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Is the system correct? 



Motivations 
 
Formal Verification: 
 

 System    A mathematical model M 
 Desired Behavior    A formal specification  
 Correctness     A formal technique 
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Motivations 
 
Formal Verification: 
 

 System    A mathematical model M 
 Desired Behavior    A formal specification  
 Correctness     A formal technique 

 
                  
 

 Model Checking: Does M satisfies  ? 
 
 Satisfiability: Is there M for  ? 

 
 
 
 
 

The system has 
the required 

behavior 
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A Basic Model: Kripke Structure 

 A system can be represented as a Kripke Structure: a labeled-
state transition graph 
 

M = (AP, S, S0, R, Lab) 
 

 AP is a set of atomic propositions.  

 S is a finite set of states. 

 S0 ⊆ S is the set of initial states. 

 R ⊆ S x S is a transition relation, total: ∀s є S, ∃ s’ . R(s, s’). 

 Lab : S → 2AP labels states with propositions true in that states. 

 

 A path is a system run! 
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System Specification 

 Modal and Temporal logic allow description of the temporal 
ordering of events 
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System Specification 

 Modal and Temporal logic allow description of the temporal 
ordering of events 

 Two main families of logics: 

 Linear-Time Logics (LTL) 
 Each moment in time has a unique possible future. 

 LTL expresses path properties based on the paths state labels. 

 Useful for hardware specification. 

 Branching-Time Logics (CTL, CTL*, and μ-CALCULUS) 
 Each moment in time may split into various possible future. 

 CTL* expresses state properties from which LTL-like properties are 
satisfied in an existential or universal way . 

 Useful for software specification. 
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μ-calculus is a very expressive logic 

 Can express several practical properties. 

 Corresponds to alternating parity tree automata 

 Important connections with MSO 

 Strictly subsumes classical logics such as CTL, LTL, CTL*, … 

 Identifies powerful classes of Description Logics 

 

 Decision problems: 

 Model checking: UP ⋂ co-UP 

 Satisfiability: ExpTime-complete 
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μ-calculus limitations 

 Several important constructs cannot be easily translated to the 
μ-calculus: 

 Inverse Programs to travel relations in backward   

 Graded modalities to enable statements on a number of successors 

 Nominals as propositional variables true exactly in one state  
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μ-calculus limitations 

 Several important constructs cannot be easily translated to the 
μ-calculus: 

 Inverse Programs to travel relations in backward   

 Graded modalities to enable statements on a number of successors 

 Nominals as propositional variables true exactly in one state  

 

 Extensions of the μ-calculus with these abilities induces families 
of enriched μ-calculi. 

 Similarly, we can define families of enriched temporal logics. 
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Outline of the talk 
I part 

 Motivations 

 Fully enriched μ-calculus 
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Outline of the talk 
I part 

 Motivations 

 Fully enriched μ-calculus 

 Families of enriched μ-calculi 
 full graded μ-calculus (with inverse programs and graded mod.) 

 hybrid graded μ-calculus (with graded modalities and nominals) 

 full hybrid μ-calculus (with inverse programs and nominals) 
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Outline of the talk 
I part 

 Motivations 

 Fully enriched μ-calculus 

 Families of enriched μ-calculi 
 full graded μ-calculus (with inverse programs and graded mod.) 

 hybrid graded μ-calculus (with graded modalities and nominals) 

 full hybrid μ-calculus (with inverse programs and nominals) 

 

 Satisfiability of fully enriched μ-calculus: Undecidable 

                                                                     
                                                

                                                                

 

Aniello Murano  -  Enriched Modal Logics 



8 

Outline of the talk 
I part 

 Motivations 

 Fully enriched μ-calculus 

 Families of enriched μ-calculi 
 full graded μ-calculus (with inverse programs and graded mod.) 

 hybrid graded μ-calculus (with graded modalities and nominals) 

 full hybrid μ-calculus (with inverse programs and nominals) 

 

 Satisfiability of fully enriched μ-calculus: Undecidable 

 Satisfiability of the other families we  consider: ExpTime-complete 
Upper bound via Fully Enriched Automata (FEA). 

The upper bound holds also in case numbers are coded in binary 
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Outline of the talk 
II part 

 Graded Computation Tree Logic (GCTL) 

 

 ExpTime solution of the satisfiability problem for graded numbers 
coded in unary/binary 
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Outline of the talk 
II part 

 Graded Computation Tree Logic (GCTL) 

 

 ExpTime solution of the satisfiability problem for graded numbers 
coded in unary/binary 

 

 Open questions on GCTL and its extensions:  
 GCTL*, PGCTL/PGCTL*, etc.. 
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Outline of the talk 
II part 

 Graded Computation Tree Logic (GCTL) 

 

 ExpTime solution of the satisfiability problem for graded numbers 
coded in unary/binary 

 

 Open questions on GCTL and its extensions:  
 GCTL*, PGCTL/PGCTL*, etc.. 

  

 Some achievements in open system verification. 
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Some known results 

 Satisfiability for Fully enriched μ-calculus is undecidable [Bonatti, 

Peron 2004] 
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Some known results 

 Satisfiability for Fully enriched μ-calculus is undecidable [Bonatti, 

Peron 2004] 

 ExpTime-completeness of satisfiability for enriched μ-calculi: 

 μ-calculus with inverse programs [Vardi’98] 

 μ-calculus with graded modalities [Kupferman,Sattler,Vardi’02]   

 full hybrid logic [Sattler,Vardi’01] 

 full graded logic in unary coding [Calvanese, De Giacomo, Lenzerini’01] 
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The fully enriched μ-calculus 

 The -calculus is a propositional modal logic with least() and 
greatest () fixpoint operators [Kozen 1983].  

 

 The fully enriched μ-calculus extends the μ-calculus with  
 

 graded modalities: hn,i (atleast formulas) and [n,] (allbut formulas)  

 

 nominals propositions: Nominal set Nom 

 

 inverse programs: Use of both program sets Prog and Prog- 

 

Aniello Murano  -  Enriched Modal Logics 12 



13 

The fully enriched μ-calculus (Syntax) 

 Let AP, Var, Prog, and Nom be sets of atomic proposition, 
propositional variables, atomic, programs and nominals 

 Syntax: 
 φ := true | false | p | :p | y | φ ⋁ φ | φ ⋀ φ | hn,iφ | [n,] φ | y. φ(y) | y. φ(y) 

  

 where p є AP ∪ Nom, y є Var, n є N, and  is a program or its converse 
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The fully enriched μ-calculus (Syntax) 

 Let AP, Var, Prog, and Nom be sets of atomic proposition, 
propositional variables, atomic, programs and nominals 

 Syntax: 
 φ := true | false | p | :p | y | φ ⋁ φ | φ ⋀ φ | hn,iφ | [n,] φ | y. φ(y) | y. φ(y) 

  

 where p є AP ∪ Nom, y є Var, n є N, and  is a program or its converse 

 

 Fragments of the fully enriched μ-calculus: 
 full graded μ-calculus (without nominals) 

 hybrid graded μ-calculus (without inverse programs) 

 full hybrid μ-calculus (without graded modalities) 
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Semantics: The enriched model 

 The semantics of the fully enriched -calculus is given with 
respect to enriched Kripke structures 

K = (AP [ Nom, W, W0, R, Lab) 
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Semantics: The enriched model 

 The semantics of the fully enriched -calculus is given with 
respect to enriched Kripke structures 

K = (AP [ Nom, W, W0, R, Lab) 

 In particular, R and Lab are enriched as follows: 

 R : Prog ! 2W £ W assigns to programs transitions relation over S 

 Lab: AP [ Nom ! 2W assigns to propositions and nominal sets of 
states, where those assigned to each nominal are singletons. 
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Semantics: The enriched model 

 The semantics of the fully enriched -calculus is given with 
respect to enriched Kripke structures 

K = (AP [ Nom, W, W0, R, Lab) 

 In particular, R and Lab are enriched as follows: 

 R : Prog ! 2W £ W assigns to programs transitions relation over S 

 Lab: AP [ Nom ! 2W assigns to propositions and nominal sets of 
states, where those assigned to each nominal are singletons. 

 

 Given a Kripke structure, atomic propositions and boolean 
connectivities are interpreted as usual:  
 K satisfies the nominal n at the starting state r, since Lab(n)={s}  

 K does not satisfy q at r, but at s. 
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Semantics 

 For a Kripke structure, the new modalities are interpreted as follows. 

 hn,iφ holds in w if φ holds at least in n+1 -successors of w.   

 [n,]φ holds in w if φ holds in all but at most n -successors of w.  
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Semantics 
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In r, h1,bip holds  
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 For a Kripke structure, the new modalities are interpreted as follows. 
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Semantics 

 For a Kripke structure, the new modalities are interpreted as follows. 

 hn,iφ holds in w if φ holds at least in n+1 -successors of w.   

 [n,]φ holds in w if φ holds in all but at most n -successors of w.  

 

 

 

 

 

 

 

  and  are useful to express liveness and safety:  
 AGp: p always true along all a-paths is X. p Æ [0,a]X  

 EFp: there exists an a-path where p eventually holds is X. p Ç h0,aiX  
 

 Note that h0,iφ is hiφ and [0,]φ is []φ 

 

In r, h1,bip holds  

In r, [1,b]p does not hold. 

In r, [2,b]p holds. 

In s, h0,b-ih holds  
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Structure properties 

 In branching-time temporal logic, important model features to 
symplify decisions reasonings are: 

 Finite-model property: 
 Is there a finite model satisfying the formula 

 It is possible to use exhaustive (brute-force) methods! 

 Tree-model property: 
 Is there a tree-model shape satisfying the formula 

 It is possible to use tree automata !  

 

 In enriched μ-calculus we need forest structures as models 
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Forest structures  
 A forest F µ N+ is a collection of trees: 

 

 

 

 

 

 The elements of F are nodes, the degree of F is the maximum number of 
node’s successors, and 0, 1, and 2 are roots of F.  

 The set T= {r¢x j x 2 N* and r¢x 2 F } is the tree of F rooted in r  
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Forest structures  
 A forest F µ N+ is a collection of trees: 

 

 

 

 

 

 The elements of F are nodes, the degree of F is the maximum number of 
node’s successors, and 0, 1, and 2 are roots of F.  

 The set T= {r¢x j x 2 N* and r¢x 2 F } is the tree of F rooted in r  

 A Kripke structure K is a forest structure if it induces a forest: 
 Nodes W represent a forest and the relation R is defined over nodes, where 

each pair of successive nodes is labeled with one atomic program or its converse.   
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 The elements of F are nodes, the degree of F is the maximum number of 
node’s successors, and 0, 1, and 2 are roots of F.  

 The set T= {r¢x j x 2 N* and r¢x 2 F } is the tree of F rooted in r  

 A Kripke structure K is a forest structure if it induces a forest: 
 Nodes W represent a forest and the relation R is defined over nodes, where 

each pair of successive nodes is labeled with one atomic program or its converse.   

 A Kripke structure K is a quasi forest structure if it becomes a forest 
structure after deleting all the edges entering a root of W. 
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Forest structures  
 A forest F µ N+ is a collection of trees: 

 

 

 

 

 

 The elements of F are nodes, the degree of F is the maximum number of 
node’s successors, and 0, 1, and 2 are roots of F.  

 The set T= {r¢x j x 2 N* and r¢x 2 F } is the tree of F rooted in r  

 A Kripke structure K is a forest structure if it induces a forest: 
 Nodes W represent a forest and the relation R is defined over nodes, where 

each pair of successive nodes is labeled with one atomic program or its converse.   

 A Kripke structure K is a quasi forest structure if it becomes a forest 
structure after deleting all the edges entering a root of W. 

 K is a tree structure if W consists of a single tree. 
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Forest and tree model property 

 Given a sentence φ of the full graded -calculus with m atleast 
subsentences and counting up to b 
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Forest and tree model property 

 Given a sentence φ of the full graded -calculus with m atleast 
subsentences and counting up to b 

φ is satisfiable  

 

φ has a tree model whose degree is at most m¢(b+1).  
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Forest and tree model property 

 Given a sentence φ of the full graded -calculus with m atleast 
subsentences and counting up to b 

φ is satisfiable  

 

φ has a tree model whose degree is at most m¢(b+1).  
  

 The hybrid graded -calculus does not enjoy the tree model 
property.  
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Forest and tree model property 

 Given a sentence φ of the full graded -calculus with m atleast 
subsentences and counting up to b 

φ is satisfiable  

 

φ has a tree model whose degree is at most m¢(b+1).  
  

 The hybrid graded -calculus does not enjoy the tree model 
property.  
 

 Given a sentence φ of the hybrid graded -calculus with k 
nominals, m atleast subsentences and counting up to b  

φ is satisfiable 

 
φ has a quasi forest model  

whose degree is at most max{k+1, m¢(b+1)} 
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Solving enriched mu-calculi 

 We use an automata-theoretic approach. 

 In modal μ-calulus, we translate a formula to an alternating parity 
tree automaton anch check for its emptiness. 
 The translation is polynomial 

 Checking for emptiness can be done in ExpTime 

 Satisfiability of μ-calculus is solvable in ExpTime.   

 For the enriched μ-calculi, we need an enriched version of parity 
tree automata. 

 

 Let us first recall alternating automata on infinite tree…  
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Nondeterministic (binary)  
tree automata: NTA 

20 

 A infinite (binary) tree is t : {0,1}*   

 

 A path is an infinite sequence of nodes                                                             
starting at the root 

 

 An NTA is a tuple A = < Q, , , Q0, F > 

   : Q x   2QxQ  is a tree transition relation 

  Runs are binary trees labeled with states accordingly to   

  F is an acceptance condition satisfied on each path of a run 
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Runs 

                                                                 
           

 A run r : {0,1}*  Q is built in accordance with  and r() є Q0. 

Thus, runs are Q-labeled trees. 
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Runs 

 A run is accepting if the acceptance condition is satisfied on 
every path 

 

 A run r : {0,1}*  Q is built in accordance with  and r() є Q0. 

Thus, runs are Q-labeled trees. 
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Alternating automata 
on infinite trees 

 An alternating (finite-state) automaton on infinite -labeled 
D-trees is a tuple  
 

A = ‹ Q, , , q0, F › 
 

  : (Q x )  B+(D  Q)  

 positive Boolean formulas of pairs of directions and states  

 
 

0 1 

00 01 10 11 

-labeled binary tree 

a 

a b 

b a b b 

For example 

(p,a)= 

(1,p)(1,q) 



Runs 

 A run on a -labeled D-trees is a (D*  Q)-labeled tree. The root is labeled 
with (, q0) and labels of each node and its successors must satisfy the  
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a binary tree T the corresponding run r 



Runs 

 A run on a -labeled D-trees is a (D*  Q)-labeled tree. The root is labeled 
with (, q0) and labels of each node and its successors must satisfy the  

 (q0,a)=((0,q1)(0,q2))  (0,q3)  (1,q3) 

 Let S= {(0,q1), (0,q3), (1,q3)}. 

 

a  ·q0 

                                                                 

                                                                        

                                      

a binary tree T the corresponding run r 



Runs 

 A run on a -labeled D-trees is a (D*  Q)-labeled tree. The root is labeled 
with (, q0) and labels of each node and its successors must satisfy the  

 (q0,a)=((0,q1)(0,q2))  (0,q3)  (1,q3) 

 Let S= {(0,q1), (0,q3), (1,q3)}. 
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0·q1 0·q3 

 ·q0 

1·q3 

 There is no one-to-one correspondence between nodes of T and r  
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Runs 

 A run on a -labeled D-trees is a (D*  Q)-labeled tree. The root is labeled 
with (, q0) and labels of each node and its successors must satisfy the  

 (q0,a)=((0,q1)(0,q2))  (0,q3)  (1,q3) 

 Let S= {(0,q1), (0,q3), (1,q3)}. 

 

a 

0·q1 0·q3 

 ·q0 

1·q3 

 There is no one-to-one correspondence between nodes of T and r  

 As in nondeterministic automata, a run is accepting if the acceptance 

condition is satisfied on every path. 

 

a binary tree T the corresponding run r 
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Fully Enriched Automata 
 Fully enriched automata (FEA) run on infinite labeled forests hT,Vi. 

 FEA generalize alternating automata on infinite trees as the fully enriched 
-calculus extends the standard -calculus:  
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Fully Enriched Automata 
 Fully enriched automata (FEA) run on infinite labeled forests hT,Vi. 

 FEA generalize alternating automata on infinite trees as the fully enriched 
-calculus extends the standard -calculus:  

 Move up to a predecessor of a node  
  (by analogy with inverse programs)  

 Move down to at least n or all but n successors  
(by analogy with graded modalities) 

 Jump directly to the roots of the input forest  
  (which are the analogues of nominals).  
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Fully Enriched Automata 
 Fully enriched automata (FEA) run on infinite labeled forests hT,Vi. 

 FEA generalize alternating automata on infinite trees as the fully enriched 
-calculus extends the standard -calculus:  

 Move up to a predecessor of a node  
  (by analogy with inverse programs)  

 Move down to at least n or all but n successors  
(by analogy with graded modalities) 

 Jump directly to the roots of the input forest  
  (which are the analogues of nominals).  

 (q,) is a positive boolean combination of pairs of directions and states.  

 Formally, 
  : QB+(Db  Q), where Db can be -1, , hrooti, [root], hni, or [n], with 0 · n · b.  

 (-1, q) and (, q) send a copy to the predecessor and to the current node. 

 (hrooti, q) and ([root], q) send a copy to some or all roots of the forest.  

 (hni, q) and ([n], q) send a copy in state q to n+1 and all but n successors of the 
current node, respectively. 
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Runs for FEA 

 For a FEA A with a transition : Q £  ! B+(Db £ Q) 

 A run over a forest hF,Vi is a (F£Q)–labeled tree, built in 
accordance with  and r() = (c, q0), for a root c of F. 
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Runs for FEA 

 For a FEA A with a transition : Q £  ! B+(Db £ Q) 

 A run over a forest hF,Vi is a (F£Q)–labeled tree, built in 
accordance with  and r() = (c, q0), for a root c of F. 

 Let r(0)=(11,q), V(11)=a, and  

   (q,a) = (-1,q1)  ((hrooti,q2)Ç([root],q3)) 
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Runs for FEA 

 For a FEA A with a transition : Q £  ! B+(Db £ Q) 

 A run over a forest hF,Vi is a (F£Q)–labeled tree, built in 
accordance with  and r() = (c, q0), for a root c of F. 

 Let r(0)=(11,q), V(11)=a, and  

   (q,a) = (-1,q1)  ((hrooti,q2)Ç([root],q3)) 

 Let S= {(-1,q1), (hrooti,q2)}. 
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Runs for FEA 

 For a FEA A with a transition : Q £  ! B+(Db £ Q) 

 A run over a forest hF,Vi is a (F£Q)–labeled tree, built in 
accordance with  and r() = (c, q0), for a root c of F. 

 Let r(0)=(11,q), V(11)=a, and  

   (q,a) = (-1,q1)  ((hrooti,q2)Ç([root],q3)) 

 Let S= {(-1,q1), (hrooti,q2)}. 
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Acceptance conditions 

 Büchi condition: F ⊆ Q. A run r is accepting iff for every path, there exists 

a final state appearing infinitely often  

 Formally, a run is accepting if for each path , Inf(r|) ⋂ F  Ø 
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 Parity condition: F = {F1,…,Fm}. A run r is accepting if for each path  in r the 

minimal i for which Inf(r|) ⋂ F  Ø is even 

 

            

                                                              

                                                          

                                                          

                                                           

 

 

 

 

 

 

 



Acceptance conditions 

 Büchi condition: F ⊆ Q. A run r is accepting iff for every path, there exists 

a final state appearing infinitely often  

 Formally, a run is accepting if for each path , Inf(r|) ⋂ F  Ø 

 

 Parity condition: F = {F1,…,Fm}. A run r is accepting if for each path  in r the 

minimal i for which Inf(r|) ⋂ F  Ø is even 

 

 Emptiness: 

 Nondeterministic Buchi Tree Automata (NBT) : PTime-Complete  

 Alternating Buchi Tree Automata (ABT) : ExpTime-Complete 

 Nondeterministic Parity Tree Automata (NPT) : UP ⋂ Co-UP 

 Alternating Parity Tree Automata (APT) : ExpTime-Complete 
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Solving the satisfiability problem 

 We show that the satisfiability problem for enriched -calculus formulas 
(except for fully enriched ones) is EXPTime-Complete 
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Solving the satisfiability problem 

 We show that the satisfiability problem for enriched -calculus formulas 
(except for fully enriched ones) is EXPTime-Complete 

 Lower Bound: Satisfiability for the -calculus is EXPTime-hard [Fisher 
Ladner 1979] 
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Solving the satisfiability problem 

 We show that the satisfiability problem for enriched -calculus formulas 
(except for fully enriched ones) is EXPTime-Complete 

 Lower Bound: Satisfiability for the -calculus is EXPTime-hard [Fisher 
Ladner 1979] 

 Upper Bound: We use an automata-theoretic approach: 

 Given a sentence φ of the full graded -calculus that has m atleast sub-
sentences and counts up to b, we can construct a FEA Aφ that 

 accepts the set of tree models of φ with degree at most m(b+1), and 

 has |φ| states, index |φ|. 
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Solving the satisfiability problem 

 We show that the satisfiability problem for enriched -calculus formulas 
(except for fully enriched ones) is EXPTime-Complete 

 Lower Bound: Satisfiability for the -calculus is EXPTime-hard [Fisher 
Ladner 1979] 

 Upper Bound: We use an automata-theoretic approach: 

 Given a sentence φ of the full graded -calculus that has m atleast sub-
sentences and counts up to b, we can construct a FEA Aφ that 

 accepts the set of tree models of φ with degree at most m(b+1), and 

 has |φ| states, index |φ|. 

 Given a sentence φ of the hybrid graded/full -calculus with m atleast 
subsentences, k nominals, and counts up to b, we can built a FEA Aφ that 

 accepts all quasi forest models of φ with degree max{k+1, m(b+1)}, and 

 has O(|φ|2) states, index |φ|. 
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Solving the satisfiability problem 

 We show that the satisfiability problem for enriched -calculus formulas 
(except for fully enriched ones) is EXPTime-Complete 

 Lower Bound: Satisfiability for the -calculus is EXPTime-hard [Fisher 
Ladner 1979] 

 Upper Bound: We use an automata-theoretic approach: 

 Given a sentence φ of the full graded -calculus that has m atleast sub-
sentences and counts up to b, we can construct a FEA Aφ that 

 accepts the set of tree models of φ with degree at most m(b+1), and 

 has |φ| states, index |φ|. 

 Given a sentence φ of the hybrid graded/full -calculus with m atleast 
subsentences, k nominals, and counts up to b, we can built a FEA Aφ that 

 accepts all quasi forest models of φ with degree max{k+1, m(b+1)}, and 

 has O(|φ|2) states, index |φ|. 

 In both cases, φ is satisfiable if L(Aφ)  ;  
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Solving the emptiness problem  

 We first reduce the emptiness problem for FEA to the emptiness 
problem for 2GAPTs. 
 A 2GAPT is a FEA that accepts trees and cannot jump to the root of 

the input tree. 
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Solving the emptiness problem  

 We first reduce the emptiness problem for FEA to the emptiness 
problem for 2GAPTs. 
 A 2GAPT is a FEA that accepts trees and cannot jump to the root of 

the input tree. 

 To decide the emptiness of 2GAPTs, we use a reduction to the 
emptiness problem of GNPT, via “strategy trees” 
 To remove alternation, we build special trees that allow encoding the 

original run in one having the same tree structure as the input tree. 

 To restrict to unidirectional paths, we use the notion of annotation 
that allow to decompose each path into downward paths and detours. 
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Solving the emptiness problem  

 We first reduce the emptiness problem for FEA to the emptiness 
problem for 2GAPTs. 
 A 2GAPT is a FEA that accepts trees and cannot jump to the root of 

the input tree. 

 To decide the emptiness of 2GAPTs, we use a reduction to the 
emptiness problem of GNPT, via “strategy trees” 
 To remove alternation, we build special trees that allow encoding the 

original run in one having the same tree structure as the input tree. 

 To restrict to unidirectional paths, we use the notion of annotation 
that allow to decompose each path into downward paths and detours. 

 The result follows from the blow-up involved in building the GNPT 
and from the complexity for checking its emptiness. 
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Results on the satisfiability problem for Enriched -calculi 

Inverse  
programs  

Graded  
modalities Nominals Complexity 

fully enriched x x x Undecidable[1] 

full hybrid x x  ExpTime[2] 

full graded x x  ExpTime 2ary (1ary[4]) 

hybrid graded x x  ExpTime 1ary/2ary 

graded x ExpTime 1ary/2ary[3] 

full x ExpTime[5] 

1. [Bonatti, Peron 2004] 

2. [Sattler, Vardi 2001]  

3. [Vardi 1998] 

4. [Calvanese, De Giacomo, Lenzerini, 2001] 

5. [Kupferman, Sattler, Vardi, 2002] 

A Summary for Enriched -calculi 
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Enriching Temporal Logics 

 μ-calculus is a very expressive but too low-level logic.  

 Branching time temporal logics such as CTL, and CTL* are less 
expressive but much more human-friendly. 
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Enriching Temporal Logics 

 μ-calculus is a very expressive but too low-level logic.  

 Branching time temporal logics such as CTL, and CTL* are less 
expressive but much more human-friendly. 

 What about enriching CTL and CTL* with graded modalities. 
 So far, only CTL has been fully solved, both in unary and binary coding. 

 Graded CTL is exponentially more succinct than graded μ-calculus. 

 The satisfiability problem remains ExpTime-Complete  
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Enriching Temporal Logics 

 μ-calculus is a very expressive but too low-level logic.  

 Branching time temporal logics such as CTL, and CTL* are less 
expressive but much more human-friendly. 

 What about enriching CTL and CTL* with graded modalities. 
 So far, only CTL has been fully solved, both in unary and binary coding. 

 Graded CTL is exponentially more succinct than graded μ-calculus. 

 The satisfiability problem remains ExpTime-Complete  

 Moving from μ-calculus to CTL with graded modalities, we need to 
move from graded world modalities to graded path modalities! 
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Syntax of GCTL* and GCTL 

 GCTL* extends CTL* with new graded path quantifiers: 
 "there exists at least n paths satisfying a given property"; 

 "all but at most n paths satisfy a given property". 
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Syntax of GCTL* and GCTL 

 GCTL* extends CTL* with new graded path quantifiers: 
 "there exists at least n paths satisfying a given property"; 

 "all but at most n paths satisfy a given property". 

 CTL* uses state and path formulas built inductively as follows: 

 State-formulas:  

φ := p| ¬φ | φ ∧ φ | φ ⋁ φ | E≥n ψ | A<n ψ 

where p ∈ AP and ψ is a path-formula  

 path-formulas (LTL):  

ψ := φ| ψ ∧ ψ | ¬ψ | Xψ | ψ U ψ  

where φ is a state-formula, and ψ a path-formula  

 GCTL formulas are obtained by forcing each temporal operator to 
be coupled with a path quantifier 
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Counting paths 

 What does counting paths mean? 
 A property ensured by a common prefix may be 

satisfied on an infinite number of paths. 
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Counting paths 

 What does counting paths mean? 
 A property ensured by a common prefix may be 

satisfied on an infinite number of paths. 

 It may happen that the prefix satisfies a formula 
but a whole path may not. 
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Counting paths 

 What does counting paths mean? 
 A property ensured by a common prefix may be 

satisfied on an infinite number of paths. 

 It may happen that the prefix satisfies a formula 
but a whole path may not. 

 We restrict to minimal and conservative paths 

 Two paths are equivalent if  
 their common prefix satisfy the formula. 

 no matter how these prefixes are extended in the 
structure, the paths satisfy the formula. 
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Semantics of GCTL* 

 For a Kripke structure K, a world w, and a GCTL* path formula ψ, 

 Let P(K, w, ψ) be the set of minimal and conservative paths of K 
starting in w and satisfying ψ 
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Semantics of GCTL* 

 For a Kripke structure K, a world w, and a GCTL* path formula ψ, 

 Let P(K, w, ψ) be the set of minimal and conservative paths of K 
starting in w and satisfying ψ 
 

K, w ⊨ E≥n ψ iff |P(K, w, ψ)| ≥ n 
 

K, w ⊨ A<n ψ iff |P(K, w, ¬ψ)| < n 
 

 For n=1, we write Eψ and Aψ instead of E≥1 ψ e A<1 ψ 
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Solving GCTL in unary coding 

 Let ψ be a GCTL formula with grades coded in unary. 

 From ψ  we build in linear time a “Partitioning Alternating Büchi 
Tree Automata” (PABT) Pψ 
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Solving GCTL in unary coding 

 Let ψ be a GCTL formula with grades coded in unary. 

 From ψ  we build in linear time a “Partitioning Alternating Büchi 
Tree Automata” (PABT) Pψ 

 A PABT accepts all tre models of a formula, by «gessing» how to 
partition a required graded modality among successors 
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Solving GCTL in unary coding 

 Let ψ be a GCTL formula with grades coded in unary. 

 From ψ  we build in linear time a “Partitioning Alternating Büchi 
Tree Automata” (PABT) Pψ 

 A PABT accepts all tre models of a formula, by «gessing» how to 
partition a required graded modality among successors 

 

 

 

 By means of an opportune extension of the Myhano-Hayashi 
tecnique, we translate in Exponential Time Pψ in an NBT Bψ 

 Since the emptiness of L(Bψ) can be checked in polynomial time, we 
get that the satisfiability problem for GCTL is in ExpTime. 

 ExpTime hardness comes from the satisfiability problem for CTL 
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Solving GCTL in binary coding 

 If we use the unary case approach, we lose an exponent: 
 The tree model property requires trees with a branching degree 

exponential in the highest graded bmax of the formula.  
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Solving GCTL in binary coding 

 If we use the unary case approach, we lose an exponent: 
 The tree model property requires trees with a branching degree 

exponential in the highest graded bmax of the formula.  

 We use a binary encoding of each tree model and split the automata 
construction into a linear PABT plus a satellite NBT automaton.  
 The tree encoding turns each level of the tree in a binary tree, i.e., 

brothers of a node become its successors.  

 The satellite is an (exponential) NBT and ensures that each tree model 
satisfies some structural properties along its paths. 
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Solving GCTL in binary coding 

 If we use the unary case approach, we lose an exponent: 
 The tree model property requires trees with a branching degree 

exponential in the highest graded bmax of the formula.  

 We use a binary encoding of each tree model and split the automata 
construction into a linear PABT plus a satellite NBT automaton.  
 The tree encoding turns each level of the tree in a binary tree, i.e., 

brothers of a node become its successors.  

 The satellite is an (exponential) NBT and ensures that each tree model 
satisfies some structural properties along its paths. 

 As the satellite automaton is already an NBT, this avoids to inject 
an extra exponent when moving both automata to a unique NBT. 

 Thus, also in the binary coding, the satisfiability question for GCTL 
is ExpTime-complete 
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What about GCTL* 

 Solving graded CTL* is even more appealing. 

 There are several question to investigate.  

 Is GCTL* more succinct than Graded mu-calculus? 

 What about the satisfiability? 
 Using a slight variation of the previous reasoning used for GCTL, we 

get a 3ExpTime upper bound.  

 As CTL* satisfiability is 2ExpTime-complete, it is an open question to 
decide the exact complexity of the problem for GCTL* 
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Further directions about GCTL and GCTL* 

 What about GCTL/ GCTL* plus backwords modalities? 

 CTL and CTL* have been investigated with respect to (linear and 
branching) Past modalities.  

 PCTL (PCTL*) is (2)ExpTime-complete. 

 What about GCTL/GCTL over more enriched structures: 
Hierachical, pushown, weighted etc… 
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Enriched modalities vs. open systems 

 Enriched mu-calculi has been investigated in the setting of module 
checking. 

 Same results as in the satisfiability case: 
 Undecidable if we consider the fully enriched mu-calculus. 

 ExpTime-complete for every fragment. 
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Results on the satisfiability problem for Enriched -calculi 

Inverse  
programs  

Graded  
modalities Nominals Complexity 

fully enriched x x x Undecidable[1] 

full hybrid x x  ExpTime[2] 

full graded x x  ExpTime 2ary (1ary[4]) 

hybrid graded x x  ExpTime 1ary/2ary 

graded x ExpTime 1ary/2ary[3] 

full x ExpTime[5] 

Results on the satisfiability problem for GCTL 

GCTL x  ExpTime 1ary/2ary 

Past CTL x ExpTime[6] 

1. [Bonatti, Peron 2004] 
2. [Sattler, Vardi 2001]  
3. [Vardi 1998] 

4. [Calvanese, De Giacomo, Lenzerini, 2001] 
5. [Kupferman, Sattler, Vardi, 2002] 
6. [Kupferman, Pnueli 1995] 

Conclusion 
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Thank you for your attention! 


