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Ex1 Find the states (and the pure ones) for the algebra of

n× n matrices.

Ex2 Prove that Nφ is an ideal.

Ex3 Perform the GNS construction for Mat(n,C) starting

from a pure state.

Ex4 Given the algebra C0(R) consider the two states δx0(a) = a(x0)

and φ(a) = 1√
π

∫∞
−∞ dx e

−x2
a(x) . Find the Hilbert space in the

two cases.

Ex5 Make AN into a Hilbert module, and discuss its auto-

morphisms.
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Ex6 The algebras C,Mat(C, n) and K , compact operators
on a Hilbert space are all Morita equivalent. Find the respective
bimodules.

Ex7 Take A = C(R) and D = i∂x . Prove that the distance
among pure states gives the usual distance among points of the
line d(x1, x2) = |x1 − x2|.

Ex8 Find at least two good reasons for which the construc-
tion of last lecture cannot be performed (without changes) for
a noncompact and Minkowkian spacetime.

Ex9 Consider the toy model for which A is C2 represented as

diagonal matrices on H = Cm ⊕ Cn , and D =

(
0 M

M† 0

)
. Find DA .



Ex10 Consider the case l for which A is the algebra of two

copies of function on a manifold, C0(M)× Z2 = C0(M)⊕ C0(M) ,

again represented as diagonal matrices on H = L2(M)⊕ L2(M) ,

and D = i/∂ ⊗ 1 + γ5 ⊕DF .

Ex11 Perform a similar construction for a Grand Unified The-

ory.



Ex Find the states (and the pure ones) for the algebra of n× n
matrices.

We know the answer from quantum mechanics. Pure states cor-

respond vectors of the Hilbert space on which the matrices act,

i.e. n dimensional vectors. Nonpure states to density matrices,

i.e. hermitean matrices of trace 1 and positive eigenvalues.

The first statement can be seen as follows. The algebra of

matrices is also a Hilbert space with inner product Tr b∗a . By

Riesz theorem then any linear functional will be an element of

the algebra. Then we set

φ(a) = Tr ρa

φ(1) = 1⇒ Tr ρ = 1
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The fact that the matrix can be positive means that it should
be Hermitean and without loss of generality we can choose a
basis in which it is diagonal, and being positive with positive
eigenvalues. The only way for this diagonal matrix not be be
expressible as convex sum of other matrices of this kind is is
to have all eigenvalues vanishing except one (which should have
value one). This is a pure state, but, considering for example

ρ =

1 0 · · ·
0 0 · · ·
... ... . . .



then defining ϕ =

1
0
...

 we have φ(a) = Tr ρa = ϕ†aϕ

back



Ex Prove that Nφ is an ideal

This is a one-line proof: follows from

φ(a∗b∗ba) ≤ ‖b‖2φ(a∗a)

since ‖φ‖ = sup{|φ(a)| | ‖a‖ ≤ 1} = 1 , i.e. the norm, which is

one, is the supremum over the vectors of norm less than one,

and ‖ab‖ ≤ ‖a‖ ‖b‖

back
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Ex Perform the GNS construction for Mat(n,C) starting from

a pure state.

We will do the construction in gory detail for the two dimensional

case, the generalization being straightforward.

Consider the matrix algebra Mat(n,C) with the two pure states

φ1

([
a11 a12
a21 a22

])
= a11 , φ2

([
a11 a12
a21 a22

])
= a22 .

The ideals of elements of ‘vanishing norm’ of the states φ1, φ2

are, respectively,

N1 =

{[
0 a12
0 a22

]}
, N2 =

{[
a11 0
a21 0

]}
.
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The associated Hilbert spaces are then found to be

H1 =

{[
x1 0
x2 0

]}
' C2 =

{
X =

(
x1
x2

)}
, 〈X|X ′

〉
= x∗1x

′
1 + x∗2x

′
2 .

H2 =

{[
0 y1
0 y2

]}
' C2 =

{
X =

(
y1
y2

)}
, 〈Y | Y ′

〉
= y∗1y

′
1 + y∗2y

′
2 .

As for the action of an element A ∈ M2(C) on H1 and H2, we

get

π1(A)

[
x1 0
x2 0

]
=

[
a11x1 + a12x2 0
a21x1 + a22x2 0

]
≡ A

(
x1
x2

)
,

π2(A)

[
0 y1
0 y2

]
=

[
0 a11y1 + a12y2
0 a21y1 + a22y2

]
≡ A

(
y1
y2

)
.

The equivalence of the two representations is provided by the



off-diagonal matrix

U =

[
0 1
1 0

]
,

which interchanges 1 and 2 : Uξ1 = ξ2. Using the fact that for

an irreducible representation any nonvanishing vector is cyclic,

from (1) we see that the two representations can be identified.

The procedure generalize to arbitrary n, and also, with little

work, to compact operators.

back



Ex Given the algebra C0(R) consider the two states δx0(a) = a(x0)

and φ(a) = 1√
π

∫∞
−∞ dx e

−x2
a(x) . Find the Hilbert space in the

two cases.

In the first case Nδ is composed of all functions which vanish

at x0. Two function belong to the same equivalence class of

C0(R)/Nδ if they differ by any function which vanishes at x0.

Therefore they must have the same value in x0, and we can

identify the class of equivalence with this value. Therefore the

quotient is simply C. Note that by the same token the vaue of

the function at a point is also an irreducible representation of

the algebra. Since the algebra is commutative the only IRR are

indeed C.
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In the second case N = ∅ since φ(a∗a) = 1√
π

∫∞
−∞ dx e

−x2|a(x)|2

cannot be zero if a 6= 0. We then have a faithful (but reducible)

representation.

This state is clearly not pure, for example:

φ(a) =
1

2
φ1(a)+

1

2
φ2(a) =

1
√
π

∫ 0

−∞
dx e−x

2
a(x)+

1
√
π

∫ ∞
0

dx e−x
2
a(x)

back



Ex Make AN into a Hilbert module, and discuss its automor-

phisms

This is almost trivial. An element of A ∈ AN is just an N-ple

of element of the algebra {Ai} and I can define a right (left)

module as

(aA)i = aAi ; (Aa)i = Aia

The inner product can be easily defined

〈a, b〉A =
∑
i

a
†
ibi

The corresponding norm is

‖(a1, · · · , aN)‖A :=

∥∥∥∥∥∥
n∑

k=1

a∗kak

∥∥∥∥∥∥ .
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That AN is complete in this norm is a consequence of the com-

pleteness with respect to its norm. Parallel to the situation of

the previous example, when the algebra is unital, one finds that

EndA(AN) ' End0
A(AN) ' Mn(A), acting on the left on AN . The

isometric isomorphism End0
A(AN) ' Mn(A) is now given by

End0
A(A) 3 |(a1, · · · , aN)〉 〈(b1, · · · , bN)| 7→

 a1b
∗
1 · · · a1b

∗
N... ...

aNb
∗
1 · · · aNb

∗
N

 ,

∀ ak, bk ∈ A ,

which is then extended by linearity.

The automorphisms of this module are simple N × N matrices

with entries in the element of the algebra. If A is the algebra

Note that for A = Mat(n,C) the same space is also a Hilbert



space, i.e. a Hilbert module over C

〈a, b〉C =
∑
i

Tr a†ibi

While for A = C0(M)

〈a, b〉C =
∑
i

∫
dµa†ibi

and the completion of the integral gives L2.

back



Ex The algebras C,Mat(C, n) and and K , compact operators on a Hilbert

space are all Morita equivalent. Find the respective bimodules

For any integer n the algebras Mn(C) and C are Morita equivalent
and the equivalence Mn(C)-C bimodule is just E = Cn. The left
action of Mn(C) on E is the usual matrix action on a vector,
while C acts on the right on each component of the vector. The
hermitian products for any two vectors u = (ui) and v = (vi) are
〈v| w〉C :=

∑n
i=1 v̄iwi and Mn(C)〈u, v〉 := |u〉 〈v| which reads ūivj in

components. It is immediate to verify relation (??):

Mn(C)〈v, w〉u = |v〉 〈w| u = v 〈w| u〉C .

In components all of the above expressions are simply
∑
j v̄iwjuj.

The module E = Cn is free as a right C-module while it is pro-
jective (of finite type) as a left Mn(C)-module and Cn = Mn(C)p
where p = |v〉 〈v| is any rank-one projection.
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Generalizing the procedure one shows that the algebra K(H)

of compact operators on a separable Hilbert space H is Morita

equivalent to the algebra C with H the equivalence K(H)-C bi-

module and hermitian products K(H)〈v, w〉 := |v〉 〈w| and 〈v| w〉C :=

〈v| w〉H. Again H = K(H)p where p = |v〉 〈v| is any rank-one pro-

jection but now H is not finite generated (i.e. finite dimensional)

over C.

If M is a locally compact Hausdorff topological space, then from

the previous considerations follows that for any integer n the

algebra Mn(C)⊗C0(M) ' Mn(C0(M)) is Morita equivalent to the

algebra C0(M). back



Ex Take A = C(R) and D = i∂x . Prove that the distance among pure

states gives the usual distance among points of the line d(x1, x2) = |x1 − x2|

Given a function a(x) of the algebra we should consider the

supremum of |a(x1)−a(x2) subject to the condition on the norm

of [D, a] ≤ 1 is

‖[D, a]‖ = ‖ sup
x
‖a′(x)‖

clearly the supremum is attained for any function which ha |a′(x) =

1| in the interval [x1, x2], and the behaviour of the function out-

side is irrelevant (it just just be such that it eventually goes to

zero at infinity).

In more dimensions, with genric γ’s with {γµ, γν} = gµν the calcu-

lation is more involved for g generic, it goes through a Lipschitz
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norm, and in the end one obtains the usual geodesic distance

given by the metric tensor.

back



Ex Find at least two good reasons for which the construction of last lecture

cannot be performed (without changes) for a noncompact and Minkowkian

spacetime.

On a noncompact space a derivative operator such as the original

Dirac operator does not have a discrete spectrum, and there-

fore our construction based on the eigenvalues of D will not

count. This a technical infrared problem, and on can circumvent

it putting the system “in a box”. A Minkowkian noncompact

space in somewhat unnatural, and not compatible with causality,

what happens to the light cones? We will see in the course of the

lectures that something can be done to create some Minkwkian

noncommutative geometry.

back
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Ex Consider the toy model for which A is C2 represented as di-

agonal matrices on H = Cm ⊕ Cn , and D =

(
0 M

M† 0

)
. Find DA

The exercise really has to do with finding one forms. We will

solve it using some more sophisticated mathematics, which will

help us introduce some concepts we overlooked in the lecture.

Consider a space made of two points Y = {1,2}. The algebra

A of continuous functions is the direct sum A = C ⊕ C and

any element f ∈ A is a pair of complex numbers (f1, f2), with

fi = f(i) the value of f at the point i. An even spectral triple

(A,H, D, γ) is constructed as follows. The finite dimensional

Hilbert space H is a direct sum H = H1⊕H2 and elements of A
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act as diagonal matrices

A 3 f 7→
(
f11dimH1

0
0 f21dimH2

)

There is a natural grading operator γ given by

γ =

(
1dimH1

0
0 −1dimH2

)
.

An operator D – being required to anticommute with γ – must
be an off-diagonal matrix,

D =

(
0 M
M∗ 0

)
, M ∈ Lin(H2,H1) .

With f ∈ A, one finds for the commutator

[D, f ] = (f2 − f1)

(
0 M
−M∗ 0

)
,



and for its norm, ‖[D, f ]‖ = |f2−f1|λ with λ the largest eigenvalue

of the matrix |M | =
√
M∗M . Therefore, the noncommutative

distance between the two points of the space is found to be

d(1,2) = sup{|f2 − f1| | ‖[D, f ]‖ ≤ 1} =
1

λ
.

Since D is a finite hermitian matrix, this geometry is just ‘0-

dimensional’ and the only available trace is ordinary matrix trace.

It turns out that for this space, and for more general discrete spaces as well, it

is not possible to introduce a real structure which fulfills all the requirements.

It seems that it is not possible to satisfy the first order condition.

We now construct the exterior algebra on this two-point space.

The space Ω1A of universal 1-forms can be identified with the

space of functions on Y × Y which vanish on the diagonal.



Since the complement of the diagonal in Y × Y is made of two

points, namely the pairs (1,2) and (2,1), the space Ω1A is two-

dimensional and a basis is constructed as follows. Consider the

function e defined by e(1) = 1, e(2) = 0; clearly, (1 − e)(1) =

0, (1− e)(2) = 1. A possible basis for the 1-forms is then given

by∗

eδe , (1− e)δ(1− e) ,

and their values are

(eδe)(1,2) = −1 , ((1− e)δ(1− e))(1,2) = 0

(eδe)(2,1) = 0 , ((1− e)δ(1− e))(2,1) = −1 .

where I defined δe ≡ [D, e].

∗Here I am oversimplifying a construction based on cyclic cohomolgy.



Any 1-form can be written as α = λeδe + µ(1 − e)δ(1 − e), with

λ, µ ∈ C. One immediately finds that

e[D, e] =

(
0 −M
0 0

)
, (1)

(1− e)[D,1− e] =

(
0 0
−M∗ 0

)
, (2)

and a generic 1-form α = λeδe+ µ(1− e)δ(1− e) is

α = −
(

0 λM
µM∗ 0

)
.

Hermitean one forms have µ = λ̄.

back



Ex Consider the case l for which A is the algebra of two copies
of function on a manifold, C0(M)× Z2 = C0(M)⊕ C0(M) , again

represented as diagonal matrices on H = L2(M)⊕ L2(M) , and

D = i/∂ ⊗ 1 + γ5 ⊕DF .

The geometry in this case is almost commutative, i.e. the prod-
uct of the ordinary commutative manifold times a finite dimen-
sional space composed by two points. Note that the geometry
is still commutative, the topological space is comprised of two
copies of M . Accordingly with the considerations of the previous
example γ and Df are like the earlier D before, with the matrix
M being just a complex number.

One forms split int two as well. The one due to /∂ gives an
Hermitean element of the algebra, which corresponds to the po-
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tential of a U(1) × U(1) theory, since the two elements on the

diagonal matrix are different.

The part of the potential coming from DF is instead a scalar

field which connects the two sheets.

DA = (D + /A)⊗ 1 + γ5 ⊗
(

0 φ
φ 0

)
Note that the algebra is made of two diagonal elements, which

are eigenvalues of γ with ±1 eigenvalues, hence, heuristically

speaking, they are “right” and “left” sheet. The field φ connect

the two sheets, which is what the Higgs field actually does. This

analogy becomes more precise with the spectral action.

back



Ex Perform a similar construction for a Grand Unified Theory.

The construction will not work for the majority of GUT’s. The

reason is that an algebra has less irreducible representations than

a group.

The reason for this is simple, an algebra has to accommodate

two operations, sum and product, while a group only has one.

The relevant case is Mat(n,C). As algebra it has only one non

trivial irreducible representation, the definitory one, i.e. n × n

complex matrices. The unitary elements of the algebra form

always a group, and in this case the group is U(n), which has is

known has an infinity of irreducible representations. If we take

a m dimensional representation of U(m) and start allowing also
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the matrices which we obtain using the sum besides the product

then we unavoidably obtain Mat(m,C) or Mat(m,R) according to

the representation, but not Mat(n,C).

Partial exception are conplex numbars (one by one matrices) two

by two matrices. For the former we have a representation for

any real number, but the algebra one obtains is of course always

C. The two by two case is connected with the peculiar charac-

teristics of Pauli matrices. In this case we have the possibility of

using quaternions, whose unitary elements are SU(2).

The construction with a gauge group (also made of different

factors) requires fermions to transform either in the fundamental

representation of the gauge group (or each of its factors) or the

trivial one. This is what happens for the standard model, where



quarks tranform under the the fundamental representation of

SU(3) and leptons under the trivial one, left particles are doublets

of SU(2) and right particles are singlets (transform under the

trivial representation).

GUT’s like SU(5) require the fermions to be represented in a

five dimensional spae (and this is OK) as well as 10 dimensional

space, and this creates the problem. Likequse for SO(10) which

requires a 16 dimensional representation.

An exception is the Pati-Salam model based on SU4)× SU(2)×
SU(2). In this case lepton number becomes a “fourth colour”

and right particles transform under the second SU(2).

back


