , and Γ are respectively finite sets
of states, initial states, final states, and stack symbols; ⊥ &∈ Γ is the stack bottom
symbol and we use Γ⊥ to denote Γ ∪ {⊥}; and δ ⊆ δc ∪ δr ∪ δl, is the transition
relation where δc = Q×Σc×Q×Γ , δr = Q×Σr×Γ⊥×Q, and δl = Q×Σl×Q.
We call (q, a, q′, γ) ∈ δc a push transition, where on reading a the symbol γ is
pushed onto the stack and the control state changes to q′; (q, a, γ, q′) ∈ δr a pop
transition, where γ is popped from the stack leading to the control state q′; and
(q, a, q′) ∈ δl a local transition, where the automaton on reading a only changes
its control to q′. A configuration for a VPA M is a pair (q, σ) ∈ Q × (Γ ∗.⊥)
where σ is the stack content. A run ρ = (q0,σ0)...(qk,σk) of M on a word
w = a1...ak is a sequence of configurations such that q0 ∈ Qin, σ0 = ⊥, and for
every i ∈ {0, ..., k}, one of the following holds: [Push]: (qi, ai, qi+1, γ) ∈ δc, and
σi+1 = γ.σi; [Pop]: (qi, ai, γ, qi+1) ∈ δr, and either γ ∈ Γ and σi = γ.σi+1, or
γ = σi = σi+1 = ⊥; or [Local]: (qi, ai, qi+1) ∈ δl and σi+1 = σi.

A run is accepting if its last configuration contains a final state. The lan-
guage accepted by a VPA M is the set of all words w with an accepting run
of M on w, say it L(M). A language of finite words L ⊆ Σ∗ is a visibly push-
down language (VPL) with respect to a pushdown alphabet Σ̃, if there is a
VPA M such that L = L(M). VPLs are a subclass of deterministic context-free
languages, a superclass of regular languages, and are closed under intersection,
union, complementation, concatenation, and Kleene-∗. Furthermore, the empti-
ness problem for a VPA M , i.e., deciding whether L(M) &= ∅, is decidable with
time complexity O(n3), where n is the number of states in M .

In the literature, different extensions of classical pushdown automata with
multiple stacks have been considered. Here, we recall multiple-pushdown au-
tomata as they were introduced in [BCCR96]. These machines are pushdown
automata endowed with an ordered set of an arbitrary number of stacks and the
constraint that pop operations occur sequentially and only operate on the first
non-empty stack. Thus, push operations are never constrained and they can be
performed independently on every stack. The formal definition follows.

A multi-pushdown automaton with n ≥ 1 stacks (PDn, for short) is a tuple
M = (Σ, Q, Qin, Γ , Z0, δ, QF ), where Σ, Q, Qin, Γ , and QF are respec-
tively finite sets of input symbols, states, initial states, stack symbols, and fi-
nal states, Z0 &∈ Γ is the bottom stack symbol and used to identify the initial
non-empty stack, and δ is the transition relation defined as a partial function
from Q × Σ ∪ {ε} × Γ to 2Q×(Γ∗)n

. If (q′,α1, . . . ,αn) ∈ δ(q, a, γ), on read-
ing a the automaton changes its control state from q to q′, the stack symbol
γ ∈ Γ is popped from the first non-empty stack, and for each i in {1, . . . , n},
and αi ∈ Γ ∗ is pushed on the i-th stack. A configuration of M is a n + 2-tuple
〈q, x;σ0, . . . ,σn〉, where q ∈ Q, x ∈ Σ∗, σ0, . . . ,σn ∈ Γ ∗, and σi is the content
of the i-th stack. The above configuration is initial if q = q0, σ0 = Z0, and all
other stacks are empty, and it is final if q ∈ F . The transition relation ,M over
configurations is defined in the following way: 〈q, ax; ε, . . . , ε, γ.γi, . . . , γn〉 ,M

〈q′, x;α1, . . . ,αi−1,αiγi, . . . ,αnγn〉 if (q′,α1, . . . , αn) ∈ δ(q, a, γ). A word w is
accepted by a PDn M iff 〈q, w;Z0, ε . . . , ε〉 ,∗M 〈qF , ε; γ1, . . . , γn〉, where ,∗M is
the kleene-closure of ,M and qF ∈ QF . The language of a PDn M is the set
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of words accepted by M . We denote the class of languages accepted by PDn as
LPDn . The following theorem summarizes the main results about PDn.

Theorem 1. [BCCR96] For every n ≥ 1, we have that LPDn subsumes CFLs,
it is strictly included in CSLs as well as in LPDn+1 . It is closed under union,
concatenation and Kleene-∗. Moreover, it has a decidable emptiness problem and
solvable in O(|Q|3), where |Q| is the number of states of the automaton.

3 Visibly Pushdown Automata with two Stacks

A 2-pushdown alphabet is a pair of pushdown alphabets Σ̃ = 〈Σ̃0, Σ̃1〉, where
Σ̃0 = 〈Σ0

c ,Σ0
r ,Σ0

l 〉 and Σ̃1 = 〈Σ1
c ,Σ1

r ,Σ1
l 〉 are a possibly different partitioning

of the same input alphabet Σ. The intuition is that the Σ̃0 drives the operations
over the first stack and Σ̃1 those over the second. Symbols in Σ̃ belonging to call,
return or local partitions of both Σ̃0 and Σ̃1 are simply denoted by Σc,Σr,Σl,
respectively. Furthermore, input symbols that drive a call operation on the first
(resp., second) stack and a return on the second (resp., first) stack are called
synchronized communication symbols and formally denoted as Σs1 = Σ0

c ∩ Σ1
r

(resp., Σs0 = Σ0
r ∩ Σ1

c ). Finally, we denote with Σci (resp., Σri) the set of call
(resp., return) symbols for the stack i and local for the other, with i = 0, 1. In the
following, we use Σ̃ to denote both a 2-pushdown alphabet and a (1-)pushdown
alphabet, when the meaning is clear from the context.

Definition 1 (2-Visibly Pushdown Automaton). A (nondeterministic) 2-
Visibly Pushdown Automaton (2-VPA) on finite words over a 2-pushdown al-
phabet Σ̃ is a tuple M = (Q,Qin,Γ,⊥, δ, QF ), where Q,Qin, QF , and Γ are
respectively finite sets of states, initial states, final states and stack symbols,
⊥ &∈ Γ is the stack bottom symbol (with Γ⊥ used to denote Γ ∪ {⊥}), and δ is
the transition relation defined as the union of the following sets, for i ∈ {0, 1}:

• δci ⊆ (Q×Σci ×Q× Γ ), • δri ⊆ (Q×Σri × Γ⊥ ×Q),
• δc ⊆ (Q×Σc ×Q× Γ × Γ ), • δr ⊆ (Q×Σr × Γ⊥ × Γ⊥ ×Q),
• δsi ⊆ (Q×Σsi × Γ⊥ ×Q× Γ ), • δl ⊆ Q×Σl ×Q.

We say that M is deterministic if Qin is a singleton, and for every q ∈ Q, a ∈
Σ, and γ ∈ Γ⊥, there is at most one transition of the form (q, a, q′), (q, a, q′, γ),
(q, a, q′, γ, γ′), (q, a, γ, q′), (q, a, γ, γ′, q′), or (q, a, γ, q′, γ′) belonging to δ.

Transitions in δl, δci , and δri extend VPA’s local, call, and return transitions
to deal with two stacks, in a natural way. We call (q, a, q′, γ, γ′) ∈ δc a double-
call transition where on reading a the automaton changes its control state from
q to q′, and the symbols γ and γ′ are pushed on the first and second stack,
respectively; we call (q, a, γ, γ′, q′) ∈ δr a double-pop transition where on reading
a the automaton changes its control state from q to q′, and the symbols γ
and γ′ are popped from the first and second stack, respectively; finally, we call
(q, a, γ, q′, γ′) ∈ δsi , with i ∈ {0, 1}, a synchronous (communication) transition
between stacks, where on reading a the automaton changes its control state from
q to q′ and the symbol γ is popped from the stack i and γ′ pushed on the other.

A configuration of a 2-VPA M is a triple (q, σ0,σ1) where q ∈ Q and σ0,σ1 ∈
Γ ∗.⊥. For an input word w = a1 . . . ak ∈ Σ∗, a run of M on w is a sequence
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ρ = (q0,σ0
0 ,σ1

0)...(qk,σ0
k,σ1

k) where q0 ∈ Qin, σ0
0 = σ1

0 = ⊥, and for all i ∈
{0, ..., k−1}, there are j, j′ ∈ {0, 1}, j &= j′, such that one of the following holds:
Push: (qi, ai, qi+1, γ) ∈ δcj , then σj

i+1 = γ.σj
i and σj′

i+1 = σj′

i ;
2Push: (qi, ai, qi+1, γ, γ′) ∈ δc then σj

i+1 = γ.σj
i and σj′

i+1 = γ′.σj′

i ;
Pop: (qi, ai, γ, qi+1) ∈ δrj , then either γ = σj

i = σj
i+1 = ⊥, or γ &= ⊥ and

σj
i = γ.σj

i+1. In both cases σj′

i+1 = σj′

i ;
2Pop: (qi, ai, γ0, γ1, qi+1) ∈ δr then, for k ∈ {0, 1}, either γk = σk

i = σk
i+1 = ⊥,

or γk &= ⊥ and σk
i = γ.σk

i+1;
Local: (qi, ai, qi+1) ∈ δl then σ0

i+1 = σ0
i and σ1

i+1 = σ1
i ;

Synch: (qi, ai, γ, qi+1, γ̂) ∈ δsj then either γ = σj
i = σj

i+1 = ⊥, or γ &= ⊥ and
σj

i = γ.σj
i+1. In both cases σj′

i+1 = γ̂.σj′

i .
From the above definition, we notice that communication between stacks is

only allowed by applying a synch. transition. For a configuration c, we write
c ,M c′ meaning that c′ is obtained from c by applying one of the rules above.
We omit M when it is clear from the context. A run ρ is accepting when it ends
with a configuration containing a final state. A word w is accepted if there is an
accepting run ρ of M on w. The language accepted by M , denoted by L(M), is
the set of all words accepted by M . A language L ⊆ Σ∗ is a 2-VPL with respect
to Σ̃ if there is a 2-VPA M over Σ̃ such that L(M) = L.

Theorem 2. The emptiness problem for 2-VPA is undecidable.

Proof. [sketch] We prove the result by showing a reduction from the halting
problem of two counters Minsky machines. A Minsky machine with two counters
C0 and C1 is a finite sequence M = (L1 : I1;L2 : I2; . . . ;Ln : halt) where
n ≥ 1, L1, . . . , Ln are pairwise different instruction labels, and I1, . . . , In are
instructions of type increment, i.e., Cm := Cm + 1; goto Lj , or of type test
and decrement, i.e., if Cm = 0 then goto Lj else Cm := Cm − 1; goto Lk,
where 0 ≤ m ≤ 1 and 1 ≤ j, k ≤ n. A configuration of M is a triple (Li, v0, v1)
where Li is an instruction label, and v0, v1 ∈ N represent the values of the
counters C0 and C1, respectively. Let Conf be the set of all configurations of
M , the transition relation ↪→⊆Conf×Conf between configurations is defined in
an obvious way, and ↪→∗ is the transitive and reflexive closure of ↪→. If (L1, 0, 0)
↪→ . . . ↪→ (Lj , v0

j , v1
j ) holds for a Minsky machine M , we say that (L1, 0, 0) . . .

(Lj , v0
j , v1

j ) is an execution trace for M . The halting problem for M is to decide
whether there exist v0, v1 ∈ N such that (L1, 0, 0) ↪→∗ (Ln, v0, v1). This problem
is known to be undecidable [Min67].

We now prove that given a two counters Minsky machine M there exists a
2-VPA M ′ over Σ̃ such that L(M ′) &= ∅ iff M eventually halts. Let M = (L1 :
I1;L2 : I2; . . . ;Ln : halt), we define M ′ = (Q, Qin, Γ , ⊥, δ, QF ) such that
Q = {L1, . . . , Ln}, Qin = {L1}, Γ = {A}, where A does not appear in M ,
QF = {Ln}, and Σ̃ is the partitioned set of all instructions Ii, with i = 1, . . . , n,
such that Ii ∈ Σc0 (resp., Ii ∈ Σc1) if Ii is an increment instruction of the
counter C0 (resp., C1), or Ii ∈ Σr0 (resp., Ii ∈ Σr1) if Ii is a test and decrement
instruction over the counter C0 (resp., C1). Finally, δ is defined as follows: if Ii

is an increment instruction such as Cm := Cm + 1; goto Lj , with m ∈ {0, 1},
then (Li, Ii, Lj , A) ∈ δcm ; otherwise, if Ii is a test and decrement instruction
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such as if Cm = 0 then goto Lj else Cm := Cm−1; goto Lk, with m ∈ {0, 1}
then (Li, Ii,⊥, Lj), (Li, Ii, A, Lk) ∈ δrm . It remains to prove that M halts iff M ′

accepts a word. It is easy to show by induction the following assertion:
Given a sequence of numbers s = s1s2 . . . sk, with si ∈ {1, . . . , n} for all

i ∈ {1, . . . , k}, the sequence (Ls1 , v
0
s1

, v1
s1

) . . . (Lsk , v0
sk

, v1
sk

) of elements from
{L1, . . . Ln} × N × N is an execution trace of M if and only if the sequence
(Ls1 ,σ

0
s1

,σ1
s1

) . . . (Lsk ,σ0
sk

,σ1
sk

) of elements from Q × Γ ∗.⊥ × Γ ∗.⊥ is a run of
M ′, with |σj

si
| = vj

si
+ 1 for each i ∈ {1, . . . , k} and j ∈ 0, 1.

This implies that (Ls1 , v
0
s1

, v1
s1

) . . . (Lsk , v0
sk

, v1
sk

) is an halting execution
trace of M iff (Ls1 ,σ

0
s1

,σ1
s1

) . . . (Lsk ,σ0
sk

,σ1
sk

) is an accepting run of M ′ over
Is1 , . . . , Isk−1 , with |σj

si
| = vj

si
+ 1 for each i ∈ {1, . . . , k}, since Lsk = Ln and

Ln is final for M ′. 01

It is interesting to notice that the reduction we consider in the proof of
Theorem 2 also applies to the restricted model of VPA with 2 stacks where
operations acting simultaneously on both stacks are avoided. This follows from
the fact that two counters Minsky machine instructions only involves one counter
at a time, which leaves empty the sets Σc, Σr and Σsi , with i ∈ {0, 1}.

4 Ordered Visibly Pushdown Automata with Two Stacks

In this section, we consider the subclass of 2-VPA which enforces the ordering
constraints on using pushdown stores as defined for MPDA. In more detail, we
consider a class of ordered 2-VPA (2-OVPA) as the class of 2-VPA in which a
pop operation on the second stack can occur only if the first stack is empty.
Thus, in such a model simultaneous pop operations are not allowed. The formal
definition of 2-OVPA follows.

Definition 2. A 2-OVPA M over Σ̃ is a 2-VPA such that Σr is empty and for
all input word w = a1 . . . ak ∈ Σ∗ and run ρ = (q0,σ0

0 ,σ1
0)...(q,σ0

k,σ1
k) of M over

w, for all i ∈ {1, . . . , n}, the following hold:
Pop: (qi, ai, γ, qi+1) ∈ δr1 then σ0

i = σ0
i+1 = ⊥ and σ1

i+1 = γ.σ1
i

Synch: (qi, ai, γ, qi+1, γ̂) ∈ δs1 then σ0
i = ⊥ and σ0

i+1 = γ̂.⊥ and σ1
i+1 = γ.σ1

i .

Directly from the fact that 2-OVPA are a subclass of MPDA and the fact
that for MPDA the emptiness is solvable in cubic time, we get the following.

Corollary 1. Given a 2-OVPA M , deciding whether L(M) &= ∅ is solvable in
O(n3), where n is the number of states in M .

While dealing with automata, one interesting question is whether the accep-
tance power increases while using ε-moves, i.e., transitions that allow to change
the state without consuming any input. Here we investigate 2-VPA with the
ability of performing a restricted form of ε-moves: we only enable ε-moves on
reading the top of the stack symbols on a local action. More formally, the variant
2-VPAε of 2-VPA we consider is obtained by replacing δl in Definition 1 with a
subset of Q× (Σ ∪ {ε})× Γ × Γ ×Q and by substituting the Local rule in the
definition of a run for 2-VPA with the following:
Localε: ai ∈ Σl ∪ {ε} and there exists (qi, ai, γ0, γ1, qi+1) ∈ δ such that σj

i =
σj

i+1 = γj .σj , for all j ∈ {0, 1}.
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Since at each step, a 2-VPAε can now choose whether to consume an input
symbol or take an ε-move, we consider the run definition modified accordingly.
In the following theorem, we show that 2-VPA and 2-VPAε, as well as 2-OVPA
and 2-OVPAε, are expressively equivalent.

Theorem 3. L ∈2-VPL iff L ∈ 2-VPLε and L ∈2-OVPL iff L ∈2-OVPAε.

We conclude the section with an example of a language accepted by a 2-OVPAε.

Example 1. Let L1 = {anbncn | ∃n ∈ N }. We show a 2-OVPAε M accepting
L1. The alphabet Σ̃ we use for M is partitioned in Σc0 = {a}, Σs0 = {b}, and
Σr1 = {c} (i.e., all the other partition elements are empty). The automaton is
the following M = (Q,Qin, Γ, δ, QF ), with Q = {q0, q1, q2, q3, qF }, Qin = {q0},
QF = {q0, qF }, Γ = {A,B} and δ = {(q0, a, q1, A), (q1, a, q1, A), (q1, b, A, q2, B),
(q2, b, A, q2, B), (q2, ε,⊥, B, q3), (q3, c, B, q3), (q3, ε,⊥,⊥, qF )}. The 2-OVPAε M
is depicted in Figure 2, where we adopt the following conventions to represent
arcs: for a local transition such as (qi, a, A, B, qj) we label the arc between qi

and qj as a, (A,B); for a synch transition such as (qi, a, A, qj , B) we label the
arc as s,A → B, if a ∈ Σs0 , and as s,A ← B , otherwise; moreover a push or
pop transition is labeled like a synch transition but with one part missing. For
example, a pop from the second stack (qi, a, B, qj) is labeled as a, ∗ ← B.

c, ∗ ← B

q2q1q0 q3 qF

a, A ← ∗ b, A → B ε, (⊥, B) ε, (⊥,⊥)

a, A ← ∗ b, A → B

Fig. 2. A 2-OVPAε accepting L1 = {anbncn|∃n ∈ N}

5 Expressiveness and Closure Properties

In this section, we compare 2-VPLs and 2-OVPLs with VPLs [AM04], determin-
istic and (nondeterministic) context-free languages (resp., DCFLs and CFLs)
[HU79], and multi-pushdown languages [BCCR96] (LPDn). Recall that the fol-
lowing chain of strict inclusions holds: VPLs ⊂ DCFls ⊂ CFls ⊂ LPD2 ⊂ CSLs.

Theorem 4. The following assertions hold:
a) 2-OVPLs ⊂ 2-VPLs; b) VPLs ⊂ 2-OVPLs; c) VPLs ⊂ 2-VPLs;
d) DCFLs \ 2-VPLs &= ∅; e) DCFLs \ 2-OVPLs &= ∅;
f) 2-VPLs ∩ CFLs \ VPLs &= ∅; g) 2-OVPLs ⊂ LPD2 ; h) 2-OVPLs ⊂ CSLs.

Although 2-VPLs and 2-OVPLs are strictly more expressive than VPLs, we
show that they preserve union, intersection, complementation (and thus inclu-
sion). These properties, along with the property that the emptiness problem
for 2-OVPA is solvable in Ptime, make 2-OVPA a powerful engine for system
verification using the automata-theoretic approach. We recall that 2-VPA and
MPDA do not support such an approach since MPDA does not enjoy closure
under intersection and complementation, and for 2-VPA the emptiness problem
is undecidable.
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Theorem 5. (Closure Properties) Let L1 and L2 be two 2-VPLs (resp., 2-
OVPLs) with respect to the same Σ̃. Then, L1 ∩L2, L1 ∪L2 are 2-VPLs (resp.,
2-OVPLs) over Σ̃. Also, L1 · L2, and L∗1 are 2-VPLs over Σ̃. Furthermore, all
the mentioned operations can be performed in polynomial-time.

The closure of 2-VPA and 2-OVPA under complementation can be proved as an
immediate consequence of determinization.

Theorem 6 (Determinization). Given a 2-VPA (resp., 2-OVPA) M over Σ̃,
there is a deterministic 2-VPA (resp., deterministic 2-OVPA) M ′ over Σ̃ such
that L(M) = L(M ′). Moreover, if M has n states, we can construct M ′ with
O(22n2

) states and O(2n2 · |Σ|) stack symbols.

Proof. [sketch] The proof we present is inspired from that given in [AM04] for
VPA. There, the main idea is to do a subset construction, postponing handling
push transitions. The push transitions are stored into the stack and simulated
later, namely at the time of the matching pop transitions. The construction has
two components: a set of summary edges S, that keeps track of what state transi-
tions are possible from a push transition to the corresponding pop transition, and
a set of path edges R, that keeps track of all possible state reached from an initial
state. In our case, we have to handle two stacks and the communication mecha-
nism. Therefore, we have to use two summary edges sets S0 and S1, and, in order
to manage the communication transitions, we augment the structure of states
adding information about the top of the stacks. Let M = (Q,Qin,Γ, δ, QF ) be a
2-VPA (resp., 2-OVPA) over Σ̃. We define a deterministic 2-VPA (resp., deter-
ministic 2-OVPA) M ′ = (Q′, Q′

in,Γ ′, δ′, Q′
F ) over Σ̃ such that L(M) = L(M ′).

Let Q′ = P(Q × Q) × P(Q × Q) × P(Q). IdQ is the set {(q, q) | q ∈ Q}, and
Q′

in = {(IdQ, IdQ, Qin)}. The stack alphabet Γ ′ is the set of elements (S, R, a),
where (S, R) ∈ P(Q×Q)× P(Q) and a ∈ (

⋃
i∈{0,1} Σci ∪Σsi) ∪Σs. The set of

final states is Q′
F = {(S0, S1, R) | R∩QF &= ∅}. We give an idea of δ′ by means

of the following example, referring to the Appendix for the formal definition.
Let w = w1c0

1w2c1
1w3 be an input word, where in w1 each push, either into the

first or into the second stack, is matched by a pop, but there may be unmatched
pop transitions; w2 and w3 are words in which all push and pop transitions are
matched for both stacks; c0

1 and c1
1 are push, the former for the first stack and the

latter for the second. In M ′, after reading w, the first stack is (S0, R0, c0
1).⊥, the

second stack is (S1, R1, c1
1).⊥, and the control state is (S′′0 , S′′1 , R′′). S0 contains

all the pair of states (q, q′) such that the 2-VPA (resp., 2-OVPA) M can go from
q with first stack empty to q′ with first stack empty on reading w1. Analogously,
S1 contains all the pairs (q, q′) such that M can go from q with second stack
empty to q′ with second stack empty on reading w1c0

1w2. R0 and R1 are the sets
of all states reachable by M from an initial state on reading w1 and w1c0

1w2,
respectively. S′′0 and S′′1 are the current summaries for the first and second stack,
respectively, and R′′ is the set of all states reachable by M from an initial state
on reading w. In this construction, we maintain as an invariant such a property
of the stacks and control state. Now, after reading w, if M reads a push sym-
bol a operating on the first stack, stacks and control state change as follows:
the triple (S′′0 , R′′, a) is pushed on the first stack, the second stack remains the
same, and the new control state is (IdQ, S′1, R

′) where IdQ is the initialization
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summary and S′1 and R′ are updated (path and summary edges are extended)
accordingly to all possible δ transitions. If a local transition symbol occurs, then
only the control state is affected, which changes accordingly to δ transitions. If
a pop symbol a occurs after reading w, M ′ pops (S0, R0, c0

1) from the first stack
and it updates S0 and R0, using the current summary S′′0 along with a push
transition on c0

1 and a corresponding pop transition on a. If a synchronization
symbol a from the first to the second stack occurs, M has to combine push and
pop operations as above to update its stacks and control state. 01

The closure under complementation for 2-VPLs and 2-OVPLs follows from
Theorem 5.

Corollary 2. (Closure under complementation) Let L ∈ 2-VPLs (resp.,
2-OVPLs) over Σ̃, then Σ∗\ L ∈ 2-VPLs (resp., 2-OVPLs) over Σ̃.

6 Model Checking and Synchronized Systems of VPA

A model checking procedure verifies the correctness of a system with respect to
a desired behavior by checking whether a mathematical model of the system sat-
isfies a formal specification of this behavior. Here, we consider the case whether
both the model of the system and the formal specification of the required be-
havior are given by VPA with two stacks, say them M and P , respectively. The
automata-theoretic approach to model checking exploits the combination of clo-
sure properties and emptiness decidability: checking whether M satisfies P is
reduced to check whether L(M)∩L(P ) = ∅ (all the runs of the model M satisfy
the behavioral property represented by P ).

Recall that the emptiness problem for 2-OVPA is solvable in cubic time
(Corollary 1). Since determinization for 2-OVPA is in ExpTime (Theorem 6),
and intersection can be done in polynomial-time (Theorem 5), we get an Exp-
Time algorithm to solve the model checking problem. The completeness follows
from the fact that VPA model checking is ExpTime-complete [AM04].

Theorem 7. The model checking problem for 2-OVPA is ExpTime-complete.

In the remaining part of this section we show that 2-OVPA gives a natural
way to describe distributed pushdown systems. In fact, we show that 2-OVPA
capture the behavior of systems built on pairs of VPA working in a suitable
synchronous way according to distributed computing paradigm. To this purpose,
we introduce an operator of synchronous composition on VPA that allows to
build a Synchronized System of VPA from a pair of VPA M0 and M1. The
automata M0 and M1 run independently on the same input so that each input
symbol can drive different transitions on the two, that is a local transition for the
former and a push transition for the latter. Only communications between M0

and M1 have to be synchronized in accordance with a relation λ (a parameter
of the synchronous composition operator) that contains all the transitions that
are push transitions for the one and pop transitions for the other. The idea is
that λ contains all the pairs of transitions on which the two VPA are allowed to
communicate. The only constraint on the pushdown alphabets is that an input
symbol can not trigger a pop transition on both VPA. Moreover, we have to
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prevent that M1 can pop whenever M0 has a non-empty stack, and thus every
pop transition of M1 is synchronized with M0. Two VPA M0 and M1 over Σ̃0

and Σ̃1, respectively, are synchronizable if Σ0 = Σ1 and Σ0
r ∩Σ1

r is empty.
Definition 3 (Synchronized Systems of VPA). A Synchronized System of
VPA (S-VPA) M0||λM1 is a pair of synchronizable VPA M0 and M1 over Σ̃0

and Σ̃1, respectively, together with a communication relation λ ⊆ δ0
c×δ1

r∪δ0
r×δ1

c ,
where δ0 and δ1 are the transition relations of M0 and M1, respectively.
A run ρ on w = a1...an ∈ (Σ0 ∪Σ1)∗ for M0||λM1 is a pair of VPA runs on w,
π0 = (q0

0 ,⊥)(q0
1 ,σ0

1)...(q0
n,σ0

n) for M0 and π1 = (q1
0 ,⊥)(q1

1 ,σ1
1)...(q1

n,σ1
n) for M1

such that, for all k ∈ {0, . . . , n − 1}, , where t0k is the transition applied from
(q0

k,σ0
k) to (q0

k+1,σ
0
k+1) in M0, and t1k is the transition applied from (q1

k,σ1
k) to

(q1
k+1,σ

1
k+1) in M1, such that if t1k is a pop transition then σ0

k is empty and if
(t0k, t1k) ∈ δ0

c×δ1
r ∪δ0

r×δ1
c then (t0k, t1k) ∈ λ. A run ρ is accepting if both π0 and π1

are accepting and thus w is accepted. L(M0||λM1) is the set of words accepted
by M0||λM1. From Definition 3, it follows that L(M0||λM1) ⊆ L(M0) ∩ L(M1).
Next theorem states that 2-OVPA are more expressive than S-VPA.
Theorem 8. Let M0||λM1 be a S-VPA over Σ̃0, Σ̃1, then L(M0||λM1) is a
2-OVPL with respect to Σ̃ = 〈Σ̃0, Σ̃1〉.

We give an evidence of the power of the introduced S-VPA by means of an
example of a system behaving in a context-sensitive way. Consider a client-server
system of pushdown processes described by a pair of synchronized VPA (see
Figure 3) behaving in the following way: first, the client collects in its pushdown
store an ordered pool of jobs on reading a sequence of input jobi ∈ JobSet;
after that, the client transfers (rcall) the whole ordered sequence of jobs to the
server; then the server dispatches to the client a solution for each job (solve)
in the same order the client has collected the jobs; moreover, the server waits a
special commitment from the client (returnSolj) after each dispatching, which is
necessary to process next job; when the server runs out of pending jobs, the whole
system can restart the computation (restart). Notice that the communication
interface λ relates each Jobi that the server has to pop, with its solution Solj
that the client has to push, determining the computation.

startpool

q0
0 q0

1

endpool

q0
2 q0

3

pop(Solj) λ

λ
M0: client

push(Jobi)
jobi,

returnSolj ,

q1
1 q1

2

restart, pop(⊥) returnSolj

solve,
pop(Jobi)

M1: server

restart

rcall,push(Jobi)startpool
rcall,pop(Jobi)

endRcall

solve,push(Solj)

pop(⊥)
endRcall

q1
0 jobi

endpool

Fig. 3. An example of an S-VPA.

7 Conclusions

In this paper, we have investigated ordered visibly pushdown automata with two
stacks (2-OVPA), obtained by merging the definitions of visibly pushdown au-

11



tomata [AM04] and multi-pushdown automata with two stacks [BCCR96]. We
have shown that 2-OVPA are determinizable, closed under intersection and com-
plementation, and have the emptiness problem decidable and solvable in polyno-
mial time. Thus, we get that the inclusion problem is also decidable for 2-OVPA,
and in particular, it is ExpTime-complete. It is worth noticing that dropping
visibility or the ordering constraint from 2-OVPA makes inclusion undecidable.
The properties satisfied by 2-OVPA, along with the fact that they accept some
context-free languages that are not regular as well as some context-sensitive
languages that are not context-free, make 2-OVPA a powerful model in system
verification while using the automata-theoretic approach.

Finally, the model we propose can be also extended to deal with an arbitrary
number n of stacks (n-OVPA). We argue (it is left to further investigation) that
n-OVPA still retain decidability and closure properties of 2-OVPA and that,
from an expressivity viewpoint, n-OVPA define a strict hierarchy based on the
number of pushdown stores.
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8 Appendix

Proof of Theorem 2.

Proof. Here we complete the proof of Theorem 2 proving the following assert:
Given a sequence of numbers s = s1s2 . . . sk, with si ∈ {1, . . . , n} for all

i ∈ {1, . . . , k}, the sequence (Ls1 , v
0
s1

, v1
s1

) . . . (Lsk , v0
sk

, v1
sk

) of elements from
{L1, . . . Ln} × N × N is an execution trace of M if and only if the sequence
(Ls1 ,σ

0
s1

,σ1
s1

) . . . (Lsk ,σ0
sk

,σ1
sk

) of elements from Q × Γ ∗.⊥ × Γ ∗.⊥ is a run of
M ′, with |σj

si
| = vj

si
+ 1 for each i ∈ {1, . . . , k} and j ∈ 0, 1.

We prove the above assert by induction on the length of the sequence s. The
base case for |s| = 1 is trivial since every trace of M starts from (L1, v0

1 , v1
1) =

(L1, 0, 0) and every run form M ′ starts from (L1,σ0
1 ,σ1

1) = (L1,⊥,⊥), and thus
|σj

1| = vj
s1

+1, for j ∈ {0, 1}. Let us consider |s| = k and prove the assert for k+1.
By hypothesis we have that (Ls1 , v

0
s1

, v1
s1

) . . . (Lsk , v0
sk

, v1
sk

) is an execution trace
of M if and only if (Ls1 ,σ

0
s1

,σ1
s1

) . . . (Lsk ,σ0
sk

,σ1
sk

) is a run of M ′, with |σj
si
| =

vj
si

+ 1, for each i ∈ {1, . . . , k}. If sk = n then we can not extend the execution
trace of M and the run of M ′, so the assert is trivially true. Otherwise, we have
two sub-cases to consider depending on the kind of the instruction Isk . Assume
first that Isk is an increment instruction of the counter C0 (resp., C1), that is
Isk = c0 := c0+1; goto Lj (resp., Isk = c1 := c1+1; goto Lj), then the k+1-th
element in the execution trace of M is (Lj , v0

sk
+1, v1

sk
) (resp., (Lj , v0

sk
, v1

sk
+1)).

In such a case, we have by definition that from the state Lsk , the automaton
M ′ reads a the symbol Isk using the transition (Lsk , Isk , Lj , A) belonging to δc0

(resp., δc1). Then, the next configuration in the run is (Lj ,σ0
sk+1

,σ1
sk+1

), with
σ0

sk+1
= A.σ0

sk
, σ1

sk
= σ1

sk+1
, and |σ0

sk+1
| = |σ0

sk
|+ 1 = v0

sk
+ 2 = v0

sk+1
+ 1 (resp.,

(Lj ,σ0
sk+1

,σ1
sk+1

), with σ1
sk+1

= A.σ1
sk

, σ0
sk

= σ0
sk+1

, and |σ1
sk+1

| = |σ1
sk
| + 1 =

v1
sk

+ 2 = v1
sk+1

+ 1).
If Isk is if C0 = 0 then goto Lj else C0 := C0 − 1; goto Lm is a test-and-

decrement instruction of the counter c0 (resp., c1), then the k + 1-th element
in the execution trace of M is (Lm, v0

sk
− 1, v1

sk
) (resp., (Lm, v0

sk
, v1

sk
− 1)) if

v0
sk

> 0 (resp., v1
sk

> 0), else the k + 1-th element in the execution trace of M
is (Lj , v0

sk
, v1

sk
) (resp., (Lj , v0

sk
, v1

sk
)) if v0

sk
= 0 (resp., v1

sk
= 0). In such a case

we have by definition that from the state Lsk , M ′ reads Isk using the transition
(Lsk , Isk , A, Lm) if σ0

sk
&= ⊥ (resp., σ1

sk
&= ⊥), or the transition (Lsk , Isk ,⊥, Lj)

if σ0
sk

= ⊥ (resp., σ1
sk

= ⊥). In the first case, the next configuration in the run
is (Lm,σ0

sk+1
,σ1

sk
), with σ0

sk+1
= A.σ0

sk
(resp., σ1

sk+1
= A.σ1

sk
) and then |σ0

sk+1|
= |σ0

sk
|− 1 = v0

sk
= v0

sk+1
+ 1 (resp., |σ1

sk+1| = |σ1
sk
|− 1 = v1

sk
= v1

sk+1
+ 1). In

the latter case the transition is (Lsk , Isk ,⊥, Lj) and so the next configuration in
the run is (Lj ,σ0

sk+1
,σ1

sk+1), with σ0
sk+1

= σ0
sk

= ⊥ (resp., σ1
sk+1

= σ1
sk

= ⊥) and
thus |σ0

sk+1| = |σ0
sk
| = |⊥| = 1 = v0

sk
+1 = v0

sk+1
+ 1 (resp., |σ1

sk+1| = |σ1
sk
| =

|⊥| = 1 = v1
sk

+1 = v1
sk+1

+ 1). So, we have done with the assert. 01

Proof of Theorem 3.

We present ε-Closure definition. Let M = (Q,Qin,Γ, δ, QF ) be a 2-VPAε

(resp., 2-OVPAε) and q ∈ Q, with ε-Closure(q, γ0, γ1) we denote the set of all
p ∈ Q such that are reachable from q only by ε-moves of type (q′, ε, γ0, γ1, q′′).
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Moreover, we overload the ε-Closure definition by the following: let Q a set of
states, then ε-Closure(Q, γ0, γ1)=

⋃
q∈Q ε-Closure(q, γ0, γ1).

Proof. Let M = (Q,Qin,Γ, δ, QF ) be a 2-VPA (resp., 2-OVPA). We show a
2-VPAε (resp., 2-OVPAε) Mε such that L(M) = L(Mε). We consider Mε =
(Q,Qin,Γ, δε, QF ) with δε containing all push, pop and synch transitions of δ.
Moreover, δε differs from δ on local transitions: for each (q, a, p) ∈ δ and for all
γ0, γ1 ∈ Γ , then (q, a, γ0, γ1, p) ∈ δε. It is easy to prove that M and Mε accept
the same language.

Let now Mε = (Q,Qinε ,Γ, δε, QF ) be a 2-VPAε (resp., 2-OVPAε). We define
a 2-VPA (resp., 2-OVPA) M such that L(M) = L(Mε). We consider M = (Q×
Γ ×Γ, Qin ×{⊥}×{⊥}, Γ ×Γ, δ, QF ×Γ ×Γ ), with Qin = ε-Closure(Qinε ,⊥,⊥)
and δ is defined as follows:
Push: a ∈ Σc0 and (q, a, p, γ) ∈ δε, then for all γ0, γ1 ∈ Γ there are transitions
((q, γ0, γ1), a, (p′, γ, γ1), (γ, γ0)) ∈ δ with p′ ∈ ε-Closure(p, γ, γ1);
2Push: a ∈ Σc and (q, a, p, γ, γ′) ∈ δε, then for all γ0, γ1 ∈ Γ there are transi-
tions ((q, γ0, γ1), a, (p′, γ, γ′), (γ, γ0), (γ′, γ1)) ∈ δ with p′ ∈ ε-Closure(p, γ, γ′);
Pop: a ∈ Σr0 and (q, a, γ, p) ∈ δε, then for all γ0, γ1 ∈ Γ there are transitions
((q, γ, γ1), a, (γ, γ0), (p′, γ0, γ1)) ∈ δ with p′ ∈ ε-Closure(p, γ0, γ1);
2Pop: a ∈ Σr and (q, a, γ, γ′, p) ∈ δε, then for all γ0, γ1 ∈ Γ there are transitions
((q, γ, γ1), a, (γ, γ0), (γ′, γ1), (p′, γ0, γ1)) ∈ δ with p′ ∈ ε-Closure(p, γ0, γ1);
Local: a ∈ Σl and (q, a, γ0, γ1, p) ∈ δε, then for all γ0, γ1 ∈ Γ there are transi-
tions ((q, γ0, γ1), a, (p′, γ0, γ1)) ∈ δ with p′ ∈ ε-Closure(q, γ0, γ1);
Synch: a ∈ Σs0 and (q, a, γ, p, γ̂) ∈ δε, then for all γ0, γ1 ∈ Γ there are transi-
tions ((q, γ, γ1), a, (γ, γ0), (p′, γ0, γ̂), (γ̂, γ1)) ∈ δ with p′ ∈ ε-Closure(q, γ0, γ̂).

It is easy to prove that M and Mε accept the same language. 01

Proof of Theorem 4.

Proof. Assertion a) follows from the definition of 2-OVPA and the decidability
of the emptiness problem for 2-OVPA, but not for 2-VPA.

To show assertion b), we can use L1 = {anbncn|∃n ∈ N } ∈ 2-OVPLs (Ex-
ample 1). The strict containment follows from the fact that, for all pushdown
alphabets Σ̃, we have L1 &∈ VPLs [AM04].

Assertion c) follows immediately from assertions a) and b).
In order to prove the assertion d), we show that the DCFL L2 = {w#wr|w ∈

Σ∗} is not in 2-VPL. In particular, we prove that the sub-language L = {an#an

|n ∈ N} of L2 is not a 2-VPL for any Σ̃ (thus, Σ = {a,#}). First, we consider
that the input symbol # is only a marker that denote the starting of the second
part of the input string, so it is not influential in the proof. Let M be a 2-VPA
over Σ̃. We prove the assert showing that whatever partition of Σ̃ we choose
for a, L(M) &= L. If a ∈ Σl, M reduces to a finite automaton, and we know
that L is not a regular language. So L is not a 2-VPL over Σ̃ with a ∈ Σl. If
a ∈ Σc, M reduces to a VPA, because it uses two stacks like a single one, that
can only push on reading a, so it cannot compare the number of a before # with
the number of a after the marker symbol. The obtained automaton behaves as a
zero reversal-bounded one-counter machine defined by Oscar H. Ibarra in 19781

1 O. H. Ibarra. Reversal-bounded multicounter machines and their decision problems.
J. ACM, 25(1):116133, 1978.
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that accept only regular languages. So L is not a 2-VPL over Σ̃ with a ∈ Σc.
The case of a ∈ Σci , with i = 0 or 1, is analogous. If a ∈ Σsi , with i = 0 or 1,
we have a 2-VPA M acting as a VPA M ′ with a ∈ Σc, where M ′ simulates M
on the stack j &= i, because the stack i is always ⊥. The above argument holds
and L is not a 2-VPL over Σ̃ with a ∈ Σsi , for i = 0, 1. So, we conclude that L
is not a 2-VPL over Σ̃, for any Σ̃.

Assertion e) is an immediate consequence of assertions a) and d).
To show assertion f) we use L = {w ∈ Σ∗ | |w|a = |w|b} of all strings

having equal number of occurrences of a and b. In [AM04] it is shown that L is
a CFL but not a VPL, for any pushdown alphabet. Here we show a 2-VPA M ,
over an alphabet Σ̃, accepting L. Let Σ be partitioned in Σs0 = {a} and Σs1 =
{b}, and M = (Q,Qin,Γ, δ, QF ) where Q={q0, qF }, Qin = {q0}, QF = {qF },
Γ = {A,B, A,B} and δ = {(q0, ε,⊥,⊥, qF ), (q0, a, B,⊥, qF ), (q0, ε,⊥, A, qF ),
(q0, ε, B,A, qF ), (q0, a,⊥, q0, A), (q0, a, B, q0, A), (q0, a, B, q0, A), (q0, b,⊥, q0, B),
(q0, b, A, q0, B), (q0, b, A, q0, B)}. We depict M in Figure 4.

We now prove the assertion g) as follows. Let a 2-OVPA M = (Q,Qin,Γ, δ, QF )
over Σ̃, we now present a construction of a PD2 automaton M ′ such that
L(M) = L(M ′). Before starting with construction definition, w.l.o.g., we as-
sume that stack symbols in M are distinct for each stack. We use the subscript
0 (resp., 1) to denote a first (resp., second) stack symbol as in γ0 (resp., γ1). Let
M ′ = (Q′,Σ,Γ, δ′, q0, QF , Z0) be defined as follows: Q′ = Q ∪ q0, with q0 /∈ Q,
δ′ is defined as follows:
if a ∈ Σl and (q, a, q′) ∈ δ, then for all γ0 ∈ Γ⊥ the function δ′ has the transitions
(q, a, γ0) 6→ (q′, γ0, ε) and for all γ1 ∈ Γ the transitions (q, a, γ1) 6→ (q′, ε, γ1),
if a ∈ Σc and (q, a, q′, γ0, γ1) ∈ δ, then the function δ′ has the transitions for all
γ′0 ∈ Γ⊥ (q, a, γ′0) 6→ (q′, γ0γ′0, γ1), and for all γ′1 ∈ Γ (q, a, γ′1) 6→ (q′, γ0, γ1γ′1),
if a ∈ Σr0 and (q, a, γ0, q′) ∈ δ, then the function δ′ has the transitions (q, a, γ0) 6→
(q′, ε, ε),
if a ∈ Σc0 and (q, a, q′, γ0) ∈ δ, then the function δ′ has the transitions for all
γ′0 ∈ Γ (q, a, γ0) 6→ (q′, ε, ε), and for all γ1 ∈ Γ (q, a, γ1) 6→ (q′, γ0, γ1),
if a ∈ Σs0 and (q, a, γ0, q′, γ1) ∈ δ, then the function δ′ has the transitions
(q, a, γ0) 6→ (q′, ε, γ1), and symmetrically for the symbols in Σc1 ,Σr1 , and Σs1 .
Furthermore, from q0 the automaton M ′ can only exploits a pop ε-move operat-
ing on the first stack and reaching a state in Qin. MOreover, for each transition
of M involving ⊥ symbol, we add to δ′ the correspondent move with ε used ac-
cordingly. Strict inclusion follows from the fact that 2-OVPLs, differently from
LPD2 , are closed under intersection, as we later show in Theorem 5.

Finally, assertion h) immediately follows from assertion g) and the fact that
LPD2 are a proper subclass of CSLs (Theorem 1). 01

b, B ← A

a, B → A
a,⊥ → A

q0 qF

ε, (⊥,⊥)

ε, (⊥, A)
ε, (B, A)

ε, (B,⊥)

b, B ← ⊥
b, B ← A

a, B → A

Fig. 4. A 2-VPA accepting L = {w ∈ Σ∗| |w|a = |w|b}
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Proof of Theorem 5.

Proof. Intersection. Let L1 and L2 be two languages respectively accepted by
2-VPA (resp. 2-OVPA) M1 and M2. The 2-VPA (resp., 2-OVPA) M accepting
L1 ∩ L2 is the synchronous product of M1 and M2. It is easy to see thet the
synchronous product construction we now show preserves the ordering of stacks
for 2-OVPA case, so in the following we speak indifferently of 2-VPA.

The resulting 2-VPA M accepting L1∩L2 has defined in such a way that the
sets of states, initial states, final states, and stack symbols are, respectively, the
product of sets of states, initial states, final states, and stack symbols of M1 and
M2. The automaton M simulates on its first (resp., second) stack the first (resp.,
second) stacks of both M1 and M2. Each transition of M is the synchronization
(with respect to a common input symbol) of a transition of M1 and a transition
of M2. Formally, let M1 = (Q1, Q1

in,Γ 1, δ1, Q1
F ) and M2 = (Q2, Q2

in,Γ 2, δ2, Q2
F ).

We define M = (Q1×Q2, Q1
in×Q2

in,Γ 1×Γ 2, δ, Q1
F ×Q2

F ) where, for each a ∈ Σ,
i ∈ {0, 1}, δ is defined as follows:
Push: a ∈ Σci , and there are (q1, a, p1, γ1) ∈ δ1 and (q2, a, p2, γ2) ∈ δ2, then
((q1, q2), a, (p1, p2), (γ1, γ2)) ∈ δ;
2Push: a ∈ Σc, and there are (q1, a, p1, γ1, γ1′) ∈ δ1 and (q2, a, p2, γ2, γ2′) ∈ δ2,
then ((q1, q2), a, (p1, p2), (γ1, γ2), (γ1′, γ2′)) ∈ δ;
Pop: a ∈ Σri , and there are (q1, a, γ1, p1) ∈ δ1 and (q2, a, γ2, p2) ∈ δ2, then
((q1, q2), a, (γ1, γ2), (p1, p2)) ∈ δ;
2Pop: a ∈ Σr, and there are (q1, a, γ1, γ1′, p1) ∈ δ1 and (q2, a, γ2, γ2′, p2) ∈ δ2,
then ((q1, q2), a, (γ1, γ2), (γ1′, γ2′), (p1, p2)) ∈ δ;
Local: a ∈ Σl, and there are (q1, a, p1) ∈ δ1 and (q2, a, p2) ∈ δ2, then
((q1, q2), a, (p1, p2)) ∈ δ;
Synch: a ∈ Σsi , and there are (q1, a, γ1, p1, γ̂1) ∈ δ1 and (q2, a, γ2, p2, γ̂2) ∈ δ2,
then ((q1, q2), a, (γ1, γ2), (p1, p2), (γ̂1, γ̂2)) ∈ δ.

The correctness of the construction can be proved in a standard way.
Union. Let L1 and L2 be two languages respectively accepted by the 2-VPA

(resp., 2-OVPA) M1 and M2. The 2-VPA (resp., 2-OVPA) M accepting L1∪L2 is
defined in such a way that non-deterministically behaves as M1 or M2 exploiting
an ε-move.

Composition. Let L1 and L2 be two languages respectively accepted by the
2-VPA M1 and M2. The 2-VPA M accepting L1 · L2 acts in such a way that
on reading an input word w, nondeterministically splits w in two words w1 and
w2, so that M simulates M1 on w1 and M2 on w2. When M starts to simulate
M2 it regards the current content of the stacks as they were empty. Formally,
M = (Q,Qin,Γ, δ, QF ) with Q = Q1 7 Q2 (we assume that Q1 ∩ Q2 = ∅), if
Q1

in ∩ Q1
F = ∅ then Qin = Q1

in, otherwise Qin = Q1
in ∪ Q2

in, Γ = Γ 1 ∪ Γ 2,
QF = Q2

F , and δ is defined as follows:
Push: if (q, a, p, γ) ∈ δ1, then (q, a, p, γ) ∈ δ and, if p ∈ Q1

F then for all p′ ∈ Q2
in

also (q, a, p′, γ) ∈ δ, if (q, a, p, γ) ∈ δ2, then (q, a, p, γ) ∈ δ;
2Push: if (q, a, p, γ, γ′) ∈ δ1, then (q, a, p, γ, γ′) ∈ δ and, if p ∈ Q1

F then for all
p′ ∈ Q2

in also (q, a, p′, γ, γ′) ∈ δ, if (q, a, p, γ, γ′) ∈ δ2, then (q, a, p, γ, γ′) ∈ δ;
Pop: If (q, a, γ, p) ∈ δ1, then (q, a, γ, p) ∈ δ, and if p ∈ Q1

F , then for all p′ ∈
Q2

in also (q, a, γ, p′) ∈ δ. For each (q, a,⊥, p) ∈ δ2, then for all γ ∈ Γ 1 also
(q, a, γ, p) ∈ δ, and if (q, a, γ, p) ∈ δ2, then it belongs also to δ;
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2Pop: If (q, a, γ, γ′, p) ∈ δ1, then (q, a, γ, γ′, p) ∈ δ, and if p ∈ Q1
F , then for all

p′ ∈ Q2
in also (q, a, γ, γ′, p′) ∈ δ. For each (q, a,⊥,⊥, p), (q, a,⊥, γ1, p), (q, a, γ0,⊥, p)

∈ δ2, then for all γ, γ′ ∈ Γ 1 also (q, a, γ, γ′, p), (q, a, γ, γ1, p), (q, a, γ0, γ′, p) ∈ δ,
respectively, and if (q, a, γ, γ′, p) ∈ δ2, then it belongs also to δ;
Local: If (q, a, p) ∈ δ1 then it belongs also to δ, and if p ∈ Q1

F then for all
p′ ∈ Q2

in also (qi, ai, q0
2) ∈ δ, if (q, a, p) ∈ δ2, then it belongs also to δ;

Synch: If (q, a, γ, p, γ̂) ∈ δ1, then it belongs also to δ, and if p ∈ Q1
F , then for

all p′ ∈ Q2
in also (q, a, γ, p′, γ̂) ∈ δ. If (q, a, γ, p, γ̂) ∈ δ2 then it belongs also to δ,

and if γ = ⊥, then for all γ1 ∈ Γ 1 also (q, a, γ1, p′, γ̂) ∈ δ.
Kleene-*. Let M = (Q,Qin,Γ, δ, QF ) be a 2-VPA that accepts L. We build

the automaton M∗ as follows. The main idea is similar to the VPA case, but we
have to apply a duplication of states. M∗ simulates M step by step, but when M
changes its state to a final state, M∗ can nondeterministically update its state
to an initial state, and thus, restart M . After this switch, M∗ must treat the
stack as if it is empty, and this requires labeling its state so that in a tagged state
the top can be assumed to be ⊥ ignoring the actual content of the stack. More
precisely, M∗ = ((Q7Q′)× (Q7Q′), (Qin7Q′

in)× (Qin7Q′
in),Γ 7Γ ′, δ∗, (QF 7

Q′
F )× (QF 7Q′

F ), and δ∗ is defined as follows:
Local: Let a ∈ Σl and (q, a, p) ∈ δ, then δ∗ contains the transitions ((q, q), a,
(p, p)), ((q′, q), a, (p′, p)), ((q, q′), a, (p, p′)), ((q′, q′), a, (p′, p′)), and if p ∈ QF ,
then δ∗ contains ((q, q), a, (r′, r′)), ((q′, q′), a, (r′, r′)), ((q′, q), a, (r′, r′)), ((q, q′),
a, (r′, r′)), for each r ∈ Qin;
Push: Let a ∈ Σc0 and (q, a, p, γ) ∈ δ, then δ∗ contains the transitions
((q, q), a, (p, p), γ), ((q′, q′), a, (p, p′), γ′), ((q′, q), a, (p, p), γ′), ((q, q′), a, (p, p′), γ),
and if p ∈ QF , then δ∗ contains ((q, q), a, (r′, r′), γ), ((q′, q), a, (r′, r′), γ),
((q, q′), a, (r′, r′), γ), ((q′, q′), a, (r′, r′), γ), for each r ∈ Qin;
2Push: this case is similar to the previous with two symbols to push;
Pop: Let a ∈ Σr0 and (q, a, γ, p) ∈ δ, then δ∗ contains the transitions
((q, q), a, γ, (p, p)), ((q, q′), a, γ, (p, p′)), ((q, q′), a, γ′, (p′, p′)), and if p ∈ QF , then
δ∗ contains ((q, q), a, γ, (r′, r′)), ((q, q′), a, γ, (r′, r′)) for each r ∈ Qin.
If (q, a,⊥, p) ∈ δ, then δ∗ contains the transitions ((q′, q), a, γ, (p′, p)),
((q′, q′), a, γ, (p′, p′)) for each γ ∈ Γ 7 Γ ′, and if p ∈ QF , then δ∗ contains also
the transitions ((q′, q), a, γ, (r′, r′)), ((q′, q′), a, γ, (r′, r′)) for each γ ∈ Γ 7Γ ′ and
r ∈ Qin;
2Pop: this case is similar to the previous with two symbols to pop;
Synch: Let a ∈ Σs0 and (q, a, γ, p, γ̂) ∈ δ, then δ∗ contains the transitions
((q, q), a, γ, (p, p), γ̂), ((q, q′), a, γ, (p, p), γ̂′), ((q, q), a, γ′, (p′, p), γ̂), and if p ∈ QF ,
then δ∗ contains ((q, q), a, γ, (r′, r′), γ̂), ((q, q′), a, γ, (r′, r′), γ̂) for each r ∈ Qin.
If (q, a,⊥, p, γ̂) ∈ δ, δ∗ contains the transitions ((q, q), a, γ, (p′, p), γ̂),
((q′, q′), a, γ, (p′, p), γ̂′), for each γ ∈ Γ 7Γ ′, and if p ∈ QF , then δ∗ contains also
the transitions ((q, q′), a, γ, (r′, r′), γ̂), ((q′, q′), a, γ, (r′, r′), γ̂) for each γ ∈ Γ 7Γ ′

and r ∈ Qin;
and symmetrically for transitions of M operating on the second stack. This
construction is easily provable to be correct by means of standard mathematical
tools. 01

Proof of Theorem 6.
We now define the transition relation of the automaton presented in the

sketch of the proof of Theorem 6. In order to simplify notation, we introduce
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extended states. Let q be a state of a 2-VPA (resp., 2-OVPA) M , a triple q =
(q, γ0, γ1) is an extended state of M , where γ0, γ1 are stack symbols of M . In the
following, every state we use to define M ′ is an extended state in which the pair
of stack symbols corresponds to the top of stacks of M . In particular, when we
have to compute the updating set U , we obtain a pair of extended states (q, q′)
necessary to correctly update previous sets of path (R) and summary (S) edges.
In the following, we denote with q an arbitrary extended state of M and we
suppose that the transition relation δ of M is changed accordingly (as we have
shown in proof of Theorem 3). Moreover, for notational convenience, we present
only the topmost stack symbol γ in δ transition.

Proof. The transition relation δ′ is defined as follows, with i, j ∈ {0, 1}, i &= j:
Local: a ∈ Σl and ((S0, S1, R), a, (S′0, S′1, R′)) ∈ δ′ where

S′i = {(q, q′) | ∃q′′ ∈ Q . (q′′, a, q′) ∈ δ ∧ (q, q′′) ∈ Si } and
R′ = {q′ | ∃q ∈ R . (q, a, q′) ∈ δ};

Push: a ∈ Σci , and ((S0, S1, R), a, (S′0, S′1, R′), (Si, R, a)) ∈ δ′ where S′j =
{(q, q′) | ∃q′′ ∈ Q . (q, q′′) ∈ Sj ∧ (q′′, a, q′, γ) ∈ δ}, and S′i = IdQ and
R′ = {q′ | ∃q ∈ R . (q, a, q′, γ) ∈ δ};
2Push: a ∈ Σc, and ((S0, S1, R), a, (S′0, S′1, R′), (S0, R, a), (S1, R, a)) ∈ δ′ where
S′0 = S′1 = IdQ and R′ = {q′ | ∃q ∈ R . (q, a, q′, γ, γ′) ∈ δ};
Pop: a ∈ Σri and ((S0, S1, R), a, (S′, R′, a′), (S′′0 , S′′1 , R′′)) ∈ δ′ where

if a′ ∈ Σci the set U = {(q, q′) | ∃q2, q3 ∈ Q, γ ∈ Γ . (q, a′, q2, γ) ∈
δ ∧ (q2, q3) ∈ Si ∧ (q3, a, γ, q′) ∈ δ}

else a′ ∈ Σsj and the set U = {(q, q′) | ∃q2, q3 ∈ Q, γ, γ′ ∈ Γ . (q, a′, γ′, q2, γ) ∈
δ ∧ (q2, q3) ∈ Si ∧ (q3, a, γ, q′) ∈ δ} and, in both cases,

S′′i = {(q, q′) | ∃q′′ ∈ Q . (q, q′′) ∈ S′ ∧ (q′′, q′) ∈ U},
S′′j = {(q, q′) | ∃q′′ ∈ Q . (q, q′′) ∈ Sj ∧ (q′′, q′) ∈ U},
R′′ = {q′ | ∃q ∈ R′ . (q, q′) ∈ δ}, and
((S0, S1, R), a,⊥, (S′0, S′1, R′)) ∈ δ′ where, for every i ∈ {0, 1}, S′i = {(q, q′) |

∃q′′ ∈ Q . (q, q′′) ∈ Si ∧(q′′, a,⊥, q′) ∈ δ} and
R′ = {q′ | ∃q ∈ R . (q, a,⊥, q′) ∈ δ};

2Pop: a ∈ Σri and ((S0, S1, R), a, (S′0, R′
0, a

′), (S′1, R′
1, a

′′), (S′′0 , S′′1 , R′′)) ∈ δ′ is
obtained combining computation (as we have shown in pop case) of updating
sets U0 and U1 for the first and the second stack, respectively. We define for all
i ∈ {0, 1}

S′′i = {(q, q′) | ∃q′′ ∈ Q . (q, q′′) ∈ S′i ∧ (q′′, q′) ∈ U i} and R′′ = R0 ∩ R1,
where Ri is the set of updated path edges w.r.t. the stack i. Furthermore, we
have to combine the other cases of bottom of stack reached on both stacks or
only for one of them, so in the former case we define

((S0, S1, R), a,⊥,⊥, (S′0, S′1, R′)) ∈ δ′ where, for every i ∈ {0, 1}, S′i = {(q, q′) |
∃q′′ ∈ Q . (q, q′′) ∈ Si ∧(q′′, a,⊥,⊥, q′) ∈ δ} and

R′ = {q′ | ∃q ∈ R . (q, a,⊥,⊥, q′) ∈ δ},
and the other sub-cases are easily derivable from these;

Synch: a ∈ Σsi and ((S0, S1, R), a, (S′i, R′, a′), (S′′0 , S′′1 , R′′), (Sj , R, a)) ∈ δ′ where
S′′j = IdQ and

if a′ ∈ Σci the set U = {(q, q′) | ∃q2, q3 ∈ Q, γ ∈ Γ . (q, a′, q2, γ) ∈ δ∧(q2, q3) ∈
Si ∧ (q3, a, γ, q′) ∈ δ}

else a′ ∈ Σsj and the set U = {(q, q′) | ∃q2, q3 ∈ Q, γ, γ′ ∈ Γ . (q, a′, γ′, q2, γ) ∈
δ ∧ (q2, q3) ∈ Si ∧ (q3, a, γ, q′) ∈ δ} and, in both cases,
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S′′i = {(q, q′) | ∃q′′ ∈ Q . (q, q′′) ∈ S′i ∧ (q′′, q′) ∈ U} and
R′′ = {q′ | ∃q ∈ R′ . (q, q′) ∈ U} and
((S0, S1, R), a,⊥, (S′0, S′1, R′), (Si, R, a)) ∈ δ′ where,
for every i ∈ {0, 1}, S′i = {(q, q′) | ∃q′′ ∈ Q . (q, q′′) ∈ Si∧(q′′, a,⊥, q′, γ) ∈ δ}

and
R′ = {q′ | ∃q ∈ R . (q, a,⊥, q′, γ) ∈ δ}. 01

Proof of Theorem 8.

Proof. Now we prove that given an S-VPA M0||λM1 where M0 = (Q0, Q0
in,

Γ 0, δ0, Q0
F ) and M1 = (Q1, Q1

in, Γ 1, δ1, Q1
F ) are defined over Σ̃0 and Σ̃1,

respectively, we define a 2-OVPA M = (Q0×Q1, Q0
in×Q1

in,Γ 0∪Γ 1, δ, Q0
F ×Q1

F )
over Σ̃ = 〈Σ̃0, Σ̃1〉 such that L(M) = L(M0||λM1), and where the transition
function δ is defined as follows:

if a ∈ Σc0 , (q, a, q′, γ) ∈ δ0, and (p, a, p′) ∈ δ1, then ((q, p), a, (q′, p′), γ) ∈ δ;
if a ∈ Σc1 we have a symmetric case;
if a ∈ Σr0 , (q, a, γ, q′) ∈ δ0, and (p, a, p′) ∈ δ1, then ((p, q), a, γ, (p′, q′)) ∈ δ;
if a ∈ Σr1 we have a symmetric case;
if a ∈ Σc, (q, a, q′, γ) ∈ δ0

c , and (p, a, p′, γ′) ∈ δ1
c , then ((p, q), a, (p′, q′), γ, γ′) ∈

δ;
if a ∈ Σs0 , (q, a, γ, q′) ∈ δ0, (p, a, p′, γ′) ∈ δ1, ((q, a, γ, q′), (p, a, p′, γ′)) ∈ λ then

((q, p), a, γ, (q′, p′), γ′) ∈ δ;
if a ∈ Σs1 , (q, a, γ, q′) ∈ δ1, (p, a, p′, γ′) ∈ δ0, ((p, a, p′, γ′), (q, a, γ, q′)) ∈ λ then

((q, p), a, γ, (q′, p′), γ′) ∈ δ;
if a ∈ Σl, (q, a, q′) ∈ δi, (p, a, p′) ∈ δj , then ((q, p), a, (q′, p′)) ∈ δ.

We now prove the following assert:
For every word w = a1 . . . an ∈ Σ∗, M0||λM1 has a run ρ = (π0,π1) over w,

with π0 = (q0
0 ,⊥) (q0

1 ,σ0
1) ... (q0

n,σ0
n) for M0 and π1 = (q1

0 ,⊥) (q1
1 ,σ1

1) ... (q1
n,σ1

n)
for M1, if and only if the 2-OVPA automaton M has a run π = ((q0

0 , q1
0),⊥,⊥)

((q0
1 , q1

1),σ0
1 ,σ1

1) ... ((q0
n, q1

n),σ0
n,σ1

n) over w.
We now prove the assert by induction on the length of the input word w.
Base case: w = ε, then by construction π0 = (q0

0 ,⊥) and π1 = (q1
0 ,⊥) if and

only if π = ((q0
0 , q1

0),⊥,⊥).
Induction case: the assert holds for every word of length n, we now prove

for word of length n + 1. Let w = a1 . . . anan+1, then, by inductive hypothesis,
the assert holds for w′ = a1 . . . an, that is, on reading w′, M0 and M1 have
runs π0 = (q0

0 ,⊥) (q0
1 ,σ0

1) ... (q0
n,σ0

n) and π1 = (q1
0 ,⊥) (q1

1 ,σ1
1) ... (q1

n,σ1
n),

respectively, if and only if M has a run π = ((q0
0 , q1

0),⊥,⊥) ((q0
1 , q1

1),σ0
1 ,σ1

1) ...
((q0

n, q1
n), σ0

n,σ1
n) on reading w. Then we prove that the assert also holds on w

by cases as follows:
if ai+1 ∈ Σl, then by construction (q, a, q′) ∈ δ0

l , (p, a, p′) ∈ δ1
l , and ((q, p), a,

(q′, p′)) ∈ δl. So, the next configurations for M0,M1, and M are the following
(q′,σ0

i ), (p′,σ1
i ), and ((q′, p′),σ0

i ,σ1
i ), respectively;

if ai+1 ∈ Σc0 , then by construction (q, a, q′, γ) ∈ δ0
c , (p, a, p′) ∈ δ1

l , and
((q, p), a, (q′, p′), γ) ∈ δc0 . So, the next configurations for M0,M1, and M are
the following (q′, γ.σ0

i ), (p′,σ1
i ), and ((q′, p′), γ.σ0

i , σ1
i ), respectively;

symmetrically for ai+1 ∈ Σc1 ;
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ai+1 ∈ Σr0 , then by construction (q, a, γ, q′) ∈ δ0
r , (p, a, p′) ∈ δ1

l , and
((q, p), a, γ, (q′, p′)) ∈ δr0 . So, the next configurations for M0,M1, and M are the
following (q′,σ0

i+1), (p′,σ1
i ), and ((q′, p′),σ0

i+1,σ
1
i ), respectively, where if γ &= ⊥

then γ.σ0
i+1 = σ0

i else σ0
i+1 = σ0

i = ⊥;
symmetrically for ai+1 ∈ Σr1 , but with the added restriction that σ0

i = ⊥;
ai+1 ∈ Σc, then by construction (q, a, q′, γ) ∈ δ0

c , (p, a, p′, γ′) ∈ δ1
l , and

((q, p), a, (q′, p′), γ, γ′) ∈ δc. So, the next configurations for M0,M1, and M are
the following (q′, γ.σ0

i ), (p′, γ′σ1
i ), and ((q′, p′), γ.σ0

i , γ′.σ1
i ), respectively;

ai+1 ∈ Σs0 , then by construction (q, a, γ, q′) ∈ δ0
r , (p, a, p′, γ′) ∈ δ1

c , ((q, p), a,
γ, (q′, p′), γ′) ∈ δs0 , and ((q, a, γ, q′), (p, a, p′, γ′)) ∈ λ. So, the next configurations
for M0,M1, and M are the following (q′,σ0

i+1), (p′,σ1
i+1), and ((q′, p′),σ0

i+1,σ
1
i+1),

respectively, with σ1
i+1 = γ′.σ1

i , and if γ &= ⊥ then γ.σ0
i+1 = σ0

i else σ0
i+1 =

σ0
i = ⊥;

symmetrically for ai+1 ∈ Σs1 , but with the added restriction that σ0
i = ⊥.

From the assert we deduce that w ∈ L(M0||λM1) iff w ∈ L(M). 01
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