
A DETERMINISTIC SUBEXPONENTIAL ALGORITHM FOR
SOLVING PARITY GAMES∗

MARCIN JURDZIŃSKI† , MIKE PATERSON‡ , AND URI ZWICK§

Abstract. The existence of polynomial time algorithms for the solution of parity games is
a major open problem. The fastest known algorithms for the problem are randomized algorithms
that run in subexponential time. These algorithms are all ultimately based on the randomized
subexponential simplex algorithms of Kalai and of Matoušek, Sharir and Welzl. Randomness seems to
play an essential role in these algorithms. We use a completely different, and elementary, approach to
obtain a deterministic subexponential algorithm for the solution of parity games. The new algorithm,
like the existing randomized subexponential algorithms, uses only polynomial space, and it is almost
as fast as the randomized subexponential algorithms mentioned above.

Key words. analysis of algorithms and problem complexity, specification and verification,
2-player games, games on graphs, discrete-time games

AMS subject classifications. 68Q25, 68Q60, 91A05, 91A43, 91A50.

1. Introduction. A parity game [11, 15] is played on a directed graph (V,E)
by two players, Even and Odd, who move a token from vertex to vertex along the
edges of the graph so that an infinite path is formed. A partition (V0, V1) is given of
the set V of vertices: player Even moves if the token is at a vertex of V0 and player
Odd moves if the token is at a vertex of V1. Finally, a priority function p : V → N is
given. The players compete for the parity of the highest priority occurring infinitely
often: player Even wins if lim supi→∞ p(vi) is even while player Odd wins if it is odd,
where v0, v1, v2, . . . is the infinite path formed by the players.

The algorithmic problem of solving parity games is, given a parity game G =
(V0, V1, E, p) and an initial vertex v0 ∈ V , to determine whether player Even has a
winning strategy in the game if the token is initially placed on vertex v0. Algorithms
for solving parity games [33, 20, 32, 15, 1] usually compute the winning sets win0 and
win1, i.e., the sets of vertices from which players Even and Odd, respectively, have a
winning strategy. By the Determinacy Theorem for parity games [11, 15] the winning
sets win0 and win1 form a partition of the set of vertices V . None of these algorithms
is known to run in polynomial time and the existence of a polynomial time algorithm
for the solution of parity games is a long-standing open problem [12, 15].

The original motivation for the study of parity games comes from the area of
formal verification of systems by temporal logic model checking [5, 15]. The problem
of solving parity games is polynomial time equivalent to the non-emptiness problem
of ω-automata on infinite trees with Rabin-chain acceptance conditions [12], and to
the model checking problem of the modal µ-calculus (modal fixpoint logic) which
is a formalism of great expressiveness and succinctness in formal specification and
validation [10, 15]. The model checking problem is a fundamental algorithmic problem
in automated hardware and software verification [10, 5].

∗This paper is an updated and extended version of the SODA’06 paper [21]. The work was par-
tially supported by the London Mathematical Society, DIMAP (the Centre for Discrete Mathematics
and its Applications, EPSRC grant EP/D063191/1), and by EPSRC grant EP/E022030/1.

†Department of Computer Science, University of Warwick, Coventry CV4 7AL, United Kingdom
(Marcin.Jurdzinski@dcs.warwick.ac.uk).

‡Department of Computer Science, University of Warwick, Coventry CV4 7AL, United Kingdom
(msp@dcs.warwick.ac.uk).

§School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel (zwick@cs.tau.ac.il).

1

2 M. JURDZIŃSKI, M. PATERSON, AND U. ZWICK

Another important motivation to study the problem of solving parity games is its
intriguing complexity theoretic status: the problem is known to be in NP ∩ co-NP [12]
and even in UP ∩ co-UP [19] but, as mentioned, despite considerable efforts of the
community [12, 20, 32, 15, 1, 28] no polynomial time algorithm has been found so far.
(The complexity class UP, aka unambiguous NP, is defined to contain all problems
that can be recognized by an unambiguous non-deterministic polynomial-time Turing
machine. A Turing machine is unambiguous if for every input it is has at most one
accepting computation. Clearly, the inclusions P ⊆ UP ⊆ NP hold.) Moreover, parity
games are polynomial time reducible to mean payoff games [34], simple stochastic
games [6], and discounted payoff games [6, 34]. A stochastic generalization of parity
games was also studied [9, 3]. The problems of solving all those games are in UP ∩ co-
UP as well [19, 3]. Condon has shown that simple stochastic games are complete (with
respect to log-space reductions) in the class of log-space randomized alternating Turing
machines [6].

The task of solving parity, mean payoff, discounted payoff, and simple stochastic
games can be also viewed as a search problem: given a game graph, compute opti-
mal strategies for both players. The value functions used in strategy improvement
algorithms [7, 25, 32, 1] witness membership of all those optimal strategies search
problems in PLS (i.e., the class of polynomial local search problems) [17]. On the
other hand, the problem of computing optimal strategies in simple stochastic games
can be reduced in polynomial time to solving a P-matrix linear complementarity
problem [14, 31, 22], and to finding a Brouwer fixpoint [18], and hence it is also in
PPAD [29]. It follows that there are polynomial time reductions from the problems
of computing optimal strategies in parity, mean payoff, discounted payoff, and simple
stochastic games to the problem of finding Nash equilibria in bimatrix games [8, 4].

Let n = |V | and m = |E| be the numbers of vertices and edges of a parity
game graph and let d be the number of different priorities assigned to vertices by the
priority function p : V → N. For parity games with a small number of priorities,
more specifically if d = O(n1/2), the progress-measure lifting algorithm [20] gave,
until recently, the best time complexity of O(dm(2n/d)d/2). This has been improved
by Schewe [30] to O(m(κn/d)d/3), where κ ≤ (2e)3/2. If d = Ω(n(1/2)+ε) then the
randomized algorithm of Björklund et al. [1] has a better (expected) running time
bound of nO(

√
n/ log n).

The main contribution of this paper is a deterministic algorithm for solving parity
games which achieves roughly the same complexity as the randomized algorithm of
Björklund et al. [1]: the complexity of our algorithm is nO(

√
n/ log n) if the out-degree

of all vertices is bounded, and is nO(
√

n) otherwise. The new algorithm uses only
polynomial space.

The randomized algorithm of Björklund et al. [1] is based on the randomized
algorithm of Ludwig [25] for simple stochastic games, which in turn is inspired by the
subexponential randomized simplex algorithms for linear programming and LP-type
problems by Kalai and by Matoušek et al. [23, 26]. For games with out-degree two
these algorithms are instantiations of the Random-Facet algorithm for finding the
unique sink in an acyclic unique sink orientation (AUSO) of a hypercube [13]. The
nodes of a hypercube correspond to positional strategies for one of the players and
the orientation of an edge connecting two positional strategies that differ at exactly
one vertex is determined by which of the two strategies has a better value when the
opponent plays a best-response strategy [7, 25, 32, 1].

In contrast, our deterministic algorithm for parity games is obtained by a mod-

A DETERMINISTIC SUBEXPONENTIAL ALGORITHM FOR PARITY GAMES 3

ification of a more elementary algorithm of McNaughton and Zielonka for parity
games [33, 15]. The methods we use are thus very different from those of Ludwig
and Björklund et al. Our method is applicable, so it seems, only to parity games,
while the randomized algorithms for finding the unique sink in an AUSO [13] and for
solving an LP-type problem [26] can be applied to a number of problems including
computing the values of parity, mean payoff, discounted payoff, and simple stochastic
games [1, 2, 16].

The recent improvement of the complexity of solving parity games with a small
number of priorities due to Schewe [30] was inspired by the preliminary version of
this paper published at SODA’06 [21]. Schewe refined our technique of searching and
removing dominions while running the classical recursive algorithm [27, 33], by using
a modification of the progress measure lifting algorithm [20] instead of a brute-force
search.

2. Definitions. A parity game G = (V0, V1, E, p) is composed of two disjoint
sets of vertices V0 and V1, a set of directed edges E ⊆ V ×V , where V = V0 ∪V1, and
a priority function p : V0 ∪ V1 → N, defined on its vertices. Every vertex u ∈ V has
at least one outgoing edge (u, v) ∈ E. The game is played by two players: Even, also
referred to as Player 0, and Odd, also referred to as Player 1.

The game starts at some vertex v0 ∈ V . The players construct an infinite path
(a play) as follows. Let u be the last vertex added so far to the path. If u ∈ V0, then
Player 0 chooses an edge (u, v) ∈ E. Otherwise, if u ∈ V1, then Player 1 chooses an
edge (u, v) ∈ E. In either case, vertex v is added to the path, and a new edge is then
chosen by either Player 0 or Player 1. As each vertex has at least one outgoing edge,
the path constructed can always be continued.

Let v0, v1, v2, . . . be the infinite path constructed by the two players, and let
p(v0), p(v1), p(v2), . . . be the sequence of the priorities of the vertices on the path.
Player 0 wins the play if the largest priority seen infinitely many times is even, and
Player 1 wins otherwise. Observe that removing an arbitrary finite prefix of a play in
a parity game does not change the winner; we refer to this property of parity games
as prefix independence.

3

2 3 2

4 1

Ga b c

d e f

Fig. 2.1. A parity game G. Double-headed arrows show a positional strategy for each player.

A strategy for Player i in a game G specifies, for every finite path v0, v1, . . . , vk

in G that ends in a vertex vk ∈ Vi, an edge (vk, vk+1) ∈ E. A strategy is said to be
a positional strategy if the edge (vk, vk+1) ∈ E chosen depends only on vk, the last
vertex visited. A strategy for Player i is said to be a winning strategy if using this
strategy ensures a win for Player i, no matter which strategy is used by the other
player. The Determinacy Theorem for parity games [11, 15] says that for every parity
game G and every start vertex v0, either Player 0 has a winning strategy or Player 1

4 M. JURDZIŃSKI, M. PATERSON, AND U. ZWICK

has a winning strategy. (This claim is not immediate as the games considered are
infinite.) Furthermore, if a player has a winning strategy from a vertex in a parity
game then she also has a winning positional strategy from this vertex.

In the parity game G illustrated in Figure 2.1, the initial vertex is labelled a,
Even’s vertices are represented as squares (even number of sides) and Odd ’s as trian-
gles. The numbers within the vertices show priorities. Note that each player’s vertices
may have both even and odd parities. As an example of a play in G, if each player
were to choose the double-headed arrow out of each of their vertices then the infinite
path formed would be a, d, b, e, d, b, e, . . . , and the largest priority seen infinitely often
would be 4 at vertex e. So Even would win this play.

The winning set for Player i, denoted by wini(G), is the set of vertices of the
game from which Player i has a winning strategy. By the Determinacy Theorem for
parity games [11, 15] we have that win0(G) ∪ win1(G) = V .

3. Overview of the new algorithm. The previously known deterministic al-
gorithm [33, 15] on which our improvement is built will be described fully in Section 5.
It has a recursive structure: solving a game with n vertices may require two recursive
calls to smaller games. In the worst case, each of these games may have n−1 vertices,
resulting in a running time satisfying the recurrence T (n) ≤ 2T (n−1)+O(n2), which
yields T (n) = O(2n). We offer no improvement in the first of the two recursive calls
but we do take advantage of a special feature of the second of these.

We introduce the notion of a dominion. An i-dominion, as the name suggests, is
a set of vertices D ruled by Player i, in the sense that Player i can win from every
vertex of D, without leaving D and without allowing the other player to leave D. One
example of an i-dominion would be the whole of wini(G), but there may well be other
‘i-closed’ subsets of wini(G) which are i-dominions. Although finding i-dominions can
be just as hard as finding wini(G), we show that searching for small enough dominions
is feasible, though taking time exponential in the size of dominion sought.

The significance of dominions for our algorithm depends on two properties. First-
ly, every i-dominion found can be easily removed at small cost leaving a smaller game
to be solved. Secondly, the second of the recursive calls is to a game resulting from the
removal of a dominion. Therefore, if we look for and then remove all small dominions
before entering the recursive calls, we can be sure that the second recursive call is
to a substantially reduced game. The corresponding recurrence is then of the form
T (n) ≤ T (n− 1) + T (n− `) + O(n`) for some ` = `(n).

With an appropriate choice of `(n) to achieve a balance between the time to
search for dominions of size up to ` and the savings from avoidance of the worst cases
of the second recursive call, we achieve our subexponential algorithm with running
time nO(

√
n).

In the next section we prepare for the algorithms by introducing some key notions
(i-closed and reachability set) and proving some of their properties. Lemmas 4.5
and 4.6 lay the foundation for the exponential algorithm. They show that we can
begin to solve a game G by considering the set A of vertices with highest priority
which Player i (say) would like the play to visit infinitely often, and identifying the
set A∗ from which Player i can guarantee to reach A at least once. From Lemma 4.6,
we see that by first solving the smaller game G′ based on vertices in V (G)\A∗ we can
identify a subset U of the winning set of the opponent of Player i, say Player j, in G.
By Lemma 4.5 we then know that the set U∗, from which Player j can guarantee to
reach U at least once, is also included in the winning set of Player j in G. Moreover,
Lemma 4.5 establishes that the winning set of Player i in G is equal to her winning

A DETERMINISTIC SUBEXPONENTIAL ALGORITHM FOR PARITY GAMES 5

set in the smaller game based on vertices in V (G) \U∗, and hence the task of solving
the game G is reduced to the task of solving the smaller game. For an illustration,
see Figure 5.2, where A∗ = reachi(A), U = W ′

j , and U∗ = reachj(W ′
j).

After giving details of the exponential algorithm in Section 5, we show in Section 6
how to find dominions. In Sections 7 and 8 we integrate this search-and-remove process
into our new algorithm and analyse the resulting running time.

4. Preliminaries. The results presented in this section are well known [15] and
form the basis of algorithms by McNaughton [27] and Zielonka [33]. We include our
detailed exposition of them here in order to fix the terminology and to make the paper
self-contained.

A set B ⊆ V is said to be i-closed, where i ∈ { 0, 1 }, if for every u ∈ B:
• if u ∈ Vi then there is some (u, v) ∈ E, such that v ∈ B; and
• if u ∈ V¬i then for every (u, v) ∈ E, we have v ∈ B.

(We use ¬i for the element (1 − i) in { 0, 1 }.) In other words, a set B is i-closed if
Player i can always choose to stay in B while Player ¬i cannot escape from it, i.e., B
is a “trap” for Player ¬i.

Lemma 4.1. For each i ∈ { 0, 1 }, the set wini(G) is i-closed.
Proof. The proof is straightforward from the definitions and prefix independence

of parity games.
Let A ⊆ V be an arbitrary set. The i-reachability set of A, denoted reachi(A),

contains all vertices in A and all vertices from which Player i has a strategy to enter
the set A at least once; we call such a strategy an i-reachability strategy to set A. (See
Figure 4.1 for a simple example.)

3

2 3 2

4 1

G

A

reach0(A)

Fig. 4.1. The 0-reachability set of A and a positional 0-reachability strategy to set A.

Lemma 4.2. For every set A ⊆ V and i ∈ {0, 1}, the set V \ reachi(A) is
(¬i)-closed.

Proof. Let u ∈ V \ reachi(A). Recall that every vertex has at least one outgoing
edge, hence if u ∈ V¬i then there must be an edge (u, v) ∈ E from vertex u into the
set V \ reachi(A), i.e., such that v 6∈ reachi(A), since otherwise vertex u would be
in reachi(A). Similarly, if u ∈ Vi then all edges from vertex u must go into the set
V \ reachi(A). Therefore, the set V \ reachi(A) is (¬i)-closed.

Lemma 4.3. For every set A ⊆ V and i ∈ {0, 1}, the set reachi(A) can be
computed in O(m) time, where m = |E| is the number of edges in the game.

Proof. The vertices of A are in reachi(A) so we initialize B ← A. We then
iteratively add to B every vertex of Vi that has at least one edge going into B, and
every vertex of V¬i all of whose edges go into B. We stop when no new vertices can
be added to B.

6 M. JURDZIŃSKI, M. PATERSON, AND U. ZWICK

Some care is needed to keep the time in O(m). One method is to maintain an
adjacency list giving, for each vertex, the incoming edges together with a count of the
number of outgoing edges. At each step we take an edge (u, v) entering B and delete
it (from the list of edges entering v and from the count of edges leaving u): (i) if
u ∈ B then nothing more is done; otherwise, if u ∈ Vi then u is added to B; otherwise
(when u ∈ V¬i \B), if there are no other edges from u then u is added to B.

It is easy to see that this process can be performed in O(m) time, and that when
it ends we have B = reachi(A), as required.

If B ⊆ V is such that for every vertex u ∈ V \ B there is an edge (u, v) with
v ∈ V \ B, then the subgame G \ B is the game obtained from G by removing the
vertices of B and all the edges that touch them. We will only be using B’s for which
V \ B is an i-closed set, for some i. In such cases G \ B is always well-defined. The
next lemmas show some useful properties of subgames.

Lemma 4.4. Let G′ be a subgame of G and let i ∈ {0, 1}. If V ′, the vertex set
of G′, is i-closed in G, then wini(G′) ⊆ wini(G).

Proof. A winning strategy for Player i from the set wini(G′) in the subgame G′

is also winning for her from the same set in the original game G. Player ¬i cannot
escape to V \ V ′, since the set V ′ is i-closed in G.

The following lemma implies that if we know an arbitrary non-empty subset U of
the winning set of a player, say Player j, in a game G, then computing the winning
sets of both players in G can be reduced to computing their winning sets in the smaller
game G \ reachj(U).

Lemma 4.5. Let G be a parity game, let i ∈ { 0, 1 } and j = ¬i. If U ⊆ winj(G)
and U∗ = reachj(U), then winj(G) = U∗∪winj(G\U∗) and wini(G) = wini(G\U∗).

winj(G \ U ∗) wini(G \ U ∗)

Wj Wi

U

U ∗ = reachj(U) G \ U ∗

Fig. 4.2. Diagram illustrating Lemma 4.5.

Proof. Let Wj = U∗ ∪winj(G \U∗) and Wi = wini(G \U∗); see Figure 4.2. Since
(Wi,Wj) is a partition of V , it suffices to show that Wi ⊆ wini(G) and Wj ⊆ winj(G).
By Lemma 4.2, V \ U∗, the vertex set of G \ U∗, is i-closed. The first inclusion then
follows from Lemma 4.4.

To show the second inclusion, we exhibit a strategy for Player j that is winning
for her from the set Wj in the game G. By the assumption that U ⊆ winj(G), there
is a strategy σ for Player j in the game G which is winning for her from all vertices
in U . Let τ be a winning strategy for Player j from the set winj(G \ U∗) in the
subgame G \ U∗. A strategy π for Player j in the game G is made by composing
strategies τ and σ in the following way: if the play so far is contained in the set
winj(G \ U∗) then follow strategy τ , otherwise use the j-reachability strategy to the
set U and “restart” the play following the strategy σ thenceforth. The strategy π

A DETERMINISTIC SUBEXPONENTIAL ALGORITHM FOR PARITY GAMES 7

is well-defined because, by Lemma 4.1, Player i can escape from winj(G \ U∗) only
into the set U∗. By prefix independence of parity games, the strategy π is a winning
strategy for Player j, because if it ever switches from following τ into following σ then
an infinite suffix of the play is winning for Player j.

The next lemma complements Lemma 4.5 by providing an algorithmic method
which either finds a non-empty subset of the winning set of a player, say Player j,
in a parity game G, or (if it returns an empty set) concludes that Player ¬j can win
from every vertex in G.

Lemma 4.6. Let G be a parity game. Let d = d(G) be the highest priority and
let A = Ad(G) be the set of vertices of highest priority. Let i = d mod 2 and j = ¬i.
Let G′ = G \ reachi(A). Then, we have winj(G′) ⊆ winj(G). Also, if winj(G′) = ∅
then wini(G) = V (G), i.e., Player i wins from every vertex of G.

(As an example, consider Figures 4.1 and 4.3, with i = 0 and j = 1.)

3

2 2

1
W1'

G' =G \ reach0(A)

W0'

Fig. 4.3. The game G′ = G \ reach0(A) and winning sets W ′
i = wini(G

′) for i = 0, 1.

Proof. That winj(G′) ⊆ winj(G) follows from Lemmas 4.2 and 4.4.
Suppose now that winj(G′) = ∅. Let τ be a winning strategy for Player i from

wini(G′) (which, by determinacy, is equal to V \ reachi(A)) in the subgame G′. We
construct a strategy π for Player i in the following way: if a play so far is contained in
the set wini(G′) then follow strategy τ ; otherwise the current vertex is in reachi(A) so
follow the i-reachability strategy to the set A; moreover, each time the play re-enters
the set wini(G′) “restart” the play and follow strategy τ , etc. If a play following
the strategy π visits reachi(A) (and hence A) infinitely often then it is winning for
Player i because i = d mod 2. Otherwise, it has an infinite suffix played according
to strategy τ , and hence it is winning for Player i by prefix independence of parity
games.

5. An exponential algorithm. A simple exponential-time algorithm for the
solution of parity games is given in Figure 5.1. This algorithm originates from the
work of McNaughton [27] and was first presented for parity games by Zielonka [33, 15].
Algorithm win(G) receives a parity game G and returns the pair of winning sets
(win0(G),win1(G)) for the two players.

Algorithm win(G) is based on Lemmas 4.5 and 4.6. It starts by letting d be the
largest priority in G and by letting A be the set of vertices having this highest priority.
Let i = d mod 2 be the index of the player associated with the highest priority, and
let j = ¬i be the index of the other player. The algorithm first finds the winning sets
(W ′

0,W
′
1) of the smaller game G′ = G\reachi(A), using a recursive call; see Figure 5.2.

By Lemma 4.6, if W ′
j = ∅ then Player i wins from all vertices of G and we are

done. Otherwise, again by Lemma 4.6, we know that W ′
j ⊆ winj(G). The algorithm

8 M. JURDZIŃSKI, M. PATERSON, AND U. ZWICK

algorithm win(G)

if V (G) = ∅ then return (∅, ∅)
d← d(G) ; A← Ad(G)
i← d mod 2 ; j ← ¬i

(W ′
0,W

′
1)← win(G \ reachi(A))

if W ′
j = ∅ then

(Wi,Wj)← (V (G), ∅)
else

(W ′′
0 ,W ′′

1)← win(G \ reachj(W ′
j))

(Wi,Wj)← (W ′′
i , V (G) \W ′′

i)
endif

return (W0,W1)

Fig. 5.1. An exponential algorithm for solving parity games.

G′ = G \ reachi(A) reachi(A)

G′′ = G \ reachj(W
′
j)

W ′
j = winj(G

′)

A

G′′ = G \ reachj(W
′
j)

reachj(W
′
j)

Fig. 5.2. A game G and its subgames G′ = G \ reachi(A) and G′′ = G \ reachj(W
′
j).

then finds the winning sets (W ′′
0 ,W ′′

1) of the smaller game G′′ = G \ reachj(W ′
j)

by a second recursive call. By Lemma 4.5, we then know that wini(G) = W ′′
i and

winj(G) = reachj(W ′
j) ∪W ′′

j = V (G) \W ′′
i .

A small detailed illustration of the main steps of the algorithm is given in Fig-
ures 4.1, 4.3, 5.3, and 5.4.

Theorem 5.1. Algorithm win(G) correctly finds the winning sets of the parity
game G. Its running time is O(2n), where n = |V (G)| is the number of vertices in G.

Proof. The correctness of the algorithm follows from Lemmas 4.5 and 4.6, as
argued above. Let T (n) be the maximum running time of algorithm win(G) for a
game on at most n vertices. Algorithm win(G) makes two recursive calls win(G′)
and win(G′′) on games with at most n−1 vertices. Other than that, it performs only
O(n2) operations. (The most time-consuming operations are the computations of the
sets reachi(A) and reachj(W ′

j).) Thus T (n) ≤ 2T (n − 1) + O(n2). It is easy to see
then that T (n) = O(2n).

6. Finding small dominions. A set D ⊆ V (G) is said to be an i-dominion if
Player i can win from every vertex of D without ever leaving D. Note, in particular,
that an i-dominion must be i-closed. A set D ⊆ V (G) is said to be a dominion if it

A DETERMINISTIC SUBEXPONENTIAL ALGORITHM FOR PARITY GAMES 9

3

2 3 2

4 1

G

reach1(W1')W1'

Fig. 5.3. The 1-reachability set of W ′
1.

3 2
G'' = G \ reach1(W1')

Fig. 5.4. The game G′′ = G \ reach1(W ′
1).

is either a 0-dominion or a 1-dominion. By prefix independence of parity games, the
winning set wini(G) of Player i is an i-dominion.

Lemma 6.1. Let G be a parity game on n vertices and let ` ≤ n/3. There is
an O(n`)-time algorithm that finds a non-empty dominion in G of size at most `, or
determines that no such dominion exists.

Proof. If ` ≤ n/3 then, for all j ≤ `, we have that
(
n
j

)
/
(

n
j−1

)
> 2. The number∑`

j=1

(
n
j

)
of subsets of V of size at most ` is therefore at most 2

(
n
`

)
. For each such

subset U we check, in O(`2) time, whether it is 0-closed or 1-closed. If both tests
fail, then U is clearly not a dominion. If U is i-closed, for some i ∈ {0, 1}, we form
the game G[U] which is the game G restricted to U . This is well-defined since U is
i-closed. We now apply the exponential algorithm of the previous section to G[U] and
find out, in O(2`) time, whether Player i can win from all the vertices of G[U]. If so,
then U is an i-dominion, otherwise it is not. The total running time of the algorithm
is therefore O(

(
n
`

)
2`) = O(n`), as required.

In a game with bounded out-degrees we can find small dominions even faster.
For simplicity, the lemma below and the analysis in Section 8 are stated for games
in which the out-degree of every vertex is exactly two. Note, however, that for every
constant b, every game on n vertices with out-degrees at most b can be easily converted
into an equivalent game on at most n(b− 1) vertices with out-degrees exactly two, by
replacing each higher-degree vertex by a binary tree.

Lemma 6.2. Let G be a parity game on n vertices in which the out-degree of
each vertex is two. There is an O(n2`` log `)-time algorithm that finds a non-empty
dominion in G of size at most `, or determines that no such dominion exists.

Proof. Assume, without loss of generality, that the vertices of G are numbered
from 1 to n. Let u ∈ V be a vertex of G and let (u, v0) and (u, v1) be the two edges
emanating from v, where v0 ≤ v1. We say that (u, v0) is the 0-th outgoing edge of v,
while (u, v1) is the 1-st outgoing edge of v.

The algorithm generates at most O(n2`) 0-closed sets of size at most ` that are
candidates for being 0-dominions. For every vertex v ∈ V and a binary sequence
〈a1, . . . , a`〉 ∈ {0, 1}`, construct a set U ⊂ V as follows. Start with U = {v} and
r = 1. Vertices added to U are initially unmarked. As long as there is still an
unmarked vertex in U , pick the smallest such vertex u ∈ U and mark it. If u ∈ V0,
then add the endpoint of the ar-th outgoing edge of u to U , if it is not already there,
and increment r. If u ∈ V1, then add the endpoints of both the outgoing edges of u
to U . If at some stage |U | > `, then discard the set U and restart the construction
with the next binary sequence.

10 M. JURDZIŃSKI, M. PATERSON, AND U. ZWICK

If the process above ends with |U | ≤ `, then a 0-closed set of size at most ` has
been found. Furthermore, for every vertex u ∈ U ∩ V0, one of the outgoing edges of u
was selected. This corresponds to a suggested strategy for Player 0 in the game G[U].
Our algorithm therefore considers by exhaustive search all 0-closed sets of at most `
vertices, and for each set considers all possible positional strategies for Player 0.

Using an algorithm of King et al. [24] we can check, in O(` log `) time, whether a
given U and proposed strategy is indeed a winning strategy for Player 0 from all the
vertices of U . Thus, if there is a 0-dominion of size at most ` in G, then the algorithm
will find one. Finding 1-dominions of size at most ` can be done in an analogous
manner.

The algorithm described in Lemma 6.1 finds some i-dominion D if there is a
dominion of size at most `. We denote this algorithm by dominion(G, `), and suppose
that it returns either the pair (D, i) if successful, or (∅,−1) if not.

algorithm new-win(G)

if V (G) = ∅ then return (∅, ∅)
n← |V (G)| ; `← d

√
2ne

(D, i)← dominion(G, `); j ← ¬i

if D = ∅ then
(W0,W1)← old-win(G)

else
(W ′

0,W
′
1)← new-win(G \ reachi(D))

(Wj ,Wi)← (W ′
j , V (G) \W ′

j)
endif

return(W0,W1)

algorithm old-win(G)

d← d(G) ; A← Ad(G)
i← d mod 2 ; j ← ¬i

(W ′
0,W

′
1)← new-win(G \ reachi(A))

if W ′
j = ∅ then

(Wi,Wj)← (V (G), ∅)
else

(W ′′
0 ,W ′′

1)← new-win(G \ reachj(W ′
j))

(Wi,Wj)← (W ′′
i , V (G) \W ′′

i)
endif

return (W0,W1)

Fig. 7.1. The new subexponential algorithm for solving parity games.

7. The new subexponential algorithm. The new algorithm for solving parity
games is given in Figure 7.1. The algorithm new-win starts by trying to find a
dominion of size at most `, where ` = d

√
2n e (and ` = d

√
n log n e for games with

bounded out-degree) is a parameter chosen to minimize the running time of the whole
algorithm. If such a small i-dominion is found, then it is easy to remove it, as well
as its i-reachability set, from the game and recurse on what is left over. If no small
dominion is found, then new-win(G) simply calls algorithm old-win(G) which is

A DETERMINISTIC SUBEXPONENTIAL ALGORITHM FOR PARITY GAMES 11

almost identical to the exponential algorithm win(G) of Section 5. The only difference
between old-win(G) and win(G) is that the recursive calls are made to new-win(G)
and not to win(G).

Theorem 7.1. Algorithm new-win(G) correctly finds the winning sets of a
parity game G. Its running time on a game with n vertices is nO(

√
n).

Proof. The correctness of the algorithm is immediate. We next analyse its running
time. Let T (n) be the maximum running time of new-win(G) on a game with at
most n vertices.

Algorithm new-win(G) tries to find dominions of size at most ` = d
√

2n e. By
Lemma 6.1 this takes O(n`) time. If a non-empty dominion is found, then the al-
gorithm simply proceeds on the remaining game, which has at most n − 1 vertices,
and the remaining running time is therefore at most T (n − 1). Otherwise, a call
to old-win(G) is made. This results in a call to new-win(G \ reachi(A)), which
takes at most T (n − 1) time. If the set W ′

j returned by the call is empty, then we
are done. Otherwise, W ′

j = winj(G \ reachi(A)), and this is equal to winj(G) by
Lemma 4.5. Therefore W ′

j is a j-dominion of G. We are in the case that there is no
small dominion in G, so we know that |W ′

j | > `, and therefore the second recursive
call new-win(G \ reachj(W ′

j)) takes at most T (n− `) time. Thus we get

T (n) ≤ O(n`) + T (n− 1) + T (n− `) .

This recurrence relation, with ` = d
√

2ne, is analysed in Theorem 8.1, where it is
shown that T (n) = nO(

√
n).

A slightly better bound is achieved for graphs with out-degree two.
Theorem 7.2. Consider the algorithm new-win(G) in which the variable ` is

set to d
√

n log n e. If the game G has n vertices and the out-degree of each of them is
two, then the running time of the modified algorithm is nO(

√
n/ log n).

Proof. Note that if ` = d
√

n log n e then O(n2`` log `) = nO(
√

n/ log n). Therefore,
by Lemma 6.2 and by the analysis in the proof of the previous theorem, the time
complexity T (n) satisfies the following recurrence:

T (n) ≤ nO(
√

n/ log n) + T (n− 1) + T (n− `).

The recurrence is analysed in Theorem 8.2, where we show that T (n) = nO(
√

n/ log n).

8. Solving the recurrence relations. In this section we analyse the recurrence
relations used in the previous section to bound the running time of the new algorithm.

We start by analysing the recurrence relation used to bound the running time of
the algorithm for game graphs with arbitrary out-degrees.

Theorem 8.1. If T (n) is a positive function such that, for every n > 3,

T (n) ≤ O(n`) + T (n− 1) + T (n− `) ,

where ` = d
√

2n e, then T (n) = nO(
√

n).
Proof. For every integer n we construct a binary tree Tn in the following way.

The root of Tn is labelled by n. A node labelled by a number k > 3 has two children:
a left child labelled by k − 1 and a right child labelled by k − d

√
2k e. Nodes labelled

by the numbers 1,2 and 3 are leaves. A node labelled by k has a cost of kO(
√

2k)

associated with it. It is easy to see that the sum of the costs of the nodes of Tn is an
upper bound on T (n).

12 M. JURDZIŃSKI, M. PATERSON, AND U. ZWICK

Clearly, the length of every path in Tn from the root to a leaf is most n. We
say that such a path makes a right turn when it descends from a vertex to its right
child. We next claim that each such path makes at most b

√
2nc right turns. This

follows immediately from the observation that the function f(n) = n − d
√

2ne can
be iterated on n at most b

√
2nc times before reaching the value of 3 or less. This

observation can be proved by induction, based on the fact that if 1
2j2 < n ≤ 1

2 (j +1)2

then n− d
√

2ne ≤ 1
2j2. (Initially we have j = b

√
2nc and finally, with 1 ≤ n ≤ 3, we

have j ≥ 1.)
As each leaf of Tn is determined by the positions of the right turns on the path

leading to it from the root, we get that the number of leaves in Tn is at most
(

n
b
√

2nc
)
.

The total number of nodes in Tn is therefore at most 2
(

n
b
√

2nc
)
. As the cost of each

node is at most nO(
√

2n), we immediately get that

T (n) ≤ 2
(

n

b
√

2nc

)
nO(

√
2n) = nO(

√
n) ,

as claimed.
A more careful analysis, in which the O(n`) term in the recurrence relation is re-

placed by O(
(
n
`

)
2`), can be used to show that T (n) = O((cn)

√
n/2), for some constant

c > 0, and that the choice ` = d
√

2n e is essentially optimal.
The running time of the algorithm for graphs with out-degree two satisfies a

tighter recurrence relation, which is analysed similarly in the next theorem.
Theorem 8.2. If T (n) is a positive function such that, for every n > 3,

T (n) ≤ nO(
√

n/ log n) + T (n− 1) + T (n− `),

where ` = d
√

n log n e, then T (n) = nO(
√

n/ log n).
Proof. The proof is similar to the proof of Theorem 8.1. For every integer n we

again construct a tree Tn. A node labelled by a number k > 2 now has a left child
labelled by k − 1 and a right child labelled by k − d

√
k log k e. The cost of a node

labelled by k is now kO(k/ log k). Every root to leaf path in Tn is again of length at
most n, and it can now make at most O(

√
n/ log n) right turns. Thus, the number

of nodes in Tn is at most nO(
√

n/ log n). As the cost of each node is also nO(
√

n/ log n),
we get that T (n) = nO(

√
n/ log n), as claimed.

9. Concluding remarks. We have obtained the first deterministic subexpo-
nential algorithm for solving parity games. Our algorithm does not seem to extend
in an obvious way to the solution of the more general mean payoff games and simple
stochastic games. On the other hand, the techniques that we have introduced in this
paper have recently inspired a notable improvement in the running time complexity
of parity games with a small number of priorities [30].

Acknowledgements. We thank a SODA’06 referee for suggestions that resulted
in a significant simplification of the proofs of Theorems 8.1 and 8.2, and the Journal
referees whose comments helped us improve the presentation.

REFERENCES

[1] H. Björklund, S. Sandberg, and S. Vorobyov, A discrete subexponential algorithm for par-
ity games, in Symposium on Theoretical Aspects of Computer Science (STACS), vol. 2607
of LNCS, Springer, 2003, pp. 663–674.

A DETERMINISTIC SUBEXPONENTIAL ALGORITHM FOR PARITY GAMES 13

[2] H. Björklund and S. Vorobyov, A combinatorial strongly subexponential strategy improve-
ment algorithms for mean payoff games, Discrete Applied Mathematics, 155 (2007),
pp. 210–229.

[3] K. Chatterjee, M. Jurdziński, and T. A. Henzinger, Quantitative stochastic parity games,
in Symposium on Discrete Algorithms (SODA), ACM/SIAM, 2004, pp. 114–123.

[4] X. Chen and X. Deng, Settling the complexity of two-player Nash equilibrium, in Foundations
of Computer Science (FOCS), IEEE Computer Society Press, 2006, pp. 261–272.

[5] E. M. Clarke, O. Grumberg, and D. Peled, Model Checking, MIT Press, 1999.
[6] A. Condon, The complexity of stochastic games, Information and Computation, 96 (1992),

pp. 203–224.
[7] A. Condon, On algorithms for simple stochastic games, in Advances in Computational Com-

plexity Theory, American Mathematical Society, 1993, pp. 51–73.
[8] C. Daskalakis, P. W. Goldberg, and C. H. Papadimitriou, The complexity of computing

a Nash equilibrium, in Symposium on Theory of Computing (STOC), ACM Press, 2006,
pp. 71–78.

[9] L. de Alfaro and R. Majumdar, Quantitative solution of omega-regular games, Journal of
Computer and System Sciences, 68 (2004), pp. 374–397.

[10] E. A. Emerson, Model checking and mu-calculus, in Descriptive Complexity and Finite Models,
N. Immerman and P. G. Kolaitis, eds., vol. 31 of DIMACS Series in Discrete Mathematics
and Theoretical Computer Science, American Mathematical Society, 1996, pp. 185–214.

[11] E. A. Emerson and C. Jutla, Tree automata, µ-calculus and determinacy, in Foundations of
Computer Science (FOCS), IEEE Computer Society Press, 1991, pp. 368–377.

[12] E. A. Emerson, C. S. Jutla, and A. P. Sistla, On model-checking for fragments of µ-calculus,
in Computer-Aided Verification (CAV), vol. 697 of LNCS, Springer, 1993, pp. 385–396.

[13] B. Gärtner, The Random-Facet simplex algorithm on combinatorial cubes, Random Struc-
tures and Algorithms, 20 (2002), pp. 353–381.

[14] B. Gärtner and L. Rüst, Simple stochastic games and P-matrix generalized linear comple-
mentarity problems, in Fundamentals of Computation Theory (FCT), vol. 3623 of LNCS,
Springer, 2005, pp. 209–220.

[15] E. Grädel, W. Thomas, and T. Wilke, eds., Automata, Logics, and Infinite Games. A Guide
to Current Research, vol. 2500 of LNCS, Springer, 2002.

[16] N. Halman, Discrete and Lexicographic Helly Theorems and Their Relations to LP-type Prob-
lems, PhD thesis, Tel Aviv University, 2004.

[17] D. S. Johnson, C. H. Papadimitriou, and M. Yannakakis, How easy is local search?, J.
Comput. Syst. Sci., 37 (1988), pp. 79–100.

[18] B. Juba, On the hardness of simple stochastic games. Manuscript, 2004.
[19] M. Jurdziński, Deciding the winner in parity games is in UP ∩ co-UP, Information Processing

Letters, 68 (1998), pp. 119–124.
[20] M. Jurdziński, Small progress measures for solving parity games, in Symposium on Theoretical

Aspects of Computer Science (STACS), vol. 1770 of LNCS, Springer, 2000, pp. 290–301.
[21] M. Jurdziński, M. Paterson, and U. Zwick, A deterministic subexponential algorithm for

solving parity games, in Symposium on Discrete Algorithms (SODA), ACM/SIAM, 2006,
pp. 117–123.

[22] M. Jurdziński and R. Savani, A simple P-matrix linear complementarity problem for dis-
counted games, in Computability in Europe (CiE), vol. 5028 of LNCS, Springer, 2008,
pp. 283–293.

[23] G. Kalai, A subexponential randomized simplex algorithm (Extended abstract), in Symposium
on Theory of Computing (STOC), ACM Press, 1992, pp. 475–482.

[24] V. King, O. Kupferman, and M. Y. Vardi, On the complexity of parity word automata,
in Foundations of Software Science and Computation Structures (FoSSaCS), vol. 2030 of
LNCS, Springer, 2001, pp. 276–286.

[25] W. Ludwig, A subexponential randomized algorithm for the simple stochastic game problem,
Information and Computation, 117 (1995), pp. 151–155.

[26] J. Matoušek, M. Sharir, and E. Welzl, A subexponential bound for linear programming,
Algorithmica, 16 (1996), pp. 498–516.

[27] R. McNaughton, Infinite games played on finite graphs, Annals of Pure and Applied Logic,
65 (1993), pp. 149–184.

[28] J. Obdržálek, Fast mu-calculus model checking when tree-width is bounded, in Computer-
Aided Verification (CAV), vol. 2725 of LNCS, Springer, 2003, pp. 80–92.

[29] C. H. Papadimitriou, On the complexity of the parity argument and other inefficient proofs
existence, J. Comput. Syst. Sci., 48 (1994), pp. 498–532.

[30] S. Schewe, Solving parity games in big steps, in Foundations of Software Technology and

14 M. JURDZIŃSKI, M. PATERSON, AND U. ZWICK

Theoretical Computer Science (FSTTCS), vol. 4855 of LNCS, Springer, 2007, pp. 449–460.
[31] O. Svensson and S. Vorobyov, Linear complementarity and P-matrices for stochastic games,

in Perspectives of Systems Informatics, Andrei Ershov Memorial Conference (PSI 2006),
vol. 4378 of LNCS, Springer, 2007, pp. 409–423.

[32] J. Vöge and M. Jurdziński, A discrete strategy improvement algorithm for solving parity
games (Extended abstract), in Computer-Aided Verification (CAV), vol. 1855 of LNCS,
Springer, 2000, pp. 202–215.

[33] W. Zielonka, Infinite games on finitely coloured graphs with applications to automata on
infinite trees, Theoretical Computer Science, 200 (1998), pp. 135–183.

[34] U. Zwick and M. Paterson, The complexity of mean payoff games on graphs, Theoretical
Computer Science, 158 (1996), pp. 343–359.

