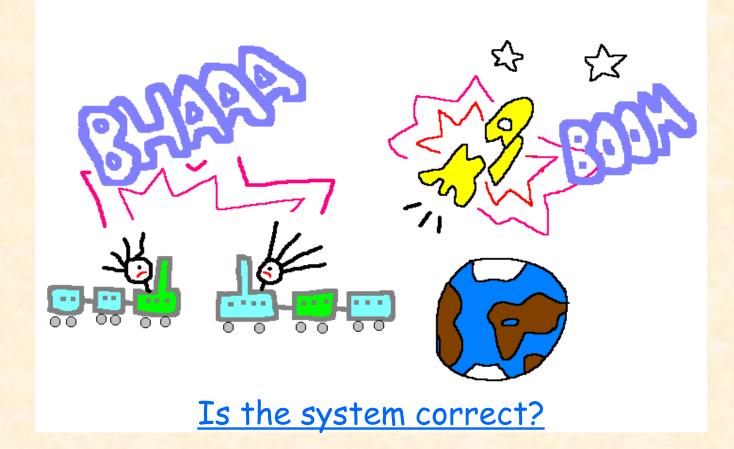
Enriched Modal Logics

Aniello Murano

Università degli Studi di Napoli "Federico II"

Wien - November 7, 2013

Aniello Murano - Enriched Modal Logics 1



Aniello Murano - Enriched Modal Logics

Formal Verification:

- System
 Desired Behavior
 Correctness
- \rightarrow A mathematical model M
- \rightarrow A formal specification ψ
- \rightarrow A formal technique

Formal Verification:

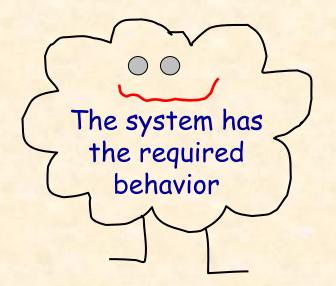
- System
 Desired Behavior
 Correctness
- \rightarrow A mathematical model M
- \rightarrow A formal specification ψ
- \rightarrow A formal technique

The system has the required behavior

◆ Model Checking: Does M satisfies ψ ?

Formal Verification:

- System
 Desired Behavior
 Correctness
- \rightarrow A mathematical model M
- \rightarrow A formal specification ψ
- \rightarrow A formal technique



- Model Checking: Does M satisfies ψ ?
- \blacklozenge Satisfiability: Is there M for ψ ?

A Basic Model: Kripke Structure

A system can be represented as a Kripke Structure: a labeledstate transition graph

 $M = (AP, S, S_0, R, Lab)$

◆ AP is a set of atomic propositions.

- S is a finite set of states.
- $S_0 \subseteq S$ is the set of initial states.
- ◆ $R \subseteq S \times S$ is a transition relation, total: $\forall s \in S, \exists s' . R(s, s')$.
- Lab : $S \rightarrow 2^{AP}$ labels states with propositions true in that states.

□ A path is a system run!

System Specification

Modal and Temporal logic allow description of the temporal ordering of events

System Specification

- Modal and Temporal logic allow description of the temporal ordering of events
- □ Two main families of logics:
- □ Linear-Time Logics (LTL)
 - Each moment in time has a unique possible future.
 - ◆ LTL expresses path properties based on the paths state labels.
 - Useful for hardware specification.
- \Box Branching-Time Logics (CTL, CTL*, and μ -CALCULUS)
 - Each moment in time may split into various possible future.
 - CTL* expresses state properties from which LTL-like properties are satisfied in an existential or universal way.
 - Useful for software specification.

µ-calculus is a very expressive logic

- □ Can express several practical properties.
- Corresponds to alternating parity tree automata
- Important connections with MSO
- □ Strictly subsumes classical logics such as CTL, LTL, CTL*, ...
- Identifies powerful classes of Description Logics

Decision problems:

- ♦ Model checking: UP \cap co-UP
- Satisfiability: ExpTime-complete

µ-calculus limitations

Several important constructs cannot be easily translated to the µ-calculus:

Inverse Programs to travel relations in backward

- Graded modalities to enable statements on a number of successors
- Nominals as propositional variables true exactly in one state

µ-calculus limitations

Several important constructs cannot be easily translated to the µ-calculus:

Inverse Programs to travel relations in backward

- Graded modalities to enable statements on a number of successors
- Nominals as propositional variables true exactly in one state

Extensions of the µ-calculus with these abilities induces families of enriched µ-calculi.

□ Similarly, we can define families of enriched temporal logics.

✓ Motivations□ Fully enriched µ-calculus

- ✓ Motivations
- □ Fully enriched µ-calculus
- □ Families of enriched µ-calculi
 - full graded µ-calculus (with inverse programs and graded mod.)
 hybrid graded µ-calculus (with graded modalities and nominals)
 full hybrid µ-calculus (with inverse programs and nominals)

- ✓ Motivations
- □ Fully enriched µ-calculus
- □ Families of enriched µ-calculi

full graded µ-calculus (with inverse programs and graded mod.)
hybrid graded µ-calculus (with graded modalities and nominals)
full hybrid µ-calculus (with inverse programs and nominals)

□ Satisfiability of fully enriched µ-calculus: Undecidable

- ✓ Motivations
- □ Fully enriched µ-calculus
- □ Families of enriched µ-calculi
 - full graded µ-calculus (with inverse programs and graded mod.)
 hybrid graded µ-calculus (with graded modalities and nominals)
 - full hybrid µ-calculus (with inverse programs and nominals)
- □ Satisfiability of fully enriched µ-calculus: Undecidable
- Satisfiability of the other families we consider: ExpTime-complete
 Upper bound via Fully Enriched Automata (FEA).
 - The upper bound holds also in case numbers are coded in binary

□ Graded Computation Tree Logic (GCTL)

ExpTime solution of the satisfiability problem for graded numbers coded in unary/binary

□ Graded Computation Tree Logic (GCTL)

ExpTime solution of the satisfiability problem for graded numbers coded in unary/binary

Open questions on GCTL and its extensions:
 GCTL*, PGCTL/PGCTL*, etc..

□ Graded Computation Tree Logic (GCTL)

ExpTime solution of the satisfiability problem for graded numbers coded in unary/binary

Open questions on GCTL and its extensions:
 GCTL*, PGCTL/PGCTL*, etc..

□ Some achievements in open system verification.

I part: Enriched µ-calculi

Some known results

Satisfiability for Fully enriched µ-calculus is undecidable [Bonatti, Peron 2004]

Some known results

Satisfiability for Fully enriched µ-calculus is undecidable [Bonatti, Peron 2004]

□ ExpTime-completeness of satisfiability for enriched µ-calculi:

µ-calculus with inverse programs [Vardi'98]

- µ-calculus with graded modalities [Kupferman, Sattler, Vardi'02]
- full hybrid logic [Sattler, Vardi'01]
- full graded logic in unary coding [Calvanese, De Giacomo, Lenzerini'01]

The fully enriched µ-calculus

□ The μ -calculus is a propositional modal logic with least(μ) and greatest (ν) fixpoint operators [Kozen 1983].

 \Box The fully enriched μ -calculus extends the μ -calculus with

• graded modalities: (n, α) (atleast formulas) and $[n, \alpha]$ (allbut formulas)

nominals propositions: Nominal set Nom

inverse programs: Use of both program sets Prog and Prog-

The fully enriched µ-calculus (Syntax)

- Let AP, Var, Prog, and Nom be sets of atomic proposition, propositional variables, atomic, programs and nominals
- Syntax:

 $\varphi := \mathsf{true} \mid \mathsf{false} \mid p \mid \neg p \mid y \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \langle n, \alpha \rangle \varphi \mid [n, \alpha] \varphi \mid \mu y. \varphi(y) \mid \nu y. \varphi(y)$

where $p \in AP \cup Nom$, $y \in Var$, $n \in N$, and α is a program or its converse

The fully enriched µ-calculus (Syntax)

- Let AP, Var, Prog, and Nom be sets of atomic proposition, propositional variables, atomic, programs and nominals
- Syntax:
 - $\varphi := \mathsf{true} \mid \mathsf{false} \mid p \mid \neg p \mid y \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \langle n, \alpha \rangle \varphi \mid [n, \alpha] \varphi \mid \mu y. \varphi(y) \mid \nu y. \varphi(y)$

where $p \in AP \cup Nom$, $y \in Var$, $n \in N$, and α is a program or its converse

 \Box Fragments of the fully enriched μ -calculus:

- full graded µ-calculus (without nominals)
- hybrid graded µ-calculus (without inverse programs)
- full hybrid µ-calculus (without graded modalities)

Semantics: The enriched model

The semantics of the fully enriched µ-calculus is given with respect to enriched Kripke structures

 $K = (AP \cup Nom, W, W_0, R, Lab)$

Semantics: The enriched model

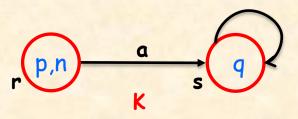
□ The semantics of the fully enriched µ-calculus is given with respect to enriched Kripke structures

 $K = (AP \cup Nom, W, W_0, R, Lab)$

□ In particular, R and Lab are enriched as follows:

 \blacklozenge R : Prog \rightarrow 2^{W \times W assigns to programs transitions relation over S}

◆ Lab: AP \cup Nom \rightarrow 2^w assigns to propositions and nominal sets of states, where those assigned to each nominal are singletons.



Aniello Murano - Enriched Modal Logics

Semantics: The enriched model

□ The semantics of the fully enriched µ-calculus is given with respect to enriched Kripke structures

 $K = (AP \cup Nom, W, W_0, R, Lab)$

□ In particular, R and Lab are enriched as follows:

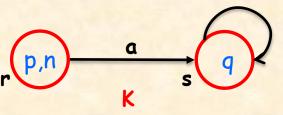
 \clubsuit R : Prog \rightarrow 2^W \times ^W assigns to programs transitions relation over S

◆ Lab: AP \cup Nom \rightarrow 2^w assigns to propositions and nominal sets of states, where those assigned to each nominal are singletons.

Given a Kripke structure, atomic propositions and boolean connectivities are interpreted as usual:

K satisfies the nominal n at the starting state r, since Lab(n)={s}

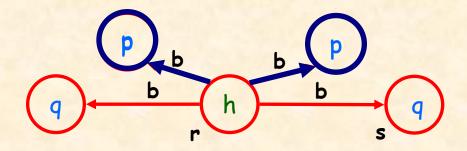
K does not satisfy q at r, but at s.



Aniello Murano - Enriched Modal Logics

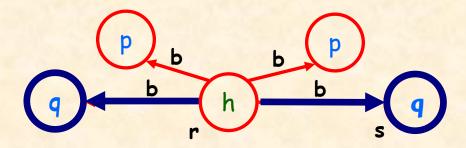
For a Kripke structure, the new modalities are interpreted as follows.
 (n,α)φ holds in w if φ holds at least in n+1 α-successors of w.
 [n,α]φ holds in w if φ holds in all but at most n α-successors of w.

For a Kripke structure, the new modalities are interpreted as follows.
 (n,α)φ holds in w if φ holds at least in n+1 α-successors of w.
 [n,α]φ holds in w if φ holds in all but at most n α-successors of w.



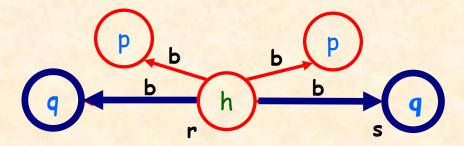
 \Box In r, (1,b)p holds

For a Kripke structure, the new modalities are interpreted as follows.
 (n,α)φ holds in w if φ holds at least in n+1 α-successors of w.
 [n,α]φ holds in w if φ holds in all but at most n α-successors of w.



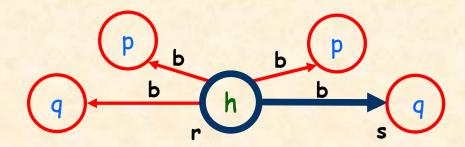
 $\Box In r, \langle 1,b \rangle p holds$ $\Box In r, [1,b] p does not hold.$

For a Kripke structure, the new modalities are interpreted as follows.
 (n,α)φ holds in w if φ holds at least in n+1 α-successors of w.
 [n,α]φ holds in w if φ holds in all but at most n α-successors of w.



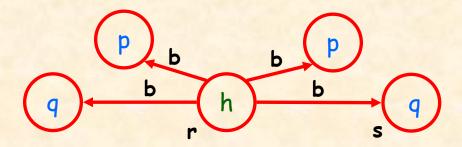
□In r, <1,b>p holds □In r, [1,b]p does not hold. □In r, [2,b]p holds.

For a Kripke structure, the new modalities are interpreted as follows.
 (n,α)φ holds in w if φ holds at least in n+1 α-successors of w.
 [n,α]φ holds in w if φ holds in all but at most n α-successors of w.



□In r, (1,b)p holds
□In r, [1,b]p does not hold.
□In r, [2,b]p holds.
□In s, (0,b⁻)h holds

For a Kripke structure, the new modalities are interpreted as follows.
 (n,α)φ holds in w if φ holds at least in n+1 α-successors of w.
 [n,α]φ holds in w if φ holds in all but at most n α-successors of w.



□In r, (1,b)p holds
□In r, [1,b]p does not hold.
□In r, [2,b]p holds.
□In s, (0,b⁻)h holds

v and μ are useful to express liveness and safety:
 AGp: p always true along all a-paths is vX. p ∧ [0,a]X
 EFp: there exists an a-path where p eventually holds is μX. p ∨ (0,a)X

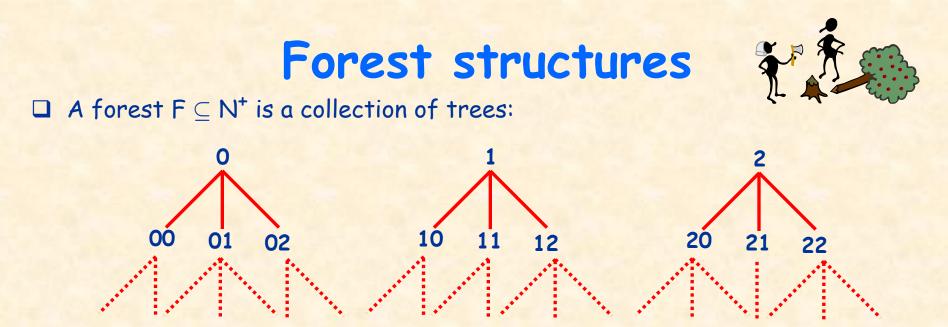
 \Box Note that $\langle 0, \alpha \rangle \phi$ is $\langle \alpha \rangle \phi$ and $[0, \alpha] \phi$ is $[\alpha] \phi$

Structure properties

In branching-time temporal logic, important model features to symplify decisions reasonings are:

- □ Finite-model property:
 - Is there a finite model satisfying the formula
 - It is possible to use exhaustive (brute-force) methods!
- □ Tree-model property:
 - Is there a tree-model shape satisfying the formula
 - It is possible to use tree automata !

 $\hfill\square$ In enriched μ -calculus we need forest structures as models

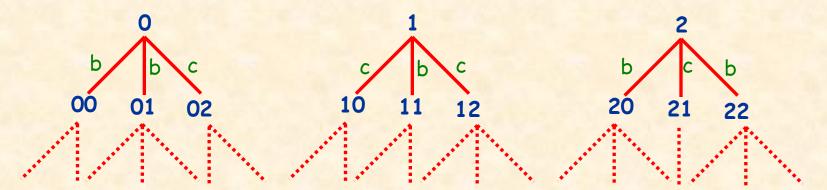


The elements of F are nodes, the degree of F is the maximum number of node's successors, and 0, 1, and 2 are roots of F.

□ The set T= { $r \cdot x \mid x \in N^*$ and $r \cdot x \in F$ } is the tree of F rooted in r

Forest structures

A forest $F \subseteq N^+$ is a collection of trees:



The elements of F are nodes, the degree of F is the maximum number of node's successors, and 0, 1, and 2 are roots of F.

D The set T= $\{r \cdot x \mid x \in N^* \text{ and } r \cdot x \in F\}$ is the tree of F rooted in r

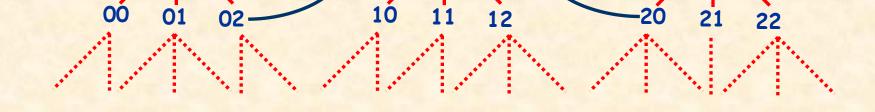
A Kripke structure K is a forest structure if it induces a forest:

 Nodes W represent a forest and the relation R is defined over nodes, where each pair of successive nodes is labeled with one atomic program or its converse.

Forest structures

b

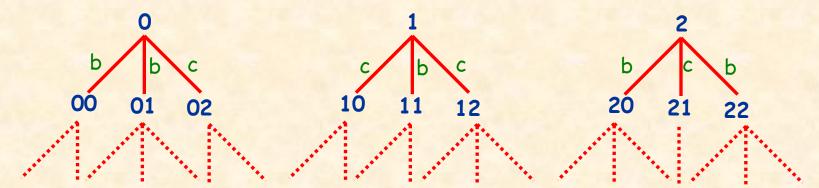
A forest $F \subseteq N^+$ is a collection of trees:



- The elements of F are nodes, the degree of F is the maximum number of node's successors, and 0, 1, and 2 are roots of F.
- □ The set T= { $r \cdot x \mid x \in N^*$ and $r \cdot x \in F$ } is the tree of F rooted in r
- A Kripke structure K is a forest structure if it induces a forest:
 - Nodes W represent a forest and the relation R is defined over nodes, where each pair of successive nodes is labeled with one atomic program or its converse.
- A Kripke structure K is a quasi forest structure if it becomes a forest structure after deleting all the edges entering a root of W.

Forest structures

A forest $F \subseteq N^+$ is a collection of trees:



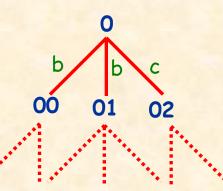
- The elements of F are nodes, the degree of F is the maximum number of node's successors, and 0, 1, and 2 are roots of F.
- **D** The set T= $\{r \cdot x \mid x \in N^* \text{ and } r \cdot x \in F\}$ is the tree of F rooted in r

A Kripke structure K is a forest structure if it induces a forest:

- Nodes W represent a forest and the relation R is defined over nodes, where each pair of successive nodes is labeled with one atomic program or its converse.
- A Kripke structure K is a quasi forest structure if it becomes a forest structure after deleting all the edges entering a root of W.

Forest structures

A forest $F \subseteq N^+$ is a collection of trees:



- The elements of F are nodes, the degree of F is the maximum number of node's successors, and 0, 1, and 2 are roots of F.
- **D** The set T= $\{r \cdot x \mid x \in N^* \text{ and } r \cdot x \in F\}$ is the tree of F rooted in r

□ A Kripke structure K is a forest structure if it induces a forest:

- Nodes W represent a forest and the relation R is defined over nodes, where each pair of successive nodes is labeled with one atomic program or its converse.
- A Kripke structure K is a quasi forest structure if it becomes a forest structure after deleting all the edges entering a root of W.
- □ K is a tree structure if W consists of a single tree.

 \square Given a sentence ϕ of the full graded $\mu\text{-calculus}$ with m atleast subsentences and counting up to b

 \square Given a sentence ϕ of the full graded μ -calculus with m atleast subsentences and counting up to b

φ is satisfiable

 φ has a tree model whose degree is at most m(b+1).

 \square Given a sentence ϕ of the full graded $\mu\text{-calculus}$ with m atleast subsentences and counting up to b

φ is satisfiable

 φ has a tree model whose degree is at most m(b+1).

The hybrid graded µ-calculus does not enjoy the tree model property.

 \square Given a sentence ϕ of the full graded $\mu\text{-calculus}$ with m atleast subsentences and counting up to b

 φ is satisfiable

 φ has a tree model whose degree is at most m(b+1).

The hybrid graded µ-calculus does not enjoy the tree model property.

 \square Given a sentence ϕ of the hybrid graded $\mu\text{-calculus}$ with k nominals, m atleast subsentences and counting up to b

 φ is satisfiable

 φ has a quasi forest model whose degree is at most max{k+1, m·(b+1)}

Aniello Murano - Enriched Modal Logics

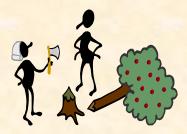
Solving enriched mu-calculi

□ We use an automata-theoretic approach.

In modal µ-calulus, we translate a formula to an alternating parity tree automaton anch check for its emptiness.

- The translation is polynomial
- Checking for emptiness can be done in ExpTime
- ♦ Satisfiability of µ-calculus is solvable in ExpTime.
- □ For the enriched µ-calculi, we need an enriched version of parity tree automata.

□ Let us first recall alternating automata on infinite tree...



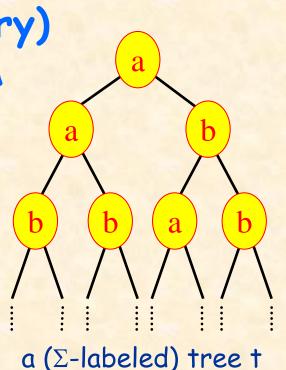
Nondeterministic (binary) tree automata: NTA

 $\Box \text{ A infinite (binary) tree is } t: \{0,1\}^* \rightarrow \Sigma$

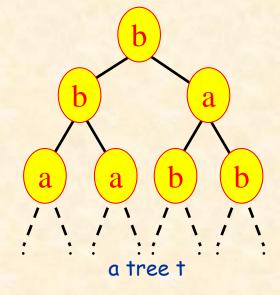
A path is an infinite sequence of nodes starting at the root

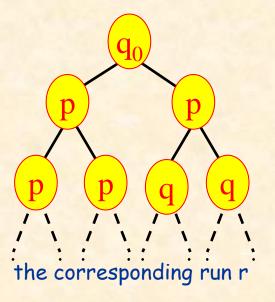
 \Box An NTA is a tuple A = < Q, Σ , δ , Q₀, F >

- \succ δ: Q × Σ → 2Q×Q is a tree transition relation
- \succ Runs are binary trees labeled with states accordingly to δ
- F is an acceptance condition satisfied on each path of a run

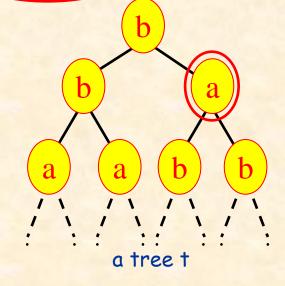


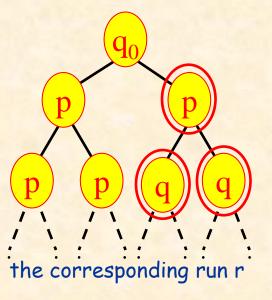
 □ A run r : {0,1}* → Q is built in accordance with δ and r(ε) ∈ Q₀. Thus, runs are Q-labeled trees.
 □Let (q,q) ∈ δ(p,a) and q₀ initial state





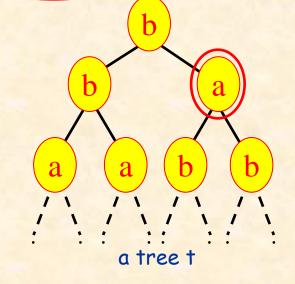
 A run r : {0,1}* → Q is built in accordance with δ and r(ε) ∈ Q₀. Thus, runs are Q-labeled trees.
 ①Let (q,q) ∈ δ(p,a) and q₀ initial state

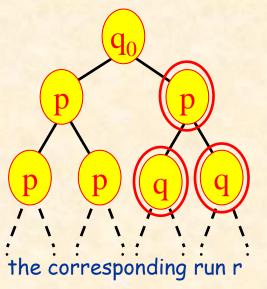




E R

 A run r : {0,1}* → Q is built in accordance with δ and r(ε) ∈ Q₀. Thus, runs are Q-labeled trees.
 ①Let (q,q) ∈ δ(p,a) and q₀ initial state





A run is accepting if the acceptance condition is satisfied on every path

Alternating automata on infinite trees

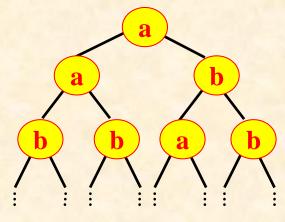
An alternating (finite-state) automaton on infinite Σ-labeled
 D-trees is a tuple

 $A = \langle Q, \Sigma, \delta, q_0, F \rangle$

 $\geq \delta : (\mathbf{Q} \times \Sigma) \rightarrow \mathsf{B}^{+}(\mathsf{D} \times \mathbf{Q})$

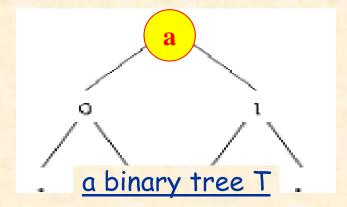
> positive Boolean formulas of pairs of directions and states

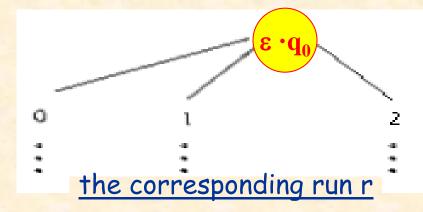
For example δ(p,a)= (1,p)∧(1,q)



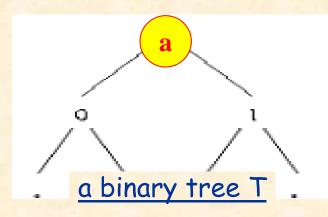
 Σ -labeled binary tree

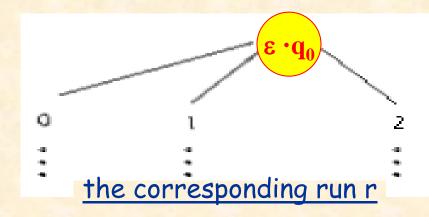
Δ A run on a Σ -labeled D-trees is a (D* \times Q)-labeled tree. The root is labeled with (ϵ , q_0) and labels of each node and its successors must satisfy the δ



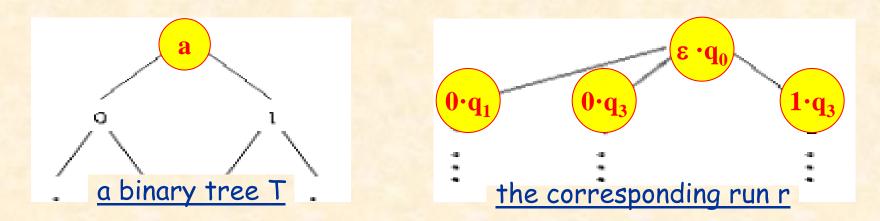


- **Δ** A run on a Σ -labeled D-trees is a (D* × Q)-labeled tree. The root is labeled with (ϵ , q_0) and labels of each node and its successors must satisfy the δ
- $\Box \ \delta(q_0,a)=((0,q_1)\vee(0,q_2)) \land (0,q_3) \land (1,q_3)$
- $\Box \text{ Let } S = \{(0,q_1), (0,q_3), (1,q_3)\}.$





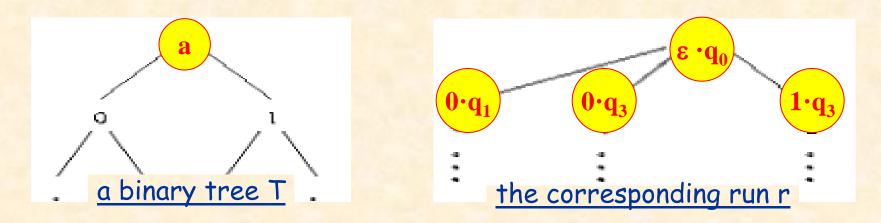
- **Δ** A run on a Σ -labeled D-trees is a (D* × Q)-labeled tree. The root is labeled with (ϵ , q_0) and labels of each node and its successors must satisfy the δ
- $\Box \ \delta(q_0,a) = ((0,q_1) \lor (0,q_2)) \land (0,q_3) \land (1,q_3)$
- $\Box \text{ Let } S = \{(0,q_1), (0,q_3), (1,q_3)\}.$



There is no one-to-one correspondence between nodes of T and r



- A run on a Σ-labeled D-trees is a (D* × Q)-labeled tree. The root is labeled with (ϵ , q_0) and labels of each node and its successors must satisfy the δ
- $\Box \ \delta(q_0,a) = ((0,q_1) \lor (0,q_2)) \land (0,q_3) \land (1,q_3)$
- $\Box \text{ Let } S = \{(0,q_1), (0,q_3), (1,q_3)\}.$

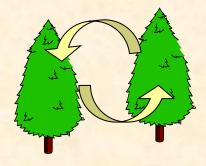


- There is no one-to-one correspondence between nodes of T and r
- As in nondeterministic automata, a run is accepting if the acceptance condition is satisfied on every path.

Fully Enriched Automata

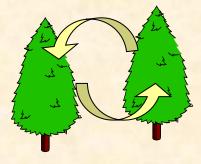
\Box Fully enriched automata (FEA) run on infinite labeled forests $\langle T, V \rangle$.

 \square FEA generalize alternating automata on infinite trees as the fully enriched $\mu\text{-calculus}$ extends the standard $\mu\text{-calculus}$:



Fully Enriched Automata

- **\Box** Fully enriched automata (FEA) run on infinite labeled forests $\langle T, V \rangle$.
- □ FEA generalize alternating automata on infinite trees as the fully enriched μ -calculus extends the standard μ -calculus:
 - Move up to a predecessor of a node (by analogy with inverse programs)
 - Move down to at least n or all but n successors (by analogy with graded modalities)
 - Jump directly to the roots of the input forest (which are the analogues of nominals).



Fully Enriched Automata

- **\Box** Fully enriched automata (FEA) run on infinite labeled forests $\langle T, V \rangle$.
- □ FEA generalize alternating automata on infinite trees as the fully enriched μ -calculus extends the standard μ -calculus:
 - Move up to a predecessor of a node (by analogy with inverse programs)
 - Move down to at least n or all but n successors (by analogy with graded modalities)
 - Jump directly to the roots of the input forest (which are the analogues of nominals).

 \Box $\delta(q,\sigma)$ is a positive boolean combination of pairs of directions and states.

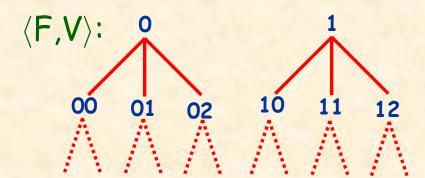
□ Formally,

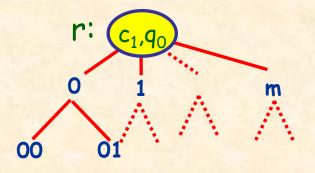
- $\delta: \mathbb{Q} \times \Sigma \rightarrow B^{+}(\mathbb{D}_{b} \times \mathbb{Q})$, where \mathbb{D}_{b} can be -1, ε , $\langle root \rangle$, [root], $\langle n \rangle$, or [n], with $0 \le n \le b$.
- (-1, q) and (ε , q) send a copy to the predecessor and to the current node.
- ((root), q) and ([root], q) send a copy to some or all roots of the forest.
- ((n), q) and ([n], q) send a copy in state q to n+1 and all but n successors of the current node, respectively.

□ For a FEA A with a transition δ : $\mathbb{Q} \times \Sigma \rightarrow B^+(\mathbb{D}_b \times \mathbb{Q})$ □ A run over a forest $\langle F, V \rangle$ is a (F×Q)-labeled tree, built in accordance with δ and r(ϵ) = (c, q₀), for a root c of F.

Aniello Murano - Enriched Modal Logics

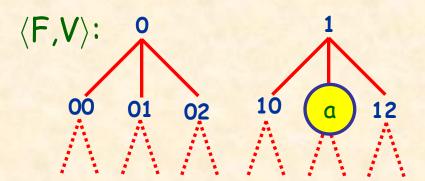
□ For a FEA A with a transition δ : $\mathbb{Q} \times \Sigma \rightarrow B^+(\mathbb{D}_b \times \mathbb{Q})$ □ A run over a forest $\langle F, V \rangle$ is a $(F \times \mathbb{Q})$ -labeled tree, built in accordance with δ and $r(\varepsilon) = (c, q_0)$, for a root c of F.

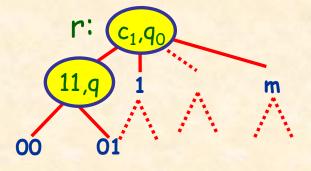




- □ For a FEA A with a transition δ : $\mathbf{Q} \times \Sigma \rightarrow \mathsf{B}^{+}(\mathsf{D}_{\mathsf{b}} \times \mathbf{Q})$
- □ A run over a forest $\langle F,V \rangle$ is a (F×Q)-labeled tree, built in accordance with δ and r(ϵ) = (c, q₀), for a root c of F.
- □ Let r(0)=(11,q), V(11)=a, and

 $\delta(q,a) = (-1,q_1) \land ((\langle root \rangle,q_2) \lor ([root],q_3))$





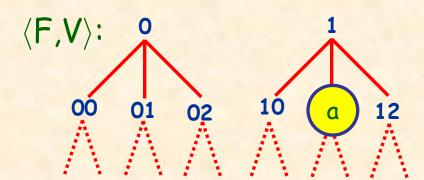
□ For a FEA A with a transition δ : $\mathbb{Q} \times \Sigma \rightarrow B^{+}(\mathbb{D}_{b} \times \mathbb{Q})$

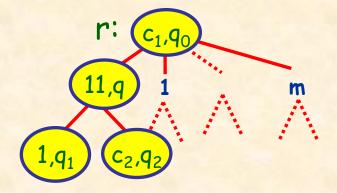
□ A run over a forest $\langle F,V \rangle$ is a (F×Q)-labeled tree, built in accordance with δ and r(ϵ) = (c, q₀), for a root c of F.

□ Let r(0)=(11,q), V(11)=a, and

 $\delta(q,a) = (-1,q_1) \land ((\langle root \rangle,q_2) \lor ([root],q_3))$

 $\Box \text{ Let } S=\{(-1,q_1), (\langle root \rangle, q_2)\}.$

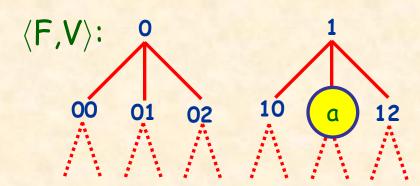


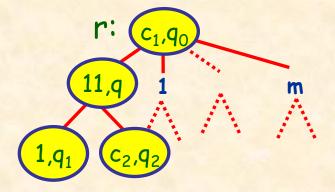


- $\square \text{ For a FEA A with a transition } \delta: \mathbb{Q} \times \Sigma \to \mathsf{B}^{+}(\mathsf{D}_{\mathsf{b}} \times \mathbb{Q})$
- □ A run over a forest $\langle F,V \rangle$ is a (F×Q)-labeled tree, built in accordance with δ and r(ϵ) = (c, q₀), for a root c of F.
- □ Let r(0)=(11,q), V(11)=a, and

 $\delta(q,a) = (-1,q_1) \land ((\langle root \rangle,q_2) \lor ([root],q_3))$

 $\Box \text{ Let } S=\{(-1,q_1), (\langle root \rangle, q_2)\}.$





□ We use a parity condition.

Acceptance conditions

Büchi condition: $F \subseteq Q$. A run r is accepting iff for every path, there exists a final state appearing infinitely often

□ Formally, a run is accepting if for each path π , Inf(r| π) \cap F ≠ Ø

Acceptance conditions

■ Büchi condition: F ⊆ Q. A run r is accepting iff for every path, there exists a final state appearing infinitely often

□ Formally, a run is accepting if for each path π , Inf(r| π) \cap F ≠ Ø

□ Parity condition: $\mathbf{F} = \{\mathbf{F}_{1}, ..., \mathbf{F}_{m}\}$. A run r is accepting if for each path π in r the minimal i for which $Inf(\mathbf{r}|\pi) \cap \mathbf{F} \neq \mathbf{0}$ is even

Acceptance conditions

■ Büchi condition: F ⊆ Q. A run r is accepting iff for every path, there exists a final state appearing infinitely often

□ Formally, a run is accepting if for each path π , Inf(r| π) \cap F ≠ Ø

□ Parity condition: $\mathbf{F} = {F_1, ..., F_m}$. A run r is accepting if for each path π in r the minimal i for which $Inf(r|\pi) \cap \mathbf{F} \neq \mathbf{0}$ is even

□ Emptiness:

Nondeterministic Buchi Tree Automata (NBT) : PTime-Complete
 Alternating Buchi Tree Automata (ABT) : ExpTime-Complete
 Nondeterministic Parity Tree Automata (NPT) : UP ∩ Co-UP
 Alternating Parity Tree Automata (APT) : ExpTime-Complete

We show that the satisfiability problem for enriched μ-calculus formulas (except for fully enriched ones) is EXPTime-Complete

- We show that the satisfiability problem for enriched μ-calculus formulas (except for fully enriched ones) is EXPTime-Complete
- Lower Bound: Satisfiability for the μ-calculus is EXPTime-hard [Fisher Ladner 1979]

- We show that the satisfiability problem for enriched μ-calculus formulas (except for fully enriched ones) is EXPTime-Complete
- Lower Bound: Satisfiability for the μ-calculus is EXPTime-hard [Fisher Ladner 1979]
- Upper Bound: We use an automata-theoretic approach:
- Given a sentence φ of the full graded μ -calculus that has m atleast subsentences and counts up to b, we can construct a FEA A_{ω} that
 - accepts the set of tree models of φ with degree at most m(b+1), and
 - has |φ| states, index |φ|.

- We show that the satisfiability problem for enriched μ-calculus formulas (except for fully enriched ones) is EXPTime-Complete
- Lower Bound: Satisfiability for the μ-calculus is EXPTime-hard [Fisher Ladner 1979]
- Upper Bound: We use an automata-theoretic approach:
- Given a sentence φ of the full graded μ -calculus that has m atleast subsentences and counts up to b, we can construct a FEA A_{ω} that
 - accepts the set of tree models of φ with degree at most m(b+1), and
 - has |φ| states, index |φ|.
- Given a sentence φ of the hybrid graded/full μ -calculus with m atleast subsentences, k nominals, and counts up to b, we can built a FEA A_{φ} that
 - accepts all quasi forest models of φ with degree max{k+1, m(b+1)}, and
 - has $O(|\varphi|^2)$ states, index $|\varphi|$.

- We show that the satisfiability problem for enriched μ-calculus formulas (except for fully enriched ones) is EXPTime-Complete
- Lower Bound: Satisfiability for the μ-calculus is EXPTime-hard [Fisher Ladner 1979]
- Upper Bound: We use an automata-theoretic approach:
- Given a sentence φ of the full graded μ -calculus that has m atleast subsentences and counts up to b, we can construct a FEA A_{ω} that
 - accepts the set of tree models of φ with degree at most m(b+1), and
 - has |φ| states, index |φ|.
- Given a sentence φ of the hybrid graded/full μ -calculus with m atleast subsentences, k nominals, and counts up to b, we can built a FEA A_{ω} that
 - accepts all quasi forest models of φ with degree max{k+1, m(b+1)}, and
 - has $O(|\varphi|^2)$ states, index $|\varphi|$.
- □ In both cases, φ is satisfiable if $L(A_{\varphi}) \neq \emptyset$

Solving the emptiness problem

We first reduce the emptiness problem for FEA to the emptiness problem for 2GAPTs.

 A 2GAPT is a FEA that accepts trees and cannot jump to the root of the input tree.

Solving the emptiness problem

We first reduce the emptiness problem for FEA to the emptiness problem for 2GAPTs.

 A 2GAPT is a FEA that accepts trees and cannot jump to the root of the input tree.

To decide the emptiness of 2GAPTs, we use a reduction to the emptiness problem of GNPT, via "strategy trees"

- To remove alternation, we build special trees that allow encoding the original run in one having the same tree structure as the input tree.
- To restrict to unidirectional paths, we use the notion of annotation that allow to decompose each path into downward paths and detours.

Solving the emptiness problem

We first reduce the emptiness problem for FEA to the emptiness problem for 2GAPTs.

 A 2GAPT is a FEA that accepts trees and cannot jump to the root of the input tree.

- To decide the emptiness of 2GAPTs, we use a reduction to the emptiness problem of GNPT, via "strategy trees"
 - To remove alternation, we build special trees that allow encoding the original run in one having the same tree structure as the input tree.
 - To restrict to unidirectional paths, we use the notion of annotation that allow to decompose each path into downward paths and detours.

The result follows from the blow-up involved in building the GNPT and from the complexity for checking its emptiness.

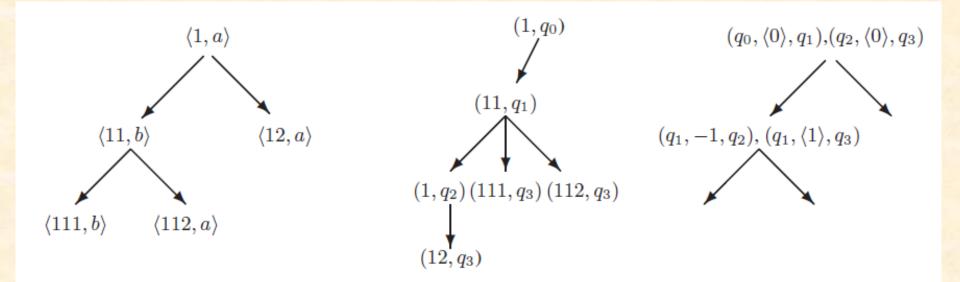


Figure 2: A fragment of an input tree, a corresponding run, and its strategy tree.

Aniello Murano - Enriched Modal Logics

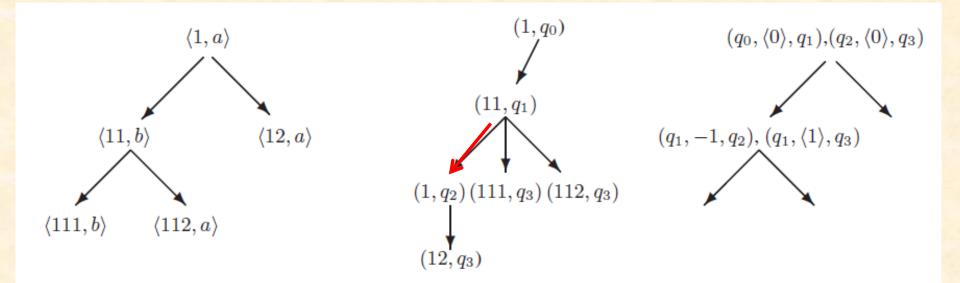


Figure 2: A fragment of an input tree, a corresponding run, and its strategy tree.

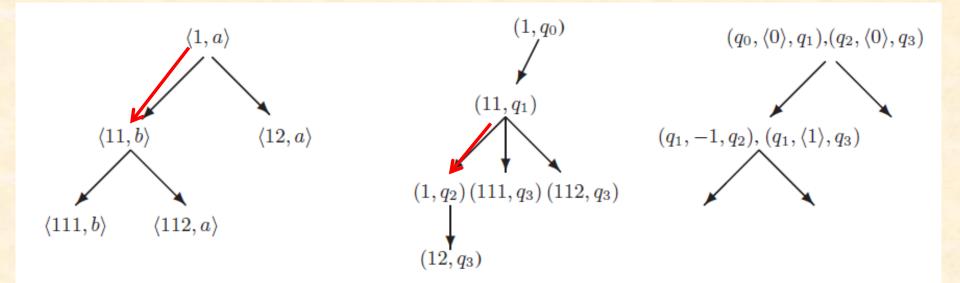


Figure 2: A fragment of an input tree, a corresponding run, and its strategy tree.

Aniello Murano - Enriched Modal Logics

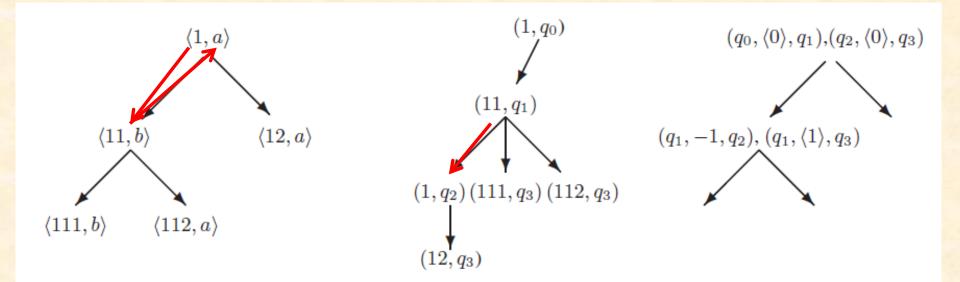


Figure 2: A fragment of an input tree, a corresponding run, and its strategy tree.

Aniello Murano - Enriched Modal Logics

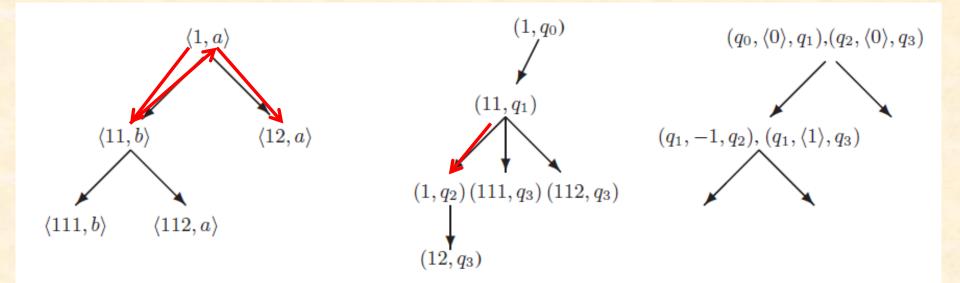


Figure 2: A fragment of an input tree, a corresponding run, and its strategy tree.

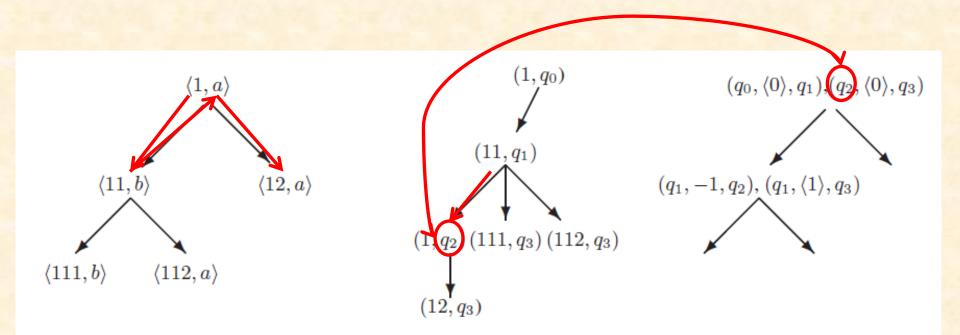


Figure 2: A fragment of an input tree, a corresponding run, and its strategy tree.

Aniello Murano - Enriched Modal Logics

A Summary for Enriched μ -calculi

Results on the satisfiability problem for Enriched $\mu\text{-calculi}$				
	Inverse programs	Graded modalities	Nominals	Complexity
fully enriched	×	×	×	Undecidable[1]
full hybrid	×		×	ExpTime[2]
full graded	×	×		
hybrid graded		×	×	
graded		×		ExpTime 1ary/2ary[3]
full	×			ExpTime[5]
 [Bonatti, Peron 2004] [Sattler, Vardi 2001] [Vardi 1998] 		 4. [Calvanese, De Giacomo, Lenzerini, 2001] 5. [Kupferman, Sattler, Vardi, 2002] 		

A Summary for Enriched μ -calculi

Results on the satisfiability problem for Enriched $\mu\text{-calculi}$				
	Inverse programs	Graded modalities	Nominals	Complexity
fully enriched	×	×	×	Undecidable[1]
full hybrid	×		×	ExpTime[2]
full graded	×	×		ExpTime 2ary (1ary[4])
hybrid graded		×	×	
graded		×		ExpTime 1ary/2ary[3]
full	×			ExpTime[5]
 [Bonatti, Peron 2004] [Sattler, Vardi 2001] [Vardi 1998] 		 [Calvanese, De Giacomo, Lenzerini, 2001] [Kupferman, Sattler, Vardi, 2002] 		

A Summary for Enriched μ -calculi

Results on the satisfiability problem for Enriched μ -calculi					
	Inverse programs	Graded modalities	Nominals	Complexity	
fully enriched	×	×	×	Undecidable[1]	
full hybrid	×		×	ExpTime[2]	
full graded	×	×		ExpTime 2ary (1ary[4])	
hybrid graded		×	×	ExpTime 1ary/2ary	
graded		×		ExpTime 1ary/2ary[3]	
full	×			ExpTime[5]	
 [Bonatti, Peron 2004] [Sattler, Vardi 2001] [Vardi 1998] 		 [Calvanese, De Giacomo, Lenzerini, 2001] [Kupferman, Sattler, Vardi, 2002] 			

Enriching Temporal Logics

 \square µ-calculus is a very expressive but too low-level logic.

Branching time temporal logics such as CTL, and CTL* are less expressive but much more human-friendly.

Enriching Temporal Logics

- \Box µ-calculus is a very expressive but too low-level logic.
- Branching time temporal logics such as CTL, and CTL* are less expressive but much more human-friendly.
- What about enriching CTL and CTL* with graded modalities.
 So far, only CTL has been fully solved, both in unary and binary coding.
 Graded CTL is exponentially more succinct than graded µ-calculus.
 The satisfiability problem remains ExpTime-Complete

Enriching Temporal Logics

 \Box µ-calculus is a very expressive but too low-level logic.

Branching time temporal logics such as CTL, and CTL* are less expressive but much more human-friendly.

❑ What about enriching CTL and CTL* with graded modalities.
 ◆ So far, only CTL has been fully solved, both in unary and binary coding.
 ◆ Graded CTL is exponentially more succinct than graded µ-calculus.
 ◆ The satisfiability problem remains ExpTime-Complete
 ❑ Moving from µ-calculus to CTL with graded modalities, we need to

move from graded world modalities to graded path modalities!

Syntax of GCTL* and GCTL

GCTL* extends CTL* with new graded path quantifiers:
 "there exists at least n paths satisfying a given property";
 "all but at most n paths satisfy a given property".

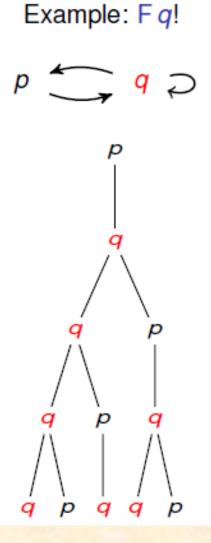
Syntax of GCTL* and GCTL

□ GCTL* extends CTL* with new graded path quantifiers: There exists at least n paths satisfying a given property"; "all but at most n paths satisfy a given property". □ CTL* uses state and path formulas built inductively as follows: □ State-formulas: $\blacklozenge \varphi := p | \neg \varphi | \varphi \land \varphi | \varphi \lor \varphi | E^{\ge n} \psi | A^{< n} \psi$ \blacklozenge where $p \in AP$ and ψ is a path-formula □ path-formulas (LTL): $\mathbf{\Phi} \boldsymbol{\Psi} := \boldsymbol{\varphi} | \boldsymbol{\Psi} \wedge \boldsymbol{\Psi} | \neg \boldsymbol{\Psi} | \mathbf{X} \boldsymbol{\Psi} | \boldsymbol{\Psi} \cup \boldsymbol{\Psi}$ \diamond where ϕ is a state-formula, and ψ a path-formula GCTL formulas are obtained by forcing each temporal operator to be coupled with a path quantifier

Counting paths

□ What does counting paths mean?

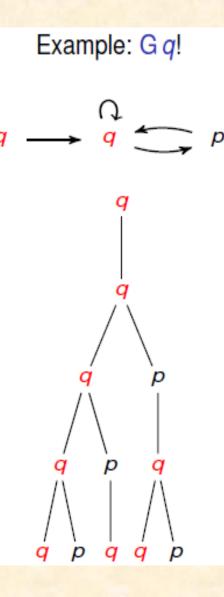
 A property ensured by a common prefix may be satisfied on an infinite number of paths.



Counting paths

□ What does counting paths mean?

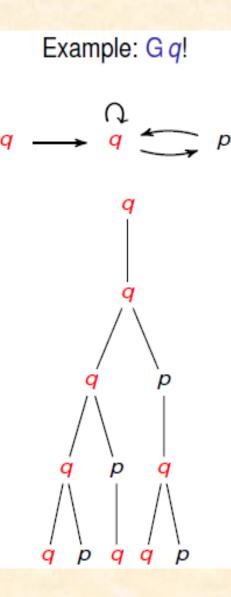
- A property ensured by a common prefix may be satisfied on an infinite number of paths.
- It may happen that the prefix satisfies a formula but a whole path may not.



Counting paths

□ What does counting paths mean?

- A property ensured by a common prefix may be satisfied on an infinite number of paths.
- It may happen that the prefix satisfies a formula but a whole path may not.
- We restrict to minimal and conservative paths
- Two paths are equivalent if
 - their common prefix satisfy the formula.
 - no matter how these prefixes are extended in the structure, the paths satisfy the formula.



Semantics of GCTL*

For a Kripke structure K, a world w, and a GCTL* path formula ψ,
 Let P(K, w, ψ) be the set of minimal and conservative paths of K starting in w and satisfying ψ

Semantics of GCTL*

For a Kripke structure K, a world w, and a GCTL* path formula ψ,
 Let P(K, w, ψ) be the set of minimal and conservative paths of K starting in w and satisfying ψ

♦ K, w ⊨ E^{≥n} ψ iff |P(K, w, ψ)| ≥ n

♦ K, w ⊨ A^{<n} ψ iff $|P(K, w, \neg ψ)| < n$

 \Box For n=1, we write E ψ and A ψ instead of E^{≥ 1} ψ e A^{<1} ψ

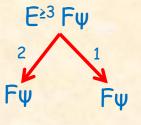
Solving GCTL in unary coding

Let ψ be a GCTL formula with grades coded in unary.
 From ψ we build in linear time a "Partitioning Alternating Büchi Tree Automata" (PABT) P_ψ

Solving GCTL in unary coding

 \Box Let ψ be a GCTL formula with grades coded in unary.

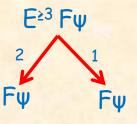
- From ψ we build in linear time a "Partitioning Alternating Büchi Tree Automata" (PABT) P_ψ
- A PABT accepts all tre models of a formula, by «gessing» how to partition a required graded modality among successors



Solving GCTL in unary coding

 \Box Let ψ be a GCTL formula with grades coded in unary.

- From ψ we build in linear time a "Partitioning Alternating Büchi Tree Automata" (PABT) P_ψ
- A PABT accepts all tre models of a formula, by «gessing» how to partition a required graded modality among successors



- \square By means of an opportune extension of the Myhano-Hayashi tecnique, we translate in Exponential Time P_{\psi} in an NBT B_{\psi}
- □ Since the emptiness of $L(B_{\psi})$ can be checked in polynomial time, we get that the satisfiability problem for GCTL is in ExpTime.
- ExpTime hardness comes from the satisfiability problem for CTL

Solving GCTL in binary coding

If we use the unary case approach, we lose an exponent:
 The tree model property requires trees with a branching degree exponential in the highest graded b_{max} of the formula.

Solving GCTL in binary coding

 \Box If we use the unary case approach, we lose an exponent:

- The tree model property requires trees with a branching degree exponential in the highest graded b_{max} of the formula.
- We use a binary encoding of each tree model and split the automata construction into a linear PABT plus a satellite NBT automaton.
 - The tree encoding turns each level of the tree in a binary tree, i.e., brothers of a node become its successors.
 - The satellite is an (exponential) NBT and ensures that each tree model satisfies some structural properties along its paths.

Solving GCTL in binary coding

 \Box If we use the unary case approach, we lose an exponent:

- The tree model property requires trees with a branching degree exponential in the highest graded b_{max} of the formula.
- We use a binary encoding of each tree model and split the automata construction into a linear PABT plus a satellite NBT automaton.
 - The tree encoding turns each level of the tree in a binary tree, i.e., brothers of a node become its successors.
 - The satellite is an (exponential) NBT and ensures that each tree model satisfies some structural properties along its paths.
- As the satellite automaton is already an NBT, this avoids to inject an extra exponent when moving both automata to a unique NBT.
- Thus, also in the binary coding, the satisfiability question for GCTL is ExpTime-complete

What about GCTL*

- □ Solving graded CTL* is even more appealing.
- □ There are several question to investigate.
- □ Is GCTL* more succinct than Graded mu-calculus?
- □ What about the satisfiability?
 - Using a slight variation of the previous reasoning used for GCTL, we get a 3ExpTime upper bound.
 - As CTL* satisfiability is 2ExpTime-complete, it is an open question to decide the exact complexity of the problem for GCTL*

Further directions about GCTL and GCTL*

□ What about GCTL/ GCTL* plus backwords modalities?

- CTL and CTL* have been investigated with respect to (linear and branching) Past modalities.
- □ PCTL (PCTL*) is (2)ExpTime-complete.
- What about GCTL/GCTL over more enriched structures: Hierachical, pushown, weighted etc...

Enriched modalities vs. open systems

- Enriched mu-calculi has been investigated in the setting of module checking.
- □ Same results as in the satisfiability case:
 - Undecidable if we consider the fully enriched mu-calculus.
 - ExpTime-complete for every fragment.

Results on the satisfiability problem for Enriched μ -calculi				
	Inverse programs	Graded modalities	Nominals	Complexity
fully enriched	×	×	×	Undecidable[1]
full hybrid	×		×	ExpTime[2]
full graded	×	×		ExpTime 2ary (1ary[4])
hybrid graded		×	×	ExpTime 1ary/2ary
graded		×		ExpTime 1ary/2ary[3]
full	×			ExpTime[5]
Results on the satisfiability problem for GCTL				
GCTL		×		ExpTime 1ary/2ary
Past CTL	×			ExpTime[6]
1.[Bonatti, Peron 2004]4.[Calvanese, De Giacomo, Lenzerini, 2001]2.[Sattler, Vardi 2001]5.[Kupferman, Sattler, Vardi, 2002]3.[Vardi 1998]6.[Kupferman, Pnueli 1995]				r, Vardi, 2002]

References

 P.A. Bonatti, C. Lutz, A. Murano, M. Y.Vardi. The complexity of Enriched mu-calculi. Lecture methods in Computer Science 2008
 Invited extended version of ICALP'06

- A. Bianco, F. Mogavero, A. Murano. Graded Computation Tree Logic. ACM Transaction of Computation Logic 2012
 Extended version of LICS'09 and CSL'10
- A. Ferrante, A. Murano, M. Parente. Enriched mu-calculi module checking. Lecture methods in Computer Science 2008
 Invited extended version of FOSSACS '07 and LPAR'07

Thank you for your attention!