
Reasoning about Strategies:
From module checking to strategy logic

Aniello Murano

based on joint works with
Fabio Mogavero, Giuseppe Perelli, Luigi Sauro, and Moshe Y. Vardi

Università degli Studi di Napoli "Federico II"

Luxembourg
September 23, 2013

Aniello Murano Università degli Studi di Napoli "Federico II"

Reasoning about Strategies: From module checking to strategy logic 1 / 33



Strategic Reasoning

Game Theory is a fruitful metaphor in the verification and synthesis of multi-agent sys-
tems, where agent behaviors are modeled by strategies in a game.

Plenty of modal logics for the specification of strategic reasonings have been introduced,
but with a very limited power and no unifying framework.

Our aim

Looking for a powerful logic in which one can talk explicitly about the strategic behavior
of agents in generic multi-player concurrent games.

Aniello Murano Università degli Studi di Napoli "Federico II"

Reasoning about Strategies: From module checking to strategy logic 2 / 33



An historical introduction to the framework

From monolithic to multi-agent systems

1 Closed systems verification: Model Checking
2 (System vs. Environment) open systems verification: Module Checking
3 Concurrent multi-agent system verification: ATL*
4 A multi-agent logic in which strategies are treated explicitly: Strategy Logic

Aniello Murano Università degli Studi di Napoli "Federico II"

Reasoning about Strategies: From module checking to strategy logic 3 / 33



Outline

1 From monolithic to multi-agent systems

1 Strategy Logic
Syntax and semantics
Interesting examples
Model-theoretic properties and expressiveness

2 Behavioral games
Why is SL is so powerful?
Strategy dependence

3 Fragments of Strategy Logic
Semi-prenex fragments
Model-theoretic properties and expressiveness

4 At the end ...

Aniello Murano Università degli Studi di Napoli "Federico II"

Reasoning about Strategies: From module checking to strategy logic 4 / 33



Model checking

Historical development(1)

Model checking: analyzes systems monolithically (system components plus
environment) [Clarke & Emerson, Queille & Sifakis, ’81].

M |= ϕ

Inputs

The model M is a Kripke structure, i.e., a labeled-state transition graph.

The specification ϕ is a temporal logic formula such as LTL, CTL or CTL*.

Aniello Murano Università degli Studi di Napoli "Federico II"

Reasoning about Strategies: From module checking to strategy logic 5 / 33



A closed system example: A drink dispenser-machine

M :

w0
Boil

w1
Choose

w2
Coffee

w3
Tea

M = 〈AP,W,R,L,w0〉
ϕ = ∃ F Tea

M only makes internal
non-deterministic choices

M |= ϕ

Remark

The system behavior can be represented by the unique three unwinding TM of M.

Aniello Murano Università degli Studi di Napoli "Federico II"

Reasoning about Strategies: From module checking to strategy logic 6 / 33



Module Checking

Historical development(2)

Module checking: separates the environment from the system components, i.e.,
two-player game between system and environment [Kupferman & Vardi,’96-01].

M |=r ϕ

Inputs

A module M is a Kripke structure with states partitioned in Sys and Env states.

The specification ϕ is a temporal logic formula.

The problem

Checking whether M is correct w.r.t. any possible behavior of the environment.

Aniello Murano Università degli Studi di Napoli "Federico II"

Reasoning about Strategies: From module checking to strategy logic 7 / 33



An open system example
Sys
Boil

Env
Choose

Sys
Coffee

Sys
Tea

M = 〈AP,Sys,Env,R,L,w0〉
W = Sys∪Env

Sys∩Env = /0

Always, at the Choose state, the
environment makes a choice

ϕ = ∃ F Tea

M 6|=r ϕ

Remark

Everytime an Env state is met, the environment can disable some (but one) of its
successors.

Any possible behavior of the environment induces a different tree (i.e., a partial
tree unwinding of M).

TM is a particular environment behavior.

Aniello Murano Università degli Studi di Napoli "Federico II"

Reasoning about Strategies: From module checking to strategy logic 8 / 33



An open system example
Sys
Boil

Env
Choose

Sys
Coffee

Sys
Tea

M = 〈AP,Sys,Env,R,L,w0〉
W = Sys∪Env

Sys∩Env = /0

Always, at the Choose state, the
environment makes a choice

ϕ = ∃ F Tea

M 6|=r ϕ

Remark

Everytime an Env state is met, the environment can disable some (but one) of its
successors.

Any possible behavior of the environment induces a different tree (i.e., a partial
tree unwinding of M).

TM is a particular environment behavior.

Aniello Murano Università degli Studi di Napoli "Federico II"

Reasoning about Strategies: From module checking to strategy logic 8 / 33



An open system example
Sys
Boil

Env
Choose

Sys
Coffee

Sys
Tea

M = 〈AP,Sys,Env,R,L,w0〉
W = Sys∪Env

Sys∩Env = /0

Always, at the Choose state, the
environment makes a choice

ϕ = ∃ F Tea

M 6|=r ϕ

Remark

Everytime an Env state is met, the environment can disable some (but one) of its
successors.

Any possible behavior of the environment induces a different tree (i.e., a partial
tree unwinding of M).

TM is a particular environment behavior.

Aniello Murano Università degli Studi di Napoli "Federico II"

Reasoning about Strategies: From module checking to strategy logic 8 / 33



An open system example
Sys
Boil

Env
Choose

Sys
Coffee

Sys
Tea

M = 〈AP,Sys,Env,R,L,w0〉
W = Sys∪Env

Sys∩Env = /0

Always, at the Choose state, the
environment makes a choice

ϕ = ∃ F Tea

M 6|=r ϕ

Remark

Everytime an Env state is met, the environment can disable some (but one) of its
successors.

Any possible behavior of the environment induces a different tree (i.e., a partial
tree unwinding of M).

TM is a particular environment behavior.

Aniello Murano Università degli Studi di Napoli "Federico II"

Reasoning about Strategies: From module checking to strategy logic 8 / 33



Pro vs. Cons

Applications

Module checking is very useful in open system verification. It allows to check
whether a system is correct no matter how the environment behaves.

It has been studied under perfect/imperfect information, hierarchical, infinite-state
systems (pushdown, real-time), backwards modalities, graded modalities....

Limitations

Two-player game between system and environment.

It is not powerful enough to be used in multi-player strategic reasoning.

Aniello Murano Università degli Studi di Napoli "Federico II"

Reasoning about Strategies: From module checking to strategy logic 9 / 33



Pro vs. Cons

Applications

Module checking is very useful in open system verification. It allows to check
whether a system is correct no matter how the environment behaves.

It has been studied under perfect/imperfect information, hierarchical, infinite-state
systems (pushdown, real-time), backwards modalities, graded modalities....

Limitations

Two-player game between system and environment.

It is not powerful enough to be used in multi-player strategic reasoning.

Aniello Murano Università degli Studi di Napoli "Federico II"

Reasoning about Strategies: From module checking to strategy logic 9 / 33



Alternating-time Temporal Logic [Alur et al., ’02]

Historical development(3)

Alternating temporal reasoning: multi-agent systems (components individually consid-
ered), playing strategically [Alur et al.,’97-02].

ATL∗

Branching-time Temporal Logic with the strategic modalities 〈〈A〉〉 and [[A]].

〈〈A〉〉ψ: There is a strategy for the agents in A enforcing the property ψ, independently
of what the agents not in A can do.

Example
〈〈{α,β}〉〉G¬fail : “Agents α and β cooperate to ensure that a system (having possibly
more than two processes (agents)) never enters a fail state”.

Aniello Murano Università degli Studi di Napoli "Federico II"

Reasoning about Strategies: From module checking to strategy logic 10 / 33



Underlying framework: the concurrent game structure

CGS

A concurrent game structure is a tuple G = 〈AP,Ag,Ac,St,λ,τ,s0〉.

Intuitively

G is a Graph whose States St are labeled with Atomic Propositions AP and Transitions
τ are Agents’ Decision, i.e., Actions Ac taken by Agents Ag.

Strategy and Play

A strategy is a function that maps each history of the game to an action.
A play is a path of the game determined by the history of strategies.

Aniello Murano Università degli Studi di Napoli "Federico II"

Reasoning about Strategies: From module checking to strategy logic 11 / 33



The paper, rock, and scissor game

si
/0

sα

winα

sβ

winβ

Dα
Dβ

Di

∗∗ ∗∗

Ag = {α : Alice,β : Bob}
St = {si ,sα,sβ}
si initial state

AP = {winα,winβ}
Ac = {P : Paper ,R : Rock ,S : Scissor}
Di = {(P,P),(R,R),(S,S)}
Dα = {(P,R),(R,S),(S,P)}
Dβ = {(R,P),(S,R),(P,S)}

Aniello Murano Università degli Studi di Napoli "Federico II"

Reasoning about Strategies: From module checking to strategy logic 12 / 33



Pro vs. Cons

Pro

ATL∗ allows multi-agent strategic reasoning.

Limitations

Strategies are treated only implicitly.

Quantifier alternation fixed to 1: either 〈〈 〉〉[[ ]] or [[ ]]〈〈 〉〉.

Aniello Murano Università degli Studi di Napoli "Federico II"

Reasoning about Strategies: From module checking to strategy logic 13 / 33



Our contribution

Strategy Logic

We introduce Strategy Logic (SL), as a more general framework (both in its syntax
and semantics), for explicit reasoning about strategies in multi-player concurrent games,
where strategies are treated as first order objects.

Some useful fragments

We also consider a chain of syntactic fragments of SL that are strictly more expressive
than ATL∗, but more tractable than SL.

Aniello Murano Università degli Studi di Napoli "Federico II"

Reasoning about Strategies: From module checking to strategy logic 14 / 33



As for ATL∗, the underlying model is a CGS

Recall what is a CGS

A concurrent game structure is a tuple G = 〈AP,Ag,Ac,St,λ,τ,s0〉.

...and its intuitive explanation

G is a Graph whose States St are labeled with Atomic Propositions AP and Transitions
τ are Agents’ Decision, i.e., Actions Ac taken by Agents Ag.

Aniello Murano Università degli Studi di Napoli "Federico II"

Reasoning about Strategies: From module checking to strategy logic 15 / 33



Syntax and semantics of SL

SL syntactically extends LTL by means of strategy quantifiers, the existential 〈〈x〉〉 and
the universal [[x]], and agent binding (a,x).

Sintax of SL

SL formulas are built as follows way, where x is a variable and a an agent.

ϕ ::= LTL | 〈〈x〉〉ϕ | [[x]]ϕ | (a,x)ϕ.

Semantics of SL

〈〈x〉〉ϕ: “there exists a strategy x for which ϕ is true”.

[[x]]ϕ: “for all strategies x, it holds that ϕ is true”.

(a,x)ϕ: “ϕ holds, when the agent a uses the strategy x”.

LTL operators are classically interpreted on the resulting play.

Aniello Murano Università degli Studi di Napoli "Federico II"

Reasoning about Strategies: From module checking to strategy logic 16 / 33



Failure is not an option

Example (No failure property)
“In a system S built on three processes, α, β, and γ, the first two have to cooperate in
order to ensure that S never enters a failure state”.

Three different formalization in SL.

〈〈x〉〉〈〈y〉〉[[z]](α,x)(β,y)(γ,z)(G¬fail): α and β have two strategies, x and y,
ensuring that a failure state is never reached, independently of what γ decides.

〈〈x〉〉[[z]]〈〈y〉〉(α,x)(β,y)(γ,z)(G¬fail): β can choose his strategy y dependently of
that one chosen by γ.

〈〈x〉〉[[z]](α,x)(β,x)(γ,z)(G¬fail): α and β have a common strategy x to ensure
the required property.

Aniello Murano Università degli Studi di Napoli "Federico II"

Reasoning about Strategies: From module checking to strategy logic 17 / 33



Multi-player Nash equilibrium

Example (Nash equilibrium)
Let G be a game with the n agents α1, . . . ,αn, each one having its own LTL goal
ψ1, . . . ,ψn. We want to know if G admits a Nash equilibrium, i.e., if there is a “best”
strategy xi w.r.t. the goal ψi , for each agent αi , once all other strategies are fixed.

ϕNE , 〈〈x1〉〉 · · · 〈〈xn〉〉(α1,x1) · · ·(αn,xn)(
∧n

i=1(〈〈y〉〉(αi ,y)ψi )→ ψi ).

Intuitively, if G |= ϕNE then x1, . . . ,xn form a Nash equilibrium, since, when an agent αi

has a strategy y that allows the satisfaction of ψi , he can use xi instead of y , assuming
that the remaining agents α1, . . . ,αi−1,αi+1, . . . ,αn use x1, . . . ,xi−1,xi+1, . . . ,xn.

Aniello Murano Università degli Studi di Napoli "Federico II"

Reasoning about Strategies: From module checking to strategy logic 18 / 33



ATL∗ model-theoretic properties

Positive model-theoretic properties

Invariance under bisimulation.

Invariance under decision-unwinding.

Bounded decision-tree model property.

Aniello Murano Università degli Studi di Napoli "Federico II"

Reasoning about Strategies: From module checking to strategy logic 19 / 33



SL model-theoretic properties

Negative model-theoretic properties

Non-invariance under bisimulation.

Non-invariance under decision-unwinding.

Unbounded model property.

Positive model-theoretic properties

Invariance under state-unwinding.

State-tree model property.

Aniello Murano Università degli Studi di Napoli "Federico II"

Reasoning about Strategies: From module checking to strategy logic 20 / 33



Expressiveness

Theorem
SL is strictly more expressive than ATL∗.

Explanation

Unbounded quantifier alternation.

Agents can be forced to share the same strategy.

Aniello Murano Università degli Studi di Napoli "Federico II"

Reasoning about Strategies: From module checking to strategy logic 21 / 33



A comparison

Expressiveness

SL is more expressive than ATL∗.

Computational complexities

ATL∗ SL

Model checking 2EXPTIME-COMPLETE “NONELEMENTARY-COMPLETE”

Satisfiability 2EXPTIME-COMPLETE Undecidable

Aniello Murano Università degli Studi di Napoli "Federico II"

Reasoning about Strategies: From module checking to strategy logic 22 / 33



A natural question

The question

Why is SL hard?

The answer

The choice of an action made by an agent in a strategy, for a given history of the game,
may depend on the entire strategy of another agent, i.e., on its actions over all possible
histories of the game.

An observation

Strategies are not synthesizable, since an agent, to have a chance to win, may need to
forecast a possibly infinite amount of information about the behavior of an opponent.

Aniello Murano Università degli Studi di Napoli "Federico II"

Reasoning about Strategies: From module checking to strategy logic 23 / 33



Conterfactual dependence

s0
/0

s1
p

s4¬p

s2
p

s3¬p

s5
p

s6¬p

0 1

0
1 1

0

ϕ = [[x]]〈〈y〉〉ψ1∧ψ2

ψ1 = (α,x)X p↔ (α,y)X¬p

ψ2 = (α,x)X X p↔ (α,y)X X p

Aniello Murano Università degli Studi di Napoli "Federico II"

Reasoning about Strategies: From module checking to strategy logic 24 / 33



Conterfactual dependence

s0
/0

s1
p

s4¬p

s2
p

s3¬p

s5
p

s6¬p

0 1

0
1 1

0

ϕ = [[x]]〈〈y〉〉ψ1∧ψ2

ψ1 = (α,x)X p↔ (α,y)X¬p

ψ2 = (α,x)X X p↔ (α,y)X X p

Aniello Murano Università degli Studi di Napoli "Federico II"

Reasoning about Strategies: From module checking to strategy logic 24 / 33



Conterfactual dependence

s0
/0

s1
p

s4¬p

s2
p

s3¬p

s5
p

s6¬p

0 1

0
1 1

0

ϕ = [[x]]〈〈y〉〉ψ1∧ψ2

ψ1 = (α,x)X p↔ (α,y)X¬p

ψ2 = (α,x)X X p↔ (α,y)X X p

Aniello Murano Università degli Studi di Napoli "Federico II"

Reasoning about Strategies: From module checking to strategy logic 24 / 33



Conterfactual dependence

s0
/0

s1
p

s4¬p

s2
p

s3¬p

s5
p

s6¬p

0 1

0
1 1

0

ϕ = [[x]]〈〈y〉〉ψ1∧ψ2

ψ1 = (α,x)X p↔ (α,y)X¬p

ψ2 = (α,x)X X p↔ (α,y)X X p

Aniello Murano Università degli Studi di Napoli "Federico II"

Reasoning about Strategies: From module checking to strategy logic 24 / 33



Conterfactual dependence

s0
/0

s1
p

s4¬p

s2
p

s3¬p

s5
p

s6¬p

0 1

0
1 1

0

ϕ = [[x]]〈〈y〉〉ψ1∧ψ2

ψ1 = (α,x)X p↔ (α,y)X¬p

ψ2 = (α,x)X X p↔ (α,y)X X p

Aniello Murano Università degli Studi di Napoli "Federico II"

Reasoning about Strategies: From module checking to strategy logic 24 / 33



Conterfactual dependence

s0
/0

s1
p

s4¬p

s2
p

s3¬p

s5
p

s6¬p

0 1

0
1 1

0

ϕ = [[x]]〈〈y〉〉ψ1∧ψ2

ψ1 = (α,x)X p↔ (α,y)X¬p

ψ2 = (α,x)X X p↔ (α,y)X X p

Aniello Murano Università degli Studi di Napoli "Federico II"

Reasoning about Strategies: From module checking to strategy logic 24 / 33



Conterfactual dependence

s0
/0

s1
p

s4¬p

s2
p

s3¬p

s5
p

s6¬p

0 1

0
1 1

0

ϕ = [[x]]〈〈y〉〉ψ1∧ψ2

ψ1 = (α,x)X p↔ (α,y)X¬p

ψ2 = (α,x)X X p↔ (α,y)X X p

Aniello Murano Università degli Studi di Napoli "Federico II"

Reasoning about Strategies: From module checking to strategy logic 24 / 33



Conterfactual dependence

s0
/0

s1
p

s4¬p

s2
p

s3¬p

s5
p

s6¬p

0 1

0
1 1

0

ϕ = [[x]]〈〈y〉〉ψ1∧ψ2

ψ1 = (α,x)X p↔ (α,y)X¬p

ψ2 = (α,x)X X p↔ (α,y)X X p

Aniello Murano Università degli Studi di Napoli "Federico II"

Reasoning about Strategies: From module checking to strategy logic 24 / 33



Conterfactual dependence

s0
/0

s1
p

s4¬p

s2
p

s3¬p

s5
p

s6¬p

0 1

0
1 1

0

ϕ = [[x]]〈〈y〉〉ψ1∧ψ2

ψ1 = (α,x)X p↔ (α,y)X¬p

ψ2 = (α,x)X X p↔ (α,y)X X p

Aniello Murano Università degli Studi di Napoli "Federico II"

Reasoning about Strategies: From module checking to strategy logic 24 / 33



Elementariness in strategies

Behavioral property

The quantification of a strategy is behavioral if the actions in a given history depend only
on the actions of all other strategies on the same history.

Behavioral semantics

A formula is behaviorally satisfiable if it only needs behavioral strategies to be satisfied.

Fact

ATL∗ is behaviorally satisfiable.

Aniello Murano Università degli Studi di Napoli "Federico II"

Reasoning about Strategies: From module checking to strategy logic 25 / 33



Another question

The question

Is there any other syntactic fragment of SL (strictly subsuming ATL∗) having a behavioral
semantics?.

Our answer

Yes! We obtain several fragments by using a prenex normal form for SL and by putting
different constraints on the use of bindings.

Aniello Murano Università degli Studi di Napoli "Federico II"

Reasoning about Strategies: From module checking to strategy logic 26 / 33



Quantification and bining prefixes

A quantification prefix is a sequence ℘of quantifications in which each variable occurs
once: ℘= [[x]][[y]]〈〈z〉〉[[w]].

A binding prefix is a sequence [ of bindings such that each agent occurs once: [ =
(α,x)(β,y)(γ,y).

A goal is a binding prefix [ followed by an LTL formula.

By using a prenex normal form of a combination of goals, we identify a chain of frag-
ments, which we name SL[BG], SL[DG / CG], and SL[1G].

Aniello Murano Università degli Studi di Napoli "Federico II"

Reasoning about Strategies: From module checking to strategy logic 27 / 33



Quantification and bining prefixes

A quantification prefix is a sequence ℘of quantifications in which each variable occurs
once: ℘= [[x]][[y]]〈〈z〉〉[[w]].

A binding prefix is a sequence [ of bindings such that each agent occurs once: [ =
(α,x)(β,y)(γ,y).

A goal is a binding prefix [ followed by an LTL formula.

By using a prenex normal form of a combination of goals, we identify a chain of frag-
ments, which we name SL[BG], SL[DG / CG], and SL[1G].

Aniello Murano Università degli Studi di Napoli "Federico II"

Reasoning about Strategies: From module checking to strategy logic 27 / 33



Quantification and bining prefixes

A quantification prefix is a sequence ℘of quantifications in which each variable occurs
once: ℘= [[x]][[y]]〈〈z〉〉[[w]].

A binding prefix is a sequence [ of bindings such that each agent occurs once: [ =
(α,x)(β,y)(γ,y).

A goal is a binding prefix [ followed by an LTL formula.

By using a prenex normal form of a combination of goals, we identify a chain of frag-
ments, which we name SL[BG], SL[DG / CG], and SL[1G].

Aniello Murano Università degli Studi di Napoli "Federico II"

Reasoning about Strategies: From module checking to strategy logic 27 / 33



Boolean-Goal Strategy Logic (SL[BG])

Definition
SL[BG] formulas are built inductively in the following way, where ℘ is a quantification
prefix and [ a binding prefix:

ϕ ::= LTL |℘ψ,
ψ ::= [ϕ | ¬ψ | ψ∧ψ | ψ∨ψ,

where ℘quantifies over all free variables of ψ.

For SL[CG], we set ψ ::= [ϕ | ψ∧ψ.

For SL[1G], we set ψ ::= [ϕ.

The expressiveness chain

ATL∗ < SL[1G] < SL[CG] < SL[BG] ≤ SL

Aniello Murano Università degli Studi di Napoli "Federico II"

Reasoning about Strategies: From module checking to strategy logic 28 / 33



The behavioral results

The question

Which fragments of SL have behavioral semantics?

Theorem
SL[BG] does not have behavioral semantics.

SL[CG] and SL[1G] have behavioral semantics.

Aniello Murano Università degli Studi di Napoli "Federico II"

Reasoning about Strategies: From module checking to strategy logic 29 / 33



An overview

Model checking Satisfiability

SL “NONELEMENTARY-COMPLETE” Σ1
1-HARD

SL[BG] ? Σ1
1-HARD

SL[CG] 2EXPTIME-COMPLETE ?
SL[1G] 2EXPTIME-COMPLETE 2EXPTIME-COMPLETE

ATL∗ 2EXPTIME-COMPLETE 2EXPTIME-COMPLETE

Aniello Murano Università degli Studi di Napoli "Federico II"

Reasoning about Strategies: From module checking to strategy logic 30 / 33



Model-theoretic properties

SL[BG] negative model-theoretic property

Unbounded model property.

SL[CG] negative model-theoretic properties

Non-invariance under bisimulation.

Non-invariance under decision-unwinding.

SL[1G] positive model-theoretic properties

Invariance under bisimulation.

Invariance under decision-unwinding.

Bounded decision-tree model property.

Aniello Murano Università degli Studi di Napoli "Federico II"

Reasoning about Strategies: From module checking to strategy logic 31 / 33



In this talk

We have introduced SL as a logic for the temporal description of multi-player
concurrent games, in which strategies are treated as first order objects.

SL model checking has a NONELEMENTARYTIME-COMPLETE formula complexity
and a PTIME-COMPLETE data complexity.

SL satisfiability is highly undecidable, i.e., Σ1
1-HARD.

We have also introduced some fragments of SL, named SL[BG], SL[CG], and
SL[1G], all strictly more expressive than ATL∗.

We have studied their model-theoretic properties. In particular, model-checking
and satisfiability for SL[1G] are no more complex than those for ATL∗, i.e., they are
both 2EXPTIME-COMPLETE.

Aniello Murano Università degli Studi di Napoli "Federico II"

Reasoning about Strategies: From module checking to strategy logic 32 / 33



References

Mogavero, M., & Vardi. Reasoning About Strategies. FSTTCS’10.

Mogavero, Murano, Perelli, Vardi. What Makes ATL* Decidable? A Decidable
Fragment of Strategy Logic. CONCUR’12.

Mogavero, Murano, Perelli, Vardi. Reasoning About Strategies: On the
Model-Checking Problem. TR, arXiv.

Mogavero, Murano, Sauro. On the Boundary of Behavioral Strategies. LICS’13.

ATL* References

Alur, Henzinger, Kupferman. Alternating-time temporal logic. J.ACM. 2002

Module Checking References

Kupferman, Vardi, Wolper: Module Checking. I.&C. 2001

Aminof, Legay, Murano, Serre, Vardi. Pushdown Module Checking with imperfect
information I.&C. 2013.

Aniello Murano Università degli Studi di Napoli "Federico II"

Reasoning about Strategies: From module checking to strategy logic 33 / 33


	Preface
	From monolithic to multi-agent systems
	Strategy Logic
	Syntax and semantics
	Interesting examples
	Model-theoretic properties and expressiveness

	Behavioral games
	Why is  is so powerful?
	Strategy dependence

	Fragments of Strategy Logic
	Semi-prenex fragments
	Model-theoretic properties and expressiveness

	At the end ...

