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Abstract

With the fast growth of population in the city, the traffic congestion

as, well as the parking problem, becomes over and over a problem

to deal with, since they reduce road safety and increase stress-level

for drivers. About this, Vehicular ad hoc Networks provide a use-

ful framework to handle traffic-related problems, allowing a wireless

communication among vehicles. In this work, the traffic congestion

problem and, in particular, the smart parking, are addressed from two

different points of view: an algorithmic one, providing a step-by-step

procedure that answers to a given question, and a game-theoretic one,

by modeling the problem as a multi-agent game, whose solution is

formally defined as a winning strategy. Regarding the algorithmic ap-

proach, first, an innovative signal-based representation of Vehicular ad

hoc Networks is provided. This kind of representation is modeled in

a way to highlight crowded areas of the network, assigning a value

(the congestion factor) to each vehicle according to its position in the

network. The representation is made canonical so to make comparison

operations easy and intuitive. Then, a smart parking algorithm ex-
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ploiting the blockchain mechanism is proposed. The setting scenario

involves a consortium of car parks to complete the parking process,

and the blockchain consensus rule allows guaranteeing fair competition

among members. Concerning the game-theoretic approach, instead,

first reachability results on both turn-based and concurrent Dynamic

Epistemic Logic games are proved, then the parking problem is mod-

eled as a multi-agent game, in which drivers looking for an available

parking space are players trying to win a game. The solution is found

through a social equilibrium, namely the Nash equilibrium, that turns

out to be a good compromise between feasibility and optimality.
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Introduction
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Vehicular ad hoc networks [7] (VANETs, for short) were my first

approach to the research world during my bachelor thesis. This kind

of network caught my attention immediately because they seemed to

be very promising in the Internet of Things [14] and Artificial Intel-

ligence [97] fields. At that time, I started studying VANETs, how

they work, how the communication among vehicles is performed, what

are the main challenging and critical aspects, but also their possible

applications. When I started doing research on the topic at the begin-

ning of my PhD, the first approach was algorithmic, trying to apply

what I had learned during my university studies. First, a problem

is clearly defined, then a procedure that provides an answer to the

problem is built. The instructions of the defined procedure, executed

step by step, lead to a correct solution to the problem. I could say

that the first half of my PhD reflects exactly this kind of approach; I

studied and provided several algorithmic solutions to open problems

about VANETs [6]. These are wireless sensor networks in which vehi-

cles play the role of sensors, exchanging information via broadcasting

communication. It is pretty intuitive how strong is the potential of

such a framework, to handle traffic management, to guarantee road

safety, but also to improve the quality of viability and to reduce air

pollution. During my PhD, I investigated several challenging related

topics, some of which are explained in detail in this work, also with

a particular focus on smart parking applications. Some of them are
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summarized in the following:

• A compact and less expensive representations of vehicular net-

works: typically, VANETs are represented as directed graphs

where vehicles are nodes and their communication links are edges.

What has been proposed, instead, is signal-based representa-

tion, by exploiting an easy two-dimensional space mapping of

the network, highlighting the traffic distribution over the net-

work [22, 21].

• A direction-based clustering algorithm for VANETs: indeed, very

often clustering in VANETs is performed according to vehicles

punctual position, that in such a dynamic environment can lead

to mistakes. The proposal is based on a preliminary study of the

direction of movement of each vehicle, expressed in terms of an-

gle of displacement with respect to a fixed point, whose position

is known [72].

• A behavioral clustering for VANETs, providing a framework that

processes information about vehicle behaviors aiming at extract

a similarity measure to establish if two vehicles should belong to

the same cluster [23].

• An algorithm for smart allocation of vehicles into parking slots

by exploiting the behavior of real ants when they look for food

for the path selection [25, 2].
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• A destination-based parking algorithm, that allows allocating

vehicles in parking slots exploiting existing algorithm for memory

allocation in operating systems (Best, First, and Worst fit), by

also considering the destination that the driver wants to reach

[19].

• A blockchain-based parking algorithm that simulates the park-

ing process in a consortium of car parks, where the blockchain

mechanism is employed to guarantee a fair competition among

members [20].

At the end of my first PhD year, I started studying game theory

and strategic reasoning [100]. This world led me to a much more theo-

retical approach to problems, precisely a game-theoretic approach, but

as interesting and effective as the algorithmic one. It concerns formal

models to define the interaction among agents. When the model is

formally defined, the model checking, a formal technique to validate

models, can be exploited to prove if some desired properties hold in

the model. I have been attracted to this kind of know-how, and it was

clear that such an approach could have brought several advantages.

Indeed, formal verification allows finding possible errors or incorrect

behaviors of a system. In some systems, failures can also cause the

loss of human life, think of a plane malfunction, but also loss of money

and time, in the most typical scenario. For this reason, in the second

part of my PhD, I studied the logics and the formalisms behind the
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definition of desired properties in a model, by getting closer to the

multi-agent reachability games with imperfect information world. In-

deed, these games have several applications, from economics, to video

games and robotics, but they are also undecidable in several cases.

For this reason, possible assumptions on the knowledge of the players

involved have been studied, such as hierarchical information, or on the

kind of actions, such as public actions and public announcements, so

to make the strategy synthesis decidable. To do so, Dynamic epistemic

logic [129] has been considered to model high-order knowledge (agent

A knows that agent B knows etc) and how player’s actions affect the

world and the way it is perceived by themselves.

During the last year, I had the chance to go through multi-agent

systems more deeply because I had the pleasure to collaborate with

Imperial College University on a comparative study on the existent

versions of one of the most employed model-checkers for multi-agent

systems, MCMAS [80], to evaluate possible further extensions.

At the end of my path, by following the lead of the previous works,

my studies moved toward a way to apply the formal verification tech-

niques to the vehicular field which I was familiar with, in particular to

the smart parking application, by formally defining the parking process

as a game, and a corresponding model to express it.

I could proudly say that this thesis is the result of the two main

influences and mentors I had during my studies, and it is written by fol-
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lowing the experiences made during the PhD. Indeed, it is a crescendo

of awareness of the available techniques and technologies to solve ev-

eryday problems in vehicular context, such as the smart parking.

Given the different flavors of the themes treated in this work, for

better readability, I decided to maintain the same evolution of my

research studies even in the thesis structure. For this reason, the

work is organized in parts, one for each phase of my PhD studies:

(i) the first part is about an algorithmic approach to VANETs, and

in particular to the smart parking problem; (ii) the second part, in-

stead, regards a high-level game-theoretic approach on reachability

games, with a particular study on MCMAS, a know model checker

for multi-agent systems; (iii) the third part, finally, is dedicated to

the application of the game-theoretic approach to a case of study in

VANETs environment, namely the smart parking problem in Federico

II Hospital Company. Each part, furthermore, is divided in chapters,

each of whom goes through a specific research topic: (i) chapter one

provides a signal-based representation of a VANET, in contrast with

the standard graph-based one typically used, highlighting the bene-

fits coming from such a representation, in particular for comparison

among networks; (ii) chapter two provides two algorithmic solutions

to the smart parking problem, first by exploiting the Ant Colony Op-

timization mechanism, then by introducing the blockchain features

that add a fairness property; (iii) chapter three is about distributed
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synthesis on reachability games, and their restriction to subsets of ac-

tions; (iv) chapter four goes through the most common model checker

for multi-agent systems (MCMAS) by providing a comparative study

on the existing current versions and how they work on fragments of

Strategy Logic, an emerging logic for strategic reasoning; finally, (v)

chapter five constitutes the meeting point of the previous chapter,

where a very concrete problem, the smart parking one, is solved as a

multi-agent game through a known social equilibrium, the Nash Equi-

librium. Each chapter is stand-alone, with its own introduction and

related work sections. The work is completed with a technical con-

clusions chapter, where the results obtained are specified with more

detail.
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Chapter 1

A Signal-Based Model for

Vehicular ad Hoc

Networks

1.1 Introduction

Vehicular ad hoc networks are a recent research topic that is keep-

ing providing new challenges and input for further innovation aspects.

The main goal is to guarantee a continue communication among ve-

hicles, by not relying on any central controller [125]. The information

exchange happens via broadcasting, meaning that when a vehicle re-

leases data, it will be caught by any other vehicle close enough. The

concept of close enough is determined by the Received Signal Strength

9
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Figure 1.1: VANETs configuration

Indicator (RSSI), that measures the power received in a radio signal

[134]: the greater the RSSI the stronger the signal. The RSSI values

are measured in dBm and have typical negative values ranging between

0 dBm (excellent signal) and −110 dBm (extremely poor signal)[103].

Vehicles in the network are all equipped with onboard side units

so they can communicate directly among them if they are in the com-

munication range of each other (meaning that the RSSI is powerful

enough to catch the signal). In this case, we speak about a vehicle-to-

vehicle communication (V2V). In order to increase the communication

power of VANETs, also roadside units are placed along the roads so

that infrastructure items (traffic lights, for instance) can act as a bridge

to make two far vehicles exchange information.

Figure 1.1 represents a typical VANET scenario, where vehicles are

approaching a roundabout. Some vehicles are close enough to perform

10
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a V2V communication, some others, instead, use traffic lights as a

bridge.

VANETs application fields are several and we can summarize them

as follows [62, 64]:

• Safety: according to what said by World Health Organization

(WHO, for short), approximately 1.3 million people die each

year as a result of road traffic crashes (information updated on 21

June 2021). Also, it emerges the dramatic fact that road injuries

are the cause of death for children and young adults aged 5-29

years. VANETs can help reduce those crashes by alerting drivers

in time, by managing collision avoidance, traffic sign notification,

incident management.

• Efficiency: TomTom performed a study on traffic congestion in

2020, whose graphic result is in Figure 1.2. They covered 416

cities across 57 countries on 6 continents [124], highlighting a

congestion level of 54% in Moscow, 53% in Manila, and 51% in

Kyiv, to name a few. VANETs self-organizing capability can be

exploited to handle such a congestion level, by applying traffic

management and traffic monitoring techniques.

• Quality: VANETs intrinsic nature lends itself to provide differ-

ent facilities for users, such as electronic payments, parking in-

formation, and so on. They can be used both for entertainment

applications and background information ones.

11
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Figure 1.2: Traffic Index Chart by TomTom [124]

Vehicular ad hoc networks raise several challenges, that are sum-

marized as follows [62]:

• Node Velocity: in VANETs very different velocity have to be

handled, from inactive RSUs to vehicles moving at 100 km per

hour. This structural obstacle is very often managed through

clustering algorithms, so to group vehicles with same character-

istics.

• Movement Patterns: the majority of movements of the nodes in a

VANET follows predefined directions. Precisely, the trajectory

of movement is quite predictable, except for roundabouts, or

road crossings.

• Node Density: the number of vehicles in the communication

12
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range. Many researchers assign a trustworthiness to vehicles.

• Security and Privacy: the exchange of messages among vehicles

should be safe and should protect the privacy of drivers.

In the typical representation, a traffic network is seen as a non-

directed graph G = (V,E) in which the set of nodes V corresponds

to the vehicles in the network, with |V | = n, and the set of edges E

corresponds to the links, if any, between the nodes, with |E| = m. Let

us define R as the distance coefficient, i.e. the maximum value within

which two vehicles can communicate with each other. Such a value

is calculated referring to the measurement of the power present in a

received radio signal, as defined before. In particular, it is intuitive to

say that increasing the distance, the RSSI decreases, by definition.

Moreover, given two nodes u, v ∈ V, let d(u, v) ∈ [0, R] be the

euclidean distance between u and v. We can state that an edge (u, v) ∈

E exists iff d(u, v) ≤ R, and weight(u, v) is its weight.

Since in a vehicular network d(i, j) 6= d(j, i) (with i 6= j), let us say

that a normalized graph is obtained by computing the average of these

two distances and by assigning this value to the edge linking i and j,

so that the corresponding adjacency matrix is symmetric. Finally, for

each v ∈ V , neig(v) = {v′|(v, v′) ∈ E} and degree(v) = |neig(v)| are

the set of neighbors of v and its size, respectively.

Congestion is a serious problem affecting roads of all the conti-

nents as previously seen in Figure 1.2, and it is a challenging issue in

13
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VANETs, as pointed out in [37]. For this reason, traffic awareness can

help drivers making the right decision about the path to choose to get

to a given destination. Moreover, considering the high dynamism of

vehicular ad hoc networks, the necessity of real-time responses raises

the need for a network representation that is faster to handle and more

intuitive, with respect to the standard graph one, and that, not only,

catches as much information as possible, but also allows dealing with

congestion.

In the sequel, a new signal-based technique to represent a vehic-

ular network is provided. Such a representation is built by mapping

a graph onto a two-dimension space, where the first dimension is the

vehicles in the network, and the second one is obtained by computing

an opportune congestion factor for each vehicle, expressing how much

that vehicle is in a crowded situation. The signal-based version ends

up being more intuitive and meaningful with respect to the standard

one and, by providing an opportune comparison model, it also allows

performing interesting computations over pairs of networks, so to ex-

tract possible similarities. To do so, a similarity measure is provided as

a probability value between 0 and 1, by performing an analysis of the

signal, aimed at the extraction of the most significant parameters that

characterize it. Precisely, it is first performed a sampling phase, where

the sampling rate is chosen, then a feature extraction phase, needed to

obtain the signal characteristics. The final similarity is computed first

14
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through an area-to-area comparison, then by applying local alignment

techniques.

1.2 Related Work

Vehicular ad hoc networks research field, placed into the bigger one

of Intelligent Transportation Systems [140], is very active nowadays.

The communication system promoted has been proven to be very ef-

ficient for road safety, but also useful for traffic management. One of

the most challenging aspects in vehicular context is the overcrowding

management. Indeed, the high-density nature of VANETs may im-

pact the efficiency of the system. In this work, for the first time, the

overcrowding problem is addressed through a smart representation of

vehicular network [22], enriched with a comparison model to recognize

similar behaviors [21].

Let us first analyze the state of the art on representation matter

for VANETs and comparison models. In literature, the most popular

representation for vehicular ad hoc network is graph-based, such as in

[67], where authors use a graph representation based on HashMap to

reduce the computation time. It is necessary to mention [114], where

the authors, in order to face the multi-class classification problem,

implement the traffic sign recognition aimed to the individuation of

similar behaviors, proposing two techniques based on machine learn-

ing approach and fuzzy regression trees respectively. Authors of [79],

15
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instead, step away from VANETs by focusing on song similarity, classi-

fying them according to their content. The key point is in the spectrum

of the file, whose information are used in combination with the known

k-means algorithm, with the aim of grouping similar samples of the

signal. Finally, in [101], they introduce a novel concept of trainable

similarity measure, relying on images. Each image represents a traffic

situation, and it is divided in regions, such that similar components

can be studied region-wise.

1.3 Preliminaries

As follows, I’m going to present a used technique for string alignment

that will be used to specify the proposed comparison model.

1.3.1 Dynamic Programming for Similarity Mea-

sure

Very often, methods for sequence alignment are based on dynamic

programming algorithms. The sequence alignment is a very known bi-

ological problem, whose aim is to assign a score expressing how similar

the two sequences are [54], and it consists of transforming a sequence

into another through edit operations (insertion, deletion, and substi-

tution) [1].

A dynamic programming algorithm has a bottom-up phase to fill

16
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a score matrix, and a trace-back phase to recover the best alignment,

as pointed out in [1, 54]. It is commonly known that two classical

dynamic-programming-based alignment algorithms exist, and they are

compared in [1]:

• Global alignment, aimed at finding the best match of the entire

sequences;

• Local alignment, aimed at finding similar region of different se-

quences.

Precisely, to perform a signal representation the focus is on the

second form of sequence alignment, that also seems to be more suit-

able to perform comparisons, as will be explained later. In such an

algorithm, given m and n the lengths of the sequences to be aligned,

the score matrix M has size m + 1 × n + 1. The score is computed

according to some parameters:

• g is the gap penalty score;

• mi is the mismatch score;

• ma is the match score.

The way it is filled is explained in the following [1].

Definition 1.3.1 (Score Matrix Initialization).

M [i, 1] = M [1, j] = 0 ∀i ∈ [1,m], j ∈ [1, n]

17
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Definition 1.3.2 (Bottom-up Phase). Let us define a function compare

assigning the score of match or mismatch according to the current

symbol of the two sequences s1 and s2:

compare(i, j) =

 ma if s1[i] = s2[j]

mi otherwise

The score matrix is filled as follows:

M [i, j] = max



M [i− 1, j] + g

M [i, j − 1] + g

M [i− 1, j − 1] + compare(i− 1, j − 1)

0

Definition 1.3.3 (Trace-back Phase). The alignment recovery starts

with the maximum entry of the score matrix and traverses it diagonally

until the first 0-entry is met.

1.4 Construction Phase

The first step to realized the model as explained before is to build

a smart vision of vehicular networks based on signal representation,

starting from randomly generated points in the space (based on the

normal distribution). In order to obtain a signal that reflects the

congestion of any vehicle in the network regardless the way it is visited,
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we compute a congestion factor through a function f for each node of

the network:

f : V 7−→ [0, 1] (1.1)

This factor is parametric on R and is computed as the difference

between the ideal congestion and the local congestion. Given the node

v, the ideal congestion represents the situation where all the neighbors

are at maximum distance from v:

ideal(v) = degree(v) ∗R (1.2)

Instead, the local congestion is an arithmetic average over the adja-

cents of v:

local(v) =

∑
u∈neig(v)weight(u, v)

degree(v)
(1.3)

Figure 1.3: Example of misleading congestion factor computation

One can observe that the congestion degree of a node does not

depend only on the number of its neighbors, but mostly on their con-

gestion. Thus, we need to take into account the congestion of each
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neighbor of the considered node, in order to avoid the situation as the

one shown in Figure 1.3, in which the nodes A and B have the same

number of neighbors, but the congestion of such neighbors is different.

Indeed, in the left side we have a higher congestion level with respect

to the right side, but with the previous formula A and B would have

had the same congestion factor.

For this reason, we introduce a weighted ideal congestion:

weighted_ideal(v) =
∑

u∈neig(v)

(degree(u)− 1) ∗ ideal(v) (1.4)

Notice that when we compute the degree of the neighbors of a given

node v, we decrease it by 1 in order not to consider v again. Once the

congestion factors are computed, they are normalized, dividing them

by the maximum congestion factor of the considered network.

The final network representation is f(V ), with f as defined in

equation 1.1. A key point in the wave representation is the order in

which the nodes are placed on the x axis. The goal is to obtain a signal

that immediately highlights the most congested areas and which points

belong to them. For this reason, it has been chosen a cluster-oriented

visit of the network that, starting from a random point, continues the

visit of neighbors, putting them in the same connected area, as long

as a certain distance is not overcome. With ”connected area” we mean

a set of related nodes. It is important to notice that this is not a new

clusterization technique, but an alternative way of visiting a network
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by detecting areas of nodes connected within a certain distance. To

this aim, we introduce a tolerance ε such that, given a node v and its

neighbor u, if d(v, u)) ≤ R−ε, u is in the same connected area as v. It

is also worthy to point out that the congestion factor of isolated nodes

are distinguished by the one of nodes having only edges with weight

≥ R − ε, by preserving them in the network. Once the connected

areas are obtained, the nodes are placed on the x axis in such a way

that the ones belonging to the same connected area are contiguous. In

particular, for each connected area, the elements belonging to it are

placed in increasing order with respect to the congestion factor. This

choice makes easier the detection of connected areas just looking at

the signal.

1.5 Signal Rendering and Examples

In this section, some examples of network transformation are provided,

by also analyzing all the information that can be inferred. The exam-

ples are generated according to the following parameters:

• the number of nodes n,

• maximum distance R allowed between two nodes,

• a tolerance ε introduced in the section above,

• the standard deviation sd, used to produce random points through

a normal distribution.
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Figure 1.4: Random generation of a network with n = 35, sd = 10,
R = 10, ε = 0.3 (a) and the corresponding wave representation (b)

Starting from the signal representation, it is easy to understand

the network congestion, as well as identify the different connected ar-

eas. Indeed, according to how the signal is built, a null congestion

factor corresponds to an isolated node, and each high-low transition

induces a new connected area, but the opposite does not hold in gen-

eral. Hence, this is a necessary but not a sufficient condition for the

starting of a new area. This means that there could be changes of area

hidden by the signal, when the highest congestion factor of the first

connected area is smaller than the lowest one of the second connected
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area, introducing false negatives. As shown in Figure 1.4(b), which is

the signal corresponding to the graph 1.4(a), it is intuitive to observe

that the most congested nodes are 24 and 29. Another information

easy to deduce is about the areas of the network made by single nodes.

Indeed, they are identified by the points whose congestion factor coin-

cides with the dashed line, i. e. 3, 11, 33, and 35. In order to detect

the remaining connected areas, we need to retrieve the high-low tran-

sitions, corresponding in this network to the points 9, 29, 26, and 27.

By analyzing the network in Figure 1.4(a), we would have expected a

change of area between the nodes 4, 13 and 8, 17, 22, that is hidden by

the signal because of false negatives. The same happens between the

nodes 22 and 7.

The signal obtained as shown in the example, is determined by

visiting the nodes of the network starting from the one having the

smallest x-coordinate. By changing the starting point, clearly the con-

gestion factor of each node stays the same, but the resulting wave can

be a permutation of the peaks in the current signal. This could be a

limitation for comparisons between signals. For this reason, a canoni-

cal form of the signal is introduces, obtained by changing the order of

the nodes on the x axis: not only the nodes are ordered in increasing

order of congestion factor inside each connected area, but also each

connected area is ordered in decreasing order of maximum congestion

factor on the x axis. Through this normalization, we obtain a signal
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having the connected area with the highest congested node on the left

side, and the single nodes on the right side.

With this approach, false negatives are also reduced. Indeed, it is

no longer possible that the highest congested factor of a previous con-

nected area is smaller than the lowest factor of the next area, since they

are ordered, but false negatives can still occur, as formally reported in

the following theorem:

Theorem 1.5.1. Given two successive connected areas a1 and a2, let

hi and si (with i ∈ [1, 2]) be the highest and lowest congestion factors

respectively for the corresponding areas, then (premise) if a false neg-

ative occurs, it means that (conclusion) a2 is made of a single node

having h1 as congestion factor.

Proof. Let us assume the premise true, thus we have a false negative.

The following inequalities hold:


h1 ≥ h2 by construction

h1 ≤ s2 by definition of false negative

s2 ≤ h2 trivially

(1.5)

Hence, the only possibility is that s2 = h2 = h1.

The settings of the first example in Figure 1.5 generates a fully

connected network, with a high amount of nodes in overcrowding. In-

deed, the corresponding signal reflects these features, since we do not
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Figure 1.5: Above, a network generated at random with 25 nodes,
r = 15, ε = 0.5, and standard deviation 10. Below, the corresponding
signal.
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see nodes with zero congestion factor, while we see, instead, the ma-

jority of nodes belonging to areas with high congestion factors.
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Figure 1.6: Above, a network generated at random with 30 nodes,
r = 10, ε = 0.2, and standard deviation 10. Below, the corresponding
signal.

Changing the tolerance as in the second example of Figure 1.6 leads

to a less connected network, populated also with isolated vehicles, cor-

responding to the zero congestion factor nodes on the signal (precisely,

27, 29, and 30), with a huge agglomeration of vehicles, corresponding

to the first area of the signal, and other smaller groups of vehicle.

The standard deviation increasing of the third example of Figure

1.7, instead, produces a very connected network, with a single high

overcrowding vehicle, reflecting in the node with congestion factor 1

in the corresponding signal.
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Figure 1.7: Above, a network generated at random with 25 nodes,
r = 15, ε = 0.5, and standard deviation 8. Below, the corresponding
signal.
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Figure 1.8: Above, a network generated at random with 30 nodes,
r = 10, ε = 0.2, and standard deviation 12. Below, the corresponding
signal.
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Finally, the fourth example in Figure 1.8 has been generated by

decreasing both the tolerance and the standard deviation. The result

is a very disconnected network with few overcrowding vehicle, leading

in the first area of the signal, and many vehicles with low, or even zero,

congestion factor.
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1.6 Signal Sampling and Feature Extrac-

tion

After building network configuration as a two-dimensional signal, our

concern now is how to compare these signals in such a way to have

meaningful information. According to how the signal has been built,

the most powerful information is given by the maximum crowding

degree of each neighborhood which, in terms of signal, is represented by

the peaks. For this reason, the idea is to use the dynamic programming

approach to find the best alignment between two sequences which, in

this special case, are the signal representation of two networks. Such

a technique leads us to a measure expressing how much the considered

sequences are similar. One of the most known methods applying this

approach is the Dynamic Time Warping, also known as DTW.

1.6.1 DTW Limits

Dynamic Time Warping [96] is a known method to find the optimal

alignment between two sequences. Typically, DTW is applied to time-

dependent sequences, since it is based on temporal axis stretching

aimed to align similar parts of the them. DTW is implemented by

means of dynamic programming, and global alignment in particular.

Using DTW-oriented approach to extract a similarity measure between

signals, in our singular case, might not be the best option. Indeed, in
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our representation of the signal, the x axis is characterized by the nodes

of the network (and not the time). For this reason, a stretching of the

x axis produces a not likely alignment, since the network configuration

is distorted.
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Figure 1.9: DTW alignment between two signals (the first one in dot-
ted line and the second one in solid line) representing two different
traffic situations.

As we will explain later, experiments show that network representa-

tion comparisons through DTW very likely produces a high similarity

value, even if the two starting signals seem very different. This is due

to the temporal stretching that always allows to find a good alignment

between them.
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An example is shown in Figure 1.9, representing how the DTW

algorithm aligns two signals, that we assume having been generated

starting from two different networks, as explained in [22]. Intuitively,

they correspond to very different traffic situations: indeed, the dot-

ted signal represents a configuration in which we can identify an area

made of few nodes that are highly congested, some other areas made

of nodes with a medium-low congestion value, and different isolated

nodes that are not congested at all; the solid signal, instead, presents

a huge area involving almost all the nodes of the network with a va-

riety of congestion values. According to the semantic given to the

signal representation, the comparison between them should produce

a low similarity measure, which does not happen with a DTW-based

comparison that assigns a similarity of 0.88.

1.6.2 Sampling

A comparison process always requires to identify the very representing

properties of the considered objects, no matter what they are. In

particular, when it comes to signals, the core of the comparison process

is the sampling phase, during which some points of the signal are

chosen to represent it. Since a signal is typically made by a huge

number of points, in order to reduce the complexity of comparison

sampling is necessary. In signal processing [84], sampling is used to

transform a signal from continuous to discrete time. This process, by
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choosing a suitable sampling rate, allows reducing the starting signal

without loss of generality.

In our model, sampling is applied to the number of vehicles consid-

ered in the comparison rather than to time. By construction, choosing

a fixed sampling rate could let us miss information about connected ar-

eas, or even completely loose the highest congestion values, and hence

it could be not meaningful in order to represent the signal behavior.

For this reason, we use a MinMax-guided sampling rate to compare

different portions of signals, keeping track of the minimum and maxi-

mum congestion factor for each connected area. The following theorem

shows that this sampling preserves the relative ordering between the

congestion factors of the starting signal.

Theorem 1.6.1. Let f : V 7→ [0, 1] be the function mapping a vehicle

to a congestion factor, f̃ : V 7→ [0, 1] the same function after the

sampling process, p1 and p2 two of the sampled peaks of the signal.

Given u and v belonging to the connected areas corresponding to p1

and p2 respectively, the following holds:

f(u) ≥ f(v) =⇒ f̃(u) ≥ f̃(v)

Proof. By construction, the peaks of the signal are ordered, so we have

that f(p1) ≥ f(p2). We also know that, since p1 and p2 are sampled,

their f and f̃ are the same. Hence, we can infer that f̃(p1) = f(p1)

and f̃(p2) = f(p2). Moreover, by signal construction, for any node
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i in the connected area of p1, f(i) ≤ f(p1) holds. In particular, the

inequality holds for i = u, hence f(u) ≤ f(p1). Similarly, for any node

j in the connected area of p2, f(j) ≤ f(p2) holds. In particular, the

inequality holds for j = v, hence f(v) ≤ f(p2). Thus:

f̃(u) ≤ f̃(p1) ≥ f̃(p2) ≥ f̃(v)

The same result, with opposite ordering, would be obtained ex-

ploiting the minimal congestion values rather than the peak ones.

1.6.3 Feature Extraction

The sampling phase leads us to the feature extraction phase. Exploit-

ing the samples, for each connected area i of the signal, we identify

the following parameters:

• growing_ratei, representing how the congestion factor grows in

the connected area i, is computed as:

maxi −mini
|i|

(1.6)

• falling_ratei, representing the change from the current con-

nected area to the next one, is computed as:

maxi −mini+1

2
(1.7)
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In this case, we divide by 2 since the nodes involved in a high-

low transition are always the peak of the current area and the

starting element of the next one.

• steady_ratei, representing the number of nodes having the max-

imum congestion factor in the current area, is computed:

maxi
|{v ∈ i|c(v) = maxi}|

(1.8)

Once the parameters are fixed, the next step requires to establish

how to use them for signal comparison.

1.7 Local Alignment: Motivations

Our last aim is not to align entirely the two signals, as DTW-based

approach does, but we want to catch a meaningful similarity mea-

sure. With this purpose, for each area of the first signal we want to

identify the best fitting area of the second one and perform an area-to-

area comparison, according to the parameters extracted above. Thus,

comparing signals simply following their natural evolution does not

constitute the best option, in this case, especially since we cannot as-

sume that the two signals have the same number of connected areas.

For these reasons, before computing the parameters, we identify which

area of the second signal should be compared with a given area of the

first one, exploiting the local alignment strategy.
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Once the algorithm, as reported in the preliminaries section, is

applied, the returned alignment gives us a correspondence between

areas of the two signals, suggesting us the best way to perform the

comparisons.

To be more precise, we slightly change the local alignment algo-

rithm, by considering not an exact match between the two sequences,

but we introduce a tolerance η and we exploit the fact that our signals

signal1 and signal2 to be compared have numeric values. Hence, we

obtain the following compare function:

compare(i, j) =

 ma if |signal1[i]− signal2[j]| ≤ η

mi otherwise

1.8 Similarity Computing

Let n and m be the numbers of areas of the first signal and second

signal, respectively, and let us suppose that, after the local alignment,

we have to compare the area i of the first signal with the area j of

the second one. We first compute (i) the parameters growing_ratei,

falling_ratei, and steady_ratei for the area i. The same for the

connected area j; then (ii), we compute the differences between the

areas with respect to each parameter:

• d_growing = |growing_ratei − growing_ratej|;

• d_falling = |falling_ratei − falling_ratej|;
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• d_steady = |steady_ratei − steady_ratej|.

Finally (iii), the similarity between the areas with respect to each

parameter is computed as follows:

• s_growing = 1− d_growing;

• s_falling = 1− d_falling;

• s_steady = 1− d_steady.

Iterating these three steps for any pair of areas to be compared, we

obtain for each parameter as many values as the minimum between n

and m:

s_growing1 . . . s_growingmin(n,m)

s_falling1 . . . s_fallingmin(n,m)

s_steady1 . . . s_steadymin(n,m)

A single similarity value for each parameter is extracted, through

the following formula:

sg =

∑min(n,m)
i=1 s_growingi

max(n,m)
(1.9)

A normalization is performed with respect to the maximum be-

tween n andm, in order to take into consideration all those areas of the
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bigger signal that have not been considered in the comparisons. This

allows discriminating those signals that, despite having some similar

portions, have a very different number of connected areas. The for-

mula 1.9 is computed in the same way for each parameter, obtaining

sf and sst through s_falling and s_steady components.

The resulting sg, sf and sst represent the similarity of the two sig-

nals with respect to the corresponding parameter. Now, we synthesize

these three values in a single similarity measure. To this aim, we assign

weights (α, β, and γ) to each partial similarity in order to highlight a

behavior rather than another.

Definition 1.8.1 (Similarity Measure). Given α, β, and γ ∈ [0, 1] and

such that α + β + γ = 1, we define a similarity measure as follows:

s = αsg + βsf + γsst (1.10)

Theorem 1.8.1. Let s = αsg + βsf + γsst be the similarity measure,

the following holds:

s ∈ [0, 1] (1.11)

Proof. Let us recall that sg, sf and sst depends on the values of

growing_rate, falling_rate and steady_rate. In the first two cases,

according to how they are computed in 1.6 and 1.7 respectively, their

values are trivially in [0, 1], since they are obtained as difference be-

tween two congestion values (that are known to be in [0, 1]). The
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same holds for steady_rate whose value, according to 1.8, is obtained

dividing a congestion factor by a value.

In order to prove that s ∈ [0, 1], we first need to prove that sg ∈

[0, 1] too, and the same for sf , and sst. Let us focus on sg: it is

computed as in 1.9 summing s_growing values, which are trivially

in [0, 1], since they depend on d_growing obtained as difference of

growing rates that we proved to be in [0, 1]. Hence, according to 1.9,

the following holds:

sg ≤
min(n,m)

max(n,m)

which is obviously in [0, 1]. The same is clearly true for sf and sst.

According to how s is computed in 1.10, given that α, β, and γ are

chosen such that their sum is 1, and we have proven that sg, sf , and

sst are in [0, 1], clearly s ∈ [0, 1].

1.9 Evaluation

In this section, some among the numerous simulations are shown, and

also some of them highlight the difference between the proposed so-

lution and the one obtained with dtw-based approach. For the local

alignment algorithm, we chose the most commonly used values for

match, mismatch and gap scores, namely 1, −1, and −2 respectively.

In the Table 1.1, we summarize the results of the experiments, ob-

tained setting some fixed parameters the networks, namely the number
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ex s dtw r1 r2 sd1 sd2 η1 η2
1 0.53 0.92 10 15 10 10 0.5 0.5
2 0.8 0.95 10 15 8 12 0.5 0.5
3 0.31 0.9 10 15 10 10 0.2 0.5
4 0.66 0.91 7 15 10 10 0.5 0.5

Table 1.1: Simulation results with α = 0.5, β = 0.1, γ = 0.4.

of nodes n = 30 and m = 25, and other variable parameters, such as

the maximum allowed communication range r1 and r2, the standard

deviation expressing the distribution of vehicles in the network sd1 and

sd2, and the tolerance used for the local alignment ηa and ηb.
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Figure 1.10: Signals corresponding to the experiment 1.

Looking at the Table 1.1, we can easily observe that the standard
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dtw-approach leads quite often to very high similarity results. Our

approach, instead, seems to take into account more precisely the pa-

rameters characterizing the behavior of the networks, leading to results

that are quite more realistic. The example in Figure 1.10 shows that

both the networks have 4 connected areas, but the way the nodes are

distributed through these groups is very different. Indeed the first sig-

nal has just one area with more vehicles, while the other ones are made

of just one vehicle. Differently, the second signal presents areas made

of more than a single vehicle. This means that the similarity assigned

by the dtw-approach is not correct, and does not catch this difference.
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Figure 1.11: Signals corresponding to the experiment 2.
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The second example, instead, in Figure 1.11, shows a first signal

having 3 areas and 3 isolated nodes (meaning those nodes having zero

congestion factor), and a second signal having 3 areas and 1 isolated

node. In this case, the similarity produced by our approach is closer

to the dtw with respect to the previous example. Indeed, these two

networks present more affinities in the configuration.
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Figure 1.12: Signals corresponding to the experiment 3.

In the third example of Figure 1.12, still the networks have the same

number of areas, in this case 4, but we can easily observe that they are

very different. Indeed, the first network present many isolated nodes,

and almost all the remaining nodes fall into the first area. Conversely,
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the second network presents 3 areas made of quite the same amount of

nodes, and 1 made of a single node. The difference in the configuration

makes our approach produce a low similarity, differently from the dtw-

method.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

vehicles

co
ng

es
tio

n 
fa

ct
or

14 9 15 12 3 16 5 7 10 6 1 22 27 26 21 29 23 24 11 30 18 13 20 28 2 4 8 17 19 25

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

cr
ow

di
ng

 d
eg

re
e

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

vehicles

co
ng

es
tio

n 
fa

ct
or

13 12 2 4 11 20 16 17 21 18 6 22 7 14 5 8 3 15 9 23 19 10 24 25 1

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

cr
ow

di
ng

 d
eg

re
e

co
ng

es
ti

on
 f

ac
to

r
co

ng
es

ti
on

 f
ac

to
r

Figure 1.13: Signals corresponding to the experiment 4.

Finally, in the fourth example of Figure 1.13, the first signal is made

of 8 areas, while the second one of 7. They present some affinities in

the left part of the signal, while the right one where isolated nodes

appear is very different. Instead, the result says that these two signal

are similar for a little bit more than the half, which is quite reasonable

looking at the graphics.
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It is important to point out that after the alignment is made, we

need to run as many comparisons as the smallest size of the compared

signals, which asymptotically corresponds to O(min(n,m)), hiding a

constant due to the introduced weights.
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Chapter 2

Algorithms for Smart

Parking

2.1 Introduction

Nowadays, the Internet of Things (IoT) [61] is becoming more and

more integral part of our lives. Just think of autonomous vehicles

[135], smart cities [60], and also autonomous vehicular networks [9].

This trend is supposed to continue if we just have a look at the study

reported in [122], where they predict that, by the year 2050, almost

the 65% of population will be living in the city. This phenomenon

would clearly increase the number of vehicles along the city roads,

by highlighting the relative problems, consequently: starting from the

traffic congestion, according to the study of [121], Rome is on the top of

the ranking of the cities with the longest traffic jam delays in Europe,
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but also the gas emission [110], and the high demand of parking space.

Parking slot detection is a challenging issue in vehicular ad hoc

networks, since it is a process that seriously impacts several aspects.

First of all, drivers looking for a free parking slot cause most of traffic

congestion due to the need of travelling the same roads over and over

until an available slot is found. Moreover, also the stress suffered

by the drivers has to be taken into account: very often people come

to give up on a dinner if they only think of the stressing situation

of looking for a free parking slot. Last but not least, environmental

pollution. As pointed out in [65], vehicle energy consumption and the

urban air quality need to be assessed. They also specify that the total

air pollution in urban areas is due to exhaust emissions from traffic

flow.

The parking problem can be investigated from two main perspec-

tives:

• One can provide a centralized solution, like they did in [116],

where a way to assist users to get parking information by relying

on a web application is given.

• But one can also prefer a decentralized approach, like [118], that

aim at maximizing the autonomy of drivers, without any inter-

mediaries, which in our opinion is more suitable for the problem

we are facing.

In [77], they provide an interesting classification of the smart park-
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ing solutions from the literature, by individuating three macro-categories:

• Information Collection includes those solutions relying on sens-

ing techniques to identify parking status.

• System Deployment is about software and statistical analysis on

collected data.

• Service Dissemination deals with the relationship between infor-

mation and social features, such as the competition that nor-

mally happens between two drivers contending the same slot.

The proposals provided in this thesis lay on the third category since

it is explicitly taken into consideration the competitive nature of the

parking process. Moreover, the preferred approach is the decentralized

one, so to preserve the self-organizing capability of VANETs.

In the next sections, two proposals for smart parking will be pro-

vided. The first one relies on Ant Colony Optimization approach to

push drivers choosing a path rather than another creating an isomor-

phism between driver’s behavior and real ants one while looking for

food. The main idea is to use the pheromone, which in real life attracts

ants along a path, as a repulsive so to avoid roads being crowded. The

second proposal exploits the power of blockchain consensus mecha-

nism to guarantee a fair vehicle distribution over a consortium of car

parks. Precisely, all the operations that modify the network configu-

ration have to be accepted in advance by the competitors (namely the
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members of the consortium) so to force the competitors themselves to

behave fairly.

2.2 Related Work

Smart parking is one of the most challenging application of vehicu-

lar ad hoc networks. Finding available slots either in urban areas or

parking may cause traffic congestion, environment pollution, and im-

pact drivers mood. For these reasons, in the last few years, this topic

has become a very hot research topic and an increasing number of re-

searchers use known existing algorithms and adapt them to face the

parking problem. The literature is made of several solutions aimed at

handling the traffic congestion caused by drivers looking for an avail-

able parking space. Several authors rely on Ant Colony Optimization,

(ACO, for short) to find a solution for the parking problem: for in-

stance, in [133], they apply ACO to solve the parking problem, but in a

totally different manner, since they focus on autonomous vehicles. See

[52] for a survey on ACO. It provides an interesting way of approaching

the solution of a problem, as it follows the biological behavior of living

beings: indeed, it has not only been used for parking applications, but

also in robotics, such as in [132], where it is applied to avoid collisions

with an obstacle while programming the movement of a robot.

Other interesting solutions on smart parking are provided in [24],

where authors provide a logic approach to the distance geometry prob-
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lem (DGP, for short), by classifying vehicles in ready, finding, and leav-

ing, according to what is their role in the current network: starting

from the network configuration, they draw an indirect graph represent-

ing all the parking information related to each vehicle, and transmit

them via V2V communication. There are also machine-learning-based

approaches providing a smart parking system, such as the one proposed

in [115]. Moreover, authors in [8] proposes an interesting framework

based on a deep long short term memory network and a way to predict

the parking availability.

The combination between the blockchain technology and VANET

environment has been investigated already, since it provides a self-

organizing, decentralized and transparent system, such as in [74], where

authors rely on Ethereum, a decentralized platform based on Bitcoin’s

blockchain concept, and they propose mandatory applications such as

traffic regulation application, vehicle tax and vehicle insurance appli-

cations. In [117], authors consider a new type of blockchain which aims

to improve critical message exchange in VANET, via the creation of

smaller blockchains for country-level local communication and a larger

“public” one which stores trusted nodes. Authors of [82] highlight

that security in VANET is still an open issue, due to its features: for

this reason they provide a blockchain-based anonymous reputation sys-

tem (BARS) in order to establish a privacy-preserving trust model for

VANETs, by using a reputation algorithm that prevents the distribu-
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tion of forged messages. Furthermore, authors of [137] also investigate

security issues in a 5G-VANET: they determine that using a blockchain

in such a network allows detecting malicious nodes and messages, sig-

nificantly improving the trustworthiness of the whole network, while

the performance remains acceptable. Another interesting proposal is

[138], where authors propose a proof-of-event consensus algorithm for

blockchain, rather than the more common proof-of-work: data are col-

lected by the road side units and every time a vehicle receives an event

notification it has to verify the correctness.

Many authors also investigate the parking problem in particular,

by dealing with it through blockchain. Precisely, authors of [5] and

[66] propose a schema to preserve driver’s privacy; similarly, authors

in [141] propose ParkChain, which is a smart parking system based on

blockchain, aimed at guaranteeing that no one can delete, revert, hack

or question the time a registered vehicle securely entered a parking

area.

2.3 Ant-Colony-Optimization-Based Park-

ing Algorithm

For the first proposal, it has been studied the solution to a well known

optimization problem, based on the behavior of real ants in nature,

the ant colony optimization problem (ACO, for short), with the goal
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of applying such a solution to the parking problem in a decentral-

ized manner. In particular, the approach takes inspiration from ACO,

but following an opposite direction: indeed, while in ACO ants are

attracted from paths with a higher amount of pheromone, which is

the chemical substance released from an ant that followed the same

path previously, in the considered scenario the pheromone acts as a

repulsive for drivers, so to avoid crowded situations.

More specifically, anytime a driver follows a path P , the associated

pheromone will be updated so to make other drivers understand that

P could be a potentially crowded path. In this way, anytime a driver

has to choose a path, by following the pheromone it is guaranteed that

the less crowded one is selected. The final result is a context-aware

and self-organizing network, characterized by an even distribution of

vehicles among the available parking slots, with a lower gas emission

due to the multiple tours that drivers usually have to perform to find

a space.

2.3.1 Preliminaries

Environment Classification

To deal with parking problem through ACO, the environment is struc-

tured as a huge area made of parking slots (taken or available). With-

out loss of generality, we assume that the environment is divided into

regions, such that each region has a capability in terms of available
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parking slots.

Such an environment can be represented as a directed graph G =

(V,E), where each vertex v ∈ V is a region with |V | = n, and each

edge (i, j) ∈ E is a connection between regions, such (i, j) ∈ E if and

only if from the region i the region j is reachable directly. Moreover,

a weight function w : V × V 7−→ N associates to each edge a weight

given by the capability of the destination node.

About Ant Colony Optimization

As precisely explained in [52], Ant Colony Optimization was intro-

duced in 90’s as a nature-inspired metaheuristic for the solution of

hard combinatorial optimization problems. It follows the behavior or

real ants looking for food: in the beginning, they visit the neighbor-

hood of their nest at random, they find some food source and get it

back to the nest. During the trip, ants release a pheromone trail to

guide other ants towards the food.

The Ant Colony Optimization (ACO) is a genetic algorithm that

allows you to solve the Traveling Salesman Problem (TSP) that re-

quires to find the minimum costing path to reach a specific node in

the graph visiting every node at most once. In the ACO, every agent

participates individually in the construction of the solution, building,

iteratively, different candidate solutions for the TSP that converge,

step by step, in a single one thanks to a shared memory system which
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allows each agent to share with the others information relating to their

experience about the choice of a certain direction rather than another.

The ACO Parameters The main parameters of ant colony opti-

mization paradigm are the following [85]:

• ηij is the attractiveness of the move from i to j, according to a

priori information;

• τij is the trail level of the move from i to j, according the a

posteriori information, given by previous iterations.

At any iteration, the ant k performs a move from i to j with a

certain probability pkij that depends on attractiveness and trail level

values. The probability is computed as follows:

pkij =


ταij + ηβij∑

(ij) 6∈tabuk(τ
α
ij + ηβij)

if (ij) 6∈ tabuk

0 otherwise

(2.1)

where:

• α and β are parameters between 0 and 1 that allow to spec-

ify how determinant are the trail level and the attractiveness,

respectively;

• tabuk is the list of not feasible moves for the ant k starting from

the state i.
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Once any ant completes its move, the trail level at iteration t is

updated according to the trail level at the previous iteration, as follows:

τij(t) = ρ ∗ τij(t− 1) + ∆τij (2.2)

where: ρ is a parameter representing the evaporation rate that

guarantees a way to avoid too fast convergence of the algorithm to a

suboptimal region, allowing the exploration of new areas of the search

space [51]; ∆τij is the pheromone, meaning the sum of the contributes

given by all the other ants that have performed the ij move already.

The ACO Algorithm Typically, an algorithm following ant colony

optimization is based on the repetition of three phases [51] until a

termination condition is reached, as shown in Figure 2.1.

Figure 2.1: Phases of a typical algorithm solving a problem according
to ant colony optimization

The initialization phase consists in assigning a starting value to
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trail level and pheromone parameters, for any edge of the graph.

The construction phase is about the colony of ants, each of them

computing its own solution according to a stochastic local decision

policy, based on pheromone and trail level.

The updating phase is the moment when trail level and pheromone

are modified: in particular, the trail level can either increase or de-

crease according to if ants deposit pheromone or not.

Isomorphism of the Problem

To formulate the optimization problem that represents the situation

where a driver moving toward a destination wants to find an available

parking slot, we need to take into consideration:

• The position of the driver;

• The position of the destination.

Clearly, the ideal situation would be finding the parking slot which

is the closest one to the destination point. The first approach is to solve

the problem by finding a path, from the position where the driver is

to the one of the place he wants to reach, that maximizes the number

of available parking slot met, so to increase the chance that the driver

completes the parking process. Figure 2.3.1 shows an example of a

graph made by five regions connected according to the parking slots

available in the destination region, while Figure 2.3.1 shows the path
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that maximizes the number of available parking slots met, assuming

that the vehicle start from region A, and wants to reach region E.

Figure 2.2: Example of a graph of five regions and corresponding
weighted connections

Figure 2.3: Example of the chosen maximizing available parking slot
path assuming A and E as starting and ending point respectively.

Formally, let wij be the weight of the edge i → j in the graph G,

and let P be the resulting path of maximum weights, the optimization
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problem can be formulated as follows:



max
n∑
i=1

n∑
j=1

wij ∗ xij

n∑
i=1

xij ≤ 1

n∑
j=1

xij ≤ 1

P [1] = S

(2.3)

where xij can assume values in [0, 1] according to the resulting path

P :

xij =


1 if i→ j ∈ P

0 otherwise

The first inequality constraint guarantees that each node of the

resulting path has at most one outgoing arc (except for the final region

that has not outgoing arcs). Similarly, the second inequality constraint

ensures that any node has at most one incoming arc (zero in case of

the starting region). Notice that in the optimization problem shown

in (2.3), it is required that the starting region appears in the resulting

path (as first region precisely), but this does not happen for the final

one: indeed, if the destination region has not available slots, any edge

leading to it has a null weight and hence it is not chosen as the optimal

path.
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2.3.2 Towards ACO for Parking

The problem, as defined so far, does not take into consideration the

actual vehicle distribution over the network. It is clear that there exists

a mapping from the parking problem to an ant colony optimization

one, but it is important not to loose the real-time nature of VANETs.

For this reason, in the following, a more complex model of the netwrok

is provided.

2.3.3 Model Definition

The model configuration can be seen in Figure 2.4. In the proposed

setting, it is assumed that each driver, that has to park his car, has a

starting region that is known, and a destination region towards which

he wants to get as close as possible. Hence, the graph configuration

depends on a fixed destination region for any driver taking part of the

parking process.

As shown in Figure 2.4, for each parking region of the model, and

each edge connecting nodes, some properties are provided:

• For nodes:

– w: the distance to walk to reach the destination region;

– a: the number of available parking spots in the region.

• For edges
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Figure 2.4: Parking regions graph.

– d: the distance to travel by road to reach the destination

node of the arc from the source one;

– p: the probability with which each vehicle will visit the

destination node of the arc from the source one; since it

is a probability, it is a value between zero and one. As in

the standard ACO, this parameter works as the pheromone

but, differently form ACO, it has a repulsive power, rather

than an attractive one.

2.3.4 Graph Coloring

In order to avoid drivers choosing the wrong edges, a coloring mecha-

nism is provided. "Wrong edges" means edges that push the driver ir-

reversibly away from the destination, rather than getting him closer to

it. Since, at the very beginning of the execution, there is no pheromone

59



VANETs: an algorithmic and a game-theoretic approach

yet to inform drivers of which edges should be picked and which should

not, a graph coloring is needed to prevent wrong choices that would

lead to a bad exploration of the graph. If we consider that the starting

node is the 0 one and the destination node is the 8 one, at the begin-

ning of the execution of the algorithm, without considering the graph

coloring, the vehicles will have to do the following evaluation to choose

the node to move to, by maximizing the ratio a
d∗w . Such a ratio is:

• 4
1.6∗1.16 = 2.16 for the node 1,

• 3
1.2∗1.5 = 1.67 for node 2,

• 7
2∗3 = 1.17 for node 6,

• 16
2.4∗3.4 = 130.56 for node 9,

• 21
0.8∗2.8 = 9.38 for node 10,

• 4
1.3∗3.34 = 0.92 for node 11.

With these values, the node 9 would be chosen, but it would bring

the vehicle irreversibly far from the destination.

In order to avoid such a problem, the graph is previously colored as

in Figure 2.5, so that every agent is aware of which node can bring it

to the destination, or can get him closer to it, at every step. Precisely,

a parameter θ is defined, which indicates the maximum distance that

is reasonable to walk from the parking slot to the destination:
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Figure 2.5: Colored parking regions graph assuming that the destina-
tion is the node 8.

• The red nodes are those that do not lead to the destination node,

and hence they should be avoided;

• The green nodes are the ones that bring to the destination or to

a parking region within the distance θ;

• The yellow is associated to those nodes v having only one out-

going arc, which is directed only to a node having v among its

adjacent nodes. Such a configuration might be source of annoy-

ing loops, and for this reason it is imposed that yellow nodes

should be visited only once by each vehicle, unless a parking slot

is made available in the region: in this last case, a further visit

is allowed to complete possibly the parking process.

Clearly, as in the standard version of ACO, at the beginning, the

graph does not provide a meaningful pheromone information, indeed
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it has value 1 on every edge. In this phase, the edge chosen by the

driver, among the available ones with the same amount of pheromone,

is the one that maximizes the ratio a
d∗w , where a, d, and w have been

defined previously.

2.3.5 The Pheromone Model

In the proposed algorithm, in order to avoid situations where all ve-

hicles follow the same path, the pheromone causes a repulsion instead

of attraction and it is modified as described below:

• decrease of p value: when a vehicle travels on an arc, the p

value of the entering arcs of the node to which it has moved are

decreased by:
(d ∗ w)

(a+ 1)
∗ 10−1,9 (2.4)

The decreased value is deliberately lower to the increased one in

order to avoid losing information too quickly.

• increase of p value: when a vehicle leaves a region or when it

parks in a region, the p value of the entering arcs of the node is

increased by:
a

(d ∗ w)
∗ 10−2 (2.5)

The increase is proportional to the available parking slots in

the region in which the driver has parked (or has leaved) and

inversely proportional to the distance to travel by road and the
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one to walk to reach the driver destination node;

• total evaporation: a the end of each step (every vehicle has made

a movement) an update of p of each arc is made so that those

arches that have been visited previously attractive again:

1

d ∗ 1000
(2.6)

this p increase on each visited edge is inversely proportional to

the length of the edge in order to disadvantage the choice of

longer ones.

where the value of w for the destination node is not equal to 0 but to

0.02 considering that also a parking slot in the destination region is

not the place where the driver is headed.

2.3.6 Constraint Relaxation

In a realistic scenario in which there are few available parking slots,

it is not always possible to guarantee that all vehicles will reach the

destination or an acceptable node (according to the distance θ) without

visiting a node they have already visited; for this reason, a process

of relaxation of the constraint on the θ value is needed in order to

facilitate the choice of the region in which allocating the car.

More precisely, the relaxation of the constraint on the acceptable

walking distance θ, which consists in increasing the distance θ by 0.5,
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is applied every time a vehicle visits a node that has already been

visited previously; in this way, for example, also the red nodes could be

considered for allocation (desperate times call for desperate measures).

Through such a trick, unwanted loops are handled, and it is guar-

anteed that for each driver a solution will be eventually found.

2.3.7 The ACO Algorithm for Parking

Every algorithm that follows ant colony optimization is based on the

repetition of "Initialization", "Construction" and "Updating" until a

"Termination condition" is satisfied.

Before showing the algorithm, let us first recall some parameters:

• D is the drivers population in which every driver has a position,

a θ and a list of positions history to keep track of the nodes he

has already visited;

• E is the set of edges of the parking regions graph.

After coloring the graph and initializing the drivers population D,

as long as there is a driver who has not parked, each driver will always

move, step by step, through the edges that maximize the pheromone

or the ratio a
d∗w (findNextNode). Every movement of the drivers

results in a decrease and an increase in the pheromone on the edges:

• increase of pheromone: the incoming edges pheromone of a park-

ing region is increased when a driver park or leaves that parking
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Algorithm 1 optAco
1: Color the graph
2: for each d in D do
3: set d→ pos equal to start_node
4: set d→ θ equal to 0.4
5: end for
6: repeat
7: for d in D do
8: if d not parked then
9: n_node← findNextNode(d→ pos)
10: if n_node ≥ 0 then
11: increaseIncomingEdgesPh(d→ pos)
12: moveToNode(d, n_node)
13: decreaseIncomingEdgesPh(d→ pos)
14: if d has already visited n_node then
15: relax Walk Distance Constraint(d)
16: end if
17: if n_node→ w ≤ d→ θ ∧ n_node→ a ≥ 0 then
18: park d in n_node
19: increaseIncomingEdgesPh(d→ pos)
20: end if
21: end if
22: end if
23: end for
24: for e in E do
25: Pheromonee− = Evaporation
26: end for
27: until every d parked
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region;

• decrease of pheromone: the incoming edges pheromone of a park-

ing region is decreased when a driver move into it;

Each position taken by the driver is collected in a list so that, if a

node is visited more than once by the same driver, the relaxation on

θ constraint can take place.

2.3.8 Valuation

In this section, some simulation results are provided from the execution

of the defined algorithm, as well as the behavior of the algorithm is

analyzed by changing the number of drivers, or the destination node.

2.3.9 Simulation Results

Considering the graph in Figure 2.5, if the starting node is 0, the

driver population has a cardinality of 15, the path of nodes of the

graph covered by each agent to reach the destination is shown in the

Table 2.1.

If we consider that at the step 16 parking spots is left and available

again in node 14, path of the drivers is shown in Table 2.2
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Table 2.1: Driver path with always 0 available
parking spots in 14

m1 m2 m3 m4 m5 m6 m7 m8 m9 m10
D1 0 1 3 8
D2 0 2 7 8 13
D3 0 1 3 8 13
D4 0 2 7 8 13
D5 0 1 3 8 13
D6 0 2 7 8 13
D7 0 1 3 8 13
D8 0 2 7 8 13
D9 0 1 3 8 13 3
D10 0 2 7 8 13 3 8 13 3
D11 0 1 3 8 13 14 13 3
D12 0 2 7 8 13 3 8 13 3
D13 0 1 4 5
D14 0 2 7 8 13 3 12 13 14 13
D15 0 1 4 1 4

2.3.10 Benchmarks

Some observations on the behavior of our algorithm have also been

performed, by starting from the Figure 2.5, to check the number of

steps needed to complete the parking process, by first varying the

number of drivers (Table 2.3), then the destination nodes (Table 2.4).

The columns of Table 2.3 represent the number of drivers, while

the rows are the number of steps needed on average to complete the

parking process. The columns of Table 2.4 represent the destination

node, while the rows are the number of steps needed on average to

complete the parking process.
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Table 2.2: Driver path with a new available
parking spots in node 14 from step 16

m1 m2 m3 m4 m5 m6 m7 m8

D1 0 1 3 8
D2 0 2 7 8 13
D3 0 1 3 8 13
D4 0 2 7 8 13
D5 0 1 3 8 13
D6 0 2 7 8 13
D7 0 1 3 8 13
D8 0 2 7 8 13
D9 0 1 3 8 13 3
D10 0 2 7 8 13 3 8 13 3
D11 0 1 3 8 13 14 13 14
D12 0 2 7 8 13 3 8 13 3
D13 0 1 4 5
D14 0 2 7 8 13 3 12 13 3
D15 0 1 4 1 4

Table 2.3: Step needed varying the
number of drivers

5 10 15 20 25
Average number of steps 3.8 4.2 5.07 5.7 6.56

Table 2.4: Step needed vary-
ing destination node

3 8 12
Average number of steps 3.1 4.2 3.7
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2.4 Competitive-Blockchain-Based-Parking

System with Faireness Constraints

The second proposal for smart parking algorithm is developed in a

different scenario. Precisely, a consortium of car parks, rather than a

single one, is taken into consideration.

Let’s imagine having an autonomous parking system able to allo-

cate vehicles approaching several car parks, in such a way to make

drivers happy about the slot chosen for them, with regards to the po-

sition. It is quite reasonable speaking about several car parks when we

have to deal with parking process in a wide urban area. Just think of

the numerous car parks close to some shops or markets. Most proba-

bly, one of them is in a very strategic position, close to the most famous

shops or interesting zones. Clearly, it would be the best choice for any

driver looking for a free slot, but also the best choice for any allocation

algorithm based on the smallest distance between the chosen slot and

the destination of the driver. This scenario clearly demonstrates that

if all the drivers try to reach the same car park, their vehicles would

create even more traffic congestion, instead of reducing it.

Using a consortium of car parks (which are in the same neigh-

borhood) able to guarantee a fair distribution of vehicles, by choosing,

when it is possible, a slot which is near to the destination of the driver,

it is possible to dramatically reduce the traffic congestion caused by
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parking. By moving the attention from the single parking area to a

consortium, we make clear that the vehicle allocation problem does

not affect the driver or the parking owner alone, but it should be

handled in the best interest of all of them. Introducing a consortium

requires rules and constraints to manage it. To this aim, it has been

decided to use the philosophy behind the blockchain mechanism based

on a consensus to be reached before any operation on the network is

performed. In our case, prices variations and capacity constraint mod-

ifications from any of the members should be approved, in a certain

percentage, by any other member for a fair competition, aimed at an

even distribution and not at the enrichment of the single.

It will be shown how, guaranteeing a fair competition among com-

petitors and an even vehicle distribution among them, the solution

provides drivers a secure parking mechanism, which only aims at allo-

cating vehicles in the smartest way possible, no matter what the eco-

nomic interests of the single competitor are. Moreover, environment,

cities, and citizens are going to benefit from the blockchain integration.

2.4.1 Background

Let us recall some notions that will be used in the sequel: the destination-

based algorithm used to allocate vehicles in the available parking slots,

which is based on some known algorithms for memory allocation in op-

erating systems, and also the basics of blockchain technology and what
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are the aspects that can be exploited in a parking process and why it

is worthy.

Distance-based parking algorithm

Before introducing the blockchain-based parking system, the algorithm

that is used is the distance-based parking algorithm proposed in [19].

The main idea is to reduce the vehicle parking problem to the most

general and commonly known memory allocation problem in operating

systems.

The central memory is a sequence of blocks of variable size, where

processes, in order to be executed, need to be loaded beforehand.

The isomorphism between the two problems is quite intuitive: the

set of vehicles ready to be parked, called ready queue, corresponds to

the processes ready for the execution, the parking area corresponds to

the central memory, and the time during which the vehicle will occupy

the slot corresponds to the execution time characterizing each process.

Similarly, dynamic memory allocation methods are customized and

used. Let us recall the basic versions: (i) First-Fit, the first available

and big-enough block of memory is chosen; (ii) Best-Fit, the smallest

block, among the available ones and the ones having sufficient size, is

chosen; (iii) Worst-Fit, the biggest block, among the available ones

and ones having sufficient size, is chosen. In the sequel, these poli-

cies (First-Fit, Best-Fit, Worst-Fit) will be mapped into the parking
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domain.

In memory allocation the main goal is to optimize the resources,

while in the parking one the goal is to fill the parking area as soon

as possible, which means trying to consume the ready queue in the

minimum time possible. Consequently, it is possible to define the

objective function formally as follows:

Definition 2.4.1. Objective Function

The objective function for the parking process requires to minimize the

time to make the ready queue empty.

minfillingis_empty(ready queue) (2.7)

The objective function expressed as in Definition 2.4.1, says that

the algorithm is going to minimize the time needed to find a slot for

any vehicle in the ready queue: from the vehicle point of view, the

total wait time will be reduced.

Each parking area is divided into slots. Each slot is represented by

its position and its size. An example of values associated to each slot

of each parking area is shown in Table 2.5.

The most innovative aspect of the proposed algorithm is that the

distance parameter is used. Specifically, we speak about the distance

between the parking slot and the final destination of the driver (infor-
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Table 2.5: Example of information about slots position and size.

slot1 slot2 slot3 slot4

Area1 (5,10) (6,11) (4,6) (3,8)
Area2 (2,12) (3,12) (4,8) (5,8)
Area3 (3,11) (4,10) (2,5) (1,5)
Area4 (1,10) (2,3) (3,10) (4,5)

mation which is supposed to be known in advance). By using such a

parameter, and assuming that the vehicle v has to be parked, the typ-

ical approaches for dynamic memory allocation in operating systems

are revisited as follows:

• Revisited-First-Fit (RFF): among all the available parking

slots able to contain v, the nearest to the destination is chosen;

• Revisited-Best-Fit (RBF): considering the size of the vehicle,

among all the available parking slots which are large enough for

the vehicle, the closest and smallest one is chosen;

• Revisited-Worst-Fit (RWF): taken in consideration the size

of the vehicle, among all the available parking slots with dimen-

sion equal or greater than the vehicle, the closest and biggest

one is chosen;

Simulation results prove that the revisited versions of First, Best,

andWorst-Fit reduce the waiting time for the ready vehicles, and hence

the total time needed to empty the queue. In Table 2.6, experimental

results obtained after 4 blocks of 200 executions for the same parking
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area are reported. Every time we generate 11 vehicles with random

features. The term "positive simulations" means a simulation in which

the behavior of the revisited algorithm is better than the standard one.

In Table 2.7, instead, failed attempts are provided. It’s easy to see that

the worst-fit presents more failed attempts than the other ones, but

still with very small values with respect to iterations number.

Table 2.6: Positive simulation results for the revisited versions of First,
Best, and Worst-Fit.

RFF RBF RWF

FirstBlockSuccess 11 21 18
SecondBlockSuccess 128 17 24
ThirdBlockSuccess 124 17 23
FourthBlockSuccess 121 19 27

It is also summarized, in Table 2.8, the comparison results among

the standard algorithms and the revisited ones: in particular, the re-

visited First-Fit yields an improvement around the 60%.

Table 2.7: Negative simulation results for the revisited versions of
First, Best, and Worst-Fit.

RFF RBF RWF

FirstBlockFailure / / 1
SecondBlockFailure / / 1
ThirdBlockFailure / 3 1
FourthBlockFailure / / /
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Table 2.8: Improvement rate for the revisited versions of First, Best,
and Worst-Fit.

RFF RBF RWF

IR 60.5% 9.3% 11.5%

Blockchain

Blockchain has been introduced in 1991 and it is an emerging tech-

nology which is changing the way new systems operate: it is based on

unifying a ledger between all the nodes of the network in a distributed

manner, by avoiding that other nodes join the network without au-

thorization [95]. A blockchain consists of a chain of blocks, where

each block contains data whose access is handled through cryptogra-

phy (typically the hash code of the current block, but also the code of

the previous one). Anytime someone joins the network, he receives a

copy of the blockchain: when someone adds a new block, it has to be

validated from the rest of the network. As clearly explained by authors

of [47], each transaction in the public ledger is verified by consensus

of a majority of the participants in the system.

Due to the numerous potentialities, blockchain are used for very

different applications, not only in financial fields, but also non-financial

ones, such as health, music, and industry [71, 13, 34].

The typical use of blockchain is for financial purposes: if A wants

to send money to B, such a transaction is represented as a block and
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submitted online for validation. Only after the transaction is approved

by the network participants, the corresponding block is added to the

chain, and finally A sends money to B [47].

The name blockchain is very explicative about how this technology

works: the basic mechanism is a consensus validation algorithm, which

allows a peer-to-peer communication among participants, without the

need of any kind of central authority. Every time a transaction is

validated, a new block is added to the chain and, typically, it cannot

be removed afterwards [92].

The logic behind blockchain is inspiring for the construction of a

robust parking system. Arguably, considering park consortiums, the

first issue that has to be addressed is how anticompetitive behavior can

be prevented. We also have to ensure that every member only acts with

the aim of reducing traffic congestion. Blockchain mechanisms can be

the answer to these problems. Introducing a consensus to validate

any action from consortium members guarantees that no one can take

advantage of the system. No member will be able to set a price which

is too low with regards to the rest of the group. Even if they are

not interested in reducing local traffic congestion, belonging to the

network will enforce preservation of their economic interests. Such

a mechanism, therefore, forces members to defend the entire process,

while they naturally try to defend themselves. Members might disallow

incorrect or dangerous behaviors from other components and, as a
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consequence, they will cooperate to make the parking process work

flawlessly.

The same holds for capacity variations. Especially during a pan-

demic, it is easy to imagine that anti-contagion measures impose re-

strictions on the number of slots that can be effectively occupied in a

car park. Someone could try to be crafty and violate such restrictions,

in order to have more customers than the concurrency, hence being

able to gain larger profits. The consensus-based blockchain mecha-

nism avoids a situation like that. The capacity of each car park is

supposed to be known in advance, hence if someone tries to overcome

the number of allowed slots, the network would recognize it and would

stop it.

Essentially, blockchain logic is hereby used to avoid incorrect be-

haviors from network participants, therefore preserving the entire park-

ing process, while keeping the reduction of traffic congestion as the

main concern.

2.4.2 BC Parking Algorithm

Let us first describe the system representation through blockchain tech-

nology, by pointing out the reasons why one can took advantage from

blockchain logic and what are the earned benefits. After that, it is

possible to define some fairness constraints in order to guarantee a

right competition, rules ensuring correct behavior of all the partici-
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Figure 2.6: Example of parking areas which are consortium members

pants. Then, the pseudo-code of the proposed consensus algorithm is

shown, which is needed to validate any modification operation on the

blockchain. Finally, an overview of the benefits brought by such an

approach from various points of view is provided.

Competitive-Blockchain-based Representation

We consider a realistic scenario made of several parking areas, which

are members of a consortium but still work competitively, without

affecting the free market laws. They will be called competitors in the

sequel.

The introduction of such a competitive attitude, clearly, raises the

problem of guaranteeing equity and fairness. When we move to a

competitive setting, it is important to take into account that any par-
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Figure 2.7: Schema of how the parking process works, by using the
blockchain mechanism

ticipant wants to win, whatever it takes. It is quite easy to imagine

that the single consortium-member could act to improve his personal

gain, rather than choosing the strategy that reduces the traffic flow.

Such an incorrect behavior has to be avoided at all costs and a proper

protection mechanism is obtained by applying the logic behind the

blockchain mechanism, introduced before, where any network modifi-

cation must be approved, through a consensus, before it is applied.

Figure 2.6 shows a simple example of the system that is going

to be defined. Let us point out that, in our proposal, we consider

four different competitors in the center of Naples, characterized by the

following attributes:

• the price, established by each competitors, is the rate-per-hour
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required anytime a vehicle allocates a slot in the corresponding

car park;

• the capacity, in terms of number of parking slots in the cor-

responding parking area: moreover, a percentage limit may be

imposed, if we consider, for instance, restrictive measures as the

ones for the COVID pandemic.

The competitors are the nodes of the blockchain, while the trans-

actions are all the proposed actions which modify the system config-

uration and, therefore, they need a consensus from the network to be

applied. A block of the blockchain is an association vehicle-slot, which

has already been approved and hence is known by any participant.

In the described scenario, one can consider two possible transac-

tions:

• One of the competitors receives a new vehicle from the ready

queue. Such an operation needs a consensus, according to the

considerations we made previously. It might be the case that a

car park owner has reached the maximum capacity allowed for

him, according to new anti-COVID restrictions (let’s say 60%

of the capacity), but he wants to cheat, and he keeps accepting

more vehicles. Obviously, such an aggressive behavior has to

be avoided, and other competitors will negate the consensus to

accept new vehicles;
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• One of the competitors changes his price. Again, a price varia-

tion should be acceptable, considering a fair competition. Let’s

say, for instance, that the average rate-per-hour of all the mem-

bers of the consortium is 5$. Therefore we may have a member

which applies a rate of 4$, one of 6$, but if someone wants to set

a price of 1$ per hour, this would make the competition unfair.

Most likely people would be encouraged to go to the cheapest

car park, causing a traffic congestion. But actually, through the

consensus mechanism, the other members will not allow such a

price variation. They won’t because they want to defend them-

selves, but consequentially they are also preserving the whole

parking process.

Another possibility is that a vehicle leaves the corresponding park-

ing slot, but in this case we assume that the consensus is not needed.

The only focus is on the vehicle allocation process, hence a vehicle

leaving the parking area essentially represents the end of such a pro-

cess.

Figure 2.7 shows an example of the execution flow leading to the

parking process:

1. At the beginning, the actual blockchain configuration is shown,

meaning all the transaction that have already been accepted and

are known by all the participants. In particular, it is commonly

known that the orange vehicle is in the blue car park, and that
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the blue vehicle is in the white car park (2.7.(a)).

2. A new transaction is submitted to the participants. It corre-

sponds to the action of parking the black vehicle in the blue

competitor (2.7.(b)).

3. The transaction is accepted according to the specific consensus

algorithm used. In this example, any other competitor allows

the transaction (2.7.(c)).

4. The transaction has been approved, a new block is added to the

chain, and it becomes common knowledge that the black vehicle

is in the blue car park (2.7.(d)).

Fairness Constraints

In order to prevent misbehaviors deriving from competitive environ-

ments and guarantee a fair competition between competitors, we define

some fairness constraints.

Assumption Without loss of generality, it is assumed that, given

the capacity C associated to some competitor, for reasons of force

majeure, such as an anti-COVID measure, only a percentage of this

capacity can be effectively occupied. Let us denote by c the actual

capacity of each competitor.

One can define two distinct fairness constraints:
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• A price fairness constraint, which guarantees the free market for

any competitor, and informs the rest of consortium members of

any price change, in order to keep the competition fair, precisely.

For instance, if the competitor P1 wants to raise the parking rate

to a price which is considered too high for other competitors,

such a transaction will be denied from the system, as well as,

similarly to the example proposed in the previous section, if he

wants to decrease the rate to a price considered too cheap, again

the transaction will be denied.

• A capacity fairness constraint, which aims at guaranteeing that

all the competitors follow the capacity restrictions shared by all

the consortium members. For instance, if the competitor P1 is

trying to fill more parking slots than allowed, to increase his

gain, such a transaction will be denied from the system.

Verification of the transactions must be on competitors side: estab-

lishing if a transaction does not violate the fairness constraints, and is

hence authentic, is up to them. Essentially, these fairness constraints

follow the democracy rules: if the majority of the participants accepts

a given proposal, then it will be considered, otherwise it will not. The

majority also guarantees fairness also in the preservation of fairness

constraints. Obviously, one could negate the consensus just to limit

the growth of the requiring member, while by introducing the majority

we ensure an even judgment of the transactions.
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2.4.3 The Consensus Algorithm

In literature, there are two main types of consensus algorithms [98]:

• proof of work-based ones (PoW, for short);

• pure stake-based ones (PoS, for short).

The main difference is that, with PoW, among all the nodes of

the network, the one performing sufficient proof will get the right to

append a new block, while in PoS the stake owned by each node de-

termines if the node will modify the network (the basic idea is that

the stake is proportional to the trust).

The consensus algorithm proposed for the solution, for the partic-

ular setting described before, has a different approach with respect to

the just explained PoW and PoS consensus algorithms. It is made a

simple, but crucial, consideration: each competitor would not attack

the same chain which guarantees him a profit. The consensus algo-

rithm, hence, is thought to guarantee the system’s best interest, by

letting each competitor do his own interest. In this case, the aim is

an automatic parking system involving a consortium of parking areas

which work in competitive fair manner. To guarantee fairness, one

can rely on the competitors themselves. That is, respecting market

laws and letting other competitors respect market laws is their best

interest. As already mentioned, the traffic flow reduction is a mere

consequence of members trying to improve their profits. And this is
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the strength of the proposed model, because somehow no one is forced

to do anything to reach the goal, they simply do it naturally.

For this reason, the consensus algorithm fitting the problem essen-

tially requires the majority of approvals for a proposed transaction.

The pseudo-code shown in Algorithm 2 defines the basic idea for the

consensus.

Algorithm 2 Consensus Algorithm
1: yes = 0
2: for any competitor do
3: if accepted transaction then
4: yes+ +
5: end if
6: end for
7: if yes ≥ #competitors

2 then
8: add a new block to the chain
9: else
10: leave the chain unchanged
11: end if

Essentially, the Algorithm 2 takes as input the proposed trans-

action that needs to be approved, and gives as output the updated

blockchain: in particular, each competitor gives his opinion on the

proposed transaction, voting on its approval. Once each competitor

expresses his opinion, the votes are counted: if a majority has been

reached, the transaction is approved and a new block is added to the

chain, otherwise the same starting blockchain is returned.
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Slot Assignment Process

Clearly, first it is needed to assign the vehicle to one of the competitors,

then to a specific slot in it. Essentially, one has to specify how the car

park is chosen for a given vehicle ready to be parked.

In order to do so, before applying the distance-based algorithm

introduced before, a step is needed: the next vehicle in the queue is

assigned to the most similar competitor, then the distance-based algo-

rithm can be applied to select the best slot. What does similar mean?

To clarify this concept, let us introduce only some of the additional

characteristics for each competitor, collected in a feature vector:

• rate per hour;

• closing hours;

• key deposit;

In this way, any competitor is defined by the price per hour, the

time by which the driver has to pick up his car, and the necessity to

leave the key of the car. This last attribute is supposed to be binary

(0 for no, 1 for yes).

One can assume that, similarly, any driver is characterized by the

same 3-components-vector, which indicate his preferences on each fea-

ture. Let us also assume that the driver vector can have a special

character ∗, which means don’t care. This works like a whatever value.

For instance, the vector d = (∗, ∗, 0) represents a driver who is only
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interested in not leaving the key, while he doesn’t care about the price

and the closing time. In this case, the driver feature vector is not a

single vector, but is represented by all the possible vector whose third

component is zero.

The driver feature vector can be built in two different ways:

• explicitly: in this case the driver express his preferences;

• implicitly: in this case the system keeps track of the driver his-

tory and previous choices.

In such a setting, the competitor which is more suitable for a given

driver is the one whose feature vector is closer (in terms of Euclidean

distance) to the driver feature vector.

In order to compute a more precise similarity between driver and

competitor, we sum up some of the most interesting features that could

be taken into account to know the driver’s preferences:

• Indoor/outdoor parking slots. Many people could prefer an in-

door slot for their vehicle so the have it repaired from meteoro-

logic inconveniences.

• Payment methods. Very often people are more comfortable pay-

ing by card, rather than by cash, especially in a pandemic era.

• Included shuttles toward center or airports. Very often, people

need to leave their car before visiting a city or before reaching

the airport, and hence they could be interested in such a facility.
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• Included insurance against possible damages to the vehicle inside

the car park.

• Included surveillance mechanism.

• Included gas station.

• Included charging points, in case of electric vehicles.

• Included car washing.

• Included Wi-Fi connection.

In case of ambiguity, meaning that the vector similarity does not

produce a unique result, the choice falls on the competitor which is

the closest to the destination of the driver.

The whole process is synthesized in Figure 2.8: when a new vehicle

has to be parked, his feature vector is compared with the ones of the

competitors; the most similar (meaning the closest in terms of Eu-

clidean distance) is chosen, in this example, competitor p3 is selected;

inside the parking area associated to the competitor p3, the slot which

is the closest to the destination of the driver is chosen, according to

the destination-based algorithm.

2.4.4 Model Validation

In order to further validate the behavior of the model, a minimal im-

plementation has been developed using Rust, a system programming
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Figure 2.8: Steps of the parking process

language developed by Mozilla that, due to its particular memory man-

agement system, allows building fast, efficient and secure applications

that can be executed on integrated devices using a small amount of

resources.

It is also commonly used for blockchain applications development,

due to the presence of the Substrate framework, which offloads the

developers from the creation of the distributed network and automat-

ically manages the state of the shared ledger.

Given a consortium (which holds a set of parking), and a park-

ing request from a customer, the algorithm used to select the most

appropriate parking lot is described in Algorithm 3.

If a valid parking lot is found, the blockchain receives a new pro-

posed block, which has to be accepted by the majority of the com-

petitors, as already explained in Algorithm 2. Once the consortium
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Algorithm 3 Parking lot selection
candidates← [ ] . Filters parking lots
for parkinglot ∈ consortium.parking_lots do

if parkinglot.distance(request.location) < 5km then
if parkinglot.requested_services(request) then

candidates.append(parkinglot)
end if

end if
end for . Sort by optional offered services, then by distance
candidates.sort(optional_services, distance) return candi-
dates.first()

accepts the block it becomes part of the blockchain, in order to keep

the process transparent for all the participants.

Notice that the constraint of a distance within 5km to find a park-

ing slot should be relaxed if there isn’t a slot satisfying such a property.

Table 2.9 shows five different simulated results with 10 parking lots

and 1000 requests, and shows that the system is actually able to assign

users evenly to the various competitors.

Table 2.9: Simulation: 10 parking lots/1.000 requests, numbers indi-
cate how many vehicles have been allocated

Lot R1 R2 R3 R4 R5
Parking A 83 66 95 114 126
Parking B 72 40 102 106 79
Parking C 70 78 92 101 69
Parking D 93 110 130 67 66
Parking E 110 94 178 56 174
Parking F 58 73 58 123 168
Parking G 122 177 85 122 64
Parking H 113 42 70 61 126
Parking I 139 164 133 124 41
Parking J 140 156 57 126 87
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2.4.5 Benefits

It is interesting to point out which are the advantages brought by the

system proposed in this work, as shown in Figure 2.9.

Stress

Traffic

Pollution

Fair
Competition

Smart
Parking

Reduces Stimulates

Figure 2.9: Advantages of the proposed system

Let us analyze different points of view:

• Driver point of view: according to the distance based algorithm

proposed in [19], which is still used in this work, each driver will

place his car in the parking slot which is as close as possible

to his final destination. Such a criterion guarantees low time

wasting to each the target (for instance a clothes shop) from the

slot where the vehicle has been left. Moreover, the structure of

the algorithm itself ensures that the time to empty the ready

queue is minimized, and as a consequence also the waiting time

for each driver is reduced.

• Competitors point of view: the fairness constraints handled through

a blockchain mechanism ensure a fair competition between the

members of the same consortium, by not affecting market rules

and guaranteeing correctness. Each competitor is somehow pro-
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tected by the consortium itself, and a fair profit is guaranteed to

any of them.

• Consortium point of view: while protecting themselves, competi-

tors also protect the whole consortium, acting in its best interest,

even if they have the feeling of acting for their benefit only.

• Environment point of view: reducing the time typically wasted

while searching for a free parking slot dramatically decreases the

amount of gas emission, contributing to reduction of air pollu-

tion.

• Traffic point of view: as the previous case, traffic congestion is

typically affected by drivers slowing down or cruising along the

same streets over and over. Minimizing the time to complete the

parking process, traffic conditions will also improve.
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Chapter 3

Reasoning About DEL

games

3.1 Introduction

Many applications fall within the scope of reachability games with im-

perfect information (economics, robotics, distributed computing sys-

tems, web services, etc), such as video games [46] (Civilization, etc.),

Kriegspiel (the epistemic variant of Chess) [86], Hanabi [16], or con-

tingent and conformant planning [59]. For instance, drones patrolling

an area may have to decide which trajectory to take so that the status

(safe or unsafe) of each zone in this area is always known to at least

one of them, while antagonistic agents try to keep the status of some

areas secret.

Games with imperfect information are computationally hard, and
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even undecidable for multiple players [107]. One way to tame this

complexity is to make assumptions on how the knowledge of the dif-

ferent players compare: if all players that cooperate can be ordered in

a hierarchy where one knows more than the next, a situation called

hierarchical information, then the existence of distributed strategies

can be decided [32, 105]. Another natural approach is to consider

fragments based on classes of action types, as done for instance in

[28, 38, 112] where different kinds of public actions are considered.

By contrast, Dynamic epistemic logic (DEL) [129] was designed

to describe actions precisely: how they affect the world and how they

are perceived by agents. In particular, classic action types such as

public/private announcements or public actions correspond to natu-

ral classes of DEL action models. Also, DEL extends epistemic logic

and hence enables modelling higher-order knowledge, i.e., what an

agent knows about what another agent knows etc, and the evolution

of agents’ knowledge over time.

This work bridges the gap between DEL and games by introducing

adversarial aspects in DEL planning, thus moving from plan genera-

tion to strategy synthesis. Two frameworks are defined for DEL-based

reachability games, where players start in a given epistemic situation

and their possible moves are described by action models, and the ob-

jective is to reach a situation satisfing some epistemic formula.

First, open systems are considered [63], i.e., systems that interact
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with an environment. In this setting (called DEL controller synthe-

sis), two omniscient, external entities (controller and environment)

choose in turn which actions are performed, while agents involved in

the models and formulas are not active, they merely observe how the

system evolves based on the actions chosen by the controller and the

environment, and update their knowledge accordingly.

DEL controller synthesis extends DEL planning, as the latter is a

degenerate case of the former where the environment stays idle, and

therefore inherits undecidability for the general case.

Precisely, it will be shown Pspace-completeness when possible

moves are public announcements, Exptime-completeness for the more

general public actions, and membership in (k + 1) − Exptime for

propositional actions when the objectives are formulas of modal depth

at most k.

Second, a further generalization is applied, by turing agents into

players: unlike the omniscient controller of the previous setting, agents

have imperfect information about the current state of the game, and

can only base their decisions on what they know. This is modeled

through uniform strategies. In this setting, one can study the dis-

tributed strategy synthesis where a group of players cooperate to en-

force some objective against the remaining players. The problem is

undecidable, already for propositional actions and a coalition of two

players. However, two kinds of assumptions that make imperfect-
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information games decidable, namely public actions and hierarchical

information, also yield decidable cases of multiplayer DEL games, with

a complexity which is not worse than the case of controller synthesis

for public actions and public announcements.

Typically, situations like the one described above are handled through

imperfect information game arenas, i.e., graphs whose nodes represent

positions of the game, edges are the possible actions, and equivalence

relations capture indistinguishability of positions. However, the state

explosion problem makes game structures often very large, making dis-

tributed synthesis intractable. In order to circumvent this difficulty,

implicit descriptions by means of DEL presentations can be employed

instead of explicit representations of game structures. A DEL presen-

tation is made of a finite initial epistemic model that reflects the initial

knowledge of the agents, and a finite set of epistemic actions available

to them and the other agents in the environment. This setting is very

convenient to define various types of actions such as public actions or

semi-private announcements, and study how restricting to such actions

can make distributed synthesis easier.

Precisely, agents are split into two antagonistic teams, Agt∀ and

Agt∃, such that agents in Agt∃ want to reach some goal while the ones

in Agt∀ try to prevent them from winning. Also in this setting, decid-

ability can be obtained in the case of public actions and hierarchical

information. In particular, reachability goals are defined through win-
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ning conditions expressed in LTLK, that blends temporal operators and

epistemic modalities.

To prove decidability results, a crucial step is to show that the

game arena induced by a DEL game presentation, which is in general

infinite, can be represented finitely. This was already known for the

case of actions whose preconditions do not involve knowledge but are

purely propositional formulas [53, 89], and it is used to transfer an

existing result for distributed synthesis in explicit game arenas with

hierarchical information.

It is also proved that the infinite game generated from a DEL game

presentation is regular also in the case of public actions. This is done

by observing that, modulo isomorphism, such actions can only gener-

ate finitely many different epistemic models from the initial one, thus

allowing us to get an equivalent finite game as the quotient of the

infinite one. Moreover, for public announcements and the syntactic

fragment of LTLK, without next operator and local knowledge proper-

ties only, one can show an even stronger characteristic of game arenas

that allows us reducing to a polynomial-length horizon game and to

derive an optimal Pspace procedure.

Finally, concurrent executions of actions are considered in epis-

temic planning, which are essential for modelling realistic situations,

providing two main contributions.

First, defining a DEL concurrent update product that provides the
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dynamics of concurrent epistemic actions. This new product yields a

non-deterministic dynamics controlled by a scheduler, whose role is to

resolve conflicts. On the basis of this product, it is possible to show

how finite DEL presentations can generate infinite concurrent game

arenas.

Second, a proof that distributed synthesis can be solved for such

games for two cases: the case where all actions are public (perfectly

observed by everyone), and the case where all actions have proposi-

tional pre- and post-conditions and information among the agents is

hierarchical. This is proved by showing that the infinite concurrent

game arenas arising from DEL game presentations can be finitely rep-

resented when actions are all public or all propositional. In this way,

one can transfer existing results on the model-checking problem for

the epistemic strategic logic ATL∗K [127] to obtain, in particular, de-

cidability of distributed synthesis for temporal epistemic objectives.

3.2 Related Work

The complexity of DEL-based epistemic planning has been thoroughly

investigated. It is undecidable already for actions with preconditions

of modal depth one and propositional postconditions [35, 73]. For pre-

conditions of modal depth one and no postconditions the problem has

been open for years, but it is decidable when pre- and postconditions

are propositional [15, 53, 139]. It is also known to be NP-complete for
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public announcements [36, 44], and Pspace-complete for public actions

[44]. The decidability for propositional actions has been extended in

[15] by considering infinite trees of actions called protocols instead

of finite plans, and specifications in branching-time epistemic tempo-

ral logic instead of reachability for epistemic formulas; this has been

extended further in [53] by enriching the specification language with

Chain Monadic Second-order Logic. Both results rely on the fact that

when actions are propositional, the infinite structures generated by re-

peated application of action models form a class of regular structures

[15, 87], i.e., relational structures that have a finite representation via

automata. First-order logic is decidable on such structures [33], and

chain-MSO is decidable on a subclass called regular automatic trees

[53], but neither of these logics can express the existence of strategies

in games. Here it will be shown that the regular structures obtained

from propositional DEL models can be seen as finite turn-based game

arenas studied in games played on graphs and, hence, decidability re-

sults on games with epistemic temporal objectives can be transferred

to the DEL setting [91].

Regarding concurrency aspects introduced in DEL, concurrent ex-

ecution of actions has not been considered so far in epistemic planning.

Some works consider concurrent execution of abstract actions (as in

concurrent game structures [48]), or concurrent execution of purely

epistemic actions without effects on the world [4, 30, 130] or only pub-
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lic [49]. But concurrent execution of arbitrary epistemic actions with

explicit effects has never been studied. And yet they are essential for

modelling realistic situations.

3.3 Background on Games and Epistemic

Planning

3.3.1 Notations

Let us some standard notions and notations that will be needed in the

rest of the work. A finite (resp. infinite) word over some alphabet

Σ is an element of Σ∗ (resp. Σω). The length of a finite word w =

w0w1 . . . wn is |w| := n+ 1, and last(w) := wn is its last letter. Given

a finite (resp. infinite) word w and 0 ≤ i < |w| (resp. i ∈ N), we let

wi be the letter at position i in w, w≤i := w0 . . . wi is the prefix of w

that ends at position i and w≥i := wiwi+1 . . . is the suffix of w that

starts at position i.

3.3.2 Game arenas

Along this work different types of game arenas will be considered,

depending on the number of players, whether they play in turn or

concurrently, whether they observe perfectly the situation or not, and

finally whether transitions are deterministic or non deterministic. Be-
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cause many concepts such as plays, histories or strategies are common

to all cases, let us first introduce the most general case of multiplayer

concurrent arenas with non deterministic transitions and imperfect in-

formation. Then the other classes of arenas will be defined as particular

cases.

General definition

Let us fix a finite set of atomic propositions AP as well as a finite set

of agents Agt = {a1, . . . , aN}.

Definition 3.3.1. An arena is a tuple G = (Act ,V ,Vι,RAct ,∆,4

, λ), where

• Act is a non-empty set of actions,

• V is a non-empty set of positions,

• Vι ⊆ V is a non-empty set of initial positions,

• RAct : Agt → V → 2Act \ {∅} maps each agent and position to

a non-empty repertoire of actions available to this agent in this

position,

• ∆ ⊆ V × ActN × V is a transition relation,

• 4: Agt → 2V×V maps each agent a to an epistemic relation

over positions, and

• λ : V → 2AP is a valuation function.
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For convenience we will write Acta(v) for RAct(a)(v) and 4a for

4 (a).

In a position v each agent a chooses an available action αa ∈

Acta(v), yielding a joint action ~α = 〈α1, . . . , αN〉. We write JAct(v)

for the set of joint actions available in v. The game then moves nonde-

terministically to some position v′ ∈ ∆(v, ~α). We call play an infinite

sequence of positions π = v0v1v2 . . . such that for all k ∈ N, there

exists ~α ∈ ActN such that vk+1 ∈ ∆(vk, ~α). A history is a finite non-

empty prefix of a play. We write PlaysG and HistG for the sets of

plays and histories in G , respectively (the superscript might be omit-

ted when the game is clear from the context). One may also write

λ(h) for λ(last(h)), meaning the set of atomic propositions that hold

in the last position of history h. Similarly one can write Acta(h) for

Acta(last(h)).

Epistemic relations

The epistemic relation 4a indicates how agent a perceives positions:

v 4a v′ means that when in position v, agent a considers it possible

that v′ is the actual position. These relations will often be equivalence

relations, in particular when they are associated with agents that must

act based on their knowledge, as usual in games with imperfect infor-

mation [12]. This will be made clear by writing ≈a instead of 4a, and

in that case one can say that agent a has S5 knowledge [56].
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Games generated from DEL models will be studied, which natu-

rally model agents who have perfect recall of the past and have access

to a global clock counting the number of events (although other inter-

pretations are possible, see [50]). As a result the classic synchronous

perfect recall extension of indistinguishability relations to histories will

be used (see for instance [56] for more on perfect recall). The indis-

tinguishability relation of each agent a is lifted to histories as follows:

h 4a h ′ if |h| = |h ′| and hi 4a h ′i for every i < |h|.

Playing with imperfect information

Intuitively, in games with imperfect information, players’ strategies

must assign the same actions to indistinguishable situations [100]. For

this to make sense, it is necessary to assume that players have S5

knowledge, i.e., their epistemic relations are equivalence relations1.

However in some of the considered games, some agents do not ac-

tively play but passively observe, and for such agents it is not needed

to make this restriction. An agent is an observer if Acta(v) is a sin-

gleton for every position v ∈ V , so that it never has any real choice

to make. Otherwise agent a is a player. For clarity, the special action

idle will be used whenever an agent is not playing. From now on, it

is assumed that players have S5 knowledge, while observers can have

arbitrary epistemic relations.
1Actually the usual definition seems to make sense also for KD45 knowledge, i.e., for relations

that are serial, transitive, and Euclidean. But this would be highly non-standard, and we prefer
to stick to usual S5 knowledge.
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A strategy σ for an agent a is a function σa : HistG → Act such

that for every history h, σa(h) ∈ Acta(h). Note that by definition, an

observer has only one possible strategy, which is to always play idle.

If an agent a is a player, it is required in addition that its strategies

are uniform, meaning that for every pair of indistinguishable histories

h ≈a h ′, σa(h) = σa(h
′). Classically, it is assumed that Acta(v) =

Acta(v
′) whenever v ≈a v′ (if available actions were different, the

player could tell the difference between the positions).

In addition, if the game is turn-based (see Section 3.3.2 below), it

is required that players always know whose turn it is to play: for every

player a, if v ≈a v′ then there exists a player b such that v, v′ ∈ Vb.

Classes of game arenas

If the epistemic relation 4a of each player is the identity relation, then

G is a game arena with perfect information.

If, in every position v, there is exactly one agent a such that

Acta(v) 6= {idle}, then we say that the game is turn-based. In that

case, one can partition the set of positions as V = ]a∈AgtVa, where

Va = {v | Acta(v) 6= {idle}}.

If, for every position v and joint action ~α, {v′ | (v, ~α, v′) ∈ ∆} is a

singleton, then G is deterministic and one may represent the transition

relation as a function δ : V × ActN → V .
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Winning strategies

A strategy profile for a coalition of agents C ⊆ Agt is a tuple σC =

〈σa〉a∈C , and ΣC is the set of strategy profiles for a coalition C ⊆ Agt .

An outcome of a strategy profile σC from a position v0 is a play starting

in position v0 and in which agents in C follow the strategies in Σ:

formally, a play π = v0v1 . . . is an outcome of 〈σa〉a∈C from v0 if, for

every k ∈ N, there is a joint action ~α such that vk+1 ∈ ∆(vk, ~α) and

(~α)a = σa(v0 . . . vk), for all a ∈ C . We let Out(v, σC ) be the set of

outcomes of σC from position v, and for a set V ′ ⊆ V of positions we

let Out(V ′, σC ) = ∪v∈V ′Out(v, σC ).

A winning condition for a game arena G is a subset of playsWin ⊆

PlaysG . Given a game arena G , a coalition C ⊆ Agt and a winning

condition Win for C , a strategy profile σC for C is winning if all

its outcomes from starting positions are winning, i.e., Out(Vι, σC ) ⊆

Win.

Game unfolding

Finally, let us introduce the unfolding of a game arena, which will be

used to define an equivalence relation on game arenas.

Definition 3.3.2. Given a game arena G = (Act ,V ,Vι,RAct ,∆,4

, λ), the unfolding of G , Gunf = (Act ,V ′,V ′ι ,RAct
′,∆′,4′, λ′), is the

game arena where

• V ′ = HistG ;
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• V ′ι = Vι;

• for every h ∈ HistG and every agent a ∈ Agt , Act ′a(h) =

Acta(last(h));

• ∆′ = {(h, ~α, h · v) | (last(h), ~α, v) ∈ ∆};

• 4′a is the synchronous perfect-recall lifting of 4a to histories;

• λ′(h) = λ(last(h)).

One can say that two game structures G and G ′ are equivalent

whenever their unfoldings are isomorphic.

3.3.3 The classic DEL setting

Le us now recall the models used in Dynamic Epistemic Logic to de-

scribe epistemic situations and epistemic actions, as well as the update

product that captures their dynamics.

Epistemic models

Let us recall models of epistemic logic [56].

Definition 3.3.3. An epistemic model M = (W , (4a)a∈Agt , λ) is a

tuple where

• W is a set of worlds (or situations),

• 4a⊆W ×W is an accessibility relation for agent a, and
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• λ : W → 2AP is a valuation function.

One ca write w 4a u instead of (w , u) ∈4a; the intended meaning

of w 4a u is that when the actual world is w , agent a considers that u

may be the actual world. The valuation function λ provides the subset

of atomic propositions that hold in a world. A pair (M,w) where w

is a world inM is called a pointed epistemic model, or epistemic state,

while a pair (M,W ′), where W ′ ⊆W is a subset of worlds, is called

a multipointed epistemic model.

An epistemic model is finite if its set of worlds W is finite and for

each world w ∈W , λ(w) is finite. In that case, we let |M| be the size

ofM, defined as |W |+
∑

a∈Agt | 4a |+
∑

w∈W |λ(w)|. From now on,

all epistemic models are assumed to be finite.

Epistemic Logic

The syntax of Epistemic Logic EL is given by the following grammar:

φ ::= p | ¬φ | φ ∨ φ | Kaφ

where p ranges over AP and a ranges over Agt .

Kaφ is read ‘agent a knows that φ is true’. We define the usual

abbreviations> for p∨¬p, ⊥ for ¬>, φ1∧φ2 for ¬(¬φ1∨¬φ2) and K̂aφ

for ¬Ka¬φ, and use Prop for propositional formulas, the fragment of

EL obtained by removing the knowledge operator. The modal depth

of a formula is its maximal number of nested knowledge operators; for
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instance, the formula KaKbp∧¬Kaq has modal depth 2. The size |φ|

of a formula φ is the number of symbols in it.

Formulas of EL are evaluated on pointed epistemic models.

Definition 3.3.4. Let us defineM,w |= φ, read as ‘formula φ holds

in the pointed epistemic model (M,w)’, by induction on φ, as follows:

• M,w |= p if p ∈ λ(w);

• M,w |= ¬φ if it is not the case thatM,w |= φ;

• M,w |= φ ∨ ψ ifM,w |= φ orM,w |= ψ;

• M,w |= Kaφ if for all u such that w 4a u,M, u |= φ.

Sometimes, variables x that range over some finite domain will be

used. In such cases, one may write (x = d) to express that “the value

of x is d”. This can be encoded with atomic propositions xd, which

hold true when x is equal to d and false otherwise.

Action models

In addition to epistemic models, Dynamic Epistemic Logic (DEL) also

relies on action models (also called “event models”). These models

specify actions, the preconditions for their execution, their effects on

the world, and how agents perceive their occurrence.

Definition 3.3.5. An action model A = (A, (4Aa )a∈Agt , pre, post) is

a tuple where:
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• A is a set of possible actions,

• 4Aa⊆ A× A is the accessibility relation for agent a,

• pre : A→ EL is a precondition function, and

• post : A× AP → Prop is a postcondition function.

An action α is executable in a world w of an epistemic modelM if

its precondition pre(α) holds in w , i.e.,M,w |= pre(α). We assume

that all actions’ preconditions are satisfiable. A set of actions A′ ⊆

A is non-blocking if
∨
α∈A′ pre(α) ≡ >, i.e., there is always at least

one action in A′ that is executable. After executing an executable

action α in a world w , proposition p holds if its postcondition was

satisfied before executing the action; thus, let us define λ(w , α) :=

{p ∈ AP | M,w |= post(α, p)} as the set of propositions holding

after executing α in w . When postconditions are propositional, one

can define similarly λ(ν, α) where ν ⊆ 2AP is a valuation. A pointed

action model is a pair (A, α) where α represents the actual action.

Only finite action models will be considered, i.e., such that the

set of actions A is finite, and for every action α ∈ A there are only

finitely many atomic propositions p ∈ AP whose postcondition is not

trivially false, i.e., such that post(α, p) 6=⊥. We let |A| be the size of

A, defined as follows:

|A| := |A|+
∑
a∈Agt

| 4Aa |+
∑
α∈A

|pre(α)|+
∑

α∈A,p∈AP

|post(α, p)|
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When working with variables x over finite domains, one may write

x := d for the effect of setting x to value d. This can again be encoded

with atomic propositions xd and postconditions as defined above.

Update product

After occurrence of an action α in a world w , agent a considers it

possible that action α′ occurred in world w ′, if in w he considers w ′

possible and α′ is executable in w ′. Hence, he considers action α′ pos-

sible when action α is executed. This leads to the following definition

of the product that models how to update an epistemic model when

an action is executed [18].

Definition 3.3.6 (Product [18]). Let M = (W , (4)a∈Agt , λ) be an

epistemic model, and A = (A, (4Aa )a∈Agt , pre, post) be an action model.

The product of M and A is defined as M ⊗ A = (W ′, (4Aa )′, λ′)

where:

• W ′ = {(w , α) ∈W × A | M,w |= pre(α)},

• (w , α) 4′a (w ′, α′) if w 4a w ′ and α 4Aa α′, and

• λ′(w , α) = λ(w , α).

Example Figure 3.1 shows the pointed modelM,w that represents

a situation in which p is true and both agents a and b do not know

it. The pointed action model A, α describes the action where agent
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Figure 3.1: Example of DEL product. Symbol / indicates the trivial
postcondition that leaves valuations unchanged.

a learns that p was true but that it is now set to false, while agent

b does not learn anything (he sees action β that has trivial pre- and

postcondition). In the product epistemic model (M⊗A, (w , α)), agent

a now knows that p is false, while b still does not know the truth value

of p, or whether agent a knows it.

An epistemic or action model is S5 if all accessibility relations are

equivalence relations. This property is important to model games with

imperfect information, and it will be assumed in the sequel.

3.3.4 Generated structure

Iteratively executing an action model from an initial epistemic model

generates an infinite sequence of epistemic models, whose union yields

an infinite epistemic structure where dynamics are represented by the

possible sequences of actions, while information is captured by the

accessibility relations.
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Definition 3.3.7 (Generated structure). Given an epistemic model

M and an action model A, let us define the family of disjoint epistemic

models {MAn}n≥0 by letting

MA0 =M and

MAn+1 =MAn ⊗A

Le us finally define the infinite epistemic modelMA∗ =
⋃
n∈NMAn.

One can identify objects of the form (. . . ((w, α1), α2), . . . αn) with

(w, α1, . . . , αn), that one may also write wα1 . . . αn. For every world

(w , α1, . . . , αn) ∈M⊗An, and every formula φ ∈ EL, one may thus

write MA∗,wα1 . . . αn |= φ for M⊗An, (w , α1, . . . , αn) |= φ. This

shows that the alternative definition of epistemic planning given in the

next section is equivalent to the usual one.

3.3.5 Epistemic planning

In epistemic planning, the plan existence problem asks for the existence

of an executable sequence of actions α1, . . . , αn in an action model A,

whose execution from (M,wι) leads to a situation satisfying some

objective expressed as an epistemic logic formula. Formally, let us

consider the following problem.

Definition 3.3.8 (Plan existence problem).

• Input:
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Public announcements Public actions Propositional actions Full
Plan NP-c PSPACE-c decidable undecidable

Controller PSPACE-c (Th. 3.4.2) EXPTIME-c (Th. 3.4.3) decidable (Th. 3.4.4) undecidable
undecidable (Th. 3.5.1)

Distributed strategy PSPACE-c (Th. 3.5.2) EXPTIME-c (Th. 3.5.3)
decidable case (Th. 3.5.4)

undecidable

Table 3.1: Known results (new in grey) for plan, controller and dis-
tributed strategy synthesis.

– a pointed epistemic model (M,wι) (the initial situation)

– an action model A (possible actions)

– a formula φ ∈ EL (the objective)

• Output: yes if there exists α1 . . . αn such thatMA∗,wια1 . . . αn |=

φ.

Remark 1. Note that usual formulations of the plan existence problem

consider a set of distinct pointed action models (A1, α1), . . . , (An, αn)

instead of one action model A. Both formulations are equivalent, in

the sense that they are interreducible in linear time. One direction is

clear; for the other, one can define A as the disjoint union of the Ai

for all i, and add special atomic propositions that become true when

an action is performed so that the goal formula can be used to ensure

that only actions among {α1, . . . , αn} are executed.

Main known results on the plan existence problem are summarised

in Table 3.1.
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3.4 Controller Synthesis

The plan existence problem does not consider the possibility that

events from the environment could come in the way of the correct

execution of the plan. The first generalization consists in considering

such an antagonistic environment, and asking for a plan that would

ensure to reach the objective independently of how the environment be-

haves. This amounts to considering a two-player game between players

that are called Controller and Environment, and looking for a winning

strategy for Controller. Similarly to DEL epistemic planning, where

the plan is chosen by some external entity that is none of the agents in

the models, here Controller and Environment are two players distinct

from the agents and, unlike the agents, they have perfect observation

of the situation, so that we are dealing with two-player games of per-

fect information. The agents in the epistemic and action models are

observers, whose knowledge is only used to evaluate whether the goal

epistemic property holds.

3.4.1 The controller synthesis problem

Let us formally consider an initial epistemic modelM, defined as in

Definition 3.3.3, with an initial world wι, and an action model A =

(A, (4Aa )a∈Agt , pre, post) whose set of actions A is partitioned into a

set of actions Actr controlled by Controller, and a set of actions Aenv

controlled by Environment. In order to avoid deadlocks, it is required
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that there always be at least one available action for both Controller

and Environment (an easy way to achieve this is to include the idle

action, which is perfectly observed by all, having true precondition and

no effect on atomic propositions).

Definition 3.4.1. A DEL Controller-Environment-arena, or DEL C-

E-arena, is a triple 〈M,Wι,A〉 where (M,Wι) is a multipointed epis-

temic model, and A is an action model with sets of actions A =

Actr ] Aenv, where both Actr and Aenv are non-blocking.

Given a DEL C-E-arena 〈M,Wι,A〉 we define a turn-based game

arena G 〈M,Wι,A〉 over agents Agt ]{Con,Env} where Con and Env are

players with perfect information, and agents in Agt are observers.

Definition 3.4.2. Given a DEL C-E-arena 〈M,Wι,A〉, one can for-

mally define the deterministic turn-based arena G 〈M,Wι,A〉 as the tuple

(Act ,V ,Vι,RAct , δ,4, λ), where A = Actr]Aenv for the set of actions

in A andMAn = (W n, (4na)a∈Agt , λ
n) for every n and:

• the set of actions is Act = A ] {idle};

• the set of positions is V = ∪n∈NW n, partitioned as follows:

VEnv = ∪nW 2n, VCon = ∪nW 2n+1, and Va = ∅ for all other

agents a;

• the set of initial positions is Vι = Wι,
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• the agents’ repertoires of actions are defined as follows:

ActEnv(v) = {α ∈ Aenv | v |= pre(α)} if v ∈ VEnv

ActCon(v) = {α ∈ Actr | v |= pre(α)} if v ∈ VCon

Acta(v) = {idle} in all other cases;

• δ(v, ~α) = v · α, where α is the only non-idle action in ~α;

• agents’ epistemic relations are as follows:

– 4Con and 4Env are the identity relation

– for each other agent a, 4a= ∪n 4na;

• λ(v) = λn(v), where n is such that v ∈W n.

Controller and Environment play in turn: in each round, Environ-

ment first chooses to execute an action in Aenv, then Controller reacts

with some action in Actr. Other agents merely observe the evolution

of the system. The problem of interest is then to decide whether

Controller has a strategy to ensure that a situation satisfying some

epistemic property, expressed by some formula φ ∈ EL, will eventu-

ally be reached. Given a game G , this objective is captured by the

following winning condition:

WinG
φ = {π ∈ PlaysG | ∃n, πn |= φ}
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One can use the fact that equivalence of game arenas (i.e., isomor-

phy of their unfoldings, see Section 3.3.2) preserves winning strategies

for this winning condition.

Lemma 3.4.1. Let G and G ′ be two equivalent game arenas, and let

φ ∈ EL. For any coalition C of agents, C has a winning strategy

profile in G for WinG
φ if and only if it has a winning strategy profile

in G ′ for WinG ′

φ .

Proof. Let f be an isomorphism between the unfoldings of G and G ′.

It induces a bijection between plays and a bijection between strategies.

For every play π, we have that π ∈WinG
φ if and only if f(π) ∈WinG ′

φ ,

because isomorphic histories satisfy the same epistemic formulas. As a

result the bijection between strategies also preserves winning strategies

between G and G ′.

Let us now define our controller synthesis problem.

Definition 3.4.3 (The controller synthesis problem).

• Input: A DEL C-E-arena 〈M,Wι,A〉 and an objective φ ∈ EL

• Output: yes if there exists a winning strategy for Controller in

G 〈M,Wι,A〉 for the winning condition Winφ; no otherwise.

Remark 2. Formally, let us define and study the problem of existence

of a strategy. One can take the liberty to call the problem ”controller

synthesis” because all the algorithms provided can produce a winning
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strategy whenever there exists one. The same remark applies to the

distributed strategy synthesis problem defined in the next section.

As the plan existence problem reduces to the controller synthesis

problem (by taking an environment whose only action is the trivial

one), the undecidability of the former entails that of the latter.

Theorem 3.4.1. The controller synthesis problem is undecidable.

Next, it will be established that in all known cases where the plan

existence problem is decidable, so is the controller synthesis problem.

3.4.2 The case of non-expanding action models

Let us consider non-expanding action models, where actions do not

expand epistemic models when executed. Typical examples of such

actions are public announcements and public actions. When actions

are non-expanding the search space is finite, and thus the problem is

decidable. Let us establish the precise computational complexity of

the problem in the case of public announcements and public actions.

Beforehand, let us provide a semantic definition of non-expanding

action models, and show that they correspond to the syntactic notion

of separable action models from [44]. In the following, we say that a

world u in an epistemic model M = (W , (4a)a∈Agt , λ) is connected

to a world w if u can be reached from w by a sequence of epistemic

relations, i.e., (w , u) ∈ (∪a∈Agt 4a)∗, and the connected component
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of w is the set of worlds connected to w . Connected actions and

connected components in action models are defined similarly.

Definition 3.4.4. An action model A is non expanding if, for ev-

ery pointed epistemic model (M,w) and action α ∈ A such that

M,w |= pre(α), the connected component of (w , α) is no bigger than

the connected component of w .

In other words, an action model is non expanding if applying any

of its actions in any world of any epistemic model does not increase

the number of possible worlds, modulo disconnected worlds that are

irrelevant for the evaluation of epistemic properties. For instance, since

their connected components are singletons, public actions and public

announcements are non expanding.

Let us now refine the notion of separable action model from [44].

Definition 3.4.5. An action model A is separable if for any two

distinct events α, β ∈ A in the same connected component, pre(α) ∧

pre(β) is unsatisfiable.

With respect to the definition from [44], the requirement is limited

to only connected pairs of events. Intuitively, disconnected events give

rise to disconnected worlds when the action model is applied to an

epistemic model, and thus cannot cause the connected component of

interest to grow.

Proposition 3.4.1. An action model is non expanding if and only if

it is separable.
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Proof. First, let A = (A, (4Aa )a∈Agt , pre, post) be a separable action

model. Let α ∈ A, and let (M,w) be a pointed epistemic model such

thatM,w |= pre(α). For every world (u, β) ∈ M⊗A connected to

(w , α), by definition of the update product, we have that β is connected

to α. Because A is separable, two actions β, β′ connected to α cannot

be executable in a same world u. As a result, each world u connected

to w can give rise to at most one world (u, β) connected to (w , α),

hence A is non-expanding.

Conversely, if an action model A = (A, (4Aa )a∈Agt , pre, post) is not

separable, then there are two actions β, β′ in a same connected com-

ponent (say, the connected component of action α) such that pre(β)∧

pre(β′) is satisfiable. Since β and β′ are connected to α, there exist

k ≥ 0 actions β1, . . . , βk and β′1, . . . , β′k′ and agents a1, . . . , ak+1 and

a′1, . . . , a
′
k′+1 s. t. α 4Aa1 β1 . . . βk 4

A
ak+1

β and α 4Aa′1 β
′
1 . . . β

′
k 4

A
a′
k′+1

β′. Let us define an epistemic model M = (W , (4a)a∈Agt , λ) with

two chains of worlds reflecting the structure of the above two chains

of actions, except that they end in the same world u that satisfies

both pre(β) and pre(β′) (W = {w , u1, . . . , uk, u ′1, . . . , u ′k′, u}). Ac-

cessibility relations are s. t. w 4a1 u1 . . . uk 4ak+1
u and w 4a′1

u ′1 . . . u
′
k′ 4a′k+1

u, and the valuation function is such that w satis-

fies pre(α), each ui satisfies pre(βi), each u ′i satisfies pre(β′i) (this is

possible since actions have satisfiable preconditions), and u satisfies

pre(β)∧ pre(β′). The connected component of (w , α) inM⊗A con-
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tains {(w , α), (u1, β1), . . . , (uk, βk), (u
′
1, β

′
1), . . . , (u

′
k′, β

′
k′), (u, β), (u, β′)},

which is bigger than W , the connected component of w .

In the following, the complexity of the controller synthesis problem

for non-expanding actions will be established. First, the particular case

of public announcements will be considered, for which the complexity

is shown to be lower than for arbitrary non-expanding actions.

Theorem 3.4.2. When all actions are public announcements, the con-

troller synthesis problem is Pspace-complete.

Proof. For the upper bound, it is used the fact that applying public

announcements to epistemic models only removes worlds, and does

not change those that remain. As a result, the number of successive

public announcements to consider can be bounded by the number of

worlds in the initial epistemic model. The problem can be thus solved

with an alternating algorithm that runs in polynomial time, guess-

ing existentially actions of the controller and universally those of the

environment. The procedure is given in Algorithm 4.

In conclusion, let us recall that alternating polynomial time cor-

responds to deterministic polynomial space [43]. Note that checking

epistemic formulas (preconditions and φ) in epistemic models, and

thus also computing the update product, can be performed in polyno-

mial time. PSPACE-hardness is proved with a polynomial reduction

from TQBF (True Quantified Boolean Formulae), a PSPACE-complete
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Algorithm 4 Alternating algorithm for deciding in polynomial-time
the controller synthesis problem when actions are public announce-
ments.

universally choose wι ∈Wι,
setMcur,wcur :=M,wι as the current pointed epistemic model;
for i := 0 to the number of worlds inM do

if Mcur,wcur |= φ then
accept

end if
if i is even then

existentially choose α ∈ Actr such thatMcur,wcur |= pre(α)
(fail if no such action exists);

end if
if i is odd then

universally choose α ∈ Aenv such thatMcur,wcur |= pre(α)
(fail if no such action exists);

end if
setMcur,wcur :=Mcur ⊗A, (wcur, α)

end for
reject
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problem [119]. Given a QBF formula

Φ = ∃p1∀p2 . . . ∃p2k−1∀p2kχ(p1, . . . , p2k)

one can construct the following instance of the controller existence

problem:

• M is the pointed Kripke model made up of a {pi}-world (i.e.,

a world where only pi holds) and a {qi}-world (where qi is an

atomic proposition different from pj for all j, and different from

qj for j 6= i) for each i ∈ {1, . . . , 2k}, and an extra ∅-world

w which is the initial pointed world; the epistemic relation for

agent a is universal;
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• The possible announcements are

ϕ¬pi =
i−1∧
j=1

Ka¬qj ∧
2k∧
j=i

K̂aqj ∧ ¬pi ∧ ¬qi and

ϕpi =
i−1∧
j=1

Ka¬qj ∧
2k∧
j=i

K̂aqj ∧ ¬qi

for i ∈ {1, . . . , 2k}. They belong to the controller when i is odd,

and to the environment when i is even;

• The goal is
∧2k
j=1Ka¬qj ∧ χ(K̂ap1, . . . , K̂ap2k).

In the modelM, worlds wi are used to encode assignments of truth

values to atoms pi: removing world wi means setting pi to true, while

keeping it means setting pi to false. Worlds ui, bearing atoms qi, are

used to enforce that the value of each atom pi is set exactly once. In

announcements φpi and φ¬pi, conjunct
∧i−1
j=1Ka¬qj ∧

∧2k
j=i K̂aqj im-

plies that worlds u1, . . . , ui−1 have already been removed, while worlds

ui, . . . , u2k are still in the model. Thus announcements φpi and φ¬pi

are possible in round i, and only there.

Now observe that announcement φ¬pi, because of conjunct ¬pi ∧

¬qi, removes both world wi and world ui, thus setting pi to true.

Announcement φpi instead removes only world ui, thus setting pi to

true.

In the goal formula,
∧2k
j=1Ka¬qj means that all the variables p1, . . . , p2k

have been assigned. The clause χ(K̂ap1, . . . , K̂ap2k) is the formula
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χ(p1, . . . , p2k) in which we replaced pi by K̂api, which holds if and

only if world wi has not been removed by announcements, i.e., if and

only if announcement φpi was chosen at round i.

The fact that the announcements that assign values to p1, p3, . . .

are assigned to the controller and that the announcements that assign

values to p2, p4, . . . are played by the environment reflects the alterna-

tion of quantifiers in the formula ∃p1∀p2 . . . ∃p2k−1∀p2kχ(p1, . . . , p2k).

Let us now move to the class of non-expanding actions.

Theorem 3.4.3. The controller synthesis problem for non-expanding

actions is Exptime-complete.

Proof. As for public announcements, applying a non-expanding ac-

tion in a model does not add worlds. However it may change facts in

worlds, so that sequences of actions of linear length may not suffice.

Nonetheless, linear space is enough to store the current pointed epis-

temic model, and we can turn the alternating algorithm from the proof

of Theorem 3.4.2 into one that runs in polynomial space. The new al-

gorithm is given in Figure 5, in which we do not bound the length of

the sequence of actions. Note that the algorithm may not terminate,

but it is folklore that we can add a counter to ensure termination while

staying in polynomial-space.

The Exptime-membership of the problem follows from the fact

that alternating polynomial space corresponds to exponential time [43].
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Algorithm 5 Alternating algorithm for deciding in polynomial-space
the controller synthesis problem when actions are non-expanding.

universally choose wι ∈Wι;

setMcur,wcur :=M,wι as the current pointed epistemic model;
i := 0;
whileMcur,wcur 6|= φ do

if i is even then
existentially choose α ∈ Actr such that Mcur,wcur |=

pre(α)(fail if no such action exists);
end if
if i is odd then

universally choose α ∈ Aenv such that Mcur,wcur |= pre(α)
(fail if no such action exists);

setMcur,wcur :=Mcur ⊗A, (wcur, α);
i := 1− i;

end if
end while
Accept

Exptime-hardness is obtained by reduction from the conditional plan-

ning problem, a variant of classical planning with full observability and

non-deterministic actions, where the plan should lead to a situation

satisfying the goal no matter how nondeterminism is resolved. How-

ever the plan can depend on how nondeterminism is resolved, hence

the name “conditional plan” [78, 113].

Stated in our terms, conditional planning essentially corresponds

to a particular case of controller synthesis which is purely Boolean (no

epistemic content), but where actions chosen by the controller have

nondeterministic effects, and the environment resolves nondetermin-

ism. Since everything is purely Boolean, the initial situation is a one-
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world epistemic model, i.e., a valuation over a finite set of atoms AP ,

the goal is a Boolean formula over AP , and each action is a one-state

action model with nondeterministic postcondition. A conditional plan

is then a winning strategy for the controller. Thus, to finish the reduc-

tion, one only have to show how to simulate nondeterministic actions

in our setting.

In [78, 113], a nondeterministic action is modelled as a tuple 〈φ,−−→post〉,

where φ is a Boolean precondition, and −−→post is a finite set of postcondi-

tions {post1, . . . , postn}. The idea is that in each round the controller

chooses an action among those whose precondition is true, and the

environment resolves the non-determinism by choosing which post-

condition of −−→post to apply to the current valuation. For each nonde-

terministic action 〈φ, {post1, . . . , postn}〉 of the conditional planning

instance, one can create one action for the controller that stores in

a finite-domain variable action which action has been played, and n

actions for the environment that correspond to the different possible

postconditions. The action for the controller is defined as follows:

pre : φ

post : action := 〈φ,−−→post〉

while the actions for the environment are, for each i ∈ {1, . . . , n},

pre : action = 〈φ,−−→post〉

post : post i
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Accessibility relations are all the identity relation, so that all actions

are public actions, and the action model is non-expanding. The goal

is the same as in the conditional planning instance. This finishes the

proof, and also shows how the controller synthesis problem subsumes

conditional planning. We now present an alternative proof that re-

duces from a more basic decision problem called G4, introduced by

Chandra and Stockmeyer [123]. This is essentially an adaptation of

the proof from [78] for the EXPTIME-hardness of conditional plan-

ning.

The input to the G4 problem is a 13-DNF formula over 2k atomic

propositions p1, . . . , pk, q1, . . . , qk and an initial valuation. Atoms

p1, . . . , pk are controlled by the controller (the existential player) while

q1, . . . , qk are controlled by the environment (the universal player).

Now, the following game is played: each player, when it is his turn to

play, flips the assignment of one of the variables he controls, and turns

alternate. The game stops when the 13-DNF formula becomes true,

and the winner is the player that made the last move. An instance of

the G4 problem is positive if the controller has a winning strategy.

We construct the following instance of our controller synthesis

problem. The initial epistemic model is made up of one world, whose

valuation is the initial valuation of G4. Actions of the controller are:

pre : >

post : p1 := ¬p1
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pre : >

post : pk := ¬pk

Actions of the environment are:

pre : >

post : q1 := ¬q1

pre : >

post : qk := ¬qk

Again, all accessibility relations are the identity relation. The goal is

the 13-DNF formula.

3.4.3 The case of propositional action models

To solve our controller synthesis problem in the case of actions where

all preconditions and postconditions are propositional formulas, we

rely on the approach followed in [87] to solve the plan existence problem

for such actions. This approach has two main ingredients: (I1) when

A is propositional, the generated structureMA∗ can be represented

finitely, and (I2) one can decide the existence of a winning strategy in

a certain class of two-player games with epistemic objectives.

Theorem 3.4.4. When action models are propositional, the controller

synthesis problem is decidable, and in (k + 1)-Exptime if the objec-

tive’s modal depth is bounded by k.
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The rest of this section is devoted to prove Theorem 3.4.4. The

proof amounts to showing that one can reduce the problem to the

existence of a winning strategy in a certain class of games that is

known to be decidable. More precisely, [87] considers turn-based games

with two perfect-information players and n observers, and show that

the existence of a winning strategy for one of the players is decidable

for objectives expressed in a rich epistemic temporal logical language.

In particular it can express the reachability of an epistemic objective

φ ∈ EL. Let us call C-E-epistemic arena a turn-based arena with two

players called Controller and Environment, and where agents in Agt

are observers.

Theorem 3.4.5 ([39]). The existence of a winning strategy for Con-

troller in a finite C-E-epistemic arena G for an epistemic reachability

winning condition Winφ where φ ∈ EL is of modal depth k can be

decided in time k-exponential in |G | and |φ|.

Remark 3. To be precise the variant of the problem studied in [39]

does not consider multiple possible initial states as it has been done

here, but only one. However, the result can be extended by a straight-

forward reduction from the case of multiple initial states to the case

of a single one. This can be done by adding an artificial unique ini-

tial position controlled by Environment that branches to all real initial

positions, and requires to reach the goal after at least one step (this is

expressible in the logic considered in [39]).
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Note that the arena G 〈M,Wι,A〉 used in Definition 3.4.2 to define the

controller synthesis problem is a C-E-epistemic arena with infinitely

many positions. One can show that if A is propositional, then one

can construct a finite C-E-epistemic arena G of exponential size that

is equivalent to G 〈M,Wι,A〉. Since arena equivalence preserves winning

strategies for winning condition Winφ (Lemma 3.4.1), and we can

solve the problem in k-exponential time on finite C-E-epistemic arenas

(Theorem 3.4.5), the k + 1-Exptime upper bound of Theorem 3.4.4

follows.

Proposition 3.4.2. Given a DEL C-E-arena 〈M,Wι,A〉 where A is

propositional, one can construct a finite C-E-epistemic game arena G

equivalent to G 〈M,Wι,A〉 and of size |G | ≤ |M|+ |A|× 2m+1, where m

is the number of atomic propositions involved inM,A and φ.

Proof. LetM = (W , (4a)a∈Agt , λ) and A = (A, (4Aa )a∈Agt , pre, post),

and let AP i be the atomic propositions involved. The idea is that

when preconditions and postconditions are all propositional, knowing

the current valuation is enough to evaluate them. One can also include

in positions either the world (in starting positions) or the last action

seen so that one can define epistemic relations accurately. Finally, it

is needed a bit to indicate who should play between Controller and

Environment. As a result, a position of the game arenaG that we build

is either an initial world w ∈ M or a tuple (α, ν, turn) where α ∈ A

represents the last action performed, ν ∈ 2AP i is the current valuation,
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and turn ∈ {0, 1} indicates whose turn it is to play: 0 for Environment

and 1 for Controller. In an initial position w , Environment can choose

an action α ∈ Aenv such that w |= pre(α) and move to (α, λ′(w , α), 1);

in a world of the form (α, ν, turn), if turn(v) = 0 (resp., turn(v) = 1),

Environment (resp, Controller) chooses an action α′ ∈ Aenv (resp.,

α′ ∈ Actr) such that ν |= pre(α′), and moves to (α′, λ(ν, α′), 1− turn).

Formally, letting A = Aenv ] Actr, we define the C-E-epistemic

arena G = (Act ,V , vι,RAct , δ,4′, λ′) where

• Act = Aenv ] Actr

• V = W ∪ (2AP i × A× {0, 1})

• Vι = Wι

• Repertoires of actions are as follows:

– ActEnv(v) =


{α ∈ Aenv | w |= α} if v = w

{α ∈ Aenv | ν |= α} if v = (ν, α, 0)

– ActCon(v) = {α ∈ Actr | ν |= α} if v = (ν, α, 1)

– Acta(v) = {idle} in all other cases

• for a joint action ~α whose only non-idle action is α, we let:

δ(v, ~α) =


(α, λ(w , α), 1) if v = w

(α, λ(ν, α), 1− turn) if v = (α′, ν, turn)

133



VANETs: an algorithmic and a game-theoretic approach

• agents’ epistemic relations are as follows:

– 4Con and 4Env are the identity relation

– for each other agent a,

v 4′a v
′ if


v = w , v′ = w ′ and w 4a w ′, or

v = (ν, α, turn), v′ = (ν ′, α′, turn) and α 4Aa α′

• λ′(v) =


λ(w) if v = w

ν if v = (ν, α, turn)

The number of positions in G is |M|+ |A| × 2m+1. One can then

check that the unfoldings of G and that of G 〈M,Wι,A〉 are isomorphic.

3.5 Distributed Strategy Synthesis

In classic DEL epistemic planning, one external entity (the Planner)

chooses a plan to achieve a goal, while all the epistemic agents in the

DEL models are passive observers. In the controller synthesis problem

introduced and studied in the previous section, the Planner is called

the Controller and is now playing against the Environment, but the

agents are still mere observers. Let us now go one step further in gener-

alizing the problem and make the agents themselves choose the actions

that are performed: they become players. Naturally, and consistently
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with the fundamentals of games with imperfect information [100], it is

ensured that their strategies are consistent with their knowledge.

In this setting, it will be consideres the problem of distributed strat-

egy synthesis, which consists in deciding whether a designated subset

of agents (a coalition) has a distributed strategy (or strategy profile)

to enforce some objective against the other agents. To this end, the set

Agt of agents is split into two teams Agt∃ and Agt∀ that play against

each other.

3.5.1 Setting up the game

As discussed in Section 3.3.2, when considering players with imperfect

information we assume that their epistemic relations are equivalence

relations. Since all agents are now players, it will be assumed that all

epistemic and action models are S5, i.e., all their epistemic relations

are equivalence relations.

Let us fix an initial epistemic modelM = (W , (≈a)a∈Agt , λ) and

an action model A = (A, (≈Aa )a∈Agt , pre, post) whose set of actions A

is partitioned into subsets (Aa)a∈Agt of actions for each player. Let us

describe a multiplayer game arena of imperfect information based on

these models. For the moment, let us define turn-based games because

the DEL update product captures the occurrence of a single event at

a time. In Section 3.6, it will be introduced a novel update product

that will be used to define concurrent DEL games.
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To model turns, let us use a variable turn ranging over Agt to

represent whose turn it is to play. We require that an action controlled

by agent a is executable only when it is agent a’s turn to play: for each

α ∈ Aa, pre(α) implies turn = a. We also require that postconditions

for variable turn do not depend on the current world, but instead

the next value of turn is completely determined by the action only:

for every action α and agent a, post(α)(turn = a) ∈ {>,⊥} (recall

that such variables with finite domain can be encoded with atomic

propositions, see sections 3.3.3 and 3.3.3).

Moreover, in order to obtain a proper imperfect-information game,

the following hypotheses are required:

Hypotheses on M and A

(H1) The starting player is known: there is a player a such that

for all w ∈W ,M,w |= turn = a;

(H2) The turn stays known: for all actions α, α′ and agent a, if

α ≈Aa α′, then α and α′ assign the same value to turn.

(H3) Players know their available actions: if wα1 . . . αn |= turn =

a and wα1 . . . αn ≈a w ′α′1 . . . α′n, then the same actions of a are

executable in both worlds: for all α ∈ Aa, wα1 . . . αn |= pre(α)

iff w ′α′1 . . . α
′
n |= pre(α).

Remark 4. Hypothesis (H1) and (H2) concern syntactic aspects of

arena and are therefore easy to check. Regarding Hypothesis (H3), our
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results split in two cases: In Section 3.5.4, we allow action models to

have modal preconditions, so that imposing the precondition of each

α, say in Aa, to be of the form Kaφ makes Hypothesis (H3) true. On

the contrary in Section 3.5.5, the action model A is propositional. By

Proposition 3.4.2, the generated structure MA∗ can be represented

by some finite C-E-arena G . By letting Controller play alone, i.e.,

by letting VCon = V and VEnv = ∅, we obtain a game where every

strategy of Controller induces a unique outcome, and every possible

play in G is the outcome of one such strategy. Consider formula:

φH3 :=
∧
a∈Agt

[
turn = a→

( ∧
α∈Aa

pre(α)→ Kapre(α)
)]

It expresses that the agent in control of the current position knows

which of its actions are executable. As a result, Controller has a win-

ning strategy for objective Win ¬φ(H3)
if and only if (H3) does not hold,

and by Theorem 3.4.5 one can decide this.

3.5.2 The distributed strategy synthesis problem

Let us now define formally the problem of distributed strategy synthe-

sis for DEL games. The first step is to define DEL turn-based game

arenas with imperfect information, that will be simply called DEL

arenas in this section.

Definition 3.5.1. A DEL arena 〈M,Wι,A〉 consists of an initial
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multipointed epistemic model (M,Wι) and an action model A that

satisfy (H1), (H2) and (H3).

Given a DEL game arena 〈M,Wι,A〉, one can define an infinite

turn-based game arena G 〈M,Wι,A〉 where all agents are players with

imperfect information.

Definition 3.5.2. Given a DEL arena 〈M,Wι,A〉, it is possible

to define the deterministic turn-based arena G 〈M,Wι,A〉 as the tuple

(Act ,V ,Vι,RAct , δ,≈, λ) where, writing A = ]a∈AgtAa for the sets

of actions in A andMAn = (W n, (≈na)a∈Agt , λn) for every n:

• the set of actions is Act = A ] {idle};

• the set of positions is V = ∪n∈NW n, partitioned as follows:

for each a ∈ Agt , Va = {v | MA∗, v |= (turn = a)};

• the initial positions are Vι = Wι,

• for each agent a ∈ Agt , its repertoire of actions is defined as

follows:

Acta(v) =


{α ∈ Aa | v |= pre(α)} if v ∈ Va

{idle} otherwise;

• δ(v, ~α) = v · α, where α is the only non-idle action in ~α;

• for each agent a ∈ Agt , ≈a= ∪n ≈na;
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• λ(v) = λn(v), where n is such that v ∈W n.

This is a well-defined turn-based game: thanks to H1 and H2,

players always know whose turn it is, and thanks to H3, players always

know their available actions.

Definition 3.5.3 (Distributed strategy synthesis problem).

• Input: DEL arena 〈M,Wι,A〉, a team Agt∃ ⊆ Agt and a goal

φ ∈ EL;

• Output: yes if team Agt∃ has a winning strategy in G 〈M,Wι,A〉

for winning condition Winφ, no otherwise.

One may write Agt∀ = Agt \ Agt∃ for the opposite team.

Let us first establish an undecidability result for this problem. Un-

like the controller synthesis problem which we proved decidable for

propositional actions, synthesising distributed strategies is undecid-

able for propositional actions, already for a team of two players.

3.5.3 Undecidability for two existential players

The following Theorem 3.5.1 is a reformulation in our setting of the

classical undecidability result from Reif and Peterson [108]. However,

it is promoted an existing elegant reformulation of that very same re-

sult, called TEAM DFA GAME [45, Def. 1,p. 14:7], that can be reduced

to our distributed strategy synthesis problem.
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Theorem 3.5.1. The distributed strategy synthesis problem is unde-

cidable, already for a propositional action model and two existential

players against one universal player.

Proof. The proof is given by reduction from the problem TEAM DFA

GAME [45, Def. 1, p. 14:7], shown to be undecidable. Let us consider

a two-versus-one (players a and b versus player ∀) team game played

on a deterministic finite automaton (DFA) A whose alphabet is {0, 1},

whose set of states isQ, initial state is q0, transition function δ. Special

subsets of states F∃ and F∀ are given. The game starts with A being

in state q0. Each round is divided in six steps:

1. if the current state q is in F∃ then team {a, b} wins; if the current

state q is in F∀ then team {∀} wins;

2. Player ∀ inputs two bits β, β′ into A;

3. Player a learns β;

4. Player a inputs one bit m into A;

5. Player b learns β′;

6. Player b inputs one bit m′ into A.

At each step, player ∀ has perfect information. TEAM DFA GAME is

the decision problem: given an DFA A, subsets of states F∃, F∀, does

the team {a, b} have a winning strategy?
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The rest of the proof consists in representing the initial situation,

the game rules and the goal of a TEAM DFA GAME instance as a

distributed strategy synthesis problem instance.

Definition of the reduction. Let (A, F∃, F∀) be an instance of

TEAM DFA GAME. Teams are Agt∃ = {a, b} and Agt∀ = {∀}.

We introduce a finite-domain variable q that ranges over the set

of states of A. The variable q can be represented by a finite set of

atomic propositions: for example, for an automaton with 8 states from

{0, . . . , 7}, three atomic propositions, bit1(q), bit2(q) and bit3(q) so

that say (q = 5) is the Boolean formula bit1(q) ∧ ¬bit2(q) ∧ bit3(q).

Let us also introduce a finite-domain variable stp that ranges over

{1, 2, 3, 4, 5, 6}. The Boolean variable lost is true if the team Agt∃ has

lost. Let us defineM,w to be the single-world S5 epistemic model in

which turn = ∀, q = q0, stp = 1, ¬lost. The actions in A∀ form an a-

and b-indistinguishably equivalence class and are of the form:

• pre : turn = ∀ ∧ stp = 1 ∧ q∈F∀; post : lost:=>, stp:=2

• pre : turn = ∀ ∧ stp = 1 ∧ q 6∈F∀; post : stp:=2

• pre : turn = ∀ ∧ stp = 2;

post : β:=0, β′:=0, q:=δ(q, 00), turn:=a, stp:=3

• pre : turn = ∀ ∧ stp = 2;

post : β:=1, β′:=0, q:=δ(q, 10), turn:=a, stp:=3
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• pre : turn = ∀ ∧ stp = 2;

post : β:=0, β′:=1, q:=δ(q, 01), turn:=a, stp:=3

• pre : turn = ∀ ∧ stp = 2;

post : β:=1, β′:=1, q:=δ(q, 11), turn:=a, stp:=3

Aa is a b-indistinguishably equivalence class and contains:

• pre : turn = a ∧ stp = 3 ∧ β; post : stp = 4

• pre : turn = a ∧ stp = 3 ∧ ¬β; post : stp = 4

• pre : turn = a ∧ stp = 4;

post : m:=⊥, stp:=5, q:=δ(q, 0), turn:=b

• pre : turn = a ∧ stp = 4;

post : m:=>, stp:=5, q:=δ(q, 1), turn:=b

Ab is an a-indistinguishably equivalence class and contains:

• pre : turn = b ∧ stp = 5 ∧ β′; post : stp:=6

• pre : turn = b ∧ stp = 5 ∧ ¬β′; post : stp:=6

• pre : turn = b ∧ stp = 6;

post : m′:=⊥, stp:=1, q:=δ(q, 0), turn:=∀

• pre : turn = b ∧ stp = 4;

post : m′:=>, stp:=1, q:=δ(q, 1), turn:=∀
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The assignments q := δ(q, 0) and q := δ(q, 1) are shortcuts for some “if

statements” on states, e.g. ‘if q = 5, then q := 2’. For instance, assum-

ing that we have eight states {s0, . . . , s7} which are thus representable

with three bits, the assignment q := δ(q, 0) is simulated by the follow-

ing set of propositional assignments: {biti(q) := ψi}i=1..3, where ψi is

the Boolean formula
∨
k∈0..7 s.t. the i-th bit of δ(sk, 0) is 1(q = sk).

The goal formula φ is ¬lost ∧ stp = 1 ∧ (q∈F∃).

Let us now turn to decidable cases: games with imperfect informa-

tion and epistemic objectives are known to be decidable either when

actions are public [26], or when information is hierarchical [88]. Similar

results in this setting are established.

3.5.4 The case of non-expanding action models

Theorems 3.4.2 and 3.4.3 of Section 3.4 generalise to the problem of

distributed strategy synthesis. First, we inherit the lower bounds by

noticing that in the proofs of both theorems, the reductions used to

establish the lower-bounds yield DEL games where Controller and En-

vironment alternate turns; by letting Agt∃ = {controller}, we obtain

instances of the distributed strategy synthesis problem. Second, the

upper bounds are obtained by adapting the alternating algorithms for

the upper bounds of Theorems 3.4.2 and 3.4.3. We need to ensure that

existential choices of actions of an agent a ∈ Agt∃ lead to a uniform

strategy.
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To do that, every time agent a picks an action α, we perform an

extra universal choice over ≈a-indistinguishable worlds, and continue

executing the algorithm from these worlds.

Theorem 3.5.2. For public announcements, the distributed strategy

synthesis problem is Pspace-complete.

Proof. Hardness follows from Theorem 3.4.2 (consider team Agt∃ =

{controller}). To establish Pspace membership we provide an al-

ternating algorithm that runs in polynomial time. This algorithm is

similar to the one given in the proof of Theorem 3.4.2, except that we

add universal choices of ≈Aa -successors for player a in Agt∃. More pre-

cisely, the algorithm works as follows: when it is the turn of a player

a in Agt∀ to play, universally guess an executable action in Aa. When

it is the turn of a player a in Agt∃ to play, then perform the following

steps:

• first existentially guess an executable action α in Aa;

• second, universally guess ≈a-successor of the pointed world in

the current epistemic model and make it as the new pointed

world;

• compute the new epistemic model by executing the α.

As for Theorem 3.4.2, the length of such a sequence is bounded by

the number of worlds in the initial epistemic modelM. The obtained

algorithm is given in Algorithm 6.
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Algorithm 6 Alternating algorithm for deciding in polynomial-time
the distributed strategy synthesis problem when actions are public
announcements.

setMcur,wcur :=M,wι as the current pointed epistemic model;
for i := 0 to the number of worlds inM do

if Mcur,wcur |= φ then
accept

end if
let a be the agent such thatMcur,wcur |= turn = a;
if a ∈ Agt∃ then

existentially choose α ∈ Aa such thatMcur,wcur |= pre(α)
(fail if no such action exists);
universally choose u such that wcur ≈a u;
set wcur := u;

else
universally choose α ∈ Aa such thatMcur,wcur |= pre(α)
(fail if no such action exists);

end if
setMcur,wcur :=Mcur ⊗A, (wcur, α);

end for
reject
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Theorem 3.5.3. For public actions, the distributed strategy synthesis

problem is Exptime-complete.

Proof. The alternating algorithm that runs in polynomial space is sim-

ilar to the one given in the proof of Theorem 3.4.2. The algorithm is

in polynomial space for the same reason said in the proof of Theo-

rem 3.4.3. The obtained procedure is given in Algorithm 7.

Algorithm 7 Alternating algorithm for deciding in polynomial-space
the distributed strategy synthesis problem when actions are non ex-
panding.

setMcur,wcur :=M,wι as the current pointed epistemic model;
whileMcur,wcur 6|= φ do

let a be the agent such thatMcur,wcur |= turn = a;
if a ∈ Agt∃ then

existentially choose α ∈ Aa such thatMcur,wcur |= pre(α)
(fail if no such action exists);
universally choose a world u such that wcur ≈a u;
set wcur := u;

else
universally choose α ∈ Aa such thatMcur,wcur |= pre(α)
(fail if no such action exists);

end if
setMcur,wcur :=Mcur ⊗A, (wcur, α);

end while
accept

Hardness follows from Theorem 3.4.3.

Let us now turn to a decidable case for propositional actions.
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3.5.5 Propositional actions+hierarchical informa-

tion

Let us now consider the case of propositional action models. Unlike

public announcements or public actions, they may make the size of

epistemic models grow unboundedly. But by restricting to cases where

the information of the different players is hierarchical, which makes it

easier to synchronise the existential players’ strategies, one still manage

to retain decidability.

Very informally, when information is hierarchical, one can trans-

form the game into an equivalent game of perfect information where

positions are blown up to incorporate “knowledge states” of the differ-

ent players in the coalition, and a meta player chooses actions for all of

them. The fact that each player in the coalition knows more than the

next ensures that a knowledge state of a player is never split between

two knowledge states of another, which makes it possible to define

the meta-positions in such a way that the final perfect-information

game is equivalent to the original one (see [105] for more detail on this

construction).

According to Theorem 3.5.1, the distributed strategy synthesis

problem is undecidable for propositional actions and a two-player team

Agt∃ = {a, b} against team Agt∀ = {∀}. Observe the proof of Theo-

rem 3.5.1: in each round a only learns the first bit produced by ∀’s

move, while b only learns the second bit. As a result, player a’s infor-
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mation is not comparable to player b’s information, in the sense that

there is not one who knows more than the other. This is a well-known

source of undecidability in games with imperfect information (see for

instance [57]). A classic restriction to regain decidability is to assume,

instead, that the agents can be ordered from the one who knows the

least to the one who knows the most, each one knowing at least ev-

erything that those before know. This kind of configuration is usually

called hierarchical information [105, 109].

Given a DEL arena 〈M,wι,A〉 and a team Agt∃ ⊆ Agt , we say

that there is hierarchical information if Agt∃ can be totally ordered

(a1 < . . . < aN) so that ≈ai ⊇ ≈ai+1
and 4Aai ⊇ 4

A
ai+1

, for each

1 ≤ i < N .

Theorem 3.5.4. Distributed strategy synthesis with propositional ac-

tions and hierarchical information is decidable.

Proof. Similarly to Proposition 3.4.2, if A is propositional, one can

construct a finite representation of G 〈M,wι,A〉 in the form of a finite

turn-based arena G , the main difference being the number of players.

Since turn-based game arenas are a particular case of concurrent game

arenas, and reachability of epistemic goals can be expressed in epis-

temic temporal logic, one can conclude by recalling that distributed

strategy synthesis for epistemic temporal objectives is decidable on

concurrent game structures when information among the existential

players is hierarchical [88, 111] (see [91, Proposition 17, p.11] for more
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detail).

3.6 Concurrent Games

Let us now go one step further and move from turn-based games to

concurrent ones. As already mentioned, the existing DEL framework

cannot capture concurrent execution of actions by different agents, as

its update product only models the execution of a single event at a

time.

Some works consider concurrent execution of abstract actions (as

in concurrent game structures [48]), or concurrent execution of purely

epistemic actions without effects on the world ([3, 30]) or only public

[75]. But to our knowledge, concurrent execution of arbitrary epistemic

actions with explicit effects has never been studied. And yet they

are essential for modelling realistic situations: consider the two-robot

coordination example of Figure 3.2.

Figure 3.2: The two-robot coordination example.

Some container can be placed either left or right. Two robots

(or agents), a and b, can either wait or push the container, which

incidentally is energy-consuming. Both agents waiting, the container
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stays in place. Otherwise, if a pushes while b waits, the container

moves right (if not already there), and, symmetrically, if b pushes

while a waits, it moves left (if not already there). Agents pushing

concurrently results in a conflict.

To determine the effect of such conflicting actions, one solution is to

consider that they are blocking, as done for instance in [58] in temporal

planning, or facts involved in conflicts are just maintained [75]. An-

other option consists in selecting a maximal subset of non-conflicting

actions, as done for instance in [55] in UML work-flow modelling. In

this work, the latter solution is adopted, which is more challenging.

A major additional difficulty with respect to this latter UML setting

arises from epistemic features of actions of the DEL framework. In

our robot example, while robots a and b perfectly perceive pushing

and waiting actions, the two other agents c and d cannot distinguish

them. Note that this issue is not tackled in [75] since actions are public.

The first contribution is the definition of a DEL concurrent update

product that provides the dynamics of concurrent epistemic actions.

Noticeably, this new product yields a non-deterministic dynamics con-

trolled by a scheduler, whose role is to resolve conflicts. On the basis

of this product, it will be shown how finite DEL presentations can

generate infinite concurrent game arenas.

The second contribution is a proof that distributed synthesis can

be solved for such games for two cases: the case where all actions are
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public (perfectly observed by everyone), and the case where all actions

have propositional pre- and postconditions and information among the

agents is hierarchical (Theorems 3.6.2 and 3.6.4).

To establish this, it is needed to generalize to the concurrent set-

ting the result stating that when pre- and post-conditions are proposi-

tional, the generated game is equivalent to a finite game arena (Propo-

sition 3.4.2), and one can establish a similar result for public actions.

Then, existing results on the model-checking problem for the epis-

temic strategic logic ATL∗K [127] are transferred to obtain, in partic-

ular, decidability of distributed synthesis for rich temporal epistemic

objectives.

3.6.1 Concurrent Actions

Fix an epistemic state (M,w) and an action model A. Next, in or-

der to have a fine modeling of conflicts, we will distinguish between

propositions that all agents can modify, and propositions that are pri-

vate to an agent. From now on, atomic propositions are partitioned

into shared propositions (AP s) that all agents can modify, and pri-

vate ones: APp
a is the set of private propositions of agent a. As a

result, AP = AP c ]
⊎
a∈Agt AP

p
a, where ] is the disjoint union. An

agent can play any action that does not modify private propositions

of others. We gather in set Aa those actions, namely those whose

postconditions are undefined on ∪b6=aAPp
b . A joint action is a tuple
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~α = 〈α1, . . . , αN〉 ∈
∏

a∈Agt Aa, and we let ~αb denote action αb.

Finally, a joint action ~α is available in w when every individual

action ~αb can be executed in w : (M,w) |= pre(~α1) ∧ · · · ∧ pre(~αn).

3.6.2 Conflicts

Let us define a formula noconflict(~α)(p) expressing that all individual

actions of a joint action ~α agree on their effect (if any) on proposition p.

We first introduce the set Agt(~α, p) of agents whose individual action

in ~α has an effect on p. Formally, Agt(~α, p) is the set {a ∈ {1, . . . , N} |

post(~αa)(p) is defined}.

We then define the formula

noconflict(~α)(p) :=
∧
a∈Agt(~α,p) post(~αa)(p) ∨

∧
a∈Agt(~α,p) ¬post(~αa)(p)

which says that all agents that act on p make it true, or they all make

it false.

Now, in a situation where all individual actions of the joint action ~α

agree on their effect on each proposition, the effect of executing them

concurrently can be determined unambiguously. Such a situation is

expressed by the formula:

noconflict(~α) :=
∧
p∈AP

noconflict(~α)(p). (3.1)

Let us now use this formula to define consistent, or non-conflicting,
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tuples of actions.

Definition 3.6.1. A joint action ~α is non-conflicting in w ifM,w |=

noconflict(~α). Otherwise ~α is conflicting in w .

Example 1. In our running example, 〈pusha,pushb〉 is conflicting

in both worlds w and u.

Notice that an easy case that guarantees non-conflicting actions

(everywhere) is the case where agents can act on disjoint subsets of

atomic propositions, as it is often the case in fully distributed systems.

As said earlier, executing a non-conflicting joint action is clear, as

the effect is non ambiguous. This is not the case of conflicting joint

actions. One could consider that a conflicting joint action cannot be

executed, leading to a blocking situation. This interpretation may be

the right one in some applications.

Here, instead, a solution that tries to reduce to the minimum action

blocking, and execute as much as possible of a conflicting joint action

is proposed. More precisely, when the actions selected by the agents

are in conflict, it is proposed to select a subset of the joint action

that is conflict-free. This subset is executed, while remaining actions

are inhibited. Here again, to maximize liveness of the system, actions

that are not chosen are not completely blocked, but replaced by a

ghost version of themselves that still can have effects, but only on the

private propositions of the agent who chose the action. This ensures

that no conflict is present in the actions finally executed. The only
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remaining ambiguity concerns the selection of the maximal consistent

subset of actions. This results in a nondeterministic product, where

nondeterminism is resolved by a scheduler.

3.6.3 The role of the scheduler

Given a conflicting available joint action, the scheduler selects a maxi-

mal subset of consistent individual actions, and inhibits the remaining

actions by “cancelling” their effects on shared variables. An inhib-

ited action of agent a may still have effects on APp
a, which may differ

from the original ones. The inhibiting mechanism is implemented by

a ghost mapping ◦ : A → A with the following properties: for every

agent a ∈ Agt and every action α ∈ Aa, the ghost ◦(α) (written α◦)

must be in Aa and post(α◦) must be undefined on AP s. This assump-

tion ensures that no conflict arises when inhibiting actions. We also

assume that α◦ is executable as long as α is, i.e., that pre(α◦) is a

logical consequence of pre(α).

Example 2. For the robots, AP s = {left}, APp
a = {lowEa},APp

b =

{lowEb}, and APp
c = APp

d = ∅. Facing the conflicting joint action

〈pusha,pushb〉, the scheduler can choose between 〈pusha◦,pushb〉

and 〈pusha,pushb◦〉. In this example, it is reasonable to set pusha◦ :=

waita and pushb◦ := waitb.

The epistemic relations from a ghost can be set in many different

ways, and the choice is a design matter. For example, assume that

154



VANETs: an algorithmic and a game-theoretic approach

ghost actions are distinct from those that can be played by agents,

and that ghosts are not epistemically related to those playable actions.

Then the scheduler’s selection is public: indeed, when for joint action

~α scheduler inhibits the action of agent a, all agents are implicitly

informed that agent a is discarded.

Definition 3.6.2. If A = A•]A◦ is split between playable actions A•

and ghosts ones A◦, and A• and A◦ are not related by any ≈a, one can

say that the scheduler is public.

In the sequel, action models A are considered implicitly equipped

with a ghost mapping.

3.6.4 Concurrent update product

Let us define the execution of a (possibly conflicting) joint action in

the epistemic state (M,w). This is achieved by the concurrent up-

date product �, that generalises the classic update product ⊗ (Defini-

tion 3.3.6) and also the proposal in [131, p.14].

Before defining this product, let us formalise the possible choices for

the scheduler. We say that joint action ~β is a sub-action of joint action

~α, written ~β � ~α, whenever ~β is obtained from ~α by replacing some

individual actions by their ghosts. Formally, ~β � ~α if ~βa ∈ {~αa, (~αa)◦},

for every 1 ≤ a ≤ N . Remark that, by definition of the ghost mapping,

if ~α is available in w , so are its sub-actions.
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Given a joint action ~α, we let Max(~α,w) be the set of joint actions

composed of the �-maximal sub-actions of ~α non-conflicting in w .

Formally,

Max(~α,w) :=

{~β | ~β � ~α and ~β is non-conflicting in w and ~β is � -maximal}

Elements of Max(~α,w) are therefore joint actions non-conflicting in

w where a minimal number of actions are inhibited. Notice that

Max(~α,w) = {~α} as soon as ~α is non-conflicting in w .

Example 3. The set Max(〈pusha,pushb〉,w) is:

{〈waita,pushb〉, 〈pusha,waitb〉}.

Let us now define the concurrent update product, that implements

the execution of joint actions.

Definition 3.6.3 (Concurrent update product). The concurrent up-

date product of an epistemic modelM and an action model A is the

Kripke modelM�A = (W �, (≈�a )a∈Agt , λ
�), where:

• W � = {(w , ~β) ∈W × AN | ~β ∈ Max(~α, u), ~α available in w};

• (w , ~β) ≈�a (u, ~γ) if w ≈a u and ~βb ≈Aa ~γb for all b;

• p ∈ λ�(u, ~β) if (M, u) |=
∧
a∈Agt(~β,p) post(βa, p).

Let us now define the set of epistemic states that may result from
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executing a joint action ~α in (M,w):

(M,w)� ~α := {(M�A, (w , ~β)) | ~β ∈ Max(~α,w)}.

This set is a singleton when ~α is non-conflicting in w .

Remark that by the component-wise definition of concurrent epis-

temic relations ≈�a in Definition 3.6.3, the identity of who performs an

action is common knowledge.

3.6.5 Concurrent Games

In this section, it is shown how DEL can represent infinite concurrent

game arenas, in which players act simultaneously. It is then shown

how, as for turn-based games (see sections 3.4 and 3.5), these infinite

game arenas can in some cases be folded back into finite ones, when

actions are all public, or when they are all propositional. Finally, it is

shown that in these cases, one can model check the epistemic strate-

gic logic ATL∗K on DEL-represented concurrent games. These results

actually subsume those of previous sections, as turn-based games can

be seen as particular cases of concurrent games, and ATL∗K captures

distributed strategy synthesis, and much more.

Definition 3.6.4. A concurrent DEL arena G = 〈M,wι,A〉, or DEL

arena from now on, consists of an initial pointed epistemic model

(M,wι) and an action model A that satisfy condition (H3’) below.
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Observe that a concurrent DEL arena is thus the same thing as a

turn-based DEL arena (Definition 3.5.1), except that it is no longer

required hypothesis H1 and H2 from Section 3.5.1, which were used to

model turn-based situations (and hence it is no longer needed variable

turn too). However, it is still needed hypothesis H3 to ensure that

agents know which actions are available to them.

Though the formal description of a concurrent DEL arena is very

close to that of a turn-based DEL arena, the intended game is quite

different.

The game starts in the initial epistemic state (M,w). In each

round, each agent a chooses an action α ∈ Aa available in the current

state (M′,w ′), resulting in a joint action ~α (it is assumed that each

agent always has at least one available action; if needed, one may add

a dummy action in the model). The next epistemic state is nondeter-

ministically chosen by the scheduler among (M′,w ′)� ~α (this choice

is nontrivial if ~α is conflicting), and the game goes on.

After n rounds in which the players chose joint actions ~α1, . . . , ~αn,

the epistemic state is of the formMAn, (w , ~β1, . . . , ~βn), whereMAn

is defined by lettingMA0 =M andMAn+1 =MAn �A, and each

~βk+1 is a maximal sub-action of ~αk+1 consistent inMAk, (w , ~β1, . . . , ~βk).

In the following, one may write w ~β1 . . . ~βn instead of (w , ~β1, . . . , ~βn),

and call it a history. The length of a history in MAn is defined as

|w ~β1 . . . ~βn| = n. Since the length of a history determines the epis-
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temic model to which it belongs, one may omit it and write w ~β1 . . . ~βn |=

φ instead ofMAn,w ~β1 . . . ~βn |= φ. It is required that players know

their available actions:

(H3) Players know their available actions: For all histories of

the form w ~β1 . . . ~βn and u ~γ1 . . . ~γn, if w ~β1 . . . ~βn ≈a u ~γ1 . . . ~γn,

then the same actions are available to a in both worlds.

A concurrent DEL arena denotes a concurrent game arena, where

positions are epistemic states attainable from the initial one, and

moves are obtained by applying the concurrent update product of Def-

inition 3.6.3. Because this product yields several epistemic states, this

concurrent game arena is non-deterministic.

Definition 3.6.5. Given a concurrent DEL arena G = 〈M,wι,A〉,

one can define the corresponding concurrent game arena GM,A,Wι
as

the tuple (A,V , vι, (Acta)a∈Agt ,∆, (≈a)a∈Agt , λ) where:

• A is the set of actions in A,

• the set of positions is V = ∪n∈NW n,

• the initial position is vι = wι,

• Acta(v) = {α ∈ Aa | v |= pre(α)},

• ∆ = {(v, ~α, v′) | v′ ∈ v � ~α},

• v ≈a v′ if |v| = |v′| = n and v ≈na v′, and
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• λ(v) = λ|v|(v).

Let us reason about strategic abilities and knowledge on infinite

concurrent games given as concurrent DEL arenas. To do so, let us

consider the logic ATL∗K.

Definition 3.6.6. The syntax of ATL∗K is given by the following gram-

mar:

φ ::= p | ¬φ | φ1 ∨ φ2 | Kφ | 〈C 〉ψ

ψ ::= φ | ¬ψ | ψ1 ∨ ψ2 | Xψ | ψ1Uψ2

with p ∈ AP and C ⊆ Agt .

Formula 〈C 〉ψ reads as “coalition C has a strategy profile to ensure

ψ”, and the meaning of other operators is as usual. We let ≈C =

∪a∈C ≈a, and define the semantics of ATL∗K as follows.

Definition 3.6.7. Let G be a concurrent game arena, v a position

and π a play. The semantics of ATL∗K is defined as follows, where h
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is a history in G , π is a play and i ∈ N is a point in time:

G , h |= p if p ∈ λ(h)

G , h |= ¬φ if G , h 6|= φ

G , h |= φ1 ∨ φ2 if G , h |= φ1 or G , h |= φ2

G , h |= Kφ if ∀h ′ ∈ HistG s.t.h ≈a h ′,G , h ′ |= φ

G , h |= 〈C 〉ψ if ∃σC ∈ ΣC s.t.∀h ′ ≈C h, ∀π ∈ Out(h ′, σC ),

G , π |= ψ

G , π |= φ if π[0] |= φ

G , π |= ¬ψ if G , π 6|= ψ

G , π |= ψ1 ∨ ψ2 if G , π |= ψ1 or G , π |= ψ2

G , π |= Xψ if G , π≥1 |= ψ

G , π |= ψ1Uψ2 if ∃i ≥ 0 s.t. G , π≥i |= ψ2 and ∀ 0 ≤ j < i,

G , π≥j |= ψ1

Remark 5. We use the uninformed semantics for the knowledge op-

erators, which does not depend on the strategies used by the agents,

and is the usual one used in epistemic planning (see [87, 90, 111] for

more details). Also, we use the subjective semantics for strategic op-

erators, in contrast with the objective one that only asks strategies to

be winning from the actual current history (see [40]).

Given a game arena G with initial position vι, let us write G |= φ

if G , vι |= φ.

Let us study the following model-checking problem: given a DEL
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game presentation G and a formula φ ∈ ATL∗K, is it the case that

GM,A,Wι
|= φ? It is shown that this can be decided in two cases: when

all actions are propositional, and when they all are public. In both

cases, the proof goes via establishing that the generated DEL games

can be finitely represented.

3.6.6 Decidability for public actions

A deterministic game arena with transition function δ is said to have

only public actions if, for all positions v, v′ and joint actions ~α, ~α′ such

that ~α 6= ~α′, we have δ(v, ~α) 6≈a δ(v′, ~α′). The following is known for

ATL∗K on such arenas:

Theorem 3.6.1 ([26]). Model checking ATL∗K on finite deterministic

concurrent game structures with only public actions is 2-Exptime-

complete.

First, let us prove that DEL games with public actions can be

finitely represented. The proof yields nondeterministic game arenas,

that will be then transformed into deterministic ones that have only

public actions in the sense of [26].

It will be needed the following result on the concurrent update

product with public action models and a public scheduler (see Defini-

tion 3.6.2):

Lemma 3.6.1. LetM be an epistemic model and A an event model.

If the scheduler is public, A has only public actions and its ghost
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mapping ◦ : A• → A◦ is injective, then for all worlds w ,w ′ ∈ M, all

joint actions ~α, ~α′, if ~α 6= ~α′ then for all (w , ~β) ∈ (M,w) � ~α and

(w ′, ~β′) ∈ (M,w ′)� ~α′, for all agents a, (w , ~β) 6≈a (w ′, ~β′).

Proof. Assume that ~αb 6= ~α′b for some b ∈ Agt . If agent b’s action is

kept in both ~α and ~α′, i.e., ~βb = ~αb and ~β′b = ~α′b, the result follows from

the fact that ~αb and ~α′b are different public actions. If it is kept in one

and inhibited in the other, say, ~βb = ~αb and ~β′b = (~α′b)◦, then again ~βb

and ~β′b are public actions and they are different because A = A• ] A◦.

Finally, if both are inhibited, i.e., ~βb = (~αb)◦ and ~β′b = (~α′b)◦, again

these actions are different by injectivity of the ghost mapping.

The injectivity assumption means that two different played actions

cannot become the same after being inhibited, in which case the actions

of DEL games could not be public in the sense of [26].

The proof that the infinite game arena GM,A,Wι
induced by a DEL

gameG with public actions can be finitely represented relies on the fact

that updating an epistemic state with a joint action made of public

actions can only decrease the size of the obtained epistemic states

(when removing their disconnected components) as long as their ghosts

are public too. It follows that only finitely many different epistemic

models can be generated from a given initial state, up to isomorphism.

Proposition 3.6.1. Given a DEL game G = 〈M,w ,A〉 with only

public actions, one can build a finite game arena G equivalent to

GM,A,Wι
and of size exponential in |G|.
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Because of the scheduler, the resulting arena is nondeterministic.

To obtain Theorem 3.6.2 below, it essentially remains to show that one

can transform these nondeterministic arenas into deterministic ones

that have only public actions in the sense of [26].

Theorem 3.6.2. Model checking ATL∗K on DEL concurrent games

with public actions, public scheduler and injective ghost mapping is

2-Exptime-complete.

3.6.7 Decidability for propositional actions + hi-

erarchical information

A DEL game presentation presents hierarchical information if the set

of agents Agt can be totally ordered (a1 < . . . < aN) so that ≈ai⊆

≈ai+1
for each 1 ≤ i < N , and similarly for concurrent game arenas.

It is proved that when, in a DEL game presentation, all actions are

propositional actions and information is hierarchical, model checking

ATL∗K is decidable.

Let us first generalise to the concurrent setting a result from [91]

which states that infinite turn-based DEL games induced by proposi-

tional models can be finitely represented. As for public actions, the

game arena that we obtain is nondeterministic.

Proposition 3.6.2. Let G = 〈M,wι,A〉 be a DEL game where A

is propositional. One can build a finite game arena G equivalent to

GM,A,Wι
, of size exponential in |G|.
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Proof. Let AP i be the atomic propositions involved. Let us define the

concurrent game arena G = (A,V , vι, (Acta)a∈Agt ,∆, (≈′a)a∈Agt , λ′),

where:

• A is the set of events in A,

• V = W ∪ AN × 2AP i,

• Acta(w) = {α ∈ Aa | w |= pre(α)},

• Acta(~β, ν) = {α ∈ Aa | ν |= pre(α)},

• (w , ~α, (~β, ν)) ∈ ∆ if

– ~α is a valid joint action available in w ,

– ~β is a maximal consistent sub-action of ~α, and

– ν is the new valuation after executing ~α in w

• ((~β, ν), ~α, (~β′, ν ′)) ∈ ∆ if

– ~α is a valid joint action available in ν,

– ~β′ is a maximal consistent sub-action of ~α, and

– ν ′ is the new valuation after executing ~α in ν

• w ≈′a w ′ if w ≈a w ′ inM

• (~β, ν) ≈′a (~β′, ν ′) if for all b ∈ Agt , ~βb ≈a ~β′b in A

• λ′(w) = λ(w) and λ′(~β, ν) = ν
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It is not hard to check that the game obtained is equivalent to

GM,A,Wι
. Note that the transition relation is well defined because

all preconditions and postconditions are propositional, and thus it is

enough to know the current valuation to evaluate them.

Let us invoke the following result:

Theorem 3.6.3 ([31]). Model checking ATL∗K with uninformed seman-

tics is decidable on deterministic game arenas with hierarchical infor-

mation.

The result in [31] is for ATL∗ without knowledge operators, and for

the objective semantics of strategic operators. But their bottom-up

algorithm can be easily extended to deal with knowledge operators

and subjective semantics: one first performs a powerset construction

on the game arena to include sufficient information to evaluate knowl-

edge operators positionally (for instance using van der Meyden’s k-

trees [128]), and then one evaluates knowledge and strategic modalities

in a bottom-up fashion.

Thanks to Proposition 3.6.2 and a reduction to deterministic arenas

similar to the one presented in the proof of Theorem 3.6.2, we can use

Theorem 3.6.3 and obtain that:

Theorem 3.6.4. Model checking ATL∗K on DEL game presentations

with propositional actions and hierarchical information is decidable.

However the complexity is nonelementary, as it is already the case
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for multiplayer reachability games with hierarchical information [106].

The number of exponentials will be the maximum between the num-

ber of agents with different observation power and the alternation of

knowledge operators in the formula.
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Chapter 4

A Comparative Study on

the Most Common Model

Checking Tool: MCMAS

4.1 Introduction

In formal methods for multi-agent systems, logics for the strategic rea-

soning have had a major role. Among the others, ATL∗ (and ATL) has

come to the fore and largely explored for practical use [10]. More

recently, Strategy Logic (SL)[93] has come out, where strategies are

treated explicitly as first order objects and associated to agents by

means of a binding operator. Let us recall that SL makes use of the

binding operator and strategy quantifiers along its syntax. For the
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latter, we have the existential operator ∃x and the dual universal op-

erator ∀x that can be read as “for some strategy x, ..." and “for all

strategies x, ...", respectively. The binding operator (x, a) means that

“by using strategy x, agent a can achieve...”. SL is much more ex-

pressive than ATL∗, and able to express important solution concepts

among which the Nash Equilibrium. The high expressiveness of SL

comes at a price: the model-checking problem is non-elementary. This

has led at looking for meaningful elementary fragments of SL, among

the others SL[1G] [94] and SL[SG] [27].

SL[1G] refers to SL formulas of the form ℘[φ where ℘ is a quan-

tification prefix on strategies, [ a binding, and φ an LTL formula.

SL[1G] subsumes ATL∗ and shares with it important features, among

which a 2Exptime solution for the model checking problem [94] (im-

plemented in MCMAS [42]). SL[SG] further restrict SL[1G] formulas

in a way similarly as ATL restricts ATL∗. Thus, SL[SG] can be seen as

the extension of ATL to arbitrary quantification on the agents’ strate-

gies [27]. Interestingly, SL[SG] can express meaningful concepts such

as the Stakelberg equilibrium and coercion in voting, while providing a

polynomial-time solution for the model checking problem. Notably, no

direct implementation for SL[SG] in MCMAS has been exploited yet

(since SL[1G] subsumes SL[SG], clearly MCMAS can handle SL[SG]

formulas). In the sequel, we give some evidence that such an implemen-

tation should be played out, instead. Indeed, by restricting to SL[SG]
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formulas that can be translated to ATL, it can be shown that over such

formulas the standard MCMAS implementation for ATL works much

faster than the one implemented for SL[1G].

4.2 Background on SL and MCMAS

In this section, some basic notions about SL[SG] and the main features

of the most largely employed tool for model checking, MCMAS, are

reported.

4.2.1 Strategy Logic with Simple Goals

Let us briefly recall the syntax, and the main results for SL[SG] ([27]).

Let AP , Agt , and Var be the sets of atomic propositions, agents, and

variables, respectively. Given A ⊆ Agt and V ⊆ Var, we define a

binding prefix as a finite sequence [ ∈ {(x, a) | a ∈ A and x ∈ V }|A|

such that |[| = |A|, and every agent a ∈ A occurring exactly once

in [. Contrarily, the same variable x ∈ V can occur several times in

[, allowing agents in A to use the same strategy more than once. A

quantification prefix over the set V of variables is a finite sequence

℘ ∈ {∃x, ∀x | x ∈ V }|V | such that |℘| = |V | and every variable

x ∈ V occurs exactly once in ℘. Qnt(V ) ⊂ {∃x, ∀x | x ∈ V }|V |

and Bnd(A) ⊂ {(x, a) | a ∈ A and x ∈ Var}|A| denote the sets of all

quantification and binding prefixes over variables in V and agents in
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A, respectively.

Definition 4.2.1 (Syntax of SL[SG]). Assuming the notion of free

variable as reported in [94], given a formula φ in SL[SG], [ ∈ Bnd(Agt),

℘ ∈ Qnt(free([φ)), and p ∈ AP , φ can be expressed as follows:

φ ::= p | ¬φ | φ ∧ φ | ℘[Xφ | ℘[(φUφ)

Where X and U are the temporal next and until operators, respectively.

Let us conclude this section by recalling two main results for SL[SG].

Theorem 4.2.1 (Expressiveness of SL[SG] [27]). Strategy Logic with

Simple Goals has strictly greater expressive and distinguishing power

than ATL.

Theorem 4.2.2 (Complexity of SL[SG] [27]). The model checking for

Strategy Logic with Simple Goals is PTIME-complete.

4.2.2 MCMAS

Let us recall that MCMAS is a tool to model check formulas over multi-

agent systems. The setting is typically modeled through interpreted

system, using a dedicated language to formalize it, ISPL (Interpreted

System Programming Language), and it involves two types of agents:

the standard agent and the environment one. The latter is used to de-

scribe boundary conditions and variables shared among the standard
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agents. The model checking procedure is based on binary decision dia-

grams (BDD, for short), commonly used to represent boolean functions

in a compact manner. They consist of finite directed acyclic graphs

with a unique initial node, in which each internal node is a boolean

variable, and each terminal node is a truth value. The final aim is

to determine, given an interpreted system I, an initial state g, and a

formula φ, if: I, g |= φ.

4.3 Comparison of Existing Tools

The tool which is commonly used to model check multi-agent systems

is MCMAS, which takes as input a MAS specification and a set of

formulas to be verified. Initially, MCMAS was designed to solve for-

mulas expressed in CTL and ATL. Later, with the expansion of Strat-

egy Logic, and in particular with SL[1G], a new release of the model

checker has been implemented, which supports SL[1G] formulas.

The SL[1G] version of MCMAS has been tested against the stan-

dard ATL version of MCMAS, over SL[SG] formulas which can be

translated in ATL. Notice that formulas written in SL[SG] are clearly

supported by the SL[1G] version of MCMAS, since SL[SG] ⊆ SL[1G].

The idea was to understand if such version of MCMAS behaves well

even on the SL[SG] fragment, or if it would be the case of defining a

new version for it.

The study consists in testing the two versions of the model checker
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from two points of view:

1. By scaling on the number of variables;

2. By scaling on the number of agents.

ATL-MCMAS SL[1G]-MCMAS
shells time space time space
200 73,37 64M 2,03 30M
400 248,87 194M 8,327 45M
600 1263,63 410M 214,47 71M
800 1697,09 708M 230,26 109M
1000 613,094 169M 5630,94 134M
1200 8031,69 1660M 1473,87 239M
1400 9992,47 1947M 4732,29 283M

Table 4.1: Results of multiple executions on the shells example by
varying the number of possible shells: comparison between the stan-
dard ATL MCMAS and the SL[1G] extension.

In Table 4.1, the behavior of MCMAS in the standard version for

ATL against the SL[1G] one is shown, by varying the number of avail-

able variables in the shell game, in which notice that the player has

to guess which shell hides an object. In the setting, the players are

the environment, that places the object underneath the selected shell,

and the guesser who has to guess one among the available ones. The

simulation starts from 200 possible shells: the behavior of SL[1G] of

MCMAS is better than the one of the standard ATL version, both in

terms of time and space, by assigning a truth value to the same set

of formulas in a one-magnitude-smaller time, and half of the space.
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Moving to 400 shells, the time needed for SL[1G] MCMAS is two mag-

nitude smaller, and the space is 4 times less. If we give 600 shells, the

difference is still high, again with a time of one magnitude smaller,

and the needed space 5 times less. The trend is still the same with 800

available shells. Instead, when we reach 1000 shells, MCMAS for ATL

seems to find an efficient BDD technique to solve the model check-

ing, but the results are not confirmed by any other test with different

input. Indeed, with 1200 and 1400 shells, MCMAS for SL[1G] keeps

being better: even if the time results are of the same magnitude as the

ATL MCMAS corresponding ones, the space needed is approximately

6 times less in both cases. In Table 4.2, instead, it is shown how the

model checkers’ response changes by varying the number of agents in

the voting game [68]. Let us recall that, in the most simple scenario,

this game involves two players: a voter and a coercer. After voting,

the voter can decide to hand in proof of his vote, or not to do it. In

the same way, the coercer can decide to punish the voter, or not to

do it. In our setting, the coercer is modeled through the environment,

while we tested the tool by increasing the number of voters. Precisely,

by moving from 4 to 12 voters, the standard ATL-MCMAS behavior

does not change significantly, by providing the truth value of the input

formula in times and spaces that are of the same magnitude. On the

contrary, with the SL[1G] extension of MCMAS both the time and the

space needed for the execution are increased of one magnitude when
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ATL-MCMAS SL[1G]-MCMAS
voters time space time space

4 0,035 9M 0,29 20M
6 0,038 9M 18,42 697M
8 0,027 9M aborted
10 0,09 10M
12 0,08 10M

Table 4.2: Results of multiple executions on the voting example by
varying the number of agents involved: comparison between the stan-
dard ATL MCMAS and the SL[1G] extension.

the number of voters increases from 4 to 6. Instead, if we simply

move it to 8 voters, the model checker forces its irregular termination,

without assigning any truth value to the input formulas.

Let us provide some examples of formulas used to obtain the results

just shown. For the shell game with 200 shells, we run the SL[1G]

version of MCMAS over the following SL[SG] formula:

ϕs = ∀e ∃g (e, Environment)(g,Guesser)F win

requiring that, no matter what the strategy of the environment is,

there always exists a strategy for the guesser to finally win. Then,

the standard ATL version of MCMAS run on the corresponding ATL

formula:

ψs = 〈〈g〉〉F win

where g is a coalition made by the guesser alone.

For the voting scenario with 4 voters, instead, the SL[SG] formula
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which is tested is the following:

ϕv = ℘ [ F ((vote11 → punish1) and (vote21 → punish2) and

(vote31 → punish3) and (vote41 → punish4))

where:

• ℘ = ∀v1 ∀v2 ∀v3 ∀v4 ∃e and

• [ = (v1, V oter1) . . . (v4, V oter4)(e, Environment).

The above specifies that, no matter what the strategies of the vot-

ers are, there always exists a strategy for the environment such that if

a voter votes the candidate 1 finally he will be punished. The corre-

sponding ATL formula is:

JgvKF (〈〈ge〉〉F (((vote11 → punish1) and (vote21 → punish2)

and (vote31 → punish3) and (vote41 → punish4))

where gv is the coalition of voters and ge is the environment alone.

To develop a tool for SL[SG] model checking, one would expect to

modify the existing ATL MCMAS in a way that makes it able to solve

SL[SG] formulas. It will be needed to modify opportunely the parser

to accept SL[SG] syntax, but one would also have to integrate the new

model checking algorithm in the existent tool, to reflect the SL[SG]

semantics.
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Chapter 5

A

Nash-Equilibrium-Based

Parking Algorithm

5.1 Introduction

The growth of Artificial Intelligence applications to automotive is con-

stantly increasing the request for smart solutions to parking. This

research field is well identified as smart parking (see [76]).

The competitive nature of the parking process, during which the

drivers compete in order to get an available parking slot for their cars,

is the inspiration of the proposed solution. Indeed, by exploiting basic

settings of the strategic reasoning for multi-agent systems, it has been
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modeled the parking process as a competitive multi-player game in

which each car is an agent interacting with all the other ones, with

the ultimate goal of getting an available slot that satisfies its own

constraints. The parking problem to face concerns parking as many

cars as possible, while satisfying their requirements.

A multi-agent system is made of autonomous entities, with dis-

tributed information, computational capabilities, and possibly diverg-

ing interests. These kind of systems have been exploited in several

fields: electronic [120] and industrial process control [17], economy [102],

home automation [142], open system verification [11], to name a few.

The way autonomous agents can interact with each other can be

classified into two categories: competitive and cooperative. In the

former case, there is no a-priori agreement among agents, as they try

to maximize their own objective, no matter what the objectives of the

other agents are. In the latter case, the agents coordinate among them

in order to get the best outcome possible for everyone [136].

The contribution of this proposal [41] is twofold. From one side,

it comes up with an effective multi-agent game model for the parking

problem considered. From the other side, it is provided an algorithm

(and its implementation in a tool), working in quadratic time, that

allows a fair allocations of the parching slots by satisfying a Nash

equilibrium. As will be proved later on practical scenarios, this is

a valuable compromise with respect to an optimal, but exponential,
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brute-force solution that would check all possible distribution of cars

over available slots.

Also, as expected, the solution is better than any greedy FIFO

approach. Indeed, consider a scenario in which there are three vehicles,

V1, V2, and V3, looking for a parking, and three slots available A, B,

and C. Assume now that V1, V2, and V3 have up to 7, 5, and 3 minutes

to accomplish the parking, respectively. Also, assume that slots A, B,

and C require 2, 3, and 5 minutes to be reached, respectively. Assume

now that V1 picks A and V2 picks B; then, V3 would not have enough

time to reach the remaining slot C. Contrarily, a solution that allows

parking all vehicles by accommodating their requirements is to assign

V1, V2, and V3 to C, B, and A, respectively. This is exactly what the

proposed algorithm would return as a solution.

5.2 Related Work

As explained before, several algorithmic solutions have been proposed

in the VANET research field for the parking problem. Less common is

the application of Artificial Intelligence and game-theoretic approaches

to the solution of the parking problem. A work that I like to mention,

along the second line, is [70], which is probably the closest to what

is going to be presented. In that article, the authors also propose

a parking solution based on the Nash equilibrium. However, their

approach is quite different from the one used here. First, they provide
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a numerical solution, thus, they do not give any algorithm nor any tool

to solve the problem. Second and more importantly, they consider a

scenario with both private and public parking slots, and the drivers’

payoffs strongly rely on such a topology; it is not clear to us whether

and how to massage their model to accommodate our system.

Many other smart parking mechanisms have been proposed based

on a multi-agent game setting. In [83], the authors simulate the drivers’

behavior through a multi-agent system, by modeling the environment

on the basis of cellular automata. In [29], the authors chose two differ-

ent agents, the user and the administrator, and manage the commu-

nication through three layers. They focus on the architecture rather

than the model setting and the strategic reasoning. Similarly, authors

of [69] provide an E-parking system, based on multi-agent systems

aimed to optimize several users’ preferences. Moreover, in [99] authors

manage the parking problem with a cooperative multi-agent system,

by relying on a priority mechanism. In [104], authors also focus on

equilibrium notion, but they study the Rosenthal equilibrium rather

than the Nash one, which describes a probabilistic choice model. Fi-

nally, in [81] the authors also consider a Nash Equilibrium applied to

cars, but they only used it to talk about traffic, rather than parking.
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5.3 A Real Scenario

As case study, it has been selected the parking area of the Federico II

Hospital Company in Naples, one of the biggest and most specialized

hospital in the South of Italy, whose construction goes back to the

early Sixties.

The Hospital, as it is schematically depicted in Figure 5.1, is made

of 21 building blocks, distributed over 440.000m2, and provides in to-

tal one thousand of beds for ordinary recovery and two hundreds of

beds for day-hospital use. The parking space, having 2684 slots in

total, consists of 21 independent areas, and is mainly used by patients

and, in turn, by the 3400 employees (doctors, nurses, technicians, ad-

ministrators, etc.).

The hospital has four guarded gates, one of which is for pedes-

trian. The car gates are preceded by a road where cars line up for the

necessary checks. In average, it is estimated that there are 4.600 car

accesses per day. There is no policy about the allocation of the park-

ing places and, except for few reserved ones, each driver chooses by its

own the slot. This disorganized solution produces a huge traffic con-

gestion, bottlenecks at the entrance, and an unbalanced distribution of

the cars over the parking area. More importantly, it does not take into

account the specific constraints and some physical limitations of the

users, such as walking issues or urgency. In the most crowded hours,

in average, the drivers spend more than 20 minutes to find a parking
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slot or, even worst, they leave the parking area by missing available

slots.

In order to efficiently apply our tool, let us assume that the list of

available slots in every area of the hospital is known at runtime. Also,

let us make use of all information the car passengers have to pass to

the hospital before entering, and in particular their logistics. Finally,

let us assume that the drivers will be followed while driving inside

the parking area, by means of tracking devices (GPS, smartphone,

videocameras, etc.).

Figure 5.1: Graphic representation of the A.O.U. Federico II

Having all this information at his disposal, the tool works as fol-

lows: it takes all cars in queue on the roads in front the car gates,

as well as all the specific needs and constraints of their occupants.

Then, it processes the data and following the algorithm described in

the sequel, it opportunely associates the available slots to the cars. In
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particular, the tool will access both the Employers Data Center and

the Online Booking Center of the hospital and, thanks to the latter,

the tool will know which kind of services the patients need, date and

time of their appointments, possible walking limitations and handi-

caps, etc. Finally, note that the tool operates in stages, processing

one bunch of cars at the time, as they are in queue. Someone may

criticize this solution and propose an offline allocation instead. It has

been decided not to follow this solution for two main reasons: first,

the hospital is highly dynamic in slot requests and, more importantly,

slots are very limited in numbers, so it is better to allocate slots only

when cars show up.

5.4 Parking Game Structure

In this section, the Parking Game Structure model, (PGS, for short), is

introduced. It is the game model that will be used along our algorithm

to reasoning about the parking problem to address. The model defi-

nition takes inspiration from the scenario described previously. Thus,

in a PGS, the players are cars with their needs and constraints. Also,

the PGS takes into account all the specification about the slots, in

particular their location, their availability, the time they require to be

reached from the entrance, and so on.

Formally the Parking Game Structure is defined as follows:
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Definition 5.4.1 (Parking Game Structure). The Parking Game Struc-

ture (PGS) is a tuple:

G = (Agt, S,G, g, F, T,R) (5.1)

where:

• Agt = {a1, . . . , an} is a set of agents, i.e., the cars,

• S = {s1, . . . , sm} is a set of parking slots,

• F = {f1, . . . , fn | fi ∈ [0, 1]} is a set of resilience values,

• G = {g1, . . . , gl} is a set of gates,

• g : Agt→ G is a function associating agents to gates,

• AT = {t1, . . . , tn} is a set of agent-time values, where ti is the

time limit the car ai has for parking,

• RT = {r(1,1), . . . , r(m,l)} is a set of reaching-time values, where

r(i,j) is the time needed to reach the parking slot si from gate gj.

Regarding the set of resilience indexes F , note that each fi is asso-

ciated with agent ai and it has a twofold use: first, it imposes an order

among agents; second, it affects the final pre-emption order. This will

be more clear below. For simplicity, we assume that all the resilience

indexes are different, i.e., fi 6= fj for every 1 ≤ i < j ≤ n. The indexes

in F can be set manually as input, however it is important to report
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that, for the case study introduced previously, the values have been

obtained automatically by processing the information coming from the

Employers Data Center and the Online Booking Center of the hospi-

tal; in particular, for the patients, the resilience index represents their

movement ability, therefore, the lower the rate, the more favored the

patient.

A strategy for an agent ai consists of choosing a slot sj ∈ S. For-

mally it is a function Str : Agt → S. A strategy profile is an n-uple

s = (s1, . . . , sn) of strategies, one for each player. Formally, in s, for

each i, we have Str(ai) = si. It is worth noting that it may happen

that two or more players choose the same strategy. Next, it will be

defined the costs associated to s as a tuple of costs c = (c1, . . . , cn).

Then, a payoff π of a strategy s is defined as a sum of all such ci, i.e.,

π(s) =
∑

i ci, and by πi we denote the i−th cost value of that tuple.

Definition 5.4.2. Let ai ∈ Agt be an agent with g(ai) = h and

s = (s1, . . . , sn) be a strategy profile, with si = sj for an sj ∈ S. One

can define the costs associated to s as the tuple c = (c1, . . . , cn) where
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each ci =

fi · (ti − r(j,h)) if 1. (ti − r(j,h)) ≥ 0, and

2. there is no ak 6=i such that

fk < fi, sk = si, and

(tk − r(j,p)) ≥ 0, with g(ak) = p

∞ otherwise

(5.2)

In words, the value ci is a finite value if the agent ai has enough

time to reach the parking slot sj and such a slot has not been taken

from any other agent ak with a lower resilience (i. e., fk < fi). Then,

the value, when it is finite, reflects how much time it is left to the agent

after he has reached the assigned slot (with respect the total time he

has at his disposal). Conversely, the infinity value corresponds to the

worst possible outcome for the agent ai, which reflects the fact that he

cannot park at the slot sj. At this point, it should be intuitive that the

problem of looking for an optimal strategy profile s can be reduced to

the problem of minimize1 the corresponding vector of associated costs

c. Unfortunately, this is in general not an easy task. In particular,

a brute-force algorithm checking all the possible strategy profiles is

unfeasible as it requires exponential-time. Conversely, one can suggest

adopting a Nash equilibrium solution which provides, by definition,
1Note that the minimization guarantees that the best slots are kept for future use, so to

focus on the continue allocation process rather than the single stage. At any rate, one can use
maximization (in a finite domain) without affecting the rest of the algorithm.
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a satisfactory solution and, along with our setting, it just requires

quadratic-time. In the sequel, such a solution is going to be presented.

Also, it will be provided a solution based on a greedy behavior of the

players, which reflects the current behaviour of drivers at the parking

of the hospital described: each car takes the first available parking slot

which satisfies its needs. By means of a toy example, it is possible to

show that the solution based on the Nash equilibrium over-perform

the one based on the greedy behaviour of the players.

5.5 The Parking Slot Selection Game

In this section, first a toy example is provided, then the Parking Slot

Selection Game (PSSG, for short) is introduced, and a solution by

means of a Nash equilibrium calculation is proposed. There is also

comment on the greedy approach and a comparison with the provided

solution. For a matter of precision, let us recall the notion of Nash

equilibrium.

W.l.o.g., in the sequel the model is restricted to parking structures

having just one gate. This means that one can get rid of g and G in

PGS as given in Definition 5.4.1, as well as the second index of the

reaching-time values in RT . This also simplifies the definition of costs

associated with strategy profiles.
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5.5.1 A Running Example

Let us consider a parking place with 3 slots available and 3 cars aiming

at parking.

5 minutes2 minutes4 minutes

2 minutes

3 minutes

4 minutes

Figure 5.2: 3-players-3-slots Game.

Let us suppose that the first, the second, and the third car have

respectively 5, 2, and 4 minutes available to park and that, as as-

sociated resilience they have 0.5, 0.1, and 0.009, respectively. Also,

suppose that the first, the second, and the third slot require 2, 3,

and 4 minutes to be reached, respectively. We call such a game the

3-players-3-slots game and it is reported in Figure 5.2.

5.5.2 A Greedy Solution

When a car is approaching to the parking, a greedy solution is to

occupy the first slot it can get. This approach leaves to the car a free

will to park in the slot that best fits its constraints, without paying

attention to the other cars requirements. This easy-to-design solution
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may lead to a non optimal vehicles allocation, as it may leave out some

cars (not able to park), as the remaining slots may not satisfy their

requirements.

To give an example, let us consider the scenario described in Section

5.5.1. In this situation, the first car would choose the closest slot (the

one that requires 2 minutes to be reached). Then, the second car

would not be able to park, because all the remaining free slots are too

expensive in terms of time. For this reason, it has been looked for a

better solution that would exploit the car parking potentialities at the

best by means of a satisfactory distribution of slots among cars, and

that would be computationally easy to be calculated on the fly.

5.5.3 Nash Equilibrium Based Solution

In game theory, a well-conceived solution concept that ensures a robust

form of satisfaction among players is Nash equilibrium. This concept

was deeply investigated and well formalized by John Nash in the fifties,

both under pure and mixed strategies (see [126] for more details). In

the basic definition, it is said that in a multi-player game, all players,

moving concurrently, reach a Nash equilibrium if none of them has

the incentive to unilaterally deviate from that equilibrium. By casting

this in our parking scenario, one can try to reach a situation in which

all drivers are associated to parking slots, by means of an equilibrium

over their constraints. In other words, our goal is to provide a strategic
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profile (parking slot assignment) in which no player wants to change

his slot unless some other players want to change theirs.

Following the model definition given in Definition 5.4.1 and the ob-

servations made above, it is possible to formally introduce the Parking

Slot Selection Game to address, as follows.

Definition 5.5.1 (Parking Slot Selection Game). The Parking Slot

Selection Game (PSSG) has an input and an output defined as follows:

• Input: a PGS G, as given in Definition 5.4.1.

• Output: a strategic profile (s∗1, . . . , s
∗
n) providing a Nash equilib-

rium for G. A strategy profile (s∗1, . . . , s
∗
n) is a Nash equilibrium

iff ∀ s1, . . . , sn ∈ S it holds that:

π1(s
∗
1, . . . , s

∗
n) ≤ π1(s1, s

∗
2 . . . , s

∗
n)

π2(s
∗
1, . . . , s

∗
n) ≤ π1(s

∗
1, s2 . . . , s

∗
n)

...

πn(s
∗
1, . . . , s

∗
n) ≤ π1(s

∗
1, s
∗
2 . . . , sn)

In words, the PSSG consists in looking for a strategy profile that,

with respect to the associated costs, no players has an incentive to

unilaterally change his choice.

Similarly to the PSGG, one can define the Greedy Parking Game

(GPG, for short). To give some details, first assume that in an GPG
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players are ordered, then the strategy profile (s∗1, . . . , s
∗
n) is such that

for each agent ai, it holds that s∗i is the best choice (in terms of minutes

to reach it) over S \ {s∗1, . . . , s∗i−1}.

5.5.4 A Solution to the 3-players-3-slots Game

Let us consider again the 3-players-3-slots game described in Section

5.5.1. It us now shown a solution based on the satisfaction of a Nash

equilibrium. As we will see in a while, such a solution allows accommo-

dating all cars, while satisfying all their constraints, contrarily to what

we have seen with the greedy solution. Later, it will be shown that

this is true in general and not just for the case of our specific example.

Let us formally describe the 3-players-3-slots example by means of a

PGS G3 whose components are defined as follows:

• Agt = {car1, car2, car3} is the set of cars,

• S = {slot1, slot2, slot3} is the set of parking slots,

• AT = {5, 2, 4} is the set of time-values car1, car2, and car3 have

at at their disposal, respectively,

• RT = {2, 3, 4} is the set of times needed to reach the slots slot1,

slot2, and slot3, respectively,

• F = {0.5, 0.1, 0.009} is the set of cars resilient values,
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• The cost function is reported in Table 5.1, in the last three

rows. For instance, the triple (∞,∞, 0.018) represents the case

in which all cars decide to park in the same slot slot1; so, car3,

which has the lowest resilience value, gets it at a cost of 0.018

(i.e., (4 − 2) · 0.009), while the other cars leave the process in-

complete, as they get ∞.

By a matter of calculation, one can check that there exists only

one Nash equilibrium, which corresponds to s = (slot2, slot1, slot3),

with c = (1, 0, 0) (in bold in Table 5.1), and π(s) = 1.

5.5.5 A Solution for the PSSG

In this section, it is introduced the algorithm for the solution to the

problem described in Definition 5.4.1. First, the pseudo-code in Algo-

rithm 8 is provided, then it is described how it works and report on

its time complexity.

With the first iteration, the car with the lowest resilience index, ac-

tualCar, is selected from the queue, through the function priorityCar(·),

which takes as input the set of cars and returns the one with the low-

est resilience index respect to the others. The variable cost outcome

is associated an infinity value, the worst possible one. In the second

iteration, the algorithm computes the costs resulting from the function

c(·), which takes as input a car and a slot. The value of the outcome is

updated with the value of the best cost computed. Among the avail-
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Algorithm 8 Algorithm for the solution of the PSSG.
Input: Queue of ready vehicles
Output: Slot allocation
1: while carQueue 6= null do
2: actualCar = priorityCar(carQueue).
3: outcome =∞.
4: for slot ∈ setAvailableSlots do
5: po = c(actualCar, slot).
6: if po ≥ 0 & po < outcome then
7: outcome = po.
8: assignSlot(actualCar, slot)
9: setNotAvailable(slot).
10: end if
11: end for
12: end while

able slots, the one with the best result is assigned to the actualCar.

Once assigned, the slot is remove from the set of the available ones,

with the function setNotAvailable(·).

Theorem 5.5.1 (Correctness of Algorithm 8). Algorithm 8 computes

the Nash equilibrium for the game.

Proof (Sketch). Proving that the algorithm provides a Nash equilib-

rium is quite trivial. Assume by contradiction that s = (s1, .., sn) is

the solution provided from our algorithm and it is not a Nash equi-

librium. Then, by definition of Nash equilibrium, there must exist an

agent, let us say agent ai, whose strategy sj is not the best, while

fixed the strategies for the other players. Hence, there exists another

strategy s′j for the agent ai, such that the payoff of s′j is better than

the one for sj (given the same strategies for the other players). But

195



VANETs: an algorithmic and a game-theoretic approach

if such a strategy s′j exists, then it would be found at row 6 of our

algorithm, and it would be chosen as the final strategy for agent ai.

But this clearly contradicts the hypothesis that s = (s1, .., sn) is the

solution provided.

Theorem 5.5.2 (Complexity of Algorithm 8). The complexity of Al-

gorithm 8 is quadratic with respect to the number of agents involved

in the game, in the worst case.

Proof. Let us take into account the worst possible scenario, by con-

sidering the case in which no vehicle obtains a parking slot, and let

us compute C(PSSG) as the complexity of the Parking Slot Selection

Game.

The proof proceeds by analyzing the complexity of the most ex-

pensive operations, from the inner ones to the outer ones. It will be

used the notation C(r) to indicate the complexity of the code from the

r-th row of the Algorithm 8.

The function assignSlot(Car, slot) performs simple assignments,

with a constant complexity C(7) = O(1).

The inner loop does not perform any slot assignment, in the consid-

ered worst case, since none of them satisfies the constraints of the cars

to be allocated. Hence, the inner loop is repeated as many times as |S|,

where S is the set of slots, according to Definition 5.4.1. Assuming that

|S| = m, we can deduce that C(3) =
∑m

i=1 C(7) =
∑m

i=1O(1) = O(m).

The outer loop is performed as many times as the number of cars,
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i.e, the agents. Since by Definition 5.4.1 |Agt| = n, we obtain that

C(1) =
∑n

j=1 C(3) =
∑n

j=1O(k) = O(nm).

Assuming that, in the worst case, n and m are of the same order,

we can conclude that the total complexity is C(PSSG) = O(n2).

5.6 Evaluation

In this section, we compare the performances between executing the

greedy solution to solve GPGs and Algorithm 8 to solve PSGGs. We

have run 10 times the two approaches on a growing number of cars and

slots. All values and time-limit needed have been generated randomly.

Results have been collected in Table 5.2. Each column represents a

different execution of the two approaches with the corresponding input

parameters, while the rows keep track of the two analyzed solutions.

Each entry contains the number of cars that have been able to park

successfully, over the total number of cars involved. As one can ob-

serve, the Nash equilibrium based solution is never worse than the

greedy one. Moreover, by extending the experiment over 100 and 200

executions, our approach is strictly better than the greedy one in the

89% and 93% of the cases respectively, and it allocates the same num-

ber of vehicles in the remaining ones.

Since, by construction, a greater number of executions determines

a greater number of cars, these experiments also prove the scalability of

the algorithm, which seems to behave well with high numbers. Such
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a scalability property will be explained in more details in the next

section.
E1 E2 E3 E4 E5 E6 E7 E8 E9 E10

3 slots 4 slots 5 slots 6 slots 7 slots 8 slots 9 slots 10 slots 11 slots 12 slots
3 cars 4 cars 5 cars 6 cars 7 cars 8 cars 9 cars 10 cars 11 cars 12 cars

PSSG 3/3 3/4 5/5 6/6 7/7 8/8 7/9 8/10 9/11 12/12
GPG 2/3 3/4 5/5 5/6 6/7 6/8 6/9 7/10 8/11 10/12

Table 5.2: Resulting vehicle allocations over 10 different simulations
applying two solutions to the parking game: the Nash equilibrium
based one, and the greedy one.

5.7 Benchmarks

In this section, the benchmark obtained following Algorithm 8 are

shown. More precisely, it is analyzed the behavior of the algorithm

in the management of a growing number of cars waiting for a parking

slot, with respect to a fixed number of parking slots. Two scenarios

have been considered:

• In Table 5.3, the number of slots is 4.600. Such a number is not

picked at random, but it refers to the number of slots available

inside the structure of our case study.

• In Table 5.4, the number of slots is 20.000. Also in this case, the

number is not picked at random, but it refers to the number of

available slots in the biggest parking space of the world (West

Edmonton Mall in Canada).
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slots = 4.000
cars seconds
200 0,001
400 0,002
800 0,004
1.600 0,009
3.200 0,027
6.400 0,402
12.800 1,389
25.600 3,415
51.200 10,165
102.400 33,260
204.800 119,718

Table 5.3: Results on 4.000 slots.

slots = 20.000
cars seconds
200 0,003
400 0,006
800 0,013
1.600 0,026
3.200 0,060
6.400 0,150
12.800 0,430
25.600 5,687
51.200 23,597
102.400 57,769
204.800 166,093

Table 5.4: Results on 20.000 slots.

Figures 5.3 and 5.4 reflect the quadratic nature of the algorithm:

the time is the result of the average between 100 tests. All tests have

been executed on an Intel®Core™i5-7300HQ CPU processor of 2,50

GHz, with 8 Gb RAM capacity.

To show the good performance of our algorithm, in our bench-

marks we have considered a very large set of cars. The benchmarks

show that our tool can be also used in other fields, with much higher

numbers. For example, it can be used to accommodate people in a

stadium, or, distribute people over hospitals, for example, for a mas-
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Figure 5.3: Time and cars variation with 4.000 slots.
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Figure 5.4: Time and cars variation with 20.000 slots.

sive vaccinations, as it is required nowadays for the Covid pandemic

situation.
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Conclusions
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Chapter 6

Conclusion

Let us move to the conclusions of this work. Vehicular ad hoc networks,

and its smart parking application, have been investigated from an

algorithmic point of view and a game-theoretic one.

First, a framework for a signal-based representation of a VANET

has been provided, as well as a comparison model that produces a

similarity value among pairs of signals (networks). Such a representa-

tion turns out to be redundancy-free since it just takes vehicles on the

x-axis and computes for them a congestion factor on the y-axis, and

very intuitive: indeed, it is made canonical through a reorganization

of the peaks in the signal: each peak is the congestion factor of the

corresponding vehicle, and the signal configuration also highlights how

the network is divided into clusters. Such a representation lends itself

to easy comparison operations: precisely, a similarity function consid-

ering the peaks trend of two signals has been defined. This function
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has also been compared against a very common algorithm for signal

comparison (DTW) and has been proved to be much more precise.

Then, the smart parking problem has been faced in two different

flavors: first, the Ant Colony Optimization problem has been mapped

to the parking one, by letting drivers looking for an available parking

space as ants looking for food. The pheromone, which in ACO setting

attracts ants along specific paths, here has been treated as a repulsive,

meaning that it pushes drivers not to follow crowded paths. To do so,

the graph representing the network has been opportunely modeled and

colored. Simulation results prove that the algorithm allocates vehicles

in parking slots in a reasonable number of steps.

After, my research has begun more theoretic. In particular, reach-

ability games in DEL game settings have been considered. Some de-

cidability results have been proved, by restricting the set of possible

actions for agents to public actions or public announcements. This

has been done by considering two different scenarios: first, for con-

troller syntesis two entities (the controller and the environment) play

in turn while the rest of the agents can only observe the evolution

of the game; then, for the distributed strategy synthesis, agents are

no longer merely observers but can cooperate, against the remaining

players, to enforce some objective (expressed as a winning condition in

LTLK). The undecidability problem has been solved by assuming pub-

lic actions and hierarchical information, leading to decidable solutions
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also for multi-player DEL games. Moreover, the turn-based scenario

has been turned into a concurrent one, by defining a new concurrent

update product between an epistemic model and an action model. To

do so, it has also been necessary to deal with conflicting actions, that

have been solved through a scheduler.

Speaking about multi-agent systems, it is worthy to do a digression

on tools for model checking. One of the most popular is MCMAS,

developed by the Imperial College of London. The first version of the

tool was thought for ATL and, hence, it also works for model checking

of SL formulas. Later, a new version for a fragment of SL, SL[1G], has

been developed. The comparative study of this work has focused on

a further fragment, namely SL[1G], by trying the two versions of the

tool over SL[1G] formulas. Results show that the first version behaves

much better than the second one, which suggests probably an ad hoc

implementation for the new fragment.

Finally, formal verification methods have been brought into the

VANETs world, in particular for smart parking. Precisely, a real sce-

nario has been considered, the Federico II Hospital Company, and a

game-based solution for smart parking has been provided. The en-

vironment has been modeled as a multi-player game, where drivers

are agents that can choose to park in a given slot. The solution has

been found as the Nash Equilibrium among players in the game, which

turned out to be the best compromise between feasibility and optimal-
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ity. A complete simulation for a 3-players-3-slots game has been pro-

posed, while for more complex numbers of players and slots only the

time needed has been shown. Moreover, a comparison with a greedy

solution has been made, by proving the efficiency of the proposal.

My future research works will follow the lead of what has been

done during my PhD, hoping that this approach can be inspiring for

researchers to range over several disciplines to make apparently differ-

ent world meet for stimulating proposals.
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