
Small Progress Measures for

Solving Parity Games

Marcin Jurdziński

BRICS?, Department of Computer Science, University of Aarhus,
Ny Munkegade, Building 540, 8000 Aarhus C, Denmark.

mju@brics.dk

Abstract. In this paper we develop a new algorithm for deciding the
winner in parity games, and hence also for the modal µ-calculus model
checking. The design and analysis of the algorithm is based on a notion of
game progress measures: they are witnesses for winning strategies in par-
ity games. We characterize game progress measures as pre-fixed points of
certain monotone operators on a complete lattice. As a result we get the
existence of the least game progress measures and a straightforward way
to compute them. The worst-case running time of our algorithm matches
the best worst-case running time bounds known so far for the problem,
achieved by the algorithms due to Browne et al., and Seidl. Our algo-
rithm has better space complexity: it works in small polynomial space;
the other two algorithms have exponential worst-case space complexity.

1 Introduction

A parity game is an infinite path-forming game played by two players, player 3
and player 2, on a graph with integer priorities assigned to vertices. In order
to determine the winner in an infinite play we check the parity of the lowest
priority occurring infinitely often in the play: if it is even then player 3 wins,
otherwise player 2 is the winner. The problem of deciding the winner in parity
games is, given a parity game and an initial vertex, to decide whether player 3
has a winning strategy from the vertex.

There are at least two motivations for the study of the complexity of de-
ciding the winner in parity games. One is that the problem is polynomial time
equivalent to the modal µ-calculus model checking [3], hence developing better
algorithms for parity games may lead to better model checking tools, which is
a major objective in computer aided verification. The other is that the problem
has an interesting status from the point of view of structural complexity theory.
It is known to be in NP ∩ co-NP [3] (and even in UP ∩ co-UP [6]), and hence
it is very unlikely to be NP-complete, but at the same time it is not known
to be in P, despite substantial effort of the community (see [3, 1, 15, 20] and
references therein).

? Basic Research in Computer Science,
Centre of the Danish National Research Foundation.

H. Reichel and S. Tison (Eds.): STACS 2000, LNCS 1770, pp. 290–301, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

Small Progress Measures for Solving Parity Games 291

Progress measures [9] are decorations of graphs whose local consistency guar-
antees some global, often infinitary, properties of graphs. Progress measures have
been used successfully for complementation of automata on infinite words and
trees [7, 8]; they also underlie a translation of alternating parity automata on
infinite words to weak alternating automata [10]. A similar notion, called a sig-
nature, occurs in the study of the modal µ-calculus [17]. Signatures have been
used to prove memoryless determinacy of parity games [2, 18].

Our algorithm for parity games is based on the notion of game parity progress
measures; Walukiewicz [18] calls them consistent signature assignments. Game
parity progress measures are witnesses for winning strategies in parity games.
We provide an upper bound on co-domains of progress measures; this reduces the
search space of potential witnesses. Then we provide a characterization of game
parity progress measures as pre-fixed points of certain monotone operators on a
finite complete lattice. This characterization implies that the least game parity
progress measures exist, and it also suggests an easy way to compute them.

The modal µ-calculus model checking problems is, given a formula ϕ of the
modal µ-calculus and a Kripke structure K with a set of states S, to decide
whether the formula is satisfied in the initial state of the Kripke structure. The
problem has been studied by many researchers; see for example [5, 3, 1, 15, 11]
and references therein. The algorithms with the best proven worst-case running
time bounds so far are due to Browne et al. [1], and Seidl [15]. Their worst-case
running times are roughly O

(
m · ndd/2e) and O

(
m · (n/d)dd/2e), respectively,

where n and m are some numbers depending on ϕ and K, such that n ≤ |S| · |ϕ|,
m ≤ |K| · |ϕ|, and d is the alternation depth of the formula ϕ.

In fact, number n above is the number of vertices in the parity game ob-
tained from the formula and the Kripke structure via the standard reduction of
the modal µ-calculus model checking to parity games, and m is the number of
edges in the game graph; see for example [3, 16]. Moreover, the reduction can
be done in such a way that the number of different priorities in the parity game
is equal to the alternation depth d of the formula. Our algorithm has worst-
case running time O

(
m · (n/bd/2c)bd/2c), and it can be made to work in time

O
(
m · (n/d)dd/2e), hence it matches the bounds of the other two algorithms.

Moreover, it works in space O(dn) while the other two algorithms have expo-
nential worst-case space complexity. Our algorithm can be seen as a generic
algorithm allowing many different evaluation policies; good heuristics can po-
tentially improve performance of the algorithm. However, we show a family of
examples for which worst-case running time occurs for all evaluation policies.

Among algorithms for parity games it is worthwhile to mention the algorithm
of McNaughton [12] and its modification due to Zielonka [19]. In the extended
version of this paper we show that Zielonka’s algorithm can be implemented
to work in time roughly O

(
m · (n/d)d

)
, and we also provide a family of exam-

ples for which the algorithm needs this time. Zielonka’s algorithm works in fact
for games with more general Muller winning conditions. By a careful analysis
of the algorithm for games with Rabin (Streett) winning conditions we get a
running time bound O

(
m · n2k/(k/2)k

)
, where k is the number of pairs in the

292 Marcin Jurdziński

Rabin (Streett) condition. The algorithm also works in small polynomial space.
This compares favourably with other algorithms for the linear-time equivalent
problem of checking non-emptiness of non-deterministic Rabin (Streett) tree au-
tomata [4, 14, 10], and makes it the best algorithm known for this NP-complete
(co-NP-complete) [4] problem.

2 Parity Games

Notation: For all n ∈ N, by [n] we denote the set {0, 1, 2, . . . , n − 1}. If (V, E)
is a directed graph and W ⊆ V , then by (V, E) � W we denote the subgraph
(W, F) of (V, E), where F = E ∩W 2. [Notation] 2

A parity graph G = (V, E, p) consists of a directed graph (V, E) and a priority
function p : V → [d], where d ∈ N. A parity game Γ =

(
V, E, p, (V3, V2)

)
consists

of a parity graph G = (V, E, p), called the game graph of Γ , and of a partition
(V3, V2) of the set of vertices V . For technical convenience we assume that all
game graphs have the property that every vertex has at least one out-going
edge. We also restrict ourselves throughout this paper to games with finite game
graphs.

A parity game is played by two players: player 3 and player 2, who form
an infinite path in the game graph by moving a token along edges. They start
by placing the token on an initial vertex and then they take moves indefinitely
in the following way. If the token is on a vertex in V3 then player 3 moves the
token along one of the edges going out of the vertex. If the token is on a vertex
in V2 then player 2 takes a move. In the result players form an infinite path
π = 〈v1, v2, v3, . . .〉 in the game graph; for brevity we refer to such infinite paths
as plays. The winner in a play is determined by referring to priorities of vertices
in the play. Let Inf(π) denote the set of priorities occurring infinitely often in〈
p(v1), p(v2), p(v3), . . .

〉
. A play π is a winning play for player 3 if min

(
Inf(π)

)
is even, otherwise π is a winning play for player 2.

A function σ : V3 → V is a strategy for player 3 if
(
v, σ(v)

) ∈ E for all
v ∈ V3. A play π = 〈v1, v2, v3, . . .〉 is consistent with a strategy σ for player 3 if
v`+1 = σ(v`), for all ` ∈ N, such that v` ∈ V3. A strategy σ is a winning strategy
for player 3 from set W ⊆ V , if every play starting from a vertex in W and
consistent with σ is winning for player 3. Strategies and winning strategies are
defined similarly for player 2.

Theorem 1 (Memoryless Determinacy [2, 13])
For every parity game, there is a unique partition (W3, W2) of the set of vertices
of its game graph, such that there is a winning strategy for player 3 from W3,
and a winning strategy for player 2 from W2.

We call the sets W3 and W2 the winning sets of player 3 and player 2, respec-
tively. The problem of deciding the winner in parity games is, given a parity
game and a vertex in the game graph, to determine whether the vertex is in the
winning set of player 3.

Small Progress Measures for Solving Parity Games 293

Before we proceed we mention a simple characterization of winning strategies
for player 3 in terms of simple cycles in a subgraph of the game graph associated
with the strategy. We say that a strategy σ for player 3 is closed on a set W ⊆ V
if for all v ∈ W , we have:

– if v ∈ V3 then σ(v) ∈ W , and
– if v ∈ V2 then (v, w) ∈ E implies w ∈ W .

Note that if a strategy σ for player 3 is closed on W then every play starting
from a vertex in W and consistent with σ stays within W .

If σ is a strategy for player3 then by Gσ we denote the parity graph (V, Eσ, p)
obtained from game graph G = (V, E, p) by removing from E all edges (v, w)
such that v ∈ V3 and σ(v) 6= w.

We say that a cycle in a parity graph is an i-cycle if i is the smallest priority
of a vertex occurring in the cycle. A cycle is an even cycle if it is an i-cycle for
some even i, otherwise it is an odd cycle. The following proposition is not hard
to prove.

Proposition 2 Let σ be a strategy for player 3 closed on W . Then σ is a
winning strategy for player 3 from W if and only if all simple cycles in Gσ �W
are even.

3 Small Progress Measures

In this section we study a notion of progress measures. Progress measures play
a key role in the design and analysis of our algorithm for solving parity games.

First we define parity progress measures for parity graphs, and we show that
there is a parity progress measure for a parity graph if and only if all cycles in
the graph are even. In other words, parity progress measures are witnesses for
the property of parity graphs having only even cycles. The proof of the ‘if’ part
also provides an upper bound on the size of the co-domain of a parity progress
measure. Then we define game parity progress measures for parity games, we ar-
gue that they are witnesses for winning strategies for player 3, and we show that
the above-mentioned upper bound holds also for game parity progress measures.

Notation: If α ∈ N
d is a d-tuple of non-negative integers then we number

its components from 0 to d − 1, i.e., we have α = (α0, α1, . . . , αd−1). When
applied to tuples of natural numbers, the comparison symbols <,≤, =, 6=,≥, and
> denote the lexicographic ordering. When subscripted with a number i ∈ N

(e.g., <i, =i,≥i), they denote the lexicographic ordering on N
i applied to the

arguments truncated to their first i components. For example, (2, 3, 0, 0) >2

(2, 2, 4, 1), but (2, 3, 0, 0) =0 (2, 2, 4, 1). [Notation] 2

Definition 3 (Parity progress measure)
Let G =

(
V, E, p : V → [d]

)
be a parity graph. A function % : V → N

d is a parity
progress measure for G if for all (v, w) ∈ E, we have %(v) ≥p(v) %(w), and the
inequality is strict if p(v) is odd. [Definition 3] 2

294 Marcin Jurdziński

Proposition 4 If there is a parity progress measure for a parity graph G then
all cycles in G are even.

Proof: Let % : V → N
d be a parity progress measure for G. For the sake

of contradiction suppose that there is an odd cycle v1, v2, . . . , v` in G, and let
i = p(v1) be the smallest priority on this cycle. Then by the definition of a
progress measure we have %(v1) >i %(v2) ≥i %(v2) ≥i · · · ≥i %(v`) ≥i %(v1), and
hence %(v1) >i %(v1), a contradiction. [Proposition 4]

If G =
(
V, E, p : V → [d]

)
is a parity graph then for every i ∈ [d], we write Vi to

denote the set p−1(i) of vertices with priority i in parity graph G. Let ni = |Vi|,
for all i ∈ [d]. Define MG to be the following finite subset of Nd : if d is even then

MG = [1]× [n1 + 1]× [1]× [n3 + 1]× · · · × [1]× [nd−1 + 1];

for odd d we have · · ·× [nd−2+1]× [1] at the end. In other words, MG is the finite
set of d-tuples of integers with only zeros on even positions, and non-negative
integers bounded by |Vi| on every odd position i.

Theorem 5 (Small parity progress measure)
If all cycles in a parity graph G are even then there is a parity progress measure
% : V → MG for G.

Proof: The proof goes by induction on the number of vertices in G =
(
V, E, p :

V → [d]
)
. For the induction to go through we slightly strengthen the statement of

the theorem: we additionally claim, that if p(v) is odd then %(v) >p(v) (0, . . . , 0).
The statement of the theorem holds trivially if G has only one vertex.

Without loss of generality we may assume that V0∪V1 6= ∅; otherwise we can
scale down the priority function of G by two, i.e., replace the priority function
p by the function p− 2 defined by

(
p− 2

)
(v) = p(v)− 2, for all v ∈ V . Suppose

first that V0 6= ∅. By induction hypothesis there is a parity progress measure
% :

(
V \V0

) → MG for the subgraph G�
(
V \V0

)
. Setting %(v) = (0, . . . , 0) ∈ MG,

for all v ∈ V0, we get a parity progress measure for G.
Suppose that V0 = ∅ then V1 6= ∅. We claim that there is a non-trivial

partition (W1, W2) of the set of vertices V , such that there is no edge from W1

to W2 in G.
Let u ∈ V1; define U ⊆ V to be the set of vertices to which there is a non-

trivial path from u in G. If U = ∅ then W1 = {u} and W2 = V \ {u} is a desired
partition of V . If U 6= ∅ then W1 = U and W2 = V \U is a desired partition. The
partition is non-trivial (i.e., V \U 6= ∅) since u 6∈ U : otherwise a non-trivial path
from u to itself gives a 1-cycle because V0 = ∅, contradicting the assumption
that all cycles in G are even.

Let G1 = G � W1, and G2 = G � W2 be subgraphs of G. By induction
hypothesis there are parity progress measures %1 : W1 → MG1 for G1, and
%2 : W2 → MG2 for G2. Let n′i =

∣∣Vi ∩ W1

∣∣, and let n′′i =
∣∣Vi ∩ W2

∣∣, for i ∈ [d].
Clearly ni = n′i + n′′i , for all i ∈ [d]. Recall that there are no edges from W1 to
W2 in G. From this and our additional claim applied to %1 it follows that the

Small Progress Measures for Solving Parity Games 295

function % = %1∪
(
%2 +(0, n′1, 0, n′3, . . .)

)
: V → MG is a parity progress measure

for G. [Theorem 5]

Let Γ =
(
V, E, p, (V3, V2)

)
be a parity game and let G = (V, E, p) be its game

graph. We define M>
G to be the set MG ∪ {>}, where > is an extra element. We

use the standard comparison symbols (e.g., <, =,≥, etc.) to denote the order on
M>

G which extends the lexicographic order on MG by taking > as the biggest
element, i.e., we have m < >, for all m ∈ MG. Moreover, for all m ∈ MG and
i ∈ [d], we set m <i >, and > =i >. If % : V → M>

G and (v, w) ∈ E then

by Prog(%, v, w) we denote the least m ∈ M>
G , such that m ≥p(v) %(w),

and if p(v) is odd then either the inequality is strict, or m = %(w) = >.

Definition 6 (Game parity progress measure)
A function % : V → M>

G is a game parity progress measure if for all v ∈ V , we
have:

– if v ∈ V3 then %(v) ≥p(v) Prog(%, v, w) for some (v, w) ∈ E, and
– if v ∈ V2 then %(v) ≥p(v) Prog(%, v, w) for all (v, w) ∈ E;

by ‖%‖ we denote the set
{

v ∈ V : %(v) 6= > }
. [Definition 6] 2

For every game parity progress measure % we define a strategy %̃ : V3 → V for
player 3, by setting %̃(v) to be a successor w of v, which minimizes %(w).

Corollary 7 If % is a game parity progress measure then %̃ is a winning strategy
for player 3 from ‖%‖.

Proof: Note first that % restricted to ‖%‖ is a parity progress measure on G
e% �‖%‖.

Hence by Proposition 4 all simple cycles in G
e% �‖%‖ are even.

It also follows easily from definition of a game parity progress measure that
strategy %̃ is closed on ‖%‖. Therefore, by Proposition 2 we get that %̃ is a winning
strategy for player 3 from ‖%‖. [Corollary 7]

Corollary 8 (Small game parity progress measure)
There is a game progress measure % : V → M>

G such that ‖%‖ is the winning set
of player 3.

Proof: It follows from Theorem 1 that there is a winning strategy σ for player 3
from her winning set W3, which is closed on W3. Therefore by Proposition 2 all
cycles in parity graph Gσ �W3 are even, hence by Theorem 5 there is a parity
progress measure % : W3 → MG for Gσ �W3. It follows that setting %(v) = >
for all v ∈ V \W3, makes % a game parity progress measure. [Corollary 8]

296 Marcin Jurdziński

4 The Algorithm

In this section we present a simple algorithm for solving parity games based
on the notion of a game parity progress measure. We characterize game parity
progress measures as (pre-)fixed points of certain monotone operators in a finite
complete lattice. By Knaster-Tarski theorem it implies existence of the least
game progress measure µ, and a simple way to compute it. It then follows from
Corollaries 8 and 7 that ‖µ‖ is the winning set of player 3.

Before we present the algorithm we define an ordering, and a family of
Lift(·, v) operators for all v ∈ V , on the set of functions V → M>

G . Given
two functions µ, % : V → M>

G , we define µ v % to hold if µ(v) ≤ %(v) for all
v ∈ V . The ordering relation v gives a complete lattice structure on the set of
functions V → M>

G . We write µ @ % if µ v %, and µ 6= %. Define Lift(%, v) for
v ∈ V as follows:

Lift
(
%, v

)
(u) =




%(u) if u 6= v,

min(v,w)∈E Prog(%, v, w) if u = v ∈ V3,

max(v,w)∈E Prog(%, v, w) if u = v ∈ V2.

The following propositions follow immediately from definitions of a game parity
progress measure, and of the Lift(·, v) operators.

Proposition 9 For every v ∈ V, the operator Lift(·, v) is v-monotone.

Proposition 10 A function % : V → M>
G is a game parity progress measure, if

and only if is it is a simultaneous pre-fixed point of all Lift(·, v) operators, i.e.,
if Lift(%, v) v % for all v ∈ V .

From Knaster-Tarski theorem it follows that the v-least game parity progress
measure exists, and it can be obtained by running the following simple procedure
computing the least simultaneous (pre-)fixed point of operators Lift(·, v), for all
v ∈ V .

ProgressMeasureLifting
µ := λv ∈ V.(0, . . . , 0)
while µ @ Lift(µ, v) for some v ∈ V do µ := Lift(µ, v)

Theorem 11 (The algorithm)
Given a parity game, procedure ProgressMeasureLifting computes winning
sets for both players and a winning strategy for player 3 from her winning set;
it works in space O(dn), and its running time is

O
(
dm ·

(n

bd/2c
)bd/2c)

,

where n is the number of vertices, m is the number of edges, and d is the
maximum priority in the parity game.

Small Progress Measures for Solving Parity Games 297

Proof: The result of running ProgressMeasureLifting on a parity game is
the v-least game progress measure µ. Let W3 be the winning set of player 3.
By minimality of µ and by Corollary 8 it follows that W3 ⊆ ‖µ‖. Moreover,
Corollary 7 implies that µ̃ is a winning strategy for player 3 from ‖µ‖, and
hence by Theorem 1 we get that ‖µ‖ ⊆ W3, i.e., ‖µ‖ = W3.

Procedure ProgressMeasureLifting algorithm works in space O(dn) be-
cause it only needs to maintain a d-tuple of integers for every vertex in the game
graph. The Lift(·, v) operator, for every v ∈ V , can be implemented to work
in time O

(
d · out-deg(v)

)
, where out-deg(v) is the out-degree of v. Every ver-

tex can be “lifted” only |MG| many times, hence the running time of procedure
ProgressMeasureLifting is bounded by

O
(∑

v∈V

d · out-deg(v) · |MG|
)

= O
(
dm · |MG|

)
.

To get the claimed time bound it suffices to notice that

|MG| =
bd/2c∏
i=1

(n2i−1 + 1) ≤
(n

bd/2c
)bd/2c

,

because
∑bd/2c

i=1 (n2i−1 + 1) ≤ n if ni 6= 0 for all i ∈ [d], which we can assume
without loss of generality; if ni = 0 for some i ∈ [d] then we can scale down the
priorities bigger than i by two. [Theorem 11]

Remark: Our algorithm for solving parity games can be easily made to have

O
(
dm ·

(n

d

)dd/2e)

as its worst-case running time bound, which is better than O
(
m · (n/bd/2c)bd/2c

for even d, and for odd d if d ≥ 2 log n. If
∑bd/2c

i=1 (n2i−1 + 1) ≤ n/2 then the
above analysis gives the desired bound. Otherwise

∑bd/2c
i=0 (n2i + 1) ≤ n/2 + 1.

In this case it suffices to run procedure ProgressMeasureLifting on the dual
game, i.e., the game obtained by scaling all priorities up by one, and swapping
sets in the (V3, V2) partition. The winning set of player 3 in the original game
is the winning set of player 2 in the dual game. [Remark] 2

Note that in order to make ProgressMeasureLifting a fully deterministic
algorithm one has to fix a policy of choosing vertices at which the function
µ is being “lifted”. Hence it can be considered as a generic algorithm whose
performance might possibly depend on supplying heuristics for choosing the
vertices to lift. Unfortunately, as we show in the next section, there is a family
of examples on which the worst case performance of the algorithm occurs for all
vertex lifting policies.

298 Marcin Jurdziński

5 Worst-Case Behaviour

Theorem 12 (Worst-case behaviour)
For all d, n ∈ N such that d ≤ n, there is a game of size O(n) with priorities not
bigger that d, on which procedure ProgressMeasureLifting performs at least(dn/de)dd/2e

many lifts, for all lifting policies.

Proof: We define the family of games H`,b, for all `, b ∈ N. The game graph
of H`,b consists of ` “levels”, each level contains b “blocks”. There is one “odd”
level, and `− 1 “even” levels.

The basic building block of the odd level is the following subgraph.

2`
,,
2`− 1kk

++
2`ll

The numbers in vertices are their priorities. The odd level of H`,b consists of b
copies of the above block assembled together by identifying the left-hand vertex
with priority 2` of the a-th block, for every a ∈ {1, 2, . . . , b− 1}, with the right-
hand vertex with priority 2` of the (a + 1)-st block. For example the odd level
of H4,3 is the following.

8 ((7ii
))
8 ((hh 7ii

))
8 ((hh 7ii

))
8hh

In all our pictures vertices with a diamond-shaped frame are meant to belong
to V3, i.e., they are vertices where player 3 moves; vertices with a box-shaped
frame belong to V2. Some vertices have no frame; for concreteness let us as-
sume that they belong to V3, but including them to V2 would not change our
reasoning, because they all have only one successor in the game graph of H`,b.

The basic building block of the k-th even level, for k ∈ {1, 2, . . . , ` − 1}, is
the following subgraph.

2k − 1
!!DDDD

2k
++

==zzzzz
2kjj

**
2kkk

Every even level is built by putting b copies of the above block together in a
similar way as for the odd level.

To assemble the game graph of H`,b we connect all ` − 1 even levels to
the odd level, by introducing edges in the following way. For every even level
k ∈ {1, 2, . . . , `− 1}, and for every block a ∈ {1, 2, . . . , b}, we introduce edges in
both directions between the box vertex with priority 2`− 1 from the a-th block
of the odd level, and the diamond vertex with priority 2k from the a-th block of
the k-th even level. See Figure 1 for an example: the game H4,3.

Claim 13 Every vertex with priority 2`− 1 in game H`,b is lifted (b+1)` many
times by procedure ProgressMeasureLifting.

Small Progress Measures for Solving Parity Games 299

1
""EEEE 1

""EEEE 1
""EEEE

2

>>|||| **
2ii ((

��

2

>>||||
ii

**
2ii ((

��

2

>>|||| **
ii 2ii

��

((2ii

8)) 7jj

YY444444
))

��

�����������������
8hh)) 7jj

YY444444
))

��

�����������������
8))hh 7jj

YY444444
))

��

�����������������
8hh

3
""EEEE 3

""EEEE 3
""EEEE

4

>>|||| **
4ii ((

FF

4

>>||||
ii

**
4ii ((

FF

4

>>||||
ii

**
4ii ((

FF

4ii

5
""EEEE 5

""EEEE 5
""EEEE

6

>>|||| **
6ii ((

NN

6

>>|||| **
ii 6ii ((

NN

6

>>||||
ii

**
6ii

NN

((6ii

Fig. 1. The game H4,3.

Proof: Note that in game H`,b player 3 has a winning strategy from all vertices
in even levels, and player 2 has a winning strategy from all vertices in the odd
level; see Figure 1. Therefore, the value of the least progress measure in all
vertices with priority 2` − 1 is > ∈ M>

H`,b
. Hence it suffices to show that every

vertex with priority 2` − 1 can be lifted only to its immediate successor in the
order on M>

H`,b
. Then it is lifted

∣∣MH`,b

∣∣ = (b + 1)` many times, because

MH`,b
= [1]× [b + 1]× [1]× [b + 1]× · · · × [b + 1]× [1]︸ ︷︷ ︸

2`+1 components

.

Let v be a vertex with priority 2` − 1 in the odd level of H`,b, and let
w be a vertex, such that there is an edge from v to w in the game graph of
H`,b. Then there is also an edge from w to v in the game graph of H`,b; see
Figure 1. Therefore, function µ maintained by the algorithm satisfies µ(w) ≤
µ(v), because w is a diamond vertex with even priority, so Prog(µ, w, v) =p(w)

µ(v), and
(
Prog(µ, w, v)

)
i
= 0 for all i > p(w). It follows that Lift(·, v) operator

can only lift µ(v) to the immediate successor of µ(v) in the order on MH`,b
,

because the priority of v is 2`− 1. [Claim 13]

Theorem 12 follows from the above claim by taking the game Hbd/2c,dn/de.
[Theorem 12]

6 Optimizations

Even though procedure ProgressMeasureLifting as presented above admits
the worst-case performance, there is some room for improvements in its running
time. Let us just mention here two proposals for optimizations, which should be
considered when implementing the algorithm.

300 Marcin Jurdziński

One way is to get better upper bounds on the values of the least game parity
progress measure than the one provided by Corollary 8, taking into account the
structure of the game graph. This would allow to further reduce the “search
space” where the algorithm is looking for game progress measures. For example,
let G≥i be the parity graph obtained from the game graph G by removing all
vertices with priorities smaller than i. One can show that if v ∈ ‖µ‖ for the
least game progress measure µ then for odd i’s the i-th component of µ(v) is
bounded by the number of vertices of priority i reachable from v in graph G≥i.
It requires further study to see whether one can get considerable improvements
by pre-computing better bounds for the values of the least game parity progress
measure.

Another simple but important optmization is to decompose game graphs into
maximal strongly connected components. Note that every infinite play eventually
stays within a strongly connected component, so it suffices to apply expensive
procedure for solving parity games to the maximal strongly connected compo-
nents separately. In fact, we need to proceed bottom up in the partial order of
maximal strongly connected components. Each time one of the bottom compo-
nents has been solved, we can also remove from the rest of the game the sets of
vertices from which respective players have a strategy to force in a finite number
of moves to their so far computed winning sets.

The above optimizations should considerably improve performance of our
algorithm in practice, but they do not, as such, give any asymptotic worst-case
improvement: see the examples H`,b from Section 5.

Acknowledgements

I am indebted to Mogens Nielsen, Damian Niwiński, Igor Walukiewicz, and Jens
Vöge for numerous inspiring discussions on the subject. I thank anonymous
referees for very helpful advice on improving the focus and presentation of the
paper.

References

[1] A. Browne, E. M. Clarke, S. Jha, D. E. Long, and W. Marrero. An improved
algorithm for the evaluation of fixpoint expressions. Theoretical Computer Science,
178(1–2):237–255, May 1997.

[2] E. A. Emerson and C. S. Jutla. Tree automata, mu-calculus and determinacy
(Extended abstract). In Proceedings of 32nd Annual Symposium on Foundations
of Computer Science, pages 368–377. IEEE Computer Society Press, 1991.

[3] E. A. Emerson, C. S. Jutla, and A. P. Sistla. On model-checking for fragments
of µ-calculus. In Costas Courcoubetis, editor, Computer Aided Verification, 5th
International Conference, CAV’93, volume 697 of LNCS, pages 385–396, Elounda,
Greece, June/July 1993. Springer-Verlag.

[4] E. Allen Emerson and Charanjit S. Jutla. The complexity of tree automata and
logics of programs. In Proceedings of 29th Annual Symposium on Foundations of
Computer Science, pages 328–337, White Plains, New York, 24–26 October 1988.
IEEE Computer Society Press.

Small Progress Measures for Solving Parity Games 301

[5] E. Allen Emerson and Chin-Laung Lei. Efficient model checking in fragments of
the propositional mu-calculus (Extended abstract). In Proceedings, Symposium
on Logic in Computer Science, pages 267–278, Cambridge, Massachusetts, 16–18
June 1986. IEEE.

[6] Marcin Jurdziński. Deciding the winner in parity games is in UP ∩ co-UP. In-
formation Processing Letters, 68(3):119–124, November 1998.

[7] Nils Klarlund. Progress measures for complementation of ω-automata with appli-
cations to temporal logic. In 32nd Annual Symposium on Foundations of Com-
puter Science, pages 358–367, San Juan, Puerto Rico, 1–4 October 1991. IEEE.

[8] Nils Klarlund. Progress measures, immediate determinacy, and a subset construc-
tion for tree automata. Annals of Pure and Applied Logic, 69(2–3):243–268, 1994.

[9] Nils Klarlund and Dexter Kozen. Rabin measures and their applications to fairness
and automata theory. In Proceedings, Sixth Annual IEEE Symposium on Logic
in Computer Science, pages 256–265, Amsterdam, The Netherlands, 15–18 July
1991. IEEE Computer Society Press.

[10] Orna Kupferman and Moshe Y. Vardi. Weak alternating automata and tree
automata emptiness. In Proceedings of the Thirtieth Annual ACM Symposium on
the Theory of Computing, pages 224–233, Dallas, Texas, USA, 23–26 May 1998.
ACM Press.

[11] Xinxin Liu, C. R. Ramakrishnan, and Scott A. Smolka. Fully local and efficient
evaluation of alternating fixed points. In Bernhard Steffen, editor, Tools and Algo-
rithms for Construction and Analysis of Systems, 4th International Conference,
TACAS ’98, volume 1384 of LNCS, pages 5–19, Lisbon, Portugal, 28 March–4
April 1998. Springer.

[12] Robert McNaughton. Infinite games played on finite graphs. Annals of Pure and
Applied Logic, 65(2):149–184, 1993.

[13] A. W. Mostowski. Games with forbidden positions. Technical Report 78, Univer-
sity of Gdańsk, 1991.

[14] Amir Pnueli and Roni Rosner. On the synthesis of a reactive module. In Confer-
ence Record of the 16th Annual ACM Symposium on Principles of Programming
Languages (POPL ’89), pages 179–190, Austin, Texas, January 1989. ACM Press.

[15] Helmut Seidl. Fast and simple nested fixpoints. Information Processing Letters,
59(6):303–308, September 1996.

[16] Colin Stirling. Local model checking games (Extended abstract). In Insup Lee and
Scott A. Smolka, editors, CONCUR’95: Concurrency Theory, 6th International
Conference, volume 962 of LNCS, pages 1–11, Philadelphia, Pennsylvania, 21–
24 August 1995. Springer-Verlag.

[17] Robert S. Streett and E. Allen Emerson. An automata theoretic decision proce-
dure for the propositional mu-calculus. Information and Computation, 81(3):249–
264, 1989.

[18] Igor Walukiewicz. Pushdown processes: Games and model checking. In Thomas A.
Henzinger and Rajeev Alur, editors, Computer Aided Verification, 8th Interna-
tional Conference, CAV’96, volume 1102 of LNCS, pages 62–74. Springer-Verlag,
1996. Full version available through http://zls.mimuw.edu.pl/~igw.

[19] Wies law Zielonka. Infinite games on finitely coloured graphs with applications to
automata on infinite trees. Theoretical Computer Science, 200:135–183, 1998.

[20] Uri Zwick and Mike Paterson. The complexity of mean payoff games on graphs.
Theoretical Computer Science, 158:343–359, 1996.

	Introduction
	Parity Games
	Small Progress Measures
	The Algorithm
	Worst-Case Behaviour
	Optimizations

